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Abstract. In 2018 Takashima proposed a version of Charles, Goren and
Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve
that allows for all subsequent arithmetic to be performed over a quadratic finite
field Fp2 . In 2019 Flynn and Ti pointed out that Takashima’s hash function
is insecure due to the existence of small isogeny cycles. We revisit the con-
struction and show that it can be repaired by imposing a simple restriction,
which moreover clarifies the security analysis. The runtime of the resulting
hash function is dominated by the extraction of 3 square roots for every block
of 3 bits of the message, as compared to one square root per bit in the elliptic
curve case; however in our setting the extractions can be parallelized and are
done in a finite field whose bit size is reduced by a factor 3. Along the way
we argue that the full supersingular isogeny graph is the wrong context in
which to study higher-dimensional analogues of Charles, Goren and Lauter’s
hash function, and advocate the use of the superspecial subgraph, which is the
natural framework in which to view Takashima’s Fp2 -friendly starting curve.

1. Introduction

After a cautious start with Couveignes’ unpublished note [10] from 1997 and
Stolbunov’s master thesis [32] from 2004, the area of isogeny-based cryptography
took a more visible turn in 2006 when Charles, Goren and Lauter [8] showed how
to construct collision-resistant hash functions from deterministic walks in isogeny
graphs of supersingular elliptic curves over finite fields. Five years later Jao and De
Feo applied similar ideas to the design of a key exchange protocol [23, 12] now known
as SIDH, after which isogenies became a very active topic of cryptographic research,
largely due to their promise of leading to quantum resistant hard problems. Some of
the recent constructions include non-interactive key exchange [13, 6], signatures [11,
15, 2] and verifiable delay functions [14]. In January 2019 SIKE [1], which is an
incarnation of SIDH, was chosen as one of the seventeen second-round contenders
to become a NIST standard for post-quantum key establishment.1

While almost all of the ongoing research in isogeny-based cryptography is de-
voted to elliptic curves, there is a general awareness that many proposals should
generalize to principally polarized abelian varieties (e.g., jacobians) of arbitrary
dimension. This particularly applies to the supersingular isogeny walks on which
SIDH and Charles, Goren and Lauter’s hash function are based. In fact, in a
follow-up paper [7, §6.2] the latter authors already hint at the possibility of a
higher-dimensional analogue of their hash function. In 2018, Takashima [33, §4.2]
made the concrete proposal of using jacobians of supersingular genus-2 curves and

1See https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.
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their 15 outgoing (2, 2)-isogenies, which can be evaluated efficiently through Rich-
elot’s formulas. By disallowing backtracking he uses this to process one base-14
digit for each isogeny evaluation. Moreover he provides specific starting curves,
such as y2 = x5 + 1 over Fp with p ≡ 4 mod 5, which allow for all computations to
be done over Fp2 , as was shown by himself and Yoshida about a decade ago [34].
Unfortunately Takashima’s hash function is not collision-resistant due to the inher-
ent presence of small cycles in the resulting isogeny graph, as was pointed out very
recently by Flynn and Ti [18], who then proceeded with studying a genus-2 variant
of SIDH.

The contributions of this paper are as follows. First, in Section 2 we argue that
the full supersingular isogeny graph is the wrong arena for higher-dimensional ana-
logues of Charles, Goren and Lauter’s hash function, and promote the use of super-
special subgraphs. In doing so we give a natural explanation for why Takashima and
Yoshida’s starting curve indeed allows for all subsequent arithmetic to be carried
out in Fp2 . Second, some first properties of the (2, 2)-isogeny graph of superspe-
cial principally polarized abelian surfaces are gathered and proved in Section 4 and
Appendix A. Third and foremost, we repair Takashima’s hash function by showing
that an extremely simple restriction (which still allows us to process one base-8
digit, i.e., 3 bits per isogeny) both prevents the Flynn–Ti attack and simplifies the
reasoning on security; we also show that with high probability, the starting curve
y2 = (x2− 1)(x2− 2x)(x− 1/2) over Fp with p ≡ 5 mod 6 naturally avoids running
into products of elliptic curves, which as we will see are technical nuisances. The
details can be found in Section 6 and Section 7. In Sections 8 and 9 we report on
an implementation in Magma and compare its performance with the elliptic curve
case of Charles, Goren and Lauter.

Why generalize? Besides scientific curiosity, we see a number of motivations for
investigating higher-dimensional isogeny-based cryptography:

(1) There seem to exist beneficial trade-offs between the larger computational
cost of each isogeny evaluation and features such as larger graph sizes,
higher numbers of outgoing isogenies, or arithmetic in smaller finite fields.
As an illustration of this, we note that in Charles, Goren and Lauter’s hash
function one needs to compute one square root for each digested bit, while
our proposal uses 3 square roots per 3 bits, which seems like no improvement
at all, except that our square roots are to be extracted in finite fields of
about one third of the bit size and can be handled in parallel. See Section 9
for some further comments on this.

(2) The fact that higher-dimensional abelian varieties have torsion subgroups
of larger rank may allow for a symmetric set-up of SIDH in which Alice
and Bob sample their secrets from the same space (but this is not touched
upon in the current paper).

2. Supersingular versus superspecial

One apparent point of concern is that in the case of elliptic curves over a fi-
nite field of characteristic p, supersingularity has many equivalent characteriza-
tions whose natural generalizations to higher dimension become distinct notions.
For instance, one such characterization reads that the trace t of Frobenius satisfies
t ≡ 0 mod p, which naturally generalizes to the requirement that the Hasse–Witt
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matrix M ∈ Fg×gp vanishes identically, this notion is called superspeciality.2 An al-
ternative characterization states that the Newton polygon is a straight line segment
with slope 1/2; this property makes sense in arbitrary dimension where it is still
called supersingularity, but in dimension g ≥ 2 this is a weaker condition than su-
perspeciality. A third characterization is that there exists no non-trivial p-torsion.
This also makes sense in arbitrary dimension but in dimension g ≥ 3 it weakens
the notion of supersingularity. A curve is called superspecial or supersingular if its
accompanying jacobian is superspecial or supersingular respectively.

We refer to Li and Oort’s book [28] and to Brock’s thesis [3] and the references
therein for general facts on supersingularity and superspeciality. Most notably, it
can be shown that an abelian variety is supersingular if and only if it is isogenous
to a product of supersingular elliptic curves, while it is superspecial if and only if
it is isomorphic to such a product. Remarkably enough, in dimension g ≥ 2 all
such products are isomorphic to each other, see e.g. [3, Thm. 2.1A] or [28, p. 13].
However, here we stress that ‘isogenous’ and ‘isomorphic’ should be understood in
the context of abstract abelian varieties over Fp, discarding the principal polariza-
tion with which they may come equipped. In contrast, as p grows there exist many
isomorphism classes of superspecial principally polarized abelian varieties, such as
jacobians of superspecial curves: see Proposition 2 below for a precise count for
g = 2.3 We will abbreviate principal polarization to p.p. from now on and will also
assume that a product of elliptic curves always comes with the product polarization,
unless stated otherwise.

We believe that the full graph of supersingular p.p. abelian varieties is the wrong
context in which to study Charles–Goren–Lauter hash functions in dimension g ≥ 2.
Instead we argue for use of the superspecial subgraph. Indeed, the moduli space of
supersingular p.p. abelian varieties over Fp is bg2/4c-dimensional [28, 4.9], whereas
the superspecial sublocus is 0-dimensional [3, Thm. 3.9A]. The latter implies that
there is only a finite number of them and, furthermore, they all admit a model over
Fp2 whose Frobenius endomorphism has characteristic polynomial χ(t) = (t± p)2g,
in particular it acts as multiplication by ±p; see [21]. Assuming that p is odd,
this implies that all 2-torsion is Fp2-rational, hence so are all (2, 2, . . . , 2)-isogenies
and their codomains. By [3, Lem. 2.2A] these are again superspecial p.p. abelian
varieties whose Frobenius has the same characteristic polynomial, so the argument
repeats and we conclude that the full superspecial (2, 2, . . . , 2)-isogeny graph is
defined over Fp2 . In fact, this is just an illustration of the general phenomenon that
the rank of the Hasse–Witt matrix is invariant under separable isogenies, a proof
of which can be found in Appendix C.

This clarifies the aforementioned observation by Takashima and Yoshida, whose
starting curves are indeed superspecial. Several more examples of superspecial
genus-2 curves over Fp can be found in [22], including y2 = x5 − x which is super-
special if and only if p ≡ 5 or 7 mod 8, and y2 = (x2 − 1)(x2 − 2x)(x− 1/2) which
is superspecial if and only if p ≡ 5 mod 6. In characteristics 2 and 3 superspecial

2For an arbitrary abelian variety A, being superspecial means that Frobenius acts as the zero
map on H1(A,OA). If A is the jacobian of a curve then this amounts to the Hasse–Witt matrix
being zero.

