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Abstract. Revocable identity-based encryption (RIBE) is an extension

of IBE that supports a key revocation mechanism, which is important

when deployed an IBE system in practice. Boneh and Franklin presented

the first generic construction of RIBE, however, their scheme is not scal-

able where the size of key update is linear in the number of users in the

system. Then, Boldyreva, Goyal and Kumar presented the first scalable

RIBE where the size of key update is logarithmic in the number of users

and linear in the number of revoked users.

In this paper, we present a generic construction of scalable RIBE from

any IBE in a black-box way. Our construction has some merits both

in theory and in practice. We obtain the first RIBE scheme based on

quadratic residuosity problem and the first adaptively secure RIBE scheme

based on lattices if we instantiate the underlying IBE with IBE schemes

from quadratic residuosity assumption and adaptively secure IBE from

lattices, respectively. In addition, the size of public parameters and secret

keys are the same as that of the underlying IBE schemes. In server-aided

model, the overheads of communication and computation for receivers

are the same as those of underlying IBE schemes. Furthermore, the stor-

age overhead for key update in our scheme is constant (in the number of

users) while it was linear in the number of users in previous works.

Key words: Generic Construction, Revocable Identity Based Encryp-

tion
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1 Introduction

Identity-Based Encryption (IBE) was introduced by Shamir [41], to elim-

inate the need for maintaining a certificate based Public Key Infrastructure

(PKI) in the traditional Public Key Encryption (PKE) setting. The first IBE

scheme was proposed by Boneh and Franklin [7] in the random oracle model

[3]. Since then, realizations from bilinear maps [5, 6, 44, 20, 45], from quadratic

residues modulo composite [14, 8], from lattices [1, 2, 9–11, 21, 46, 47] and from

the computational Diffie-Hellman assumption [18] have been proposed.

Revocation capability is very important and necessary for IBE setting as

well as PKI setting. Boneh and Franklin [7] proposed a naive method for adding

a simple revocation mechanism to any IBE system as follows. A sender encrypts

a message using a receiver’s identity concatenated with the current time period,

i.e., id||t and the Key Generation Center (KGC) issues the private key skid||t

for each non-revoked users in every time period. However, BF-RIBE scheme is

inefficient. The number of private keys issued in every time period is linear in

the number of all users in the system hence the scheme did not scale well if the

number of users became too large.

Boldyreva, Goyal and Kumar (BGK) [4] proposed the first scalable revoca-

ble IBE (RIBE) scheme in the selective security model by combining the fuzzy

IBE scheme of Sahai and Waters [38] with a subset cover framework called the

complete subtree (CS) method [31]. The BGK scheme significantly reduced the

size of key updates from linear to logarithmic in the number of users. Each user

holds a long-term private key associated with its identity but the private key

is not allowed to decrypt the ciphertext in order to achieve the key revocation

mechanism. KGC broadcasts key updates for every time period through a public

channel. Specially, the non-revoked users can derive decryption key from their

long-term private keys and key updates while revoked users can’t. There are

numerous followup works [24, 27, 29, 39, 43].

RIBE with DKER. In the definition of security in BGK-RIBE, the adversary

is only allowed to be access to the key extraction oracle, the revocation oracle

and the key update oracle. Considering leakage of decryption keys in realistic

attacks, Seo and Emura [39, 40] introduced a security notion called decryption

key exposure resistance (DKER). In the definition of DKER security experiment,

an exposure of a user’s decryption key at some time period will not compromise

the confidentiality of ciphertexts that are encrypted for different time periods. It
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attracted many followup works concerning R(H)IBE schemes with DKER [19, 24,

26–28, 30, 33, 34, 37, 40, 43]. Recently, Katsumata et al. [25] presented a generic

construction of RIBE with DKER from any RIBE without DKER and two-level

HIBE. Combining the result of [17] that any IBE schemes can be converted to

an HIBE scheme (in the selective-identity model) and any RIBE scheme without

DKER implies an IBE scheme, their result also implies a generic conversion from

any RIBE scheme without DKER into an RIBE scheme with DKER.

Lattice-Based RIBE. The first selectively-secure lattice-based RIBE without

DKER was proposed by Chen at al. [12]. Cheng and Zhang [13] claimed that

their proposed RIBE scheme with the subset difference (SD) method is the first

adaptively secure lattice-based scheme. However, Takayasu and Watanabe [42]

pointed out critical bugs in their security proof and presented a semi-adaptively

secure lattice-based RIBE scheme with bounded DKER which only allows a

bounded number of decryption keys to be leaked. Recently, Katsumata et al.

