
Semi-parallel Logistic Regression for GWAS
on Encrypted Data

Miran Kim1, Yongsoo Song2, Baiyu Li3, and Daniele Micciancio3

1 University of Texas, Health Science Center at Houston, Houston, USA
Miran.Kim@uth.tmc.edu

2 Microsoft Research, Redmond, USA
Yogsoo.Song@microsoft.com

3 University of California, San Diego, USA
{baiyu,daniele}@cs.ucsd.edu

Abstract. The sharing of biomedical data is crucial to enable scientific discoveries across institu-
tions and improve health care. For example, genome-wide association studies (GWAS) based on a
large number of samples can identify disease-causing genetic variants. The privacy concern, how-
ever, has become a major hurdle for data management and utilization. Homomorphic encryption
is one of the most powerful cryptographic primitives which can address the privacy and security
issues. It supports the computation on encrypted data, so that we can aggregate data and per-
form an arbitrary computation on an untrusted cloud environment without the leakage of sensitive
information.

This paper presents a secure outsourcing solution to assess logistic regression models for quantitative
traits to test their associations with genotypes. We adapt the semi-parallel training method by Siko-
rska et al., which builds a logistic regression model for covariates, followed by one-step parallelizable
regressions on all individual single nucleotide polymorphisms (SNPs). In addition, we modify our
underlying approximate homomorphic encryption scheme for performance improvement.

We evaluated the performance of our solution through experiments on real-world dataset. It achieves
the best performance of homomorphic encryption system for GWAS analysis in terms of both com-
plexity and accuracy. For example, given a dataset consisting of 245 samples, each of which has
10643 SNPs and 3 covariates, our algorithm takes about 43 seconds to perform logistic regres-
sion based genome wide association analysis over encryption. We demonstrate the feasibility and
scalability of our solution.

Keywords: Homomorphic encryption · Genome-wide association studies · Logistic regression.

1 Introduction

Since National Institutes of Health (NIH) released the Gemonic Data Sharing policy allowing
the use of cloud computing services for storage and analysis of controlled-access data [1], we are
getting more challenge to ensure security and privacy of data in cloud computing systems. In
the United States, the Health Insurance Portability and Accountability Act regulates medical
care data sharing [28]. A community effort has been made to protect the privacy of genomic
data, for example, iDASH (integrating Data for Analysis, Anonymization, Sharing) has hosted
secure genome analysis competition for the past 5 years. This contest has encouraged cryptog-
raphy experts to develop practical yet rigorous solutions for privacy preserving genomic data
analysis. As a result, we could demonstrate the feasibility of secure genome data analysis us-
ing various cryptographic primitives such as homomorphic encryption (HE), differential privacy,
multi-party computation, and software guard extension. In particular, HE has emerged as one
of the promising solutions for secure outsourced computation over genomic data in practical
biomedical applications [12, 20, 21, 4].

2 M. Kim et al.

In this work, we provide a solution for the second track of iDASH 2018 competition, which
aims to develop a method for outsourcing computation of Genome Wide Association Studies
(GWAS) on homomorphically encrypted data. We propose a practical protocol to assess logistic
regression model to compute p-values of different single nucleotide polymorphisms (SNPs). We
investigate the association of genotypes and phenotypes by adjusting the models on the basis of
covariates. The results will be used for identifying genetic variants that are statistically correlated
with phenotypes of interest.

One year ago, participants of the third task in iDASH 2017 competition were challenged
to train a single logistic regression model on encrypted data. Although significant performance
improvements over existing solutions have been demonstrated [19, 8], it is still computationally
intensive to perform logistic regression based GWAS. A straightforward implementation would
require building one model for each SNP, incurring a high performance overhead of secure com-
putation. This motivates the use of the semi-parallel algorithm, which was previously discussed
in [26, 27]. Following the approach, our algorithm proceeds in two steps over encrypted data: (1)
construct a logistic regression model by applying the gradient descent method of [19] while tak-
ing only the covariates into account, (2) compute the regression parameters of logistic regression
corresponding to SNPs with one additional update of Newtons method. The model in the first
step can be computed very efficiently and can be used for all SNPs in the subsequent step. In
the second step, we apply various techniques to enable computing the logistic regression updates
for all SNPs in many parallel sub-steps. This approach enables us to obtain logistic regression
based models for thousands of SNPs all in one.

Our solution is based on a homomorphic scheme by Cheon et al. [9] with support for ap-
proximate fixed-point arithmetic over the real numbers. Recently, a significant performance
improvement was made in [8] based on the Residue Number System (RNS). The authors modi-
fied homomorphic operations so that they do not require any expensive RNS conversions. In this
paper, we propose another RNS variant of approximate HE scheme which has some advantages
for this task. Specifically, we adapt a different key-switching method which is a core operation
in homomorphic multiplication or permutation. The earlier studies [9, 8] were based on the
key-switching technique of [16] which introduces a special modulus. A special modulus had ap-
proximately the same bit-size as a ciphertext modulus to reduce the complexity of key-switching
procedure, but we observed that it is not the best option when the depth of an HE scheme
is small. Instead, we combine the special modulus technique with RNS-friendly decomposition
method [3]. As a result, we could minimize the parameter and thereby improve the performance
while guaranteeing the same security level. We further leverage efficient packing techniques and
parallelization approaches to reduce the storage requirement and running time.

Related Works. There are a number of recent research articles on HE-based machine learning
applications. Kim et al. presented the first secure outsourcing method to train a logistic regression
model on encrypted data [22] and the follow-up showed remarkably good performance with real
data [19, 8]. For example, the training of a logistic regression model took about 3.6 minutes on
encrypted data consisting of 1579 samples and 18 features. A slightly different approach is taken
in [7], where the authors use Gentry’s bootstrapping technique in fully homomorphic encryption,
so that their solution can run for an arbitrary number of iterations of gradient descent algorithm.

2 Background

The binary logarithm will be simply denoted by log(·). We denote vectors in bold, e.g. a, and
matrices in upper-case bold, e.g. A. For an n×m matrix A, we use Ai to denote the i-th row

Semi-parallel Logistic Regression for GWAS on Encrypted Data 3

of A, and aj the j-th column of A. For a d1 × d matrix A1 and a d2 × d matrix A2, (A1;A2)
denotes the (d1 + d2)× d matrix obtained by concatenating two matrices in a vertical direction.
If two matrices A1 and A2 have the same number of rows, (A1|A2) denotes a matrix formed
by horizontal concatenation. We let λ denote the security parameter throughout the paper:
all known valid attacks against the cryptographic scheme under scope should take Ω(2λ) bit
operations.