3We refer the reader, e.g., to Howe’s paper [19] for examples of jacobians that become isomor-
phic when the polarization is dropped.
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genus-2 curves do not exist. In general it seems unknown how to write down the
equation of a random superspecial genus-2 curve.

Note that superspecial p.p. abelian varieties were also considered in Charles,
Goren and Lauter’s follow-up paper [7], albeit in a more theoretical context and
using different edge and vertex sets for the associated graphs.

3. Further preliminaries

3.1. Hyperelliptic curves of genus 2. LetK be a field of characteristic p > 5. A
(hyperelliptic) curve of genus 2 over K is an algebraic curve defined by an equation
of the form y2 = f(x), where f(x) ∈ K[x] is a squarefree polynomial of degree 5
or 6. Up to K-isomorphism, any genus-2 curve has a representation with a monic
polynomial of degree 6 and we will mostly work with these representations since it
eases up the notation quite a bit. All formulas provided still work with a degree
5 polynomial if one sees the missing linear factor as 0 · x + 1. A genus-2 curve is
completely determined (up to K-isomorphism) by weighted projective invariants
called Igusa invariants. Since we only work over odd-characteristic fields, we opt to
characterize them with the absolute Igusa variants defined in [5]. For our discussion
it suffices to know that these invariants consist of an ordered triple (j1, j2, j3) ∈ K3.

3.2. Richelot isogenies. A Richelot isogeny is a (2, 2)-isogeny between jacobians
of genus-2 curves, i.e. the kernel of the isogeny is a group isomorphic to Z/2Z⊕Z/2Z
that is maximal isotropic with regards to the 2-Weil pairing. Richelot isogenies
split multiplication-by-2, in the sense that each Richelot isogeny φ : JC → JC′ has
a unique dual Richelot isogeny φ̂ : JC′ → JC , and φ̂ ◦ φ = [2]JC . We recall here
some of the facts about Richelot isogenies that are relevant to our construction; for
a more in-depth discussion and a proof of Proposition 1, we refer to [31, Chapter 8].

The 2-torsion of the jacobian of the genus-2 curve C : y2 = f(x) =
∏6
i=1(x−αi) is

{0}∪{[(αi, 0)−(αj , 0)] : i < j}, where the square brackets denote linear equivalence
classes of divisors. A subgroup of the 2-torsion being maximal isotropic with regards
to the 2-Weil pairing in this context simply means that the group contains exactly
3 non-trivial elements and that all αi, 1 ≤ i ≤ 6, occur exactly once in all the
representations combined. Hence the Richelot isogenies can be represented by sets
of quadratic factors of f(x) that are pairwise coprime. More precisely, we define:

Definition 1. A quadratic splitting of a squarefree degree 6 (resp. degree 5) poly-
nomial f(x) ∈ K[x] is an unordered triple {G1, G2, G3} ⊂ K[x] of quadratic (resp.
two quadratic and one linear) polynomials such that G1G2G3 = f(x), considered
modulo the equivalence

{G1, G2, G3} ∼ {βG1, γG2, (βγ)−1G3} for all β, γ ∈ K× .

Returning to the above setting, let us write
G1 = g1,3x

2 + g1,2x+ g1,1 = (x− α1)(x− α2),

G2 = g2,3x
2 + g2,2x+ g2,1 = (x− α3)(x− α4),

G3 = g3,3x
2 + g3,2x+ g3,1 = (x− α5)(x− α6),

where we incorporate the leading coefficients gi,3 for the sake of generality (e.g., to
cope with the degree 5 case where one of the gi,3’s becomes zero). Then one sees
that the (2, 2)-isogeny with kernel {0, [(α1, 0)− (α2, 0)], [(α3, 0)− (α4, 0)], [(α5, 0)−
(α6, 0)]} can be identified by the quadratic splitting {G1, G2, G3} of f(x).
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There are 15 possible ways of organizing the roots αi into distinct quadratic
splittings. It is possible that the resulting quadratics are only defined over an
extension of the field over which our curve C is defined, in which case both the
corresponding (2, 2)-isogeny and its codomain also might be defined over this field
extension. Nevertheless, if the splitting is fixed by Frobenius as a set, then the
isogeny and codomain are defined over the ground field. As mentioned in Section 2,
in the case of superspecial p.p. abelian surfaces, all domains, kernels, (2, 2)-isogenies
and associated codomains are defined over Fp2 up to isomorphism.

Proposition 1. Let C : y2 = G1(x) · G2(x) · G3(x) be a genus-2 curve, with
{G1, G2, G3} the quadratic splitting associated with a maximal 2-Weil isotropic
subgroup S ⊂ JC [2], and let φ : JC → A ∼= JC/S be the quotient (2, 2)-isogeny.
Following the notation above, let

δ := det

g1,3 g1,2 g1,1
g2,3 g2,2 g2,1
g3,3 g3,2 g3,1

 .

(1) If δ 6= 0, then A is isomorphic to the jacobian of the genus-2 curve

C ′ : y2 = δ−1H1(x) ·H2(x) ·H3(x)

where

H1 := G′2G3 −G2G
′
3 , H2 := G′3G1 −G3G

′
1 , H3 := G′1G2 −G1G

′
2 ,

where G′i is the derivative of Gi with respect to x. Moreover, {H1, H2, H3}
is a quadratic splitting corresponding to the dual isogeny φ̂ : JC′ → JC .

(2) If δ = 0, then A is isomorphic to a product of elliptic curves E1 ×E2. The
vanishing of the determinant δ implies that there exist s1 and s2 in Fp2
such that

Gi = ai,1(x− s1)2 + ai,2(x− s2)2

for some ai,1 and ai,2 in Fp2 for i = 1, 2, 3. The elliptic curves forming the
product isomorphic to A can be defined by the equations

E1 : y2 =

3∏
i=1

(ai,1x+ ai,2) , E2 : y2 =

3∏
i=1

(ai,1 + ai,2x) ,

and the isogeny φ is induced by φ1 × φ2, where φ1 : C → E1 is (x, y) 7→
((x−s1)2/(x−s2)2, y/(x−s2)3) and φ1 : C → E2 is (x, y) 7→ ((x−s2)2/(x−
s1)2, y/(x− s1)3).

3.3. (2,2)-isogenies from products of elliptic curves. We have treated the
case of (2, 2)-isogenies whose domain is a jacobian; now we recall the corresponding
results for the case where the domain is a product of elliptic curves. For proofs and
more in-depth discussion, we refer to [20], [25] and [4].

Consider the p.p. abelian surface E1 × E2 given by the equations

E1 : y2 =

3∏
i=1

(x− αi) , E2 : y2 =

3∏
i=1

(x− βi) .

Just as in the case of jacobians of genus-2 curves, there are 15 outgoing (2, 2)-
isogenies with domain E1 × E2. Of these, 9 correspond to an isogeny that is the
product of 2-isogenies on the respective elliptic curves, such that the image of this
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isogeny is again simply a product of elliptic curves. The other 6 determine an
isogeny where the kernel is given by

κ = {(OE1 ,OE2), (P1, Qσ(1)), (P2, Qσ(2)), (P3, Qσ(3))},

with OE1
and OE2

are the neutral elements of E1 and E2, respectively, σ is a
permutation of {1, 2, 3}, and Pi = (αi, 0), Qi = (βi, 0).4 As long as κ is not the
restriction of the graph of an isomorphism E1 → E2, the image of the isogeny
determined by κ is the jacobian of a genus-2 curve which can be constructed as
follows. Define ∆α and ∆β as the discriminants of the monic cubic polynomials∏3
i=1(x− αi) and

∏3
i=1(x− βi) respectively, and

a1 = (α3 − α2)2/(β3 − β2) + (α2 − α1)2/(β2 − β1) + (α1 − α3)2/(β1 − β3),

b1 = (β3 − β2)2/(α3 − α2) + (β2 − β1)2/(α2 − α1) + (β1 − β3)2/(α1 − α3),

a2 = α1(β3 − β2) + α2(β1 − β3) + α3(β2 − β1),

b2 = β1(α3 − α2) + β2(α1 − α3) + β3(α2 − α1).

It can be proved that ∆α,∆β , a1, b1, a2, b2 are all nonzero, such that A = ∆βa1/a2
and B = ∆αb1/b2 are well defined and nonzero as well. With these notations in
mind, the image of the (2, 2)-isogeny with kernel κ is the jacobian of the genus-2
curve given by the equation

y2 = −
(
A(α2 − α1)(α1 − α3)x2 +B(β2 − β1)(β1 − β3)

)
·
(
A(α3 − α2)(α2 − α1)x2 +B(β3 − β2)(β2 − β1)

)
·
(
A(α1 − α3)(α3 − α2)x2 +B(β1 − β3)(β3 − β2)

)
.

The three factors on the right hand side constitute a quadratic splitting for the
dual isogeny back to E1 ×E2; note in particular that these factors are multiples of
each other so that the corresponding value of δ is indeed 0.