[25] proposed the first lattice-based R(H)IBE scheme with DKER secure under

the learning with errors (LWE) assumption but their proposal was still selectively

secure. Therefore, constructing an adaptively secure RIBE scheme even without

DKER based on lattices still remains an open problem.

Server-aided RIBE [35, 15, 32] is a variant of RIBE where almost all of

the workload on the user side can be delegated to an untrusted third party

server. The server is untrusted in the sense that it does not possess any secret

information. Each user only need to store a short long-term private key without

having to communicate with either KGC or the third party server.

Our Contributions. In this paper, we propose a generic construction of

RIBE from any IBE schemes in a black-box way. The update key size of our

construction is logarithmic in the number of users. The benefits of such a generic

construction are as follows:

• Practical Benefits.

(a) Our RIBE scheme has the same size of public parameters and user’s

secret key as those of underlying IBE scheme. Although the size of ci-

phertext in our scheme is logarithmic in the number of users, fortunately,

there is a tradeoff between the size of public parameter and size of the

ciphertext if we replace the underlying IBE with appropriate Identity

Based Broadcast Encryption (IBBE).
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(b) The storage overhead for key updates in our scheme is only constant

in the number of users. Instead of storing information in every node of

the binary tree in previous works, our construction leverage the master

secret key of IBE to generate key update. Due to compression of the

master secret key, the KGC needs only constant storage for key updates

in our construction.

(c) Our scheme is naturally server-aided. The communication cost and com-

putation cost for the receiver is the same as the underlying IBE shceme

in the server-aided model.

An overview comparing the efficiency of our revocable IBE scheme to those

of other revocable IBE schemes is given in Table 1.

• Theoretical Benefits. There have been a lot of works considering ad hoc

methods to transform existing IBE schemes with revocation mechanism.

However, as the only generic construction, BF-RIBE is not scalable. Our

generic construction demonstrates a simple and clear picture about how

revocation problems in IBE could be addressed.

(a) We present a generic construction of RIBE that can convert any IBE

schemes to RIBE schemes without DKER. Combining the conversion

from RIBE without DKER to RIBE with DKER in [25], our result also

implies a generic construction of RIBE with DKER from any IBE.

(b) Instantiating our generic construction of existing IBE schemes [14, 8], we

can obtain the first RIBE schemes based on quadratic residues modulo

composite.

(c) Our construction inherent the security of the underlying IBE scheme.

Hence, we can obtain the first adaptively-secure lattice-based RIBE

scheme by instantiating our construction with adaptively-secure IBE

from lattices [1, 2, 9–11, 21, 46, 47].

Related Work. The first revocable IBE scheme from any IBE was present-

ed by Boneh and Franklin [7], however their proposal was not scalable. Boldyreva

et al. [4] proposed the first scalable RIBE but their scheme was not a generic

construction. Recently, Katsumata et al. [25] proposed a generic construction of

RIBE with DKER which uses as building blocks any two-level standard HIBE

scheme and (weak) RIBE scheme without DKER.

Identity-Based Broadcast Encryption is a natural extension of IBE. Del-

erablée [16] presented the first IBBE scheme with constant size ciphertext and
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Table 1. Comparison of revocable identity-based encryption schemes

Schemes BF BGK LV SE LLP Ours-1 Ours-2

PP Size O(1) O(1) O(λ) O(λ) O(N + λ) O(1) O(log(N))

SK Size O(1) O(log(N)) O(log(N)) O(log(N)) O(log1.5N) O(1) O(1)

CT Size O(1) O(1) O(1) O(1) O(1) O(log(N)) O(1)

KU Size O(N − r) O(r log N
r

) O(r log N
r

) O(r log N
r

) O(r) O(r log N
r

) O(r log N
r

)

DKER Yes No No Yes Yes Yes Yes

Storage O(1) O(N) O(N) O(N) O(N) O(1) O(1)

Model Full Selective Full Full Full Full Full

Assumption RO,BDH DBDH DBDH DBDH Static RO,BDH DBDH,Static

We let λ be a security parameter, N be the number of maximum users, r be the

number of revoked users. For security model, we use symbols RO for random oracle

model, Full for adaptive model, Selective for selective model. The storage is what KGC

needs for key updates. Note that our two schemes are the result of combing our generic

construction with the generic construction in [25]. In our-1, we instantiate the IBE

scheme and HIBE scheme with [7] and [22] respectively. In our-2, we instantiate the