2.1 Logistic Regression

Logistic regression is a widely used statistical model when the response variable is categorical
with two possible outcomes [13]. In particular, it is very popular in biomedical informatics
research and serve as the foundation of many risk calculators [29, 15, 18].

Let the observed phenotype be given as a vector y ∈ {±1}n of length n, the states of p many
SNPs as the n×p matrix S, and the states of k many covariates as the n×k matrix X. Suppose
that an intercept is included in the matrix of covariates, that is, X contains a column of ones.
For convenience, let ui = (Xi, sij) ∈ Rk+1 for i = 1, . . . , n. For each j ∈ [p], logistic regression
aims to find an optimal vector β ∈ Rk+1 which maximizes the likelihood estimator

n∏
i=1

Pr[yi|ui] =

n∏
i=1

σ(−yi · uTi β),

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, or equivalently minimizes the loss func-
tion, defined as the negative log-likelihood:

L(β) =
1

n

n∑
i=1

log(1 + exp(−yi · uTi β)).

Note that β = (βX|βj) depends on the index j, and we are particularly interested in the last
component βj that corresponds to the j-th SNP.

There is no closed form formula for the regression coefficients that minimizes the loss function.
Instead, we employ an iterative process: we begin with some initial guess for the parameters and
then repeatedly update them to make the loss smaller until the process converges. Specifically,
the gradient descent (GD) takes a step in the direction of the steepest decrease of L. The method
of GD can face a problem of zig-zagging along a local optima and this behavior of the method
becomes typical if it increases the number of variables of an objective function. We can employ
Nesterov’s accelerated gradient [23] to address this phenomenon, which uses moving average on
the update vector and evaluates the gradient at this looked-ahead position.

2.2 Newton’s Method

We can alternatively use Newton algorithm to estimate parameters [24]. It can be achieved by
calculating the first and the second derivatives of the loss function, followed by the update:

β ← β − (∇2
βL(β))−1 · ∇βL(β).

Let pi = σ(uTi β) for i ∈ [n]; then pi represents the probability of success for each sample. We
see that

∇βL(β) = UT (y − p),

∇2
βL(β) = −UTWU, (1)

4 M. Kim et al.

where U is an n× (k+ 1) regressor matrix whose i-th row contains the variables ui, p = (pi)
n
i=1

is a column vector of the estimated probabilities pi, and W is a diagonal weighting matrix with
elements wi = pi(1− pi). Then the above update formula can be rewritten as

β ← (UTWU)−1 ·UTW · (Uβ + W−1(y − p))

= (UTWU)−1 ·UTWz. (2)

where z = Uβ+W−1(y−p). Here, the vector z is known as the working response. This method
is also called Iteratively Reweighted Least Squares. More details can be found in [24]. On the
other hand, the Fisher information UTWU can be partitioned into a block form:

A b

bT c

k

1

k 1

where A = XTWX, sj = (sij)
n
i=1 is a column vector of all samples of the j-th SNP, b = XTWsj ,

and c = sTj Wsj . Then the inverse of UTWU is
∗ ∗

−1
tb

TA−1 1
t

where t = c−bTA−1b. Therefore, the estimated SNP effect βj and the variance for the estimation
are computed by

βj = −1

t
· (bTA−1) · (XTWz) +

1

t
· (sTj Wz)

=
|A| · sTj Wz− bT · adj(A) · (XTWz)

|A| · c− bT · adj(A) · b
, (3)

varj =
1

c− bT ·A−1 · b
, (4)

where adj(A) denotes the adjugate matrix and |A| the determinant of A.

3 Full RNS Variant of HEAAN, Revisited

In this paper, we apply the full RNS variant of the HEAAN scheme [9], called RNS-HEAAN [8], for
efficient arithmetic over the real numbers. In addition, we modify some algorithms to meet our
goals.

The previous RNS-HEAAN scheme uses some approximate modulus switching algorithms for
the key-switching procedure. The evaluation key should have a much larger modulus compared
to encrypted data due to multiplicative noise. In this work, we developed and implemented a
new key-switching algorithm which provides a trade-off between complexity and parameter. Our

Semi-parallel Logistic Regression for GWAS on Encrypted Data 5

new key-switching process requires more Number Theoretic Transformation (NTT) conversions,
but the HE parameters such as the ring dimension N can be reduced while keeping the same
security level. In particular, our method is more efficient than the previous one when the depth
of a circuit to be evaluated is small.

The following is a simple description of RNS-HEAAN based on the ring learning with errors
(RLWE) problem. Let R = Z[X]/(XN + 1) be a cyclotomic ring for a power-of-two integer N .
An ordinary ciphertext of RNS-HEAAN can be represented as a linear polynomial c(Y) = c0+c1 ·Y
over the ring RQ where Q denotes the ciphertext modulus and RQ = R (mod Q) is the residue
ring modulo Q.

• Setup(q, L, η; 1λ). Given a base integer module q, a maximum level L of computation, a bit
precision η, and a security parameter λ, the Setup algorithm generates the following parameters:

- Choose a basis D = {p0, q0, q1, . . . , qL} such that qi/q ∈ (1− 2−η, 1 + 2−η) for 1 ≤ i ≤ L. We
write Q` =

∏`
i=0 qi for 0 ≤ ` ≤ L.

- Choose a power-of-two integer N .
- Choose a secret key distribution χkey, an encryption key distribution χerr, and an error

distribution χenc over R.

We always use the RNS form with respect to the basis {p0, q0, . . . , q`} (or its sub-basis) to
represent polynomials in our scheme. For example, an element a(X) of RQ`

is identified with

the tuple (a0, a1, . . . , a`) ∈
∏`
i=0Rqi where ai = a (mod qi). We point out that all algorithms in

our scheme are RNS-friendly, so that we do not have to perform any RNS conversions.
The main difference of our scheme from previous work [8] is that the key-switching procedure

is based on both the decomposition and modulus raising techniques. The use of decomposition
allows us to use a smaller parameter, but its complexity may be increased when the level of HE
scheme is large. However, we realize that the GWAS analysis does not require a huge depth,
so this new key-switching technique is beneficial to obtain a better performance in this specific
application. The generation of switching key and key-switching algorithms are described as
follows.

• KSGen(s1, s2). Given two secret polynomials s1, s2 ∈ R, sample ãi(X)← U(Rp0·QL
) and errors

ẽi ← χerr for 0 ≤ i ≤ L. Output the switching key

swk = {swki = (b̃i, ãi)}0≤i≤L ∈
(
R2
p0QL

)L+1

where b̃i = −ã · s2 + ẽ + p0Bi · s1 (mod p0 · QL) for the integer Bi ∈ ZQL
such that Bi = 1

(mod qi) and Bi = 0 (mod qj) for all j 6= i.

• KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q`

, let c1,i = c1 (mod qi) for 0 ≤ i ≤ `. We first

compute c̃t =
∑`

i=0 c1,i ·swki (mod p0Q`), and then return the ciphertext ct′ = (c0, 0)+bp−10 · c̃te
(mod Q`).

The idea of key-switching procedure is used to relinearize a ciphertext in homomorphic
multiplication algorithm below. All other algorithms including key generation, encryption and
decryption are exactly same as the previous RNS-based scheme.

• KeyGen(1λ).

- Sample s← χkey and set the secret key as sk = (1, s).
- Sample a ← U(RQL

) and e ← χerr. Set the public key pk as pk = (b, a) ∈ R2
QL

where
b = −a · s+ e (mod QL).

6 M. Kim et al.

- Set the evaluation key as evk← KSGen(s2, s).

• Encpk(m). Given m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output the ciphertext ct =

v · pk + (m+ e0, e1) (mod QL).

• Decsk(ct). Given ciphertext ct = (ct(j))0≤j≤` ∈ R2
Q`

, output 〈ct(0), sk〉 (mod q0).

• Add(ct, ct′). Given two ciphertexts ct, ct′ ∈ R2
Q`

, output the ciphertext ctadd = ct + ct′

(mod Q`).

• Multevk(ct, ct′). For two ciphertexts ct = (c0, c1) and ct′ = (c′0, c
′
1), compute d0 = c0c

′
0, d1 =

c0c
′
1 + c′0c1, d2 = c1c

′
1 (mod Q`). Let c2,i = d2 (mod qi) for 0 ≤ i ≤ `, and compute c̃t =∑`

i=0 c2,i · evki (mod p0Q`). Output the ciphertext ct′ = (c0, c1) + bp−10 · c̃te (mod Q`).

Finally, RNS-HEAAN provides the rescaling operation to round messages over encryption,
thereby enabling to control the magnitude of messages during computation.

• ReScale(ct). For given ct ∈ R2
Q`

, return the ciphertext ct′ = bq−1` · cte (mod Q`−1).

It is a common practice to rescale the encrypted message after each multiplication as we
round-off the significant digits after multiplication in plain fixed/floating point computation. In
the next section, we assume that the rescaling procedure is included in homomorphic multipli-
cations for simpler description, but a rigorous analysis about level consumption will be provided
later in the parameter setting section.

As in the original HEAAN scheme, the native plaintext space can be understood as an N/2-
dimensional complex vector space (each vector component is called a plaintext slot). Addition
and multiplication in R correspond to component-wise addition and multiplication on plaintext
slots. Furthermore, it provides an operation that shifts the plaintext vector over encryption. For
a ciphertext ct encrypting a plaintext vector (m1, . . . ,m`) ∈ R`, we could obtain an encryption
of a shifted vector (mr+1, . . . ,m`,m1, . . . ,mr). Let us denote such operation by Rot(ct; r). For
more detail, we refer the reader to [8]. In the rest of this paper, we let N2 = N/2 and denote by
E(·) the encryption function for convenience.

4 Our Method

4.1 Database Encoding

As noted before, the learning data are recorded into an n× k matrix X of covariates, an n× p
binary matrix S = (sij) of all the SNP data, and an n-dimensional binary column vector y of
the dependent variable. In large-scale GWAS, the number of parameters of SNPs, p can be in
the thousands, so we split the SNP data into several N2-dimensional vectors, encrypt them, and
send the resulting ciphertexts to the server. For simplicity, we assume in the following discussion
that each row of S is encrypted into a single ciphertext. More specifically, for 1 ≤ i ≤ n and for
1 ≤ ` ≤ k, we encrypt

E(xi`Si) = E(xi`si1, . . . , xi`sip).

As mentioned before, we add a column of ones to X to allow for an intercept in the regression;
that is, we assume xi1 = 1 for all 1 ≤ i ≤ n. So, when ` = 1, the ciphertext E(xi1Si) encrypts
exactly the i-th SNP sample.

Semi-parallel Logistic Regression for GWAS on Encrypted Data 7

Next, consider the matrix yTX ∈ Rn×k defined as

yTX =
[
y1X1; · · · ; ynXn

]
=

y1x11 y1x12 · · · y1x1k
y2x21 y2x22 · · · y2x2k

...
...

. . .
...

ynxn1 ynxn2 · · · ynxnk

 .
For simplicity, we assume that n and k are power-of-two integers satisfying log n + log k ≤
log(N2). Kim et al. [19] suggested an efficient encoding map to encode the whole matrix yTX
in a single ciphertext in a row-by-row manner. Specifically, we will identify this matrix with a
vector in Rn·k, that is,

yTX 7→ (y1X1| · · · |ynXn)

= (y1x11, . . . , y1x1k, . . . , ynxn1, . . . , ynxnk).

Similarly, we identify the matrix X with a vector in Rn·k as follows:

X 7→ (X1| · · · |Xn)

= (x11, . . . , x1k, . . . , xn1, . . . , xnk).

For an efficient implementation, we can make N2/(k · n) copies of each component of yTX and
X to encode them into fully packed plaintext slots. For example, we can generate the encryption
of yTX as

E(yTX) = E
(
y1X

(N2/(k·n))
1 | · · · |ynX(N2/(k·n))

n

)
,

where yiX
(N2/(k·n))
i denotes an array containing N2/(k · n) copies of yiXi. In the case of the

target vector y, we make N2/n copies of each entry, so that the encoding aligns yi with each
copies of yiXi and Xi in the ciphertexts. Let us denote the generated ciphertext by E(y).

Finally, we now consider how to encrypt the covariance matrix XTX which can be used
for computing the adjugate matrix and determinant of A = XTWX. The adjugate adj(A) is a
k×k matrix whose entries are defined as adj(A)j` := (−1)j+` · |Â`j | for 1 ≤ j, ` ≤ k, where |Â`j |
is the determinant of Â`j . Here, Â`j is a (k− 1)× (k− 1) sub-matrix obtained by removing the

j-th column and `-th row from A. For example, when k = 4, the determinant |Â11| is computed
by a22(a33a44 − a34a43) + a23(a34a42 − a32a44) + a24(a32a43 − a33a42), which can be rewritten as
a component-wise product of three vectors

A1,1,1 = (a22,−a22, a23,−a23, a24,−a24),
A1,1,2 = (a33,−a34, a34,−a32, a32,−a33),
A1,1,3 = (a44,−a43, a42,−a44, a43,−a42).