The final case to consider is when we want to construct an isogeny with domain
an abelian surface of the form E1×E2, with E1

∼= E2, and of which the kernel κ is
the restriction of the graph of an isomorphism α : E1 → E2. The codomain is then
the same as the domain and the (2, 2)-isogeny is given by

φ : E1 × E2 → E1 × E2

(P,Q) 7→ (P + α̂(Q),−Q+ α(P )),

which is clearly self-dual.
In particular, if E1

∼= E2 we will have strictly fewer than six (2, 2)-isogenies from
E1 ×E2 to the jacobian of a genus-2 curve. The exact number in this case is given
by the formula 6 − #Aut(E1)/2. If the j-invariant of E1 is 0 or 1728 then this
expression is 3 or 4, respectively (under the assumption that p > 3). In all other
cases this expression is 5 since the only automorphisms are ±1.

4Note that there are other subgroups of E1 × E2 isomorphic to Z/2Z ⊕ Z/2Z, such as
{(OE1

,OE2
), (P1,OE2

), (P2,OE2
), (P3,OE2

)}, but they are not maximal isotropic with regards
to the 2-Weil pairing so are not the kernel of a (2,2)-isogeny.
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4. The superspecial (2, 2)-isogeny graph

For each prime p, we define a directed multigraph Gp as follows.5 The vertices of
Gp represent the isomorphism classes of superspecial p.p. abelian surfaces defined
over Fp. The graph Gp has an edge from vertex A1 to vertex A2 for every (2, 2)-
isogeny from the superspecial p.p. abelian surface corresponding to A1 to the one
corresponding to A2, again up to isomorphism. Here, isomorphisms of outgoing
(2, 2)-isogenies are commutative diagrams

A1 A2

A′2

φ

φ′
ι

where φ and φ′ are (2, 2)-isogenies and ι is an isomorphism of superspecial p.p.
abelian surfaces. Since the isomorphism class of an outgoing isogeny is uniquely
determined by its kernel, this simply means that we have an outgoing edge for each
(2, 2)-subgroup of A1, i.e., each subgroup that is isomorphic to Z/2Z ⊕ Z/2Z and
maximal isotropic with regards to the 2-Weil pairing.

By construction, Gp is a 15-regular (multi)graph, since both types of superspecial
p.p. abelian surfaces have 15 different outgoing (2, 2)-isogenies. One might simplify
the situation by combining parallel edges to turn Gp into a simple directed graph,
but for our application we will need to distinguish between all 15 outgoing edges.
In any case, for large p the number of parallel edges is expected to be negligible
relative to the size of the graph (for very small p, where there are few superspecial
p.p. abelian surfaces, the opposite holds—as we will see in §5).

Since every p.p. abelian surface is isomorphic (as a polarized abelian variety) to
either the jacobian of a genus-2 curve or a product of elliptic curves, the vertices of
Gp fall into two classes:

V (Gp) = Ep t Jp ,
where Ep is the set of isomorphism classes corresponding to products of supersingu-
lar elliptic curves, and Jp is the set of isomorphism classes of superspecial genus-2
jacobians. Proposition 2 gives us the cardinalities of these subsets.

Proposition 2. Let Gp, Ep, and Jp be defined as above.
• If p = 2 or 3, then #Jp = 0 and #Ep = 1.
• If p = 5, then #Jp = 1 and #Ep = 1.
• If p > 5, then

#Jp =
p3 + 24p2 + 141p− 346

2880
+ δp

5Every (2, 2)-isogeny φ : A1 → A2 has a unique dual (2, 2)-isogeny φ̂ : A2 → A1, so one might
think that we could easily treat Gp as an undirected graph. Unfortunately, this may fail if A1

has automorphisms different from ±1. Indeed, in that case it is possible that two non-isomorphic
(2, 2)-isogenies φ : A1 → A2 and ψ : A1 → A2 are obtained from each other by pre-composition
with such an automorphism, so that their duals are obtained from one another by post-composition
with this automorphism (more precisely if φ = ψ ◦ α then φ̂ = α−1 ◦ ψ̂). So these duals have
the same kernel, hence they are isomorphic. In the elliptic curve case, this technicality can be
combated by choosing p ≡ 1 mod 12, since then the automorphisms of all curves are always ±1.
In the case of superspecial genus-2 curves, however, no such convenient restriction exists: there
are jacobians with a different number of automorphisms for any prime p [22].
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and

#Ep =
1

2

(
p− 1

12
+ εp

)(
p− 1

12
+ εp + 1

)
,

where δp ∈ [0, 881720 ] depends only on p mod 120 and εp ∈
[
0, 76
]
depends only

on p mod 12.

Proof. The values for #Jp appear in [3, Theorem 3.10(b)] or [22, Theorem 3.3].
The formulas for #Ep follow from the fact that up to Fp-isomorphism, the number
of supersingular elliptic curves over Fp is (p−1)/12 + εp, where εp ∈

[
0, 76
]
depends

only on p mod 12 (see for example [30, Section V, Theorem 4.1(c)]). �

Proposition 2 implies that Gp is a finite graph, although this could already be
derived from the fact that every isomorphism class of superspecial p.p. abelian
surfaces has a representative defined over Fp2 . Asymptotically, we have

#Gp ∼ p3/2880 , #Ep ∼ p2/288 , #Jp ∼ p3/2880 .

In particular, the proportion of superspecial p.p. abelian surfaces that are the prod-
uct of two supersingular elliptic curves is O(1/p) relative to the total size of the
graph: for p large, the number of vertices in Gp that are not in Jp is negligible.

Informally, when p is large, one could see Ep as the “boundary” of the graph Gp,
and Jp as the “interior”. A first reason is the size argument we just made. A second
reason is the connectivity of the 2 types of superspecial p.p. abelian surfaces that
we briefly touched on in the preliminaries. Indeed, every product of elliptic curves
has at least 9 out of 15 (2, 2)-isogenies that have a codomain that is a product of
elliptic curves as well, hence this part of our graph is very well connected while only
making up a fraction of our graph. Vice versa there is also no jacobian of a genus-2
curve that could be “hiding” in between the products of elliptic curves, which we
can make precise with the following theorem.

Theorem 1. With the notation above:
(1) Suppose p 6= 5. If J is a vertex in Jp ⊂ Gp, then (counting multiplicity) at

most 6 of the 15 edges out of J are to vertices in Ep.
(2) If E is a vertex in Ep ⊂ Gp, then (counting multiplicity) at most 6 of the

15 edges out of E are to vertices in Jp.
Proof. Part (2) of this theorem was mentioned in the preliminaries; it follows from
the fact that 9 out of 15 (2, 2)-isogenies are simply a product of 2-isogenies from
the elliptic factors. A proof of a more general formula can be found in [25]. For a
proof of Part (1) using Gröbner bases, see Appendix A.6 �

A simple counting argument then tells us that for sufficiently large p, the chance
of a vertex in Jp having a neighbour in Ep in our graph Gp is negligible. Intuitively
this makes sense, since the δ in Proposition 1 is the determinant of a seemingly
random 3× 3 matrix for large p, and will therefore almost surely be nonzero.

We now state a pair of conjectures inspired by analogous theorems for the elliptic
supersingular 2-isogeny graph.

Conjecture 1. The graph Gp is connected.

6In recent work revisiting an online version of the current paper, Katsura and Takashima
strengthen Theorem 1 by giving more precise counts, along with a more conceptual proof of
Part (1); see [26].
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Conjecture 1 is the most natural from a mathematical point of view, but we will
need something stronger for a more efficient implementation of a collision-free hash
function. We mainly state it due to the analogy with the elliptic curve case.
Conjecture 2. The subgraph of Gp supported on Jp is connected.

Conjecture 2 (which is identical to Conjecture 1 in the elliptic case) is more rele-
vant to our discussion. It implies that Ep not only makes no significant contribution
to the size of Gp as p→∞, but it is also not essential for connectivity. (Thus, again,
we consider Ep to be the “boundary” of Gp.) Conjecture 2 implies Conjecture 1, since
every vertex in Ep has at least 4 outgoing edges into Jp for p > 3 (as mentioned in
the preliminaries). Similarly, Conjecture 2 follows from Conjecture 3 in Section 6,
for which we have verified correctness up to and including p equal 1013.

As a final note, one may wonder if all non-superspecial supersingular p.p. abelian
surfaces also form a similar connected component (which is necessarily infinite).7

Since we will not use these abelian surfaces, we will not explore that thought further.

5. The graph G13
We now give a small example to show the possible case distinctions that can

occur in the graphs Gp. We take p = 13, since this yields a small graph that still
exhibits most of the subtleties and pathologies that we encounter in larger graphs.

