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Abstract. Many constructions based on multilinear maps require independent slots in the plaintext, so
that multiple computations can be performed in parallel over the slots. Such constructions are usually
based on CLT13 multilinear maps, since CLT13 inherently provides a composite encoding space, with
a plaintext ring

⊕n
i=1 Z/giZ for small primes gi’s. However, a vulnerability was identified at Crypto

2014 by Gentry, Lewko and Waters, with a lattice-based attack in dimension 2, and the authors have
suggested a simple countermeasure. In this paper, we identify an attack based on higher dimension
lattice reduction that breaks the author’s countermeasure for a wide range of parameters. Combined
with the Cheon et al. attack from Eurocrypt 2015, this leads to a total break of CLT13 multilinear
maps with independent slots. We also show how to apply our attack against various constructions based
on composite-order CLT13, such as [FRS17]. Finally, we suggest a set of secure parameters for CLT13
multilinear maps that prevents our attack.

1 Introduction

Multilinear maps. In 2013, Garg, Gentry and Halevi described the first plausible construction
of cryptographic multilinear maps based on ideal lattices [GGH13a]. Since then many amazing
applications of multilinear maps have been found in cryptography, including program obfuscation
[GGH+13b]. Shortly after the publication of GGH13, an analogous construction over the integers
was described in [CLT13], based on the DGHV fully homomorphic encryption scheme [DGHV10].
The GGH15 scheme is the third known family of multilinear maps, based on the LWE problem with
encoding over matrices [GGH15].

In the last few years, many attacks have appeared against multilinear maps, and the security of
multilinear maps is still poorly understood. An important class of attacks against multilinear maps
are "zeroizing attacks", which can recover the secret parameters from encodings of zero, using linear
algebra. For the non-interactive multipartite Diffie-Hellman key exchange, the zeroizing attack from
Cheon et al. [CHL+15] recovers all secret parameters from CLT13; the attack can also be extended to
encoding variants where encodings of zero are not directly available [CGH+15]. The zeroizing attack
from [HJ16] also breaks the Diffie-Hellman key-exchange over GGH13. Finally, the key exchange
over GGH15 was also broken in [CLLT16], using an extension of the Cheon et al. zeroizing attack.

Even though direct multipartite key exchange protocols are broken for the three known families of
multilinear maps, more complex constructions based on multilinear maps are not necessarily broken,
in particular indistinguishability obfuscation (iO); namely