In general, we can consider (k − 1)!-dimensional vectors Aj,`,1,Aj,`,2, . . . ,Aj,`,(k−1) that can be

used to compute |Â`j |. To do so, for each i ∈ [n], we first pre-compute the i-th covariance
matrix XT

i Xi ∈ Rk×k and generate the corresponding vector (XT
i Xi)j,`,t for 1 ≤ j ≤ ` ≤ k and

1 ≤ t ≤ k − 1. Suppose that N2 ≥ n · (k − 1)!. Let φ = N2/(n · (k − 1)!), and we encrypt the
following concatenated vector

Σj,`,t =
(

(XT
1 X1)

(φ)
j,`,t | . . . |(X

T
nXn)

(φ)
j,`,t

)
.

8 M. Kim et al.

We denote the resulting ciphertext by E(Σj,`,t).

An alternative choice is to encrypt SNPs, covariates, and phenotype vectors in a separate way.
The server can reconstruct the aforementioned encryptions by applying homomorphic operations,
but it requires additional levels for the computation. So, we used the former encryption algorithm
in the implementation, thereby saving on the depth and time in the evaluation. Our encoding
system has another advantage, in that it can be applied to horizontally partitioned data where
each party has a subset of the rows in dataset. In this case, each party encrypts their locally
computed quantities on their data and sends them to the server. Then the server aggregates
them to obtain encryptions of the shared data as the ones in our encryption method.

4.2 Homomorphic Evaluation of Logistic Regression

The main idea of the semi-parallel logistic regression analysis [26, 27] is to assume that the
probabilities predicted by a model without SNP will not change much once SNP is included to
the model. We will follow their approach, where the first step is to construct a logistic regression
model taking only the covariates into account, and the second step is to compute the model
coefficients of the logistic regression corresponding to the SNP in a semi-parallel way.

We start with a useful aggregation operation across plaintext slots from the literature [17,
10, 11]. This algorithm is referred as AllSum, which is parameterized by integers ψ and α. See
Algorithm 1 for an implementation. Let ` = ψ ·α. Given a ciphertext ct representing a plaintext
vector m = (m1, . . . ,m`) ∈ R`, the AllSum algorithm outputs a ciphertext ct′ encrypting

m′ = (
α−1∑
j=0

mψj+1,
α−1∑
j=0

mψj+2, . . .
α−1∑
j=0

mψ(j+1),

α−1∑
j=0

mψj+1,

α−1∑
j=0

mψj+2, . . .

α−1∑
j=0

mψ(j+1), . . .),

i.e., m′i =
∑α−1

j=0 mψj+i for 1 ≤ i ≤ ψ, and m′ψj+i = m′i for 1 ≤ j ≤ α − 1. For example, when
ψ = 1, it return an encryption of the sum of the elements of m.

As mentioned before, our algorithm consists of two steps to perform the semi-parallel logistic
regression training while taking as input the following ciphertexts: {E(xi`Si)}, E(yTX), E(X),
E(y), and {E(Σj,`,t)}, for 1 ≤ i ≤ n, 1 ≤ j ≤ ` ≤ k, and 1 ≤ t ≤ k − 1.

Algorithm 1 AllSum(ct, ψ, α)

Input: ct, input ciphertext, the unit initial amount by which the ciphertext shifts ψ, the number
of summands α

1: for i = 0, 1, . . . , logα− 1 do
2: Compute ct← Add(ct,Rot(ct;ψ · 2i))
3: end for
4: return ct

Semi-parallel Logistic Regression for GWAS on Encrypted Data 9

4.2.1 Logistic Regression Model Training for Covariates

The best solution to train a logistic regression model from homomorphically encrypted dataset
is to evaluate Nesterov’s accelerated gradient descent method [19, 8]. We adapt their evaluation
strategy to train a model for covariates.

Step 0: For simplicity, let vi = yiXi and ` = N2/(k · n). Since the input ciphertext E(yTX)
represents ` copies of vi, Step 6 in [19] outputs the following ciphertext that encrypts the same
number of copies of the vectors σ(vTi βX) · vi:

ct6 = E

σ3(v
T
1 βX) · v11 · · · σ3(v

T
1 βX) · v1k

...
. . .

...
σ3(v

T
1 βX) · v11 · · · σ3(v

T
1 βX) · v1k

...
. . .

...
σ3(v

T
nβX) · vn1 · · · σ3(v

T
nβX) · vnk

...
. . .

...
σ3(v

T
nβX) · vn1 · · · σ3(v

T
nβX) · vnk

.

Then Step 7 in [19] is changed from AllSum(ct6, k, n) into ct7 = AllSum(ct6, N2/n, n), so that
the output ciphertext is as follows:

ct7 = E

∑

i σ3(v
T
i βX) · vi1 · · ·

∑
i σ3(v

T
i βX) · vik∑

i σ3(v
T
i βX) · vi1 · · ·

∑
i σ3(v

T
i βX) · vik

...
. . .

...∑
i σ3(v

T
i βX) · vi1 · · ·

∑
i σ3(v

T
i βX) · vik

 .

In the end, the model parameters βX are encrypted as a ciphertext with fully-packed plaintext
slots. More precisely, it yields encrypted model parameters E(βX) that represent a plaintext
vector containing N2/k = ` · n copies of βX as follows:

E(βX) =

βX1 βX2 · · · βXk
βX1 βX2 · · · βXk

...
...

. . .
...

βX1 βX2 · · · βXk

 .

4.2.2 Parallel Logistic Regression Model Building for SNPs

Starting with β = (βX, 0) ∈ Rk+1, we will perform one step of Newton’s method for regression
with SNPs. This implies that the regression coefficients multiplied by the values of the predictor
are Uβ = XβX, so for all i ∈ [n], if we let the predicted value be ŷi = uTi β, then we have
ŷi = xTi βX. We note that

(Wz)i = wi · zi

= pi(1− pi) ·
(
ŷi +

yi − pi
pi · (1− pi)

)
= pi(1− pi) · ŷi + (yi − pi). (5)

10 M. Kim et al.

with pi = σ(ŷi). In the following, we describe how to securely evaluate these variables from
the model parameters βX. In the end, the server outputs encryptions of the numerator and the
denominator of Equation (3), denoted by β?j and β†j .

Step 1: Let ŷ = (ŷi)
n
i=1 be a column vector of the predicted values. The goal of this step is

to generate its encryption. The server first performs homomorphic multiplication between two
ciphertexts E(βX) and E(X), and then applies AllSum to the resulting ciphertext:

E(ŷ?)← AllSum(E(βX) · E(X), 1, k). (6)

The output ciphertext E(ŷ?) encrypts the values ŷi at (t · k+ 1) positions for (i− 1) · ` ≤ t < i · `
and some garbage values in the other entries, denoted by ?, i.e.,

E(ŷ?) = E

ŷ1 ? · · · ?
...

...
. . .

...
ŷ1 ? · · · ?
...