Figure 1 shows G13. There are 3 superspecial genus-2 curves defined over F13 up
to isomorphism, say Ci for i in {1, 2, 3}; we denote their jacobians by JCi

. There
is only 1 supersingular elliptic curve defined over F13 up to isomorphism, say E, so
there is only one vertex in G13 that corresponds to a product of elliptic curves.

First of all it is easily verifiable that there are at most 6 outgoing edges from any
JCi

to E×E, see Appendix A. Furthermore, since clearly E ∼= E, there are strictly
fewer than 6 outgoing edges from E × E to jacobians of genus-2 curves. Since the
j-invariant of E is not in {0, 1728}, we know from subsection 3.3 that there are
exactly 5 such edges, so the remaining 10 must go to products of elliptic curves as
well, which here (by lack of other options) means a loop with multiplicity 10.

This example also shows clearly why direction is important in the graph. There
are 4 edges from JC1

to JC2
, but only 1 edge back. In other words C1 : y2 =

x5 − x has 4 quadratic splittings whose associated Richelot isogenies have JC2
as

codomain,8 while starting from any Weierstraß equation for C2, only one quadratic
splitting gives rise to a Richelot isogeny with JC1 as codomain. This stems from
the fact that the 4 corresponding (2, 2)-subgroups of JC1 are mapped to each other
by an automorphism of JC1

. In other words the 4 resulting isogenies

φ1, . . . , φ4 : JC1
→ JC2

are obtained from one another by pre-composition with such an automorphism.
But then their duals

φ̂1, . . . , φ̂4 : JC2
→ JC1

are obtained from each other by post-composition with an automorphism. In par-
ticular they have the same kernel or, equivalently, they correspond to the same
quadratic splitting.

7More generally, in view of Appendix C one can wonder whether all supersingular genus-g
curves having a given Hasse–Witt rank can be connected using a chain of (2, 2, . . . , 2)-isogenies.

8Up to isomorphism, that is: the resulting equations for the curve C2 are in fact different, but
the absolute Igusa invariants are the same.
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JC1

JC2

JC3

E × E

5

4

6

1
6

5

3

4

9

2

10

1

2

2

Figure 1. The graph G13. The vertices JCi
, i ∈ {1, 2, 3}, corre-

spond to jacobians of genus-2 curves, whereas the vertex E × E
corresponds to a product of elliptic curves. The numbers indicate
the multiplicities of the edges.

The only phenomenon missing in this graph is a vertex corresponding to a prod-
uct of non-isomorphic elliptic curves. Such vertices always have 9 outgoing edges
(possibly loops) to other vertices in Ep, and 6 outgoing edges to vertices in Jp. The
smallest example where this occurs is the graph G17, which already has double the
number of vertices of G13.

6. A special class of paths in Gp
We are interested in the kinds of isogenies that are represented by paths in Gp:

that is, the compositions of isogenies corresponding to adjacent edges.
First, fix a single edge φ1 : A0 → A1 in Gp. By definition, φ1 represents (up to

isomorphism) a (2, 2)-isogeny: that is, an isogeny whose kernel is a maximal 2-Weil
isotropic subgroup of A0[2], hence isomorphic to (Z/2Z)2.

Now, consider the set of edges leaving A1: these correspond to (2, 2)-isogenies
that may be composed with φ1. We know that (counting multiplicity) there are
fifteen such edges. These edges fall naturally into three classes relative to φ1,
according to the structure of the kernel of the composed isogeny (which, in each
case, is a maximal 4-Weil isotropic subgroup of A0[4]).

Definition 2. Let φ1 : A0 → A1 and φ2 : A1 → A2 be edges in Gp.
• We say that φ2 is the (necessarily unique) dual extension of φ1 if ker(φ2 ◦
φ1) ∼= (Z/2Z)4, so φ2◦φ1 is a (2, 2, 2, 2)-isogeny (hence isomorphic to [2]A0

).
In this case, kerφ2 = φ1(A0[2]).
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• We say that φ2 is a bad extension of φ1 if ker(φ2◦φ1) ∼= (Z/4Z)×(Z/2Z)2,
so φ2 ◦ φ1 is a (4, 2, 2)-isogeny. In this case (kerφ2) ∩ φ1(A0[2]) ∼= Z/2Z,
and there are precisely 6 bad extensions of any given φ1.

• We say that φ2 is a good extension of φ1 if ker(φ2 ◦ φ1) ∼= (Z/4Z)2, so
φ2 ◦ φ1 is a (4, 4)-isogeny. In this case (kerφ2) ∩ φ1(A0[2]) = 0, and there
are precisely 8 good extensions of any φ1.

Remark 1. In [31, Definition 9.2.1], good extensions are called cyclic and bad
extensions are called acyclic. We prefer the good/bad terminology here to avoid
confusion with the notion of composing isogenies to form eventual cycles in Gp; the
reason why good is good and bad is bad will become clear in Section 7.

We have seen how the three kinds of extensions

A0
φ1−→ A1

φ2−→ A2

can be distinguished by how the kernel of φ2 intersects with the image of A0[2]
under φ1. We can make these criteria more explicit in terms of the Richelot isogeny
formulas.

6.1. Extensions of isogenies from Jp to Jp. Recall the construction of Richelot
isogenies φ1 : JC0

→ JC1
from Proposition 1: given the curve C0 : y2 = G1 ·G2 ·G3,

we set

H1 := G′2G3 −G′3G2 , H2 := G′3G1 −G′1G3 , H3 := G′1G2 −G′2G1 .

The curve C1 is defined by C1 : y2 = δ−1 ·H1 ·H2 ·H3 where δ := det(G1, G2, G3).
The kernel of φ1 corresponds to {G1, G2, G3}, and the subgroup φ1(JC0 [2]) ⊂ JC1 [2]
corresponds to {H1, H2, H3}.

Proposition 3. With the notation above: if

H1 = L1 · L2 , H2 = L3 · L4 , H3 = L5 · L6 ,

with the Li all linear (except possibly for one constant Li in the case where H1H2H3

is quintic), then the good extensions of φ1 are the Richelot isogenies with kernels
corresponding to one of the following factorizations of H1H2H3:

(L1L3, L2L5, L4L6), (L1L3, L2L6, L4L5),

(L1L4, L2L5, L3L6), (L1L4, L2L6, L3L5),

(L1L5, L2L3, L4L6), (L1L5, L2L4, L3L6),

(L1L6, L2L3, L4L5), (L1L6, L2L4, L3L5).

Proof. The quadratic splitting {H1, H2, H3} corresponds to the subgroup of JC1
[2]

which is the kernel of the dual φ̂1, and also the image φ1(JC0 [2]). The good exten-
sions of φ1 are those whose kernel intersects trivially with φ1(JC0

[2]); they therefore
correspond to the quadratic splittings with no quadratics proportional to any of the
Hi. The list of 8 splittings above follows from direct calculation. �

We now discuss the good extensions of isogenies involving products of elliptic
curves. This is mainly for the sake of completeness, because in our proposed hash
function below, these cases will not be implemented.
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6.2. Extensions of isogenies from Jp to Ep. Recall from the preliminaries that
for a (2, 2)-isogeny φ1 : JC0 → E1 ×E2, the domain can be written as the jacobian
of a curve C0 : y2 = G1G2G3, where

Gi = ai,1(x− s1)2 + ai,2(x− s2)2

for certain s1, s2, ai,1, ai,2 ∈ Fp2 for i = 1, 2, 3. The elliptic curves determining the
codomain can then be defined by the equations

E1 : y2 =

3∏
i=1

(ai,1x+ ai,2) , E2 : y2 =

3∏
i=1

(ai,1 + ai,2x) .

For i = 1, 2, 3 we will write {αi, α′i} for the roots of Gi, Pi = (−ai,2/ai,1, 0) for the
Weierstraß points of E1, Qi = (−ai,1/ai,2, 0) for the Weierstraß points of E2, and
OE1

and OE2
for the neutral element of respectively E1 and E2.

Proposition 4. With the notation above, the good extensions of φ1 are the (2, 2)-
isogenies with kernel one of the 6 combinations

{(OE1
,OE2

), (Pi,OE2
), (OE1

, Qj), (Pi, Qj)},
for i 6= j in {1, 2, 3}, or one of

{(OE1 ,OE2), (P1, Q2), (P2, Q3), (P3, Q1)},
{(OE1

,OE2
), (P1, Q3), (P2, Q1), (P3, Q2)}.

Proof. The proof of the formulas in [31, Proposition 8.3.1] shows that, for {i, j, k} =
{1, 2, 3}, the 2-torsion elements [(αi, 0)−(αj , 0)], [(αi, 0)−(α′j , 0)], [(α′i, 0)−(αj , 0)],
[(α′i, 0)− (α′j , 0)] get mapped to (Pk, Qk) in E1 ×E2. So the good extensions of φ1
are the isogenies whose kernels intersect

φ1(JC0
[2]) = {(OE1

,OE2
), (P1, Q1), (P2, Q2), (P3, Q3)}

trivially, which are exactly the ones listed. �

Note that in the previous proposition, the 6 good extensions of the first type
always have a product of elliptic curves as codomain. The other 2 will typically be
to a jacobian of a genus-2 curve, unless E1

∼= E2 and the given kernel is contained
in the graph of an isomorphism θ : E1 → E2, i.e. the kernel can be written as
{(OE1

,OE2
), (P1, θ(P1)), (P2, θ(P2)), (P3, θ(P3))}.