IBBE scheme with constant-size ciphertext and secret key and two-level HIBE scheme

with [48] and [44], respectively.

with weak selective security in the random oracle model. Gentry and Waters

[23] were the first to propose adaptively secure IBBE systems achieving linear

and sub-linear sized ciphertexts. Zhang et al. [48] presented an adaptively secure

identity-based broadcast encryption scheme with a constant-size ciphertext and

private keys. Recently, Ramanna [36] proposed a novel IBBE scheme with con-

stant size ciphertext that can achieve adaptive security in the standard model.

2 Preliminaries

2.1 Notations

Throughout the paper we use the following notation: We use λ as the securi-

ty parameter and write negl(λ) to denote that some function f(·) is negligible in

λ. An algorithm is PPT if it is modeled as a probabilistic Turing machine whose

running time is bounded by some function poly(λ). ByX ≈ Y , we denote that the

random variable ensembles {Xλ}λ∈N and {Yλ}λ∈N are computationally indistin-

guishable with error negl(λ). If S is a finite set, then s← S denotes the operation

of picking an element s from S uniformly at random. If A is a probabilistic al-

gorithm, then y ← A(x) denotes the action of running A(x) on input x with
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uniform coins and outputting y. Let [n] denotes {1, ..., n}. Let {0, 1}[i,j] denotes

all binary strings with length in [i, j]. For a bit string a = (a1, ..., an) ∈ {0, 1}n,

and i, j ∈ [n] with i ≤ j, we write a[i, j] to denote the substring (ai, ..., aj) of a.

For any two strings u and v, |u| denote the length of u and u||v denotes their

concatenation. Let BT be a complete binary tree and Path(v) be a set of all

nodes on the path between the root node and a leaf v. We also use Path(id) to

denote the path from the corresponding node of id to the root node.

2.2 Identity-Based Encryption

An identity-based encryption scheme consists of four probabilistic polynomial-

time (PPT) algorithms (Setup, KeyGen, Enc, Dec) defined as follows:

• Setup(1λ): This algorithm takes as input the security parameter 1λ, and

outputs a public parameter PP and a master secret key MK.

• KeyGen(MK,id): This algorithm takes as input the master secret key MK and

an identity id ∈ {0, 1}`, it outputs the identity secret key skid.

• Enc(PP,id,µ): This algorithm takes as input the public parameter PP, an

identity id ∈ {0, 1}`, and a plaintext µ, it outputs a ciphertext c.

• Dec(skid, c): This algorithm takes as input a secret key skid for identity id

and a ciphertext c, it outputs a plaintext µ.

The following completeness and security properties must be satisfied:

− Completeness: For all security parameters 1λ, identity id ∈ {0, 1}` and

plaintext µ, the following holds:

Pr[Dec(skid,Enc(PP, id, µ)) = µ] = 1

where (PP,MK)← Setup(1λ) and skid ← KeyGen(MK, id).

− Selective Security: For any PPT adversary A = (A1,A2,A3), there is a

negligible function negl(·) such that the following holds:

AdvIND-sID-CPA
A = |Pr[IND-sID-CPA(A) = 1]− 1

2 | ≤ negl(λ)

where IND-sID-CPA(A) is shown in Figure 1.

In order to prove the security of our RIBE construction, we define a special

security for IBE as follows:

− Multi-Identity Selective Security: For any PPT adversaryA = (A1,A2,A3),

there is a negligible function negl(·) such that the advantage of A satisfies:
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AdvIND-msID-CPA
A = |Pr[IND-msID-CPA(A) = 1]− 1

2 | ≤ negl(λ)

where IND-msID-CPA(A) is shown in Figure 2.

It is obvious that selective security is a special case of multi-identity selective

security when there is only one challenge identity.

Experiment IND-sID-CPA(A) :

1. id∗ ←A1(1λ)

2. (PP,MK)← Setup(1λ)

3. (µ0, µ1)← AKeyGen(MK,·)
2 (PP) where |µ0| = |µ1| and for each query id by A2 to

KeyGen(MK,·) we have that id 6= id∗.