...
. . .

...
ŷn ? · · · ?
...

...
. . .

...
ŷn ? · · · ?

.

The server then performs a constant multiplication by c to annihilate the garbage values. The
polynomial c← Encode(C) is the encoding of the following matrix, where Encode(·) is a standard
procedure in [9] to encode a real vector as a ring element in R:

C =

1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 .
The next step is to replicate the values ŷi to other columns:

E(ŷ)← AllSum(CMult(E(ŷ?); c),−1, k),

denoted by CMult(·) a scalar multiplication. So, the output ciphertext E(ŷ) has N2/n = ` · k
copies of ŷi:

E(ŷ) = E

ŷ1 ŷ1 · · · ŷ1
...

...
. . .

...
ŷ1 ŷ1 · · · ŷ1
...

...
. . .

...
ŷn ŷn · · · ŷn
...

...
. . .

...
ŷn ŷn · · · ŷn

.

Step 2: This step is simply to evaluate the approximating polynomial of the sigmoid function
by applying the pure SIMD additions and multiplications:

E(p)← σ3(E(ŷ)).

Then the server securely computes the weights wi and carries out their multiplication with the
working response vector z using Equation (5):

E(w)← E(p) · (1− E(p)),

E(Wz)← E(w) · E(ŷ) + (E(y)− E(p)). (7)

Semi-parallel Logistic Regression for GWAS on Encrypted Data 11

Here the two output ciphertexts containing N2/n copies of the values wi and wizi, respectively:

E(w) = E

w1 w1 · · · w1
...

...
. . .

...
w1 w1 · · · w1
...

...
. . .

...
wn wn · · · wn
...

...
. . .

...
wn wn · · · wn

, E(Wz) = E

w1z1 w1z1 · · · w1z1
...

...
. . .

...
w1z1 w1z1 · · · w1z1

...
...

. . .
...

wnzn wnzn · · · wnzn
...

...
. . .

...
wnzn wnzn · · · wnzn

.

Step 3: The goal of this step is to generate trivial encryptions E(wi) such that for i ∈ [n],
E(wi) has wi in all positions of its plaintext vector. We employ the hybrid algorithm of [17] for
replication, denoted by Replicate(·). The server outputs n ciphertexts

{E(wi)}1≤i≤n ← Replicate(E(w)).

Similarly, the server takes the ciphertext E(Wz) and performs another replication operation:

{E(wizi)}1≤i≤n ← Replicate(E(Wz)).

Step 4: For all j ∈ [p], we define the vector bj = XTWsj ∈ Rk and denote the `-th component
of bj by bj`. We note that bj` = xT` Wsj =

∑n
i=1(xi` · wi · sij), where x` = (xi`)

n
i=1 is the j-th

column of the design matrix X. Then, for all ` ∈ [k], the server generates encryptions of the
vectors B` = xT` WS = (b1`, b2`, . . . , bp`) by computing

E(B`)←
n∑
i=1

E(wi) · E(xi`Si). (8)

On the other hand, since we add a column of ones to the matrix X, we have cj = sTj Wsj =∑n
i=1wi · sij =

∑n
i=1 xi1 · wi · sij = b1j for j ∈ [p], which implies that E(B1) can be understood

as an encryption of (c1, c2, . . . , cp).

Step 5: This step is to securely compute the values sTj Wz =
∑n

i=1 sij · wi · zi for j ∈ [p].
Specifically, the server performs the following computation:

E(sT1 Wz, . . . , sTpWz)←
n∑
i=1

E(wizi) · E(xi1Si). (9)

Step 6: The goal of this step is to securely compute the vector XTWz such that the `-th element
is obtained by xT` Wz =

∑n
i=1(xi` · wi · zi) for ` ∈ [k]. The server first performs the pure SIMD

multiplication between two ciphertexts E(X) and E(Wz):

E(X�Wz)← E(X) · E(Wz). (10)

Here, the output ciphertext E(X�Wz) encrypts the values xi`wizi:

E(X�Wz) = E

x11w1z1 x12w1z1 · · · x1kw1z1
...

...
. . .

...
x11w1z1 x12w1z1 · · · x1kw1z1

...
...

. . .
...

xn1wnzn xn2wnzn · · · xnkwnzn
...

...
. . .

...
xn1wnzn xn2wnzn · · · xnkwnzn

.

12 M. Kim et al.

Then the server aggregates the values in the same column to obtain a ciphertext encrypting
xT` Wz:

E(XTWz)← AllSum(E(X�Wz)), N2/(k · n), n).

Notice that this ciphertext contains the scalar xT` Wz in every entry of the `-th column, for
1 ≤ ` ≤ k:

E(XTWz) = E

xT1 Wz xT2 Wz · · · xTkWz

xT1 Wz xT2 Wz · · · xTkWz
...

...
. . .

...

xT1 Wz xT2 Wz · · · xTkWz

 .

Finally, it outputs k ciphertexts, each encrypting xT` Wz for 1 ≤ ` ≤ k, by applying the replica-
tion operation as follows:

{E(xT` Wz)}1≤`≤k ← Replicate(E(XTWz)).

Step 7: The goal of this step is to compute the encryptions of the adjugate matrix and the
determinant of A = XTWX. We note that

Ar,s,t = (
n∑
i=1

wi ·XT
i Xi)r,s,t =

n∑
i=1

wi · (XT
i Xi)r,s,t

for 1 ≤ r ≤ s ≤ k and 1 ≤ t ≤ k − 1. The server first multiplies the ciphertexts E(Σr,s,t) with
the ciphertext E(w) to obtain

E(Σ′r,s,t)← E(w) · E(Σr,s,t). (11)

Here, the ciphertext E(Σ′r,s,t) encrypts n vectors wi · (XT
i Xi)r,s,t for 1 ≤ i ≤ n. Then we apply

AllSum to aggregate these vectors and obtain Ar,s,t:

E(Ar,s,t)← AllSum(E(Σ′r,s,t), φ, n).

Next, the server performs multiplications between the ciphertexts E(Ar,s,t) as follows:

E(Σr,s)←
k−1∏
t=1

E(Ar,s,t). (12)

The adjugate matrix can be obtained by aggregating (k − 1)! many values in E(Σr,s):

E(adj(A)r,s)← AllSum(E(Σr,s), 1, (k − 1)!).

In addition, the server computes

E(x1rW)← AllSum(E(x1r) · E(w), N2/n, n)

for 1 ≤ r ≤ k, and obtains a trivial encryption of the determinant of A as follows:

E(|A|)←
k∑
r=1

E(x1rW) · E(adj(A)1r).