6.3. Extensions of isogenies from Ep to Jp. Recall from the preliminaries that
every (2, 2)-isogeny φ1 : E1 × E2 → JC1

, with

E1 : y2 =

3∏
i=1

(x− αi) and E2 : y2 =

3∏
i=1

(x− βi) ,

always has as codomain the jacobian of a genus-2 curve C1 that can be defined by
an equation of the form

(1) y2 = −
(
A(α2 − α1)(α1 − α3)x2 +B(β2 − β1)(β1 − β3)

)
·
(
A(α3 − α2)(α2 − α1)x2 +B(β3 − β2)(β2 − β1)

)
·
(
A(α1 − α3)(α3 − α2)x2 +B(β1 − β3)(β3 − β2)

)
,

up to permutation of the roots βi, for well-defined nonzero constants A and B that
depend on αi and βi. We will denote the quadratic factors on the right hand side
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of Equation 1 on the first, second and third line by H1, H2 and H3 respectively,
such that C1 : y2 = −H1 ·H2 ·H3.

Proposition 5. With the notation above: if

H1 = L1 · L2 , H2 = L3 · L4 , H3 = L5 · L6 ,

with the Li all linear (except possibly for one constant Li in the case where H1H2H3

is quintic), then the good extensions of φ1 are the Richelot isogenies with kernels
corresponding to one of the following factorizations of H1H2H3:

(L1L3, L2L5, L4L6), (L1L3, L2L6, L4L5),

(L1L4, L2L5, L3L6), (L1L4, L2L6, L3L5),

(L1L5, L2L3, L4L6), (L1L5, L2L4, L3L6),

(L1L6, L2L3, L4L5), (L1L6, L2L4, L3L5).

Proof. The proof of Equation 1 in [20] constructs the dual isogeny φ̂1 : JC1 →
E′1 × E′2, where E′1 ∼= E1 and E′2 ∼= E2. More specifically, E′1 and E′2 are given by

E′1 : y2 = − (A(α2 − α1)(α1 − α3)x+B(β2 − β1)(β1 − β3))

· (A(α3 − α2)(α2 − α1)x+B(β3 − β2)(β2 − β1))

· (A(α1 − α3)(α3 − α2)x+B(β1 − β3)(β3 − β2)) ,

E′2 : y2 = − (A(α2 − α1)(α1 − α3) +B(β2 − β1)(β1 − β3)x)

· (A(α3 − α2)(α2 − α1) +B(β3 − β2)(β2 − β1)x)

· (A(α1 − α3)(α3 − α2) +B(β1 − β3)(β3 − β2)x) .

Hence the quadratic splitting {H1, H2, H3} corresponds to the subgroup of JC1
[2]

which is the kernel of the dual φ̂1 and we can continue the proof just as in the
Richelot isogeny case. �

6.4. Extensions of isogenies from Ep to Ep.
Proposition 6. Let φ1 : E1 × E2 → E′1 × E′2 be a (2, 2)-isogeny. Denote by OE1 ,
OE2

, OE′1 , OE′2 the identity elements of respectively E1, E2, E′1 and E′2. For i =
1, 2, 3 we write Pi, Qi, P ′i , Q′i for the Weierstraß points of respectively E1, E2, E

′
1, E

′
2.

If
ker(φ1) = {(OE1

,OE2
), (P1,OE2

), (OE1
, Q1), (P1, Q1)},

and φ1|E1(P2) = φ1|E1(P3) = P ′1, φ1|E2(Q2) = φ1|E2(Q3) = Q′1, then the good
extensions of φ1 are the isogenies with kernel one of the 4 combinations

{(OE′1 ,OE′2), (P ′i ,OE′2), (OE′1 , Q
′
j), (P

′
i , Q

′
j)},

where i 6= 1 and j 6= 1, or one of

{(OE′1 ,OE′2), (P ′1, Q
′
2), (P ′2, Q

′
3), (P ′3, Q

′
1)},

{(OE′1 ,OE′2), (P ′1, Q
′
3), (P ′2, Q

′
1), (P ′3, Q

′
2)},

{(OE′1 ,OE′2), (P ′1, Q
′
2), (P ′2, Q

′
1), (P ′3, Q

′
3)},

{(OE′1 ,OE′2), (P ′1, Q
′
3), (P ′2, Q

′
2), (P ′3, Q

′
1)}.

Proof. The good extensions are determined by the (2, 2)-isogenies that intersect

{(OE′1 ,OE′2), (P ′1,OE′2), (OE′1 , Q
′
1), (P ′1, Q

′
1)}

trivially, so the proof is immediate. �
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6.5. Connectedness.

Conjecture 3. For every two vertices A and A′ in Jp ⊂ Gp, there exists a path

A = A0
φ0−→ A1

φ1−→ · · · φk−1−−−→ Ak = A′

of k edges, for some k ≥ 0, such that all of the Ai are in Jp and each φi, i 6= 0, is
a good extension of φi−1. (The composed isogeny is then a (2k, 2k)-isogeny.)

Conjecture 3 is our strongest conjecture. It differs from Conjecture 2 in that at
each step in a path, the number of choices is reduced from all 15 isogenies to the
8 good isogenies. Conjecture 3 is easy to verify for small p using the formulas for
Richelot isogenies and the exact formula from Theorem 2. We verified this part of
the conjecture for p ≤ 1013 using Magma, but from then onward the computations
become slow since we work with graphs of several hundred thousands of vertices
already. Nonetheless, this is a first indication that Conjecture 3 might hold.

7. Hash functions from Richelot isogenies

Turning the graph Gp into a hash function happens analogously to the elliptic
curve case with some small caveats. We will first describe the function in general,
thereby repairing Takashima’s proposal from [33], and then explain the underlying
reasoning in detail afterwards. When reading this section, it can be helpful to keep
the Magma code in Appendix B at hand.

We start by choosing a large prime p (as a function of some security parameter λ)
such that p ≡ 5 mod 6. We start at the vertex corresponding to the jacobian of the
genus-2 curve C0 defined over Fp2 , given by the equation y2 = x(x− 1)(x+ 1)(x−
2)(x − 1/2). The hash function starts by taking a relatively small deterministic
walk away from C0, which can be achieved through multiplication of the input by a
relatively small power of 8, or equivalently, padding its bit expansion with a bunch
of triple zeroes. This is done to distantiate us from the vertex corresponding to
the jacobian of our starting curve, since it is known to have many automorphisms,
resulting in small cycles in our graph which lead to collisions; see Section 7.3 for a
more elaborate discussion. In our pseudocode from Algorithm 1, as well as in our
proof-of-concept implementation in Appendix B, we padded with 30 zeroes for the
sake of exposition, but clearly this choice is somewhat random.

The hashing will happen 3 bits at a time, with each three bits determining a
choice of one of the eight good extensions relative to the previous step. So for our
starting vertex we will need to make an initial choice as if we performed a step prior
to starting. The quadratic splitting we will choose for C0 is{

x2 − 1, x2 − 2x, x− 1

2

}
.

The 8 quadratic splittings that we will consider are those that have no quadratic
factor in common with the one that was obtained from the previous step. These
splittings are then ordered according to some natural order of the roots. In practice
this means we just need to fix a quadratic equation that determines the field ex-
tension Fp ⊆ Fp2 . Next we process 3 bits (one base-8 digit) of our input, using it to
choose an edge according to the ordering of the quadratic splittings. If the chosen
edge leads to a vertex corresponding to the product of elliptic curves, the function
stops and outputs an error. If the chosen edge leads to a vertex corresponding to a
jacobian of a genus-2 curve, then we have 8 good extensions again, this time relative
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to the previous step. We now repeat the process for the remainder of the message,
where each block of 3 bits corresponds to one choice of edge that takes us to a new
vertex in the graph. Once the entire message has been processed we output the
absolute Igusa invariants of the genus-2 curve corresponding to the final vertex.

Remark 2. We chose to abort the hashing as soon as a product of elliptic curves is
encountered in order not to get lost in technical details that apply with probability
O(1/p) and which detract us from the main construction. Note that 1/p is only
slightly larger than the probability of breaking the hash function using Pollard-ρ.
Nevertheless this is a nuisance, but as discussed in Section 7.2 below, there are
several tracks for getting around this.