4. β ← {0, 1}
5. c∗ ← Enc(PP, id∗, µβ)

6. β′ ← AKeyGen(MK,·)
3 (PP, c∗) and for each query id by A3 to KeyGen(MK,·) we

have that id 6= id∗.

7. Output 1 if β = β′ and 0 otherwise.

Fig. 1. The selective security experiment of IBE

Selective Security Implies Multi-Identity Selective Security

Lemma 1 If no PPT adversaries against the selective (adaptive) security then

there exists no PPT adversaries can break the multi-identity selective (adaptive)

security.

Proof. Since the proof for the selective-identity security and that for adaptive

identity security are essentially the same, we only show the proof for the former.

We prove the lemma by hybrid argument. First, we define q+1 hybrid games

H0, ...,Hq where H0 is the real game and for all i ∈ [q], Hi is the same as Hi−1
except the way that the challenger generates the challenge ciphertext. In Hi, the

challenger computes the challenge ciphertext as {c∗j ← Enc(PP, id∗j , 0)}j∈{1,...,i}
and {c∗j ← Enc(PP, id∗j , µβ)}j∈{i+1,...,q} where 0 is an all-zeros string with the

same length of µ0 and β is randomly chosen from {0, 1}. Let Si denote the event
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Experiment IND-msID-CPA(A) :

1. id∗1, ..., id
∗
q← A1(1λ), where q is a polynomial of λ.

2. (PP,MK)← Setup(1λ)

3. (µ0, µ1)← AKeyGen(MK,·)
2 (PP) where |µ0| = |µ1| and for each query id by A2 to

KeyGen(MK,·) we have that id /∈ {id∗1, ..., id∗q}
4. β ← {0, 1}
5. {c∗i ← Enc(PP, id∗i , µβ)}i∈[q]
6. β′ ← AKeyGen(MK,·)

3 (PP, c∗1, ..., c
∗
q) and for each query id by A3 to KeyGen(MK,·)

we have that id /∈ {id∗1, ..., id∗q}
7. Output 1 if β = β′ and 0 otherwise.

Fig. 2. The multi-identity selective security experiment of IBE

that the output of IND-msID-CPA game is 1 inHi. InHq, the challenge ciphertext

is encryption of zeros so Pr[Sq] = 1
2 . We will show that |Pr[Si−1] − Pr[Si]| ≤

negl(λ) for all i ∈ [q] and finish the proof. We construct a PPT algorithm B such

that |Pr[Si−1] − Pr[Si]| is equal to the probability that B breaks the selective

security of IBE. The detail of the algorithm B is as follows:

1. A outputs q challenge identities id∗1, ..., id
∗
q , B sends id∗i to its challenger

2. B’s challenger sends the public parameter PP to B and B forwards it to A.

3. A queries secret key for identity id, B makes secret key query for id and sends

skid to A. Note that id /∈ {id∗1, ..., id∗q}. Then A sends two plaintext (µ0, µ1)

with the same length.

4. B randomly chooses a bit β and sends (0, µβ) to its challenger, where |0| =
|µ0| = |µ1|. The challenger randomly chooses a bit b and outputs c∗i =

Enc(PP, id∗i , 0) if b = 0 and c∗i = Enc(PP, id∗i , µβ) if b = 1. Then, B computes

{c∗j ← Enc(PP, id∗j , 0)}j∈{1,...,i−1} and {c∗j ← Enc(PP, id∗j , µβ)}j∈{i+1,...,q}.

Finally, it outputs c∗ = (c∗1, ..., c
∗
q).

5. B answers the secret key queries as Step 3. A outputs a guess β′ of β. B
outputs b′ = 0 if β′ = β and outputs b′ = 1 otherwise.

6. Output 1 if b′ = b.
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Note that if b = 0, B perfectly simulates the challenger in Hi, and otherwise, it

perfectly simulates that in Hi−1. Moreover, the probability that b′ = b satisfies:

Pr[b′ = b] = Pr[b′ = b|b = 0] Pr[b = 0] + Pr[b′ = b|b = 1] Pr[b = 1]

=
1

2
Pr[b′ = b|b = 0] +

1

2
Pr[b′ = b|b = 1]

=
1

2
Pr[b′ = b|b = 0] +

1

2
(1− Pr[b′ 6= b|b = 1])

=
1

2
+

1

2
(Pr[β′ = β|b = 0]− Pr[β′ = β|b = 1])

=
1

2
+

1

2
(Pr[Si]− Pr[Si−1])

The selective security of IBE guarantees that |Pr[b′ = b] − 1
2 | ≤ negl(λ) so

that |Pr[Si] − Pr[Si−1]| ≤ negl(λ) for all i ∈ [`]. Hence, |Pr[S0] − Pr[Sq]| =

|Pr[S0]− 1
2 | ≤ negl(λ). We complete the proof.