Semi-parallel Logistic Regression for GWAS on Encrypted Data 13

Step 8: The final step is to securely compute the encryptions of β∗ and β∗ by pure SIMD
additions and multiplications. We note that multiplication of the vectors Bj from the left side
and XTWz from the right side with the matrix adj(A) can be written as

BT
j · adj(A) · (XTWz) =

k∑
r,s=1

bjr · (adj(A))r,s · (XTWz)s.

So, the server evaluates the numerator of Equation (3) to get the encryption of β∗:

E(β∗)← E(|A|) · E(sT1 Wz, . . . , sTpWz)−
k∑

r,s=1

E(Br) · E(adj(A)rs) · E(xTsWz). (13)

Then the output ciphertext E(β∗) encrypts the values β∗j ’s in a way that E(β∗) = E(β∗1 , β
∗
2 , . . . , β

∗
p).

Similarly, we evaluate the denominator of Equation (3) to get an encryption of β†:

E(β†)← E(|A|) · E(c1, c2, . . . , cp) −
k∑

r,s=1

E(Br) · E(adj(A)rs) · E(Bs). (14)

Hence, the output ciphertext E(β†) represents the values β†j in a way that E(β†) = E(β†1, β
†
2, . . . , β

†
p).

4.2.3 Output Reconstruction

The server sends the resulting ciphertexts E(β∗), E(β†), and E(|A|) to the authority who has
the secret key of the underlying HE scheme. Afterwards, the authority decrypts the values
and computes the test statistics by using the Wald z-test, which are defined by the coefficient

estimates divided by the standard errors of the parameters: βj/
√
varj = β∗j /

√
|A| · β†j for all

j ∈ [p]. In the end, the p-values can be obtained from the definition 2 · pnorm(|βj |/
√
varj).

It includes some post computations after decryption, however, we believe that this is a rea-
sonable assumption for the following reasons. Its complexity is even less than that of decryption,
so this process does not require any stronger condition on the computing power of the secret
key owner. Meanwhile, the output ciphertexts are encrypting (2p + 1) scalar values, which is
two times more information compared to the ideal case. Our solution relies on the heuristic
assumption that no sensitive information beyond the desired p-values can be extracted from
decrypted results. One alternative is that the server can use a masking (sampling random val-

ues r∗j , r
†
j , rA such that r∗j

2 = r†j · rA and multiplying them to β∗j , β
†
j and |A|, respectively) on

resulting ciphertexts before sending them to the secret key owner to weaken this assumption.

4.3 Threat Model

We consider the following threat models. Firstly, we assume that the computing server is semi-
honest (i.e., honest but curious). If we can ensure the semantic security of the underlying HE
scheme, there is no information leakage from encrypted data even in malicious setting. Secondly,
we assume that the secret key owner does not collude with the server.

5 Results

In this section, we explain how to set the parameters and report the performance of our regression
algorithms.

14 M. Kim et al.

5.1 Dataset Description

The dataset provided by the iDASH competition organizers consists of 245 samples, partitioned
into two groups by the condition of high cholesterol, 137 under control group and 108 under
disease group. Each sample contains a binary phenotype along with 10643 SNPs and 3 covariates
(age, weight, and height). This data was extracted from Personal Genome Project [2]. The
organizers changed the input size in terms of SNPs, cohort size, and threshold of significance to
test the scalability of submitted solutions.

We may assume that the imputation and normalization are done in the clear prior to en-
cryption. More precisely, we impute the missing covariate values with the sample mean of the
observed covariates. We also center the covariates matrix X by subtracting the minimum from
each column and dividing by a quantity proportional to the range.

5.2 Parameters Settings

We explain how to choose the parameter sets for building secure semi-parallel logistic regression
model. We begin with a parameter L which determines the largest bitsize of a fresh ciphertext
modulus. Since the plaintext space is a vector space of real numbers, we multiply a scale factor
of p to plaintexts before encryption. It is a common practice to perform the rescaling operation
by a factor of p on ciphertexts after each (constant) multiplication in order to preserve the
precision of the plaintexts. This means that a ciphertext modulus is reduced by log p bits after
each multiplication or we can say that a multiplication operation consumes one level.

Kim et al. [22] proposed the least squares approach to find a global polynomial approximation
of the sigmoid and presented degree 3, 5, and 7 approximation polynomial over the domain
[−8, 8]. We observed that input values of the sigmoid in our data belong to this interval. As
noted in [22], these approximations offer a trade-off between accuracy and efficiency. A low-
degree polynomial requires a smaller depth for an evaluation while a high-degree polynomial has
a better precision. So, we adapt the degree 3 approximation polynomials of the sigmoid function
as σ3(x) = 0.5 + 0.15012x− 0.001593x3, which consumes roughly two levels.

Suppose that we start with v(0) = β
(0)
X = 0 ∈ Rk and the input ciphertext E(yTX) is at

level L. It follows from the parameter analysis of [19] that the ciphertext level of E(βx) after
the evaluation of Nesterov’s accelerated GD is L − (4 · (IterNum − 1) + 1) where IterNum
denotes the number of iterations of the GD algorithm. Similarly, we expect each of Steps 1 and
2 to consume two levels for computing the ciphertexts E(ŷ) and E(p). This means that E(p) is
at level L− (4 · IterNum + 1); so we get

lvl(E(w)) = L− (4 · IterNum + 2),

lvl(E(Wz)) = L− (4 · IterNum + 3).

Suppose that we start with v(0) = β
(0)
X = 0 ∈ Rk and the input ciphertext E(yTX) is at

level L. It follows from the parameter analysis of [19] that the ciphertext level of E(βx) after
the evaluation of Nesterov’s accelerated GD is L − (4 · (IterNum − 1) + 1) where IterNum
denotes the number of iterations of the GD algorithm. Similarly, we expect each of Steps 1 and
2 to consume two levels for computing the ciphertexts E(ŷ) and E(p). This means that E(p) is
at level L− (4 · IterNum + 1); so, we get

lvl(E(w)) = L− (4 · IterNum + 2),

lvl(E(Wz)) = L− (4 · IterNum + 3).

Semi-parallel Logistic Regression for GWAS on Encrypted Data 15

We now consider the replication procedure in Step 3. Although the input vector w = (wi)
n
i=1

is fully packed into a single ciphertext (i.e., the length of the corresponding plaintext vector
is N2), it suffices to produce n number of ciphertexts, each of which represents an entry wi
across the entire array. As presented in Section 4.2 of [17], the replication procedure consists of
two phases of computation. The first phase is to partition the entries in the input vector into
size-2s blocks and construct n/2s number of vectors consisting of the entries in the i-th block
with replicated N2/2

s times. We use a simple replication operation n/2s times, which applies
multiplicative masking to extract the entry and then perform the AllSum operation to replicate
them as in Step 1; its depth is just a single constant multiplication. The second phase is to
recursively apply replication operations in a binary tree manner, such that in each stage we
double the number of vectors while halving the number of distinct values in each vector; its
depth is s constant multiplications. In total, we expect to consume (s + 1) levels during the
replication procedure; so, we get

lvl(E(wi)) = L− (4 · IterNum + s+ 3),

lvl(E(wizi)) = L− (4 · IterNum + s+ 4).