7.1. Avoiding trivial cycles. A hash function should be collision-resistant, so we
need to at least avoid trivial cycles in our graph. In the elliptic curve case, this is
simply done by disallowing the edge associated to the dual isogeny from where we
just came. Similarly, we must avoid using dual isogenies when walking in Gp, to
avoid extremely easy cycles:

A0 A1

φ1

φ̂1

But there is an additional subtlety in genus-2, as noted in [18]. If we compose a
(2, 2)-isogeny A0 → A1 with a bad extension A1 → A2, then we get a (4, 2, 2)-
isogeny; but then, for every (4, 2, 2)-isogeny A0 → A2 there are 3 distinct ways to
split it up into the concatenation of two (2, 2)-isogenies as in the following diagram.

A′1

A0 A1 A2

A′′1

φ′2φ′1

φ1

φ′′1

φ2

φ′′2

Luckily all these cases are easy to distinguish, as we saw in Section 6.
The eight (2, 2)-isogenies corresponding to good extensions do not result in trivial

cycles. In practice this means that, after a choice for our initial (2, 2)-isogeny
corresponding to one of 15 possible edges, we are left with only 8 options at every
next step along the way. This implies that we should not only keep track of our
current vertex by some form of equation, but also by some order of the roots of
that equation (or more precisely, by a quadratic splitting).

This observation means we can hash up to 3 bits at every step in our hash
function and that a hash will always correspond to computing a (2k, 2k)-isogeny.

7.2. Products of elliptic curves. For our hash function, the vertices correspond-
ing to products of elliptic curves are a nuisance for the following reasons.

• There is no clear candidate invariant that is similar to the ordered triple in
case of the genus-2 absolute Igusa invariants. So ideally, we would prefer
not to end the hash function in a vertex like this.
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• The formulas involving products of elliptic curves are a lot more involved
than the Richelot isogenies, and their simplicity was one of the main reasons
for the restriction to (2, 2)-isogenies.

In the way we presented our hash function, we simply use Richelot isogenies only
and let our hash function break down whenever we pass a vertex corresponding to
a product of elliptic curves. Given that this only occurs with probability O(1/p),
this only happens with negligible probability for cryptographic values of p.

An alternative way of dealing with this is as follows. Assume we try to process
a step in our hash function that corresponds to a (2, 2)-isogeny between a jacobian
of a genus-2 curve and a product of elliptic curves. Then (in the same step) we
immediately choose one edge corresponding to a (2, 2)-isogeny from the product
of elliptic curves back to a jacobian of a genus-2 curve. This has to be done in
a deterministic way and we should avoid the dual and bad extensions since they
would result in small cycles in Gp. Unfortunately Proposition 4 tells us that we can
only find 2 good extensions that possibly have the jacobian of a genus-2 curve as
codomain. In the case of E×E, with E having j-invariant 0 or 1728, these kernels
may both be to a product of elliptic curves again. Solving this issue can be done
by either choosing p ≡ 1 mod 12 (such that elliptic curves with j-invariant 0 and
1728 never occur), or by (deterministically) using the results from Proposition 6 to
add an extra step in this specific case.

A third option is to keep working with all the formulas for products of elliptic
curves as well. This means we should find a way to merge the absolute Igusa
invariants and (unordered) pairs of j-invariants into one output type, which is only
an issue when ending in a product of elliptic curves.

7.3. Initial choices. As mentioned earlier, there is no known way to generate the
equation of a random superspecial genus-2 curve that is defined over Fp2 . Some
specific examples such as y2 = x5 − x with p ≡ 5 or 7 mod 8 are listed in [22]. Un-
fortunately, the examples that are easiest to represent all have some (2, 2)-isogenies
with codomain the product of 2 supersingular elliptic curves. This seems to imply
that we cannot avoid having to deal with vertices corresponding to products of
elliptic curves.

However, another initial choice to make is whether we start by picking one of
15 possible edges or already restrict ourselves to 8, since this is needed for every
subsequent step anyway. We will take only 8 which means we need to choose an
initial quadratic splitting instead of just an initial curve.9 Fortunately this solves
our problem of finding an appropriate starting curve in a way. Consider C0, the
genus-2 curve given by y2 = x(x − 1)(x + 1)(x − 2)(x − 1/2) defined over Fp
with p > 5. Then C0 is superspecial if and only if p ≡ 5 mod 6 [22]. Now the
vertex corresponding to the jacobian of C0 has 4 neighbours that are products of
supersingular elliptic curves. However, if we take the initial quadratic splitting{
x2 − 1, x2 − 2x, x− 1

2

}
, then the 8 allowed outgoing (2, 2)-isogenies all have the

jacobian of a superspecial genus-2 curve as codomain. The only restriction this puts
on our hash function is that we need to work with a prime p such that p ≡ 5 mod 6,
but this is easy to enforce.

9We remark that in this case, Conjecture 3 is no longer strong enough to prove that we can
reach all vertices in Gp, since it relies on having all 15 initial (2, 2)-isogenies present. However,
there is no clear reason to assume that only allowing 8 out of 15 possible edges for our initial
choice all of a sudden would disallow us to reach certain vertices.
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An issue that arises with this curve C0 however, is that its jacobian has many au-
tomorphisms and hence has multiple outgoing isogenies with the same codomain.10

More precisely, starting from the given splitting of C0, the 8 good extensions only
have 3 distinct codomains up to isomorphism, one of which even occurs with mul-
tiplicity 5, which leads to trivial cycles in our graph. An easy way to fix this is
to simply take a (relatively short) deterministic path to another curve C ′0 prior to
starting to hash our input, or equivalently, pad the input with some zeroes from the
right. For other possible starting curves, this padding can be used to additionally
avoid products of elliptic curves. Of course, once such a path to C ′0 has been com-
puted, this curve can be hard-coded as the new starting curve, so that no padding
is needed when hashing subsequent inputs.

7.4. Security. The security of our hash function depends on the hardness of finding
isogenies between certain p.p. abelian surfaces. A lot of the choices discussed in the
previous subsections make slight alterations to the underlying mathematical hard
problems. We will formulate them in a general form to keep them succinct since
we do not think any of the changes would impact the hardness of the problems.
In essence they are the genus-1 counterparts of the hard problems from the elliptic
curve hash function in [8].

Problem 1. Given two superspecial genus-2 curves C1 and C2 defined over Fp2 ,
find a (2k, 2k)-isogeny between their jacobians.

Problem 2. Given any superspecial genus-2 curve C1 defined over Fp2 , find
(1) a curve C2 and a (2k, 2k)-isogeny JC1

→ JC2
,

(2) a curve C ′2 and a (2k
′
, 2k

′
)-isogeny JC1 → JC′2 ,

such that C2 and C ′2 are Fp-isomorphic. Here, it is allowed that k = k′ but in this
case the kernels should be different.

They are related to our hash function in the following way.
• Preimage resistance: Finding a preimage in our hash function implies a

solution to Problem 1 with C1 = C ′0 as follows. Let C2 be a representative
of the isomorphism class of the output of the hash function. A preimage for
that output corresponds to a path of length k in our graph, or equivalently,
a (2k, 2k)-isogeny between the jacobians of C ′0 and C2.

• Collision resistance: Finding a collision in our hash function implies a
solution to Problem 1 with C1 = C ′0 as follows. A collision in our hash
function corresponds to two distinct paths in our graph with the same
ending vertex. Equivalently this amounts to a pair of isogenies

φ : JC′0 → JC2
and φ′ : JC′0 → JC′2

of type (2k, 2k) resp (2k
′
, 2k

′
) such that C2

∼= C ′2, and with different kernels.
To our knowledge, there are no known ways to find isogenies of the said kinds

between jacobians of (superspecial) genus-2 curves which perform better than the

10Remark that in the elliptic curve case the same thing happens with for example y2 = x3 +x
with p ≡ 3 mod 4. The SIKE protocol has a similar issue with its starting curve and solves it by
simply forbidding one possible outgoing isogeny.
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generic attacks.11 In the classical case the best known such attack is Pollard ρ,
which can find a collision or preimage in time complexity the square root of the
number of possibilities times the amount of time that one step computation takes.
In our case we have a graph of size O(p3) and one step is simply a polynomial
computation with some constants, which we can perform in time complexity log p.
Hence a Pollard ρ attack could find a solution to Problem 1 or Problem 2 in time
Õ(p3/2).

With quantum computers in mind, the best known attack is a claw-finding algo-
rithm to find a collision or preimage in the graph Gp. Grover search would yield a
square-root attack in O(p3/2). The algorithm of [35] would yield an attack with time
complexity the third root of the size of the graph we work over; this would imply
a solution to Problem 1 or Problem 2 in time Õ(p). However, Jaques and Schanck
have shown that the data structures required by this algorithm adds significantly
to its complexity, to the point where it does not in fact beat square-root algorithms
(which have much lower quantum memory requirements) [24]; this suggests that
Õ(p3/2) is (currently) the correct complexity estimate for our problems.