3 Generic Construction of Revocable Identity-Based

Encryption

3.1 Definition and Security Model

A revocable IBE scheme has seven probabilistic polynomial-time (PPT)

algorithms (Setup, KeyGen, KeyUpd, GenDk, Encrypt, Decrypt, Revoke) with as-

sociated message space M, identity space ID, and time space T .

• Setup(1λ,N) : This algorithm takes as input a security parameter λ and a

maximal number of users N. It outputs a public parameter PP, a master

secret key MK, a revocation list RL (initially empty), and a state st.

• KeyGen(PP,MK, id, st) : This algorithm takes as input the public parameter

PP, the master secret key MK, an identity id, and the state st. It outputs a

secret key skid and an update state st.

• KeyUp(PP,MK, t,RL, st) : This algorithm takes as input the public parameter

PP, the master secret key MK, a key update time t ∈ T , the revocation list

RL, and the state st. It outputs a key update kut.

• GenDk(skid, kut) : This algorithm takes as input a secret key skid and the key

update kut. It outputs a decryption dkid,t or a special symbol ⊥ indicating

that id was revoked.

• Encrypt(PP, id, µ) : This algorithm takes as input the public parameter PP,

an identity id, and a message µ ∈M. It outputs a ciphertext c.
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• Decrypt(PP, dkid,t, c) : This algorithm takes as input the public parameter

PP, a decryption secret key skid,t and a ciphertext. It outputs a message

µ ∈M.

• Revoke(id, t,RL) : This algorithm takes as input an identity id, a revocation

time t ∈ T and the revocation list RL. It outputs a revocation list RLt

It satisfies the following conditions:

− Correctness: For all λ and polynomials (in λ) N, all PP and MK output

by setup algorithm Setup, all µ ∈ M, id ∈ ID, t ∈ T and all possible valid

states st and revocation list RL, if identity id was not revoked before or, at

time t then there exists a negligible function negl(·) such that the following

holds:

Pr[Decrypt(skid,t,Encrypt(PP, id, t, µ)) = µ] ≥ 1− negl(λ)

where (skid, st)← KeyGen(PP,MK, id, st), kut ← KeyUp(PP,MK, t,RL, st) and

dkid,t ← GenDk(skid, kut).

− Selective Security: For any PPT adversary A = (A1,A2,A3), there is a

negligible function negl(·) such that the advantage of A satisfies:

AdvIND-sRID-CPA
A = |Pr[IND-sRID-CPA(A) = 1]− 1

2 | ≤ negl(λ)

where IND-sRID-CPA(A) is shown is Figure 3.

3.2 A Generic Construction from IBE

Basic Intuition. The key observation behind our construction is that

BGK-RIBE utilized a tree-based approach which makes the scheme scalable.

Recall that Path(id) denote the set of nodes on the path from id to root. KGC

issues secret key for id the id-component decryption key for all nodes in Path(id).

Moreover, there was a KUNode algorithm which outputs a minimal set S of n-

odes that contains an ancestor of all leaves corresponding to non-revoked users

and the key update is the t-component decryption key for all nodes in S. In

BGK-RIBE, only non-revoked users can derive decryption key skid,t by combin-

ing the id-component decryption key and the t-component decryption key for

one ancestor of id. Inspired by the idea of tree-based approach, we use secret

key extractions to generate key updates. Specifically, we divide our message µ
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Experiment IND-sRID-CPA(A) :

1. (id∗, t∗)←A1(1λ)

2. (PP,MK)← Setup(1λ)

3. (µ0, µ1)← AKeyGen(MK,·),KeyUp(PP,MK,·,RL,st),Revoke(·,·)
2 (PP) where |µ0| = |µ1|

4. β ← {0, 1}
5. c∗ ← Encrypt(PP, id∗, t∗, µβ)

6. β′ ← AKeyGen(MK,.),KeyUp(PP,MK,·,RL,st),Revoke(·,·)
3 (PP, c∗).