Later, Step 4 consumes one level from the level lvl(E(wi)) for multiplication; so, we have

lvl(E(B`)) = L− (4 · IterNum + s+ 4). (15)

Similarly, Step 5 consumes one more level from the computation of E(wizi); so we get

lvl(E(sT1 Wz, . . . , sTpWz)) = L− (4 · IterNum + s+ 5).

On the other hand, Step 6 requires one level of multiplication for the evaluation of the update
formula (10); so we know

lvl(E(X�Wz)) = lvl(E(Wz))− 1

= L− (4 · IterNum + 4).

As discussed above, the output ciphertexts E(xT` Wz) consume (s′+ 1) levels during the replica-
tion procedure where 2s

′
is the unit block size of the first step of the replication procedure; so

we have

E(xT` Wz) = lvl(E(X�Wz))− (s′ + 1)

= L− (4 · IterNum + s′ + 5).

In Step 7, it requires one and log(k−1) levels of multiplications for the evaluation of the update
formulas (11) and (12), respectively. If we let `′ = max{lvl(E(w)), lvl(E(Σr,s,t))}, then we have

lvl(E(adj(A)rs) = `′ − (1 + log(k − 1)),

lvl(E(|A|)) = `′ − (2 + log(k − 1)).

It follows from the update formulas (13) and (14) that it suffices to set as lvl(E(adj(A)rs)) =
lvl(E(B`)) = 3 for obtaining the correct results. This implies that we need to set the number
of levels L to be at least L ≥ (4 · IterNum + s+ 4) + 3 from (15). In the implementation, we
set IterNum = 2, s = 4, s′ = 0, and L = 19. The encryption levels of data are set as follows:

16 M. Kim et al.

– lvl(E(yTX)) = L = 19,
– lvl(E(X)) = lvl(E(βX)) = 14, from (6)
– lvl(E(y)) = lvl(E(p)) = 10, from (7),
– lvl(E(xi`Si)) = lvl(E(wi)) = 4, from (8),
– lvl(E(Σr,s,t)) = lvl(E(adj(A))) + 3 = 6.

We use log p0 ≈ 60, log q0 ≈ 51, and log qi ≈ 43 for i = 1, . . . , L. Therefore, we derive a lower
bound of the bit size of the largest RLWE modulus Q as

logQ = log q0 + (L− 1) · log qi + log p0 ≈ 885.

Alternatively, we may do a few less or more iterations in the GD algorithm, for example,
setting IterNum = 1 or 3. We conducted tests to compare the trade-offs in using different sets
of parameters.

We choose the secret key from the ternary distribution, which means to select uniformly at
random from {−1, 0, 1}. The error is sampled from the discrete Gaussian distribution of stan-
dard deviation stdev = 3.2. We follow the recommended parameters from the standardization
workshop paper [6], thus providing at least 128-bits security level of our parameters. We summa-
rize the parameters of our implementation in Table 1. For comparison, we also listed parameters
when using IterNum = 1 and 3.

Table 1: HE parameter sets.

IterNum logN L log p log q0 log p0 logQ

Set-I 1 15 15 43 51 60 713

Set-II 2 15 19 43 51 60 885

Set-III 3 16 23 45 54 62 1106

5.3 Optimization Techniques

The standard method of homomorphic multiplication consists of two steps: raw multiplication
and key-switching. The first step computes the product of two ciphertexts ct(Y) = c0 + c1Y and
ct′(Y) = c′0+c′1Y (as done in [5]), and returns a quadratic polynomial, called extended ciphertext,
ctmult = c0c

′
0 + (c0c

′
1 + c′0c1)Y + c1c

′
1Y

2. This ciphertext can be viewed as an encryption of the
product of plaintexts with the extended secret (1, s, s2). Afterwards, the key-switching procedure
transforms it into a normal (linear) ciphertext encrypting the same message with the secret key
(1, s).

We observe that the second step is much more expensive than the first one since it includes an
evaluation of NTT (Fourier transformation over the modulo space), and that a simple arithmetic
(e.g. linear operation) is allowed between extended ciphertexts. To reduce the complexity, we
adapt the technique called lazy key-switching, which performs some arithmetic over extended
ciphertexts instead of running the second step right after each raw multiplication. We get a
normal ciphertext by performing only one key-switching operation after evaluating linear circuits
over the extended ciphertexts. It can reduce the number of required key-switching algorithms as
well as the total computational cost. For instance, if we add many terms after raw multiplications
in the right hand side of the update (8) and apply key-switching to the output ciphertext, this
takes only one key-switching rather than n.

Semi-parallel Logistic Regression for GWAS on Encrypted Data 17

5.4 Performance Results

We present our implementation results using the proposed techniques. All the experiments were
performed on a Macbook with an Intel Core i7 running with 4 cores rated at 2.5 GHz. Our
implementation exploits multiple cores when available, thereby taking the advantages of paral-
lelization.

In Table 2, we evaluated our model’s performance based on the average running time and
the memory usages in the key generation, encryption, evaluation, and decryption procedures.

Table 2: Experimental results for iDASH dataset with 245 samples, each has 10643 SNPs and 3
covariates (4 cores).

Stage Set-I Set-II Set-III

Key Generation 4.460 s 2.321 GB 6.665 s 3.584 GB 9.699 s 10.721 GB

Encryption 7.059 s 5.406 GB 7.066 s 6.669 GB 23.023 s 12.137 GB

Training with covariates 2.622 s 7.176 GB 9.367 s 7.186 GB 62.922 s 12.137 GB

Training with all SNPs 40.442 s 10.339 GB 42.567 s 11.176 GB 108.24 s 12.137 GB

Total evaluation 43.064 s − 51.934 s − 171.162 s −
Decryption 0.025 s 10.339 GB 0.025 s 11.176 GB 0.055 s 12.137 GB

Reconstruction 0.794 ms 10.339 GB 0.794 ms 11.176 GB 2.821 ms 12.137 GB

We achieved very high level of accuracy in the final output (after decryption) for all three
sets of parameters. The type-I (false positive) and type-II (false negative) errors of the output
of our solution are very small when comparing to both the semi-parallel model and the gold
standard model (full logistic regression) with respect to various p-value cut-off thresholds. See
Figures 1 and 2 for comparisons against these two plain models with a cut-off of 10−5 when
IterNum = 2. To better compare the estimated p-values (above or below certain cut-offs) on
the encrypted model against the plaintext one (semi-parallel GWAS), we measured F1-scores on
the p-values obtained from our solution against the two plain models. The resulting F1-scores
are very close to 1 across all cases with different cut-offs (10−2 to 10−5), which are shown in
Table 3.