8. Implementation and timings

We have implemented our hash function in Magma, taking into account all the
choices made from the previous section. The pseudocode can be found below; the
Magma code can be found in Appendix B. The subroutine Factorization is defined
as follows: when the input is a quadratic polynomial, Factorization returns its
two linear factors (which, in this application, are guaranteed to exist over the ground
field). When the input is a linear polynomial, it returns that polynomial and 1.

Remark 3. We do not keep track of the leading coefficient of the polynomial
determining the genus-2 curve, for the reason that a twist of a curve does not
change its absolute Igusa invariants anyway. Similarly we never need to know the
exact value of δ = det(G1, G2, G3). We are only interested in whether or not δ
equals 0, and with the formulas from the preliminaries, this condition can be easily
verified to be equivalent to all Hi being a multiple of one another. Hence it suffices
to check if rank(H1, H2) < 2 instead, i.e. if H1 is a nonzero multiple of H2.

The deterministic edge ordering depends on two things. First, there is the (ar-
bitrary) way we hard-coded the set S of pairs of indices of the allowed quadratic
splittings. Secondly, the subroutine Factorization automatically orders the roots
of the polynomial in some way. In this statement we silently assumed that this
happens deterministically by the used software, which is the case for Magma.

Note that we do not claim this code is optimized in any way. For example we
simply pick the smallest prime p possible that satisfies our needs, whereas better
choices may speed up the arithmetic in the field we work over. Additionally, we did
not implement any proper padding schemes. The main goal of the implementation
is to see what the order of magnitude is for the speed of the hash function and we
leave possible optimizations for future work.

As a final remark we want to point out that the output of the hash function
is dependent on the security level required. The output is a triple in a quadratic

11The isogeny-path-computing algorithm described in the recent paper [9, §7] does not produce
preimages for our hash function: indeed, with overwhelming probability the resulting isogeny path
does not consist of good extensions, as is apparent from the proof of [9, Lem. 3].



HASH FUNCTIONS FROM SUPERSPECIAL GENUS-2 CURVES 19

Algorithm 1: Hashing a message m using Richelot isogenies, with λ bits of
security on a classical computer
Data: Message m and security parameter λ
Result: The hash of m using Richelot isogenies in a graph Gp, or ⊥ (failure)

1 S ← [({1, 3}, {2, 5}, {4, 6}), . . . , ({1, 6}, {2, 4}, {3, 5})]
2 p← the smallest prime such that p > 2d2λ/3e and p ≡ 5 mod 6

3 (L1, L2, L3, L4, L5, L6)← (x− 1, x+ 1, x, x− 2, x− 1/2, 1) ∈ Fp2 [x]6

4 m← 230m

5 while m > 0 do
6 i← m mod 8

7 m← (m− i)/8
8 [G1, G2, G3]← pairwise products of the Lj according to S[i]

9 (L1, L2)← Factorization(H1) where H1 := G′2G3 −G2G
′
3

10 (L3, L4)← Factorization(H2) where H2 := G′3G1 −G3G
′
1

11 if rank(H1, H2) = 1 then
12 return ⊥ // We have hit a vertex in Ep
13 (L5, L6)← Factorization(H3) where H3 := G′1G2 −G1G

′
2

14 return invariants of genus-2 curve defined by the equation y2 =
∏6
j=1 Lj

field extension of a finite field of characteristic roughly 2λ/3 bits in case of classical
security. This means our output has bit length 4λ, even though the number of
possible hash values is only 2λ bits.12 It may be possible to compress this but we
leave this discussion for future research, too.

We implemented our genus-2 CGL hash function algorithm in Magma (version
2.32-2) and ran it on an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 128
GB memory. For every prime size we averaged the speed over 1000 random inputs
of 100 bits. A summary of our timed results can be found in the following table.

p ≈ 286 p ≈ 2128 p ≈ 2171 p ≈ 2256

bits of classical and quantum security 128 192 256 384
time per bit processed 5.01ms 6.52ms 9.33ms 15.70ms

output bits 516 768 1026 1536

9. Comparison to Charles–Goren–Lauter, and concluding remarks

The computational cost of each iteration of the main loop in Algorithm 1 is
dominated by the three square roots required to factor the Hi in Lines 9, 10,
and 13. At first glance, this would appear to give no advantage over the Charles–
Goren–Lauter hash function: we compute essentially one expensive square root per
bit of hash input. However, there are two important remarks to be made here:

(1) The entropy in the Charles–Goren–Lauter hash function is linear in p,
whereas in our case it is cubic in p. This implies that for the same security
parameters we can work over much smaller finite fields, so the square roots
are substantially easier to compute.

12In the elliptic curve case something completely analogous occurs: only about p/12 elements
from Fp2 are j-invariants corresponding to supersingular elliptic curves.
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(2) The square roots, along with the Hi, can be computed completely indepen-
dently. The algorithm therefore lends itself well to three-way parallelization,
as well as to vectorization techniques on suitable computer architectures.

From this point of view, our proposal is a conjecturally secure version of an
ill-constructed hash function that we could call 3CGL, where the message m is
split up in 3 chunks m1,m2,m3. Each of these mi is then hashed using Charles,
Goren and Lauter’s hash function into a supersingular j-invariant ji, resulting in a
combined hash value (j1, j2, j3) ∈ Fp2 . Note that, here too, the number of possible
outcomes is O(p3). However, the security of 3CGL clearly reduces to the problem
of finding collisions or pre-images for one of the chunks, which Pollard ρ can do in
time Õ(p1/2), compared to Õ(p3/2) in our case.

While this convinces us that genus-2 hash functions deserve their place in the
arena of isogeny-based cryptography, more research is needed to have a better
assessment of their security and performance. One potentially interesting track
is to adapt Doliskani, Pereira and Barreto’s recent speed-up to Charles, Goren
and Lauter’s hash function from [16], which has the appearance of an orthogonal
improvement that may also apply to genus 2. From a security point of view, it
would be interesting to understand to what extent the discussion from [27, 17],
transferring the elliptic curve analogs of Problems 1 and 2 to questions about orders
in non-commutative algebras and raising some concerns about using special starting
curves, carries over to genus 2.
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Appendix A. Proof of Theorem 1

We now settle Part (1) of Theorem 1, as an immediate consequence to:

Theorem 2. Let C be a genus-2 curve over a field K of characteristic different
from 2 and 5. Then the number of outgoing (2, 2)-isogenies with codomain a product
of elliptic curves is at most 6.

Proof. We can assume that K is algebraically closed, so that C admits a model of
the form y2 =

∏6
i=1(x− αi) for roots αi ∈ K satisfying∏

1≤i<j≤6

(αi − αj) = 1.

Due to the formulas for Richelot isogenies, the number of (2, 2)-isogenies with
codomain a product of elliptic curves is determined by how many among the 15
different equations of the form

(2) det

1 ασ(1) + ασ(2) ασ(1)ασ(2)
1 ασ(3) + ασ(4) ασ(3)ασ(4)
1 ασ(5) + ασ(6) ασ(5)ασ(6)

 = 0 ,

where σ is a permutation of {1, 2, 3, 4, 5, 6}, can be simultaneously satisfied.
To show that no more than 6 can occur we work with Gröbner bases. The permu-

tations of Equation (2) determine, up to sign, 15 different polynomials f1, . . . , f15
in F[α1, . . . , α6], where F is the prime subfield of K. We pick a subset of 7 of these
equations and form the ideal I ⊂ F[α1, . . . , α6] generated by them, together with
the polynomial ρ =

∏
i,j(αi − αj) − 1. Now we determine a Gröbner basis G for

I. If G = {1} then the variety defined by I is empty and hence those 7 equations
we chose can not be satisfied simultaneously, under the assumption that all αi are
different. If we repeat this process for all possible subsets of 7 equations and find
G = {1} in all cases, then we are done. There are

(
15
7

)
= 6435 possible ways of

selecting such a subset, but this is not a problem for Magma.13

When running the algorithm we choose F = Q, for which we indeed find G =
{1} in each of the cases. This only shows that there are no solutions if K is of
characteristic 0, while we typically want to work over a fields of prime characteristic.
If the Gröbner basis G equals {1} however, we can write 1 as linear combination of
that particular choice of polynomials fi, say for example 1 = h1f1+. . .+h7f7+h8ρ.
If we then multiply both sides of the equations by the lowest common multiple m
of the denominators of the coefficients of the hi, then we obtain an equation with

13Remark that by using the symmetry in the variables, it is possible to reduce the number of
case distinctions needed, but we see no need to optimize this since it is a one time computation.
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Figure 2. Magma code completing the proof of Theorem 1
Q<a1,a2,a3,a4,a5,a6> := PolynomialRing(Rationals(),6);
S := {1,2,3,4,5,6};
I := {};

for sub1 in Subsets(S,2) do
subseq1 := SetToSequence(sub1);
for sub2 in Subsets(S diff sub1, 2) do

subseq2 := SetToSequence(sub2);
subseq3 := SetToSequence(S diff (sub1 join sub2));
M := Matrix(Q,3,3,