7. Output 1 if β = β′ and 0 otherwise.

The following restriction must hold:

− KeyUp(PP,MK,·,RL,st) and Revoke(·,·) can be queried on time which is greater

than or equal to the time of all previous queries, i.e., the adversary is allowed

to query only in non-decreasing order of time. Also, the oracle Revoke(·,·)
cannot be queried at time t if KeyUp(PP,MK,·,RL,st) was queried on time t.

− If KeyGen(MK,·) was queried on identity id∗, then Revoke(·,·) must be queried

on time t for some t ≤ t∗, i.e. (id∗, t) must be on revocation list RL when

KeyUp(PP,MK,·,RL,st) is queried on t∗.

Fig. 3. The selective security experiment of Revocable IBE
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into (µ0, µ1) where µ0 and µ1 are random with the condition µ = µ0 +µ1. So no

information about µ is revealed if only knowing µ0 or µ1, Our ciphertext can be

divided into two parts, one part is the encryption of µ0 under the receiver’s iden-

tity id, the other part is encryption of µ1 under identities t||θ for all θ ∈ Path(id).

So µ1 can be recovered by any one of secret keys of {skt||θ}θ∈Path(id). Every user

is issued a secret key skid as the long term secret key. To generate the key update

for time t, KGC extract secret keys for all identities t||v where v is the node in

KUNode(t,RLt,BT). Hence, all users can obtain µ0 by decrypting the first part

of ciphertexts while only non-revoked users obtain µ1 by decrypting the second

part of ciphertexts using skt||θ in kut where θ ∈ Path(id).

Definition 1 (KUNode Algorithm [4]) This algorithm takes as input a bina-

ry tree BT, revocation list RL and time t, and outputs a set of nodes. Let θleft

and θright denote the left and right child of node θ, where θ is a non-leaf node.

The description of KUNode is as follows:

KUNode(BT,RL,t):

X,Y ← ∅
∀(idi, ti) ∈ RL

if ti ≤ t then add Path(idi) to X

∀θ ∈ X

if θleft /∈ X then add θleft to Y

if θright /∈ X then add θright to Y

If Y = ∅ then add root to Y

Return Y

Figure 4 gives a simple example to help the readers easily understand KUNode(BT,RL,t).

In the example, identities 001 and 100 are revoked. X = Path(001) ∪ Path(100)

= {root,0,00,001,1,10,100}, and Y = {01,11,000,101}. Intuitively, for all non-

revoked identities id such that Path(id)∩Y 6= ∅ while for revoked identities such

that Path(001) ∩ Y = ∅ and Path(100) ∩ Y = ∅.
Detailed Construction. Let (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) be

an IBE scheme that supports ID = {0, 1}[`,2`]. There is a generic method

to extend any IBE supporting identity space ID′ to handle arbitrary identi-

ties id ∈ {0, 1}∗ by first hashing id using a collision resistant hash function

H : {0, 1}∗ → ID′ prior to key generation and encryption [5]. Hence, the IBE
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root

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Fig. 4. An Example of KUNode

scheme supporting identity space ID′ with a collision resistant hash function

H : {0, 1}∗ → ID′ can be applied for our construction. We assume IBE scheme

has the plaintext space M which is finite and forms an abelian group with the

group operation “ + ”

Utilizing the above IBE scheme, we will show how to construct a RIBE

scheme Π = (Setup,Encrypt,Decrypt,KeyGen,KeyUp,GenDk,Revoke) as follows. In

our RIBE scheme, the plaintext space is the same with the underlying IBE

scheme and identity space is {0, 1}`. Moreover, we assume the time period space

T is a subset of the identity space, i.e. T ⊆ {0, 1}`.

• Setup(1λ)→ (PP,MK) : This algorithm takes the security parameter 1λ as

input and runs (IBE.PP, IBE.MK) ← IBE.Setup(1λ). It sets the public pa-

rameter PP = IBE.PP, master secret key MK = IBE.MK and secret state st

= IBE.MK. The following algorithms implicitly take PP as input.

• Encrypt(PP, id, t, µ)→ c : Randomly sample a pair of plaintexts (µ0, µ1) ∈
M2 with the condition that µ = µ0+µ1. Then it computes c0 = IBE.Enc(PP, id, µ0)

and {ci = IBE.Enc(PP, t||id[1,i], µ1)}i∈[`]. Finally, it outputs the ciphertext

c = (c0, ..., c`).