Fig. 1: Comparison with the semi-
parallel model (p-value cut-off: 10−5)

Fig. 2: Comparison with the gold stan-
dard model (p-value cut-off: 10−5)

18 M. Kim et al.

Table 3: F1-Scores on different models.

Cut-off
v.s. Plain semi-parallel model v.s. Plain Gold standard model

Set-I Set-II Set-III Set-I Set-II Set-III

10−2 0.9807 0.9830 0.9964 0.9818 0.9808 0.9710

10−3 0.9749 0.9810 0.9975 0.9878 0.9887 0.9740

10−4 0.9745 0.9798 0.9969 0.9878 0.9888 0.9729

10−5 0.9828 0.9852 0.9971 0.9946 0.9970 0.9805

We also conducted the DeLong’s test [14, 25] to validate our solution against the semi-parallel
model. Specifically, we drawn at uniformly random about 10% of the total SNP test data and
transformed the corresponding p-values to 0-1 labels according to the cut-off threshold; then we
constructed the ROC (Receiver Operating Characteristic) curves for these labels and performed
the DeLong’s test to compare the AUCs (Area Under the Curve) of these curves. Such test was
repeated 10 times to obtain the mean and the standard deviation of the p-values of the test.
The results for IterNum = 2 are shown in Table 4.

Table 4: DeLong’s Test for AUCs of our solution with Set-II against the plain semi-parallel
model.

Cut-off Mean and stdev of the test results

10−2 0.4038±0.3001

10−3 0.5357±0.2704

10−4 0.6404±0.2638

10−5 0.8959±0.2195

6 Discussion and Conclusion

One constraint in our approach is that the matrix inverse can be computed in an efficient way
when the input dimension is small. In modern GWAS, it is common to include covariates to
account for such factors as gender, age, other clinical variables and population structure. A
significant challenge in performing efficient secure GWAS on this generalized model is to handle
large-scale matrix inversion.

In this paper, we showed the state-of-the-art performance of secure logistic regression model
training for GWAS. We have demonstrated the feasibility and scalability of our model in speed
and memory consumption. We expect that the performance can be improved if the underlying
HE scheme is rewritten with optimized code.

References

1. admin. NIH genomic data sharing - offie of science policy. https://osp.od.nih.gov/scientific-sharing/

genomic-data-sharing/. [accessed 2019-01-25].
2. Personal genome project. https://www.personalgenomes.org/us. [accessed 2018-12-23].
3. J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca. A full RNS variant of FV like somewhat homomorphic

encryption schemes. In International Conference on Selected Areas in Cryptography, pages 423–442. Springer,
2016.

https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/
https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/
https://www.personalgenomes.org/us

Semi-parallel Logistic Regression for GWAS on Encrypted Data 19

4. C. Bonte, E. Makri, A. Ardeshirdavani, J. Simm, Y. Moreau, and F. Vercauteren. Towards practical privacy-
preserving genome-wide association study. BMC bioinformatics, 19(1):537, 2018.

5. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key
dependent messages. In Advances in Cryptology–CRYPTO 2011, pages 505–524. 2011.

6. M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter, S. Lokam, D. Moody,
T. Morrison, A. Sahai, and V. Vaikuntanathan. Security of homomorphic encryption. Technical report,
HomomorphicEncryption.org, Redmond WA, USA, July 2017.

7. H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter. Logistic regression over
encrypted data from fully homomorphic encryption. BMC medical genomics, 11(4):81, 2018.

8. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. A full RNS variant of approximate homomorphic
encryption. In International Conference on Selected Areas in Cryptography. Springer, 2018.

9. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate numbers.
In Advances in Cryptology–ASIACRYPT 2017, pages 409–437. Springer, 2017.

10. J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In International Conference on
Financial Cryptography and Data Security, pages 142–159. Springer, 2015.

11. J. H. Cheon, M. Kim, and M. Kim. Optimized search-and-compute circuits and their application to query
evaluation on encrypted data. IEEE Transactions on Information Forensics and Security, 11(1):188–199,
2016.

12. J. H. Cheon, M. Kim, and K. Lauter. Homomorphic computation of edit distance. In International Conference
on Financial Cryptography and Data Security, pages 194–212. Springer, 2015.

13. D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B
(Methodological), pages 215–242, 1958.

14. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated
receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3):837–845, 1988.

15. D. A. Freedman. Statistical models: theory and practice, 2009.
16. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In Advances in Cryptology–

CRYPTO 2012, pages 850–867. 2012.
17. S. Halevi and V. Shoup. Algorithms in HElib. In International Cryptology Conference, pages 554–571.

Springer, 2014.
18. C. W. Hug and P. Szolovits. ICU acuity: real-time models versus daily models. In AMIA annual symposium

proceedings, volume 2009, page 260. American Medical Informatics Association, 2009.
19. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model training based on the

approximate homomorphic encryption. BMC medical genomics, 11(4):83, 2018.
20. M. Kim and K. Lauter. Private genome analysis through homomorphic encryption. BMC medical informatics

and decision making, 15(Suppl 5):S3, 2015.
21. M. Kim, Y. Song, and J. H. Cheon. Secure searching of biomarkers through hybrid homomorphic encryption

scheme. BMC medical genomics, 10(2):42, 2017.
22. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based on homomorphic encryption:

design and evaluation. JMIR medical informatics, 6(2), 2018.
23. Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet

Mathematics Doklady, volume 27, pages 372–376, 1983.
24. C. Robert. Machine learning, a probabilistic perspective, 2014.
25. X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller. pROC: an open-source

package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1):77, Mar 2011.
26. A. A. Shabalin. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics,

28(10):1353–1358, 2012.
27. K. Sikorska, E. Lesaffre, P. F. Groenen, and P. H. Eilers. GWAS on your notebook: fast semi-parallel linear

and logistic regression for genome-wide association studies. BMC bioinformatics, 14(1):166, 2013.
28. J. J. Trinckes and Jr. The definitive guide to complying with the HIPAA/HITECH privacy and security rules,

3 Dec. 2012.
29. J. Truett, J. Cornfield, and W. Kannel. A multivariate analysis of the risk of coronary heart disease in

framingham. Journal of chronic diseases, 20(7):511–524, 1967.

	Semi-parallel Logistic Regression for GWAS on Encrypted Data