[ 1, Q.subseq1[1] + Q.subseq1[2], Q.subseq1[1]*Q.subseq1[2],
1, Q.subseq2[1] + Q.subseq2[2], Q.subseq2[1]*Q.subseq2[2],
1, Q.subseq3[1] + Q.subseq3[2], Q.subseq3[1]*Q.subseq3[2] ] );

eqn := Determinant(M);
if -eqn notin I then

I join:= {Determinant(M)};
end if;

end for;
end for;

disc := Q ! 1;
for sub in Subsets(S,2) do

subseq := SetToSequence(sub);
disc *:= Q.subseq[1] - Q.subseq[2];

end for;

groebnerboolean := true;
badprimes := {};
for j in Subsets(I,7) do

J := {disc-1};
J join:= j;
if GroebnerBasis(Ideal(J)) ne [1] then groebnerboolean := false; end if;
J := IdealWithFixedBasis(SetToSequence(J));
c := Coordinates(J, Q ! 1);
for coord in c do

for coeff in Coefficients(coord) do
badprimes join:= SequenceToSet(PrimeDivisors(Denominator(coeff)));

end for;
end for;

end for;
print groebnerboolean; badprimes;

coefficients in Z[α1, . . . , α6]. So as long as the characteristic p of K does not divide
m, we still find a contradictory system. Hence it suffices to keep track of the primes
that dividem, which are 2, 3, 5, 7 and 11. It then suffices to rerun the Gröbner basis
computations for F = Fp with p = 3, 7, 11, leading to the desired conclusion. �

Figure 2 lists the Magma code that was used. The specific cases p ∈ {3, 7, 11}
can be checked by replacing Rationals() by GF(p) for any one value of p, and by
removing the innermost loop that starts with for coord in c do completely.

Theorem 2 cannot be proved in this way for p = 2, because equations for hyper-
elliptic curves are more complicated in characteristic 2. Nevertheless, Theorem 1
is vacuously true for superspecial genus-2 Jacobians when p = 2, because there are
no superspecial genus-2 jacobians over fields of characteristic 2.
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The following example shows why Theorem 1 is not true for p = 5, and also
provides an example to show that the bound of 6 is sharp.

Example 1. Let C be the genus-2 curve given by y2 = x5 − x over Fp (which is
superspecial when p ≡ 5 mod 8), and let i ∈ Fp2 be a square root of −1. Of the
fifteen quadrating splittings of x5 − x, the six splittings

{x, x2 − (i+ 1)x+ i, x2 + (i+ 1)x+ i} , {x, x2 + (i− 1)x− i, x2 − (i− 1)x− i}
{x− 1, x2 + 1, x2 + x} , {x+ 1, x2 + 1, x2 − x} ,
{x− i, x2 − 1, x2 + ix} , {x+ i, x2 − 1, x2 − ix}

all have δ = 0, so they are always singular. The quadratic splitting {x, x2+1, x2−1}
has δ = ±2 (the sign of δ may change with the order of the factors), and so is never
singular. There are eight splittings remaining. The four splittings

{x− 1, x2 − ix, x2 + (i+ 1)x+ i} , {x− i, x2 + x, x2 + (i− 1)x− i} ,
{x+ 1, x2 + ix, x2 − (i+ 1)x+ i} , {x+ i, x2 − x, x2 − (i− 1)x− i}

all have δ = ±(3i+ 1), while their “conjugates”, the four splittings

{x− 1, x2 + ix, x2 − (i− 1)x− i} , {x+ i, x2 + x, x2 − (i+ 1)x+ i} ,
{x+ 1, x2 − ix, x2 + (i− 1)x− i} , {x− i, x2 − x, x2 + (i+ 1)x+ i}

have δ = ±(3i− 1).
Now, when p = 5, we may take i = 2 or i = 3. If i = 2 then 3i − 1 = 0, so

the last set of four become singular (and the penultimate set of four have δ = ±2),
while if i = 3 then 3i+ 1 = 0, so the penultimate set of four become singular (and
then the last set of four have δ = ±2). In either case, for p = 5 we have exactly four
additional singular splittings, making ten in total; and we cannot have i = 2 or 3
in any other characteristic, so if p 6= 5 then there are only six singular splittings.

Appendix B. The hash function

Figure 3 lists Magma code implementing our hash function, with the specific
parameter choices described in this article.

Appendix C. Invariance of the rank of the Hasse–Witt matrix

Fix g ≥ 2 and let V be the set of isomorphism classes of supersingular g-
dimensional p.p. abelian varieties over Fp. This appendix discusses an obstruction
to the connectedness of any graph whose vertex set is V and whose edges represent
separable isogenies.

Proposition 7. Let A,B be g-dimensional abelian varieties over Fp and assume
that there exists a separable isogeny ϕ : A→ B. Then the rank of pth power Frobe-
nius acting on H1(A,OA) equals that of pth power Frobenius acting on H1(B,OB).

As a consequence, Pizer’s result [29] that the `-isogeny graph of all supersingular
elliptic curves over Fp is connected (for any prime number ` 6= p) cannot be trans-
ferred to supersingular p.p. abelian varieties of higher dimension. Of course, in view
of Conjecture 1 we hope that it does generalize when restricting to the superspecial
subgraph. The proof of Proposition 7 was explained to us by Ben Moonen; we refer
to the book by Li and Oort [28] for more background on the terminology it invokes.
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Figure 3. Magma code for the genus-2 superspecial hash function
function prime(lambda)

p:= 2^Ceiling(lambda*2/3);
repeat p := NextPrime(p); until p mod 6 eq 5;
return p;

end function;

function fac(pol)
r := [ rt[1] : rt in Factorization(pol)];
if #r eq 1 then Append(~r,1); end if;
return r;

end function;

function G2CGLhash(lambda, message)
splits := [

[{1,3},{2,5},{4,6}], [{1,3},{2,6},{4,5}],
[{1,4},{2,5},{3,6}], [{1,4},{2,6},{3,5}],
[{1,5},{2,3},{4,6}], [{1,5},{2,4},{3,6}],
[{1,6},{2,3},{4,5}], [{1,6},{2,4},{3,5}]

];

p := prime(lambda);
R<x> := PolynomialRing(GF(p^2));
factors := [x-1, x+1, x, x-2, x-1/2, 1];
message := message*2^30;
mbase8 := IntegerToSequence(message, 8); // base-8 digits of message

for i := 1 to #mbase8 do
split := splits[mbase8[i]+1];
G1 := &*[ factors[j] : j in split[1]];
G2 := &*[ factors[j] : j in split[2]];
G3 := &*[ factors[j] : j in split[3]];
h1 := Derivative(G2)*G3 - G2*Derivative(G3); r1 := fac(h1);
h2 := Derivative(G3)*G1 - G3*Derivative(G1); r2 := fac(h2);
if Rank(Matrix([ [Coefficient(h1,j) : j in [0..2]],

[Coefficient(h2,j) : j in [0..2]] ])) eq 1 then
// isogeny codomain is a product of elliptic curves
print "No hash for this value possible."; return;

end if;
h3 := Derivative(G1)*G2 - G1*Derivative(G2); r3 := fac(h3);
factors := r1 cat r2 cat r3;

end for;

return G2Invariants(HyperellipticCurve(&*factors));
end function;

Proof. Write σ : Fp → Fp for pth power Frobenius. Denote byM = H1
dR(A/Fp) the

(contravariant) Dieudonné module of the group scheme A[p], which comes equipped
with a σ-linear Frobenius operator F : M →M for which we have

M/ ker(F) ∼= H1(A,OA)
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as vector spaces equipped with Frobenius. Thus the rank of Frobenius acting on
H1(A,OA) is given by

dimFp
( (im(F) + ker(F)) / ker(F)) = dimFp

(im(F) / im(F) ∩ ker(F) )

= g − dimFp
(im(F) ∩ ker(F))

where g = dim(A) = dimFp
(im(F)). The quantity dimFp

(im(F) ∩ ker(F)) is in
fact known as the a-number of A.

Now the group scheme A[p] admits the decomposition

A[p] = A[p]loc,ét ⊕A[p]loc,loc ⊕A[p]ét,loc

which corresponds to a decomposition of Dieudonné modules

M = Mloc,ét ⊕Mloc,loc ⊕Mét,loc

and it holds that im(F)∩ker(F) is zero on the summandsMloc,ét andMét,loc, where
F is zero resp. bijective. But if ϕ : A→ B is a separable isogeny then ker(ϕ) is an
étale group scheme, yielding an isomorphism

A[p]loc,loc ∼= B[p]loc,loc.

It follows that the a-numbers of A and B are the same, and as a consequence
that the rank of Frobenius on H1(A,OA) is equal to the rank of Frobenius on
H1(B,OB), as wanted. �
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