• KeyGen(MK, id)→ skid : It runs skid ← IBE.KeyGen(MK, id).

• KeyUp(t,RLt, st)→ kut : Let BT be a complete binary tree of depth `. Every

identity id in the identity space {0, 1}` can be viewed as a leaf node of BT. For

each node θ ∈ KUNode(BT,RL, t), compute skt||θ ← IBE.KeyGen(IBE.MK, t||θ).
It outputs kut = {(θ,skt||θ)}θ∈KUNode(BT,RL,t).
• GenDk(skid, kut)→ skid,t : Parse kut as {(θ, skt||θ)}θ∈KUNode(BT,RL,t). If no node

θ ∈ Path(id), return ⊥. Otherwise, pick the node θ ∈ Path(id) and output

skid,t = (i, skid, skt||θ) where i = |θ| is the length of θ.
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• Decrypt(c, skid,t)→ µ : Parse c as (c0, ..., c`) and skid,t as (i, skid, skt||θ). Then,

compute µ0 ← IBE.Dec(skid, c0) and µ1 ← IBE.Dec(skt||θ, ci). Finally, output

µ = µ0 + µ1.

• Revoke(t,RL, id) → (RLt) : Add the pair (id, t) to the revocation list by

RLt ← RL ∪ {(id, t)} and output RLt.

3.3 Correctness

The correctness of the RIBE construction is guaranteed by the correctness

of the underlying IBE.

3.4 Security Analysis

Theorem 1 The revocable IBE is selectively (adaptively) secure if the underly-

ing IBE scheme is selectively (adaptively) secure.

Proof. We will prove the selective-identity security and the proof for adaptive-

identity security are exactly the same. For any PPT adversary against the se-

lective security of revocable IBE, we can construct a PPT algorithm B against

the selective security of the underlying IBE scheme. B randomly guesses an ad-

versarial type among the following two types which are mutually exclusive and

cover all possibilities:

1. Type-1 adversary: A issues a secret key query for id∗ hence id∗ has been

revoked before t∗.

2. Type-2 adversary: A does not issue a secret key query for id∗.

Note that B’s guess is independent of the attack that A chooses, so the

probability that B guesses right is 1
2 . We separately describe B’s strategy by its

guess.

Type-1 adversary: We will show that if adversary A1 makes a Type-1 attack

successfully, there exists an adversary B1 breaking the multi-identity selective

security of IBE defined in definition 2. B1 proceeds as follows:

• Setup: The adversary first commits an identity id∗ and a time period t∗ to

B1. Upon receiving the identity id∗ and time period t∗ committed by A1, B1
commits identities {t∗||id∗[1, i]}i∈[`] to its challenger. B1 then obtains a public

parameter PP from its challenger and sends it to A1.
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• KeyGen: When receiving a secret key query for id, B1 queries secret key

extraction oracle for id. Since |id| = ` and |t∗||id∗[1, i]| ≥ ` + 1 for all i ∈ [`],

id /∈ {t∗||id∗[1, i]}i∈[`].
• Revoke: B1 receives (id,t) from A1, and add (id, t) to RL.

• KeyUp: Upon receiving t, if t = t∗ and (id∗, t)/∈ RLt∗ , then abort. Otherwise,

B1 makes secret key queries for identities {t||θ}θ∈KUNode(BT,RL,t) and sends

{(θ, skt||θ)}θ∈KUNode(BT,RLt,t) to A1. Note that id∗ has been revoked before t∗

which means id∗[1, i] /∈ KUNode(BT,RLt∗ , t
∗) for all i ∈ [`], so that B1 never

queries secret keys for identities {t∗||id∗[1, i]}i∈[`] committed to its challenger.

• Challenge: A1 outputs two plaintexts µ0 and µ1 with the same length. B1
randomly samples µ ← M and sends µ′0 = µ0 − µ and µ′1 = µ1 − µ as the

challenge plaintexts. The challenger randomly chooses a challenge bit β and

sends the challenge ciphertexts {c∗i = IBE.Enc(PP, t∗||id∗[1, i], µ
′
β)}i∈[`] to B1.

B1 then computes c∗0 = IBE.Enc(PP, id∗, µ) and sends c∗ = (c∗0, ..., c
∗
` ) to A1.

• Guess: A1 outputs a guess bit β′ and B1 set β′ as its guess.

Note that B1 perfectly simulates A1’s view so that B1’s challenge bit is also A1’s

challenge bit. B1 just forwards A1’s guess so the probability that B1 wins in

IND-msID-CPA is equal to the probability that A1 wins in IND-sRID-CPA. Due

to Lemma 1, the probability that A1 wins in IND-sRID-CPA is negligible since

the udeerlying IBE is selectively secure.

Type-2 adversary: If there exists an adversary A2 who makes a Type-2 attack

successfully, we can construct an adversary B2 breaking selective security of the

underlying IBE. B2 proceeds as follows:

− Setup:Upon receiving the identity id∗ and time period t∗ committed by A2,

B2 commits identity id∗ to its challenger. B2 then obtains a public parameter

PP from its challenger and sends it to A2.

− KeyGen: When receiving a secret key query for id, B2 just forwards the secret

key query to its challenger and sends the challenger’s response to A2. Note

that A2 never make a secret key query for id∗.

− Revoke: B2 receives (id,t) from A2, and adds (id, t) to RL.

− KeyUp: When A2 makes a key update query for time t, B2 makes secret

key queries for all identities {t||θ}θ∈KUNode(BT,RLt,t) and sends the response

{(θ, skt||θ)}θ∈KUNode(BT,RLt,t) to A2.

− Challenge: A2 outputs two plaintexts µ0 and µ1 with the same lengtih. B1
randomly samples µ←M and sends µ′0 = µ0−µ and µ′1 = µ1−µ as the chal-
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lenge plaintexts. B1 receives the challenge ciphertext c∗0 = IBE.Enc(PP, id∗, µ′β)

where β is B2’s challenge bit chosen randomly by its challenger. B2 then com-

putes {c∗i = IBE.Enc(PP, t∗||id∗[1, i], µ)}i∈[`] and sends c∗ = (c∗0, ..., c
∗
` ) to A2.

− Guess: A2 outputs a guess bit β′ and B2 sets β′ as its guess. Note that B2
perfectly simulates A2’s view so that B2’s challenge bit is also A2’s challenge

bit. B2 just forwards A2’s guess so the probability that B2 wins in IND-sID-

CPA game is equal to the probability that A2 wins in IND-sRID-CPA game.

When we put the results for two types of adversary together, we can conclude

that the revocable IBE is selectively secure if the underlying IBE is selectively

secure.

4 Discussion

Server-Aided. In RIBE schemes, non-revoked user should receive the key

update in every time period. Fortunately, our scheme is server-aided so that

almost all the workload on users is taken over by a untrusted server who

should perform correct operations and give correct results to the users. In our

scheme, given the key update kut = {(θ, skt,θ)} where θ ∈ KUNode(BT,RLt,t)

and a ciphertext c = (c0, ..., c`) under identity id and time t, the sever chooses

θ ∈ Path(id) and computes µ′ ← Dec(skt||θ, ci) where i = |θ|. Finally, the

sever sends (c0, µ
′) to the receiver.

Short Ciphertext. The size of ciphertext is logarithmic in the number of

users in our construction. Fortunately, we can replace the underlying IBE

scheme with IBBE scheme and there exists IBBE schemes with constant size

of ciphertext and secret key. The intuition of security proof is that the selec-

tive (adaptive) security of IBBE implies multi-identity selective (adaptive)

security of IBE.

RIBE with DKER. It is obvious that our construction is not decryption

key exposure resistance. Recently, Katsumata et al. [25] presented a generic

construction of RIBE with DKER from any RIBE without DKER. Therefore,

we can obtain a RIBE with DKER from any IBE by applying this generic

conversion in [25].
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5 Conclusion

In this paper, we proposed a generic conversion from IBE to RIBE without

DKER. Applying the conversion in [25], we obtained a generic conversion from

IBE to RIBE without DKER. Our RIBE construction inherits the security of the

underlying IBE scheme, therefore, our construction implies the first RIBE from

quadratic residues modulo composite and the first adaptively secure RIBE from

lattices. Furthermore, our conversion is efficient and flexible. The sizes of public

parameters and secret keys are the same as those of the underlying IBE scheme.

In the server-aided model, the communication and computation overheads are

the same as those of the underlying IBE scheme in the server-aided model. There

is a tradeoff between the size of public parameters and the size of ciphertexts if

we replace the underlying IBE with appropriate IBBE.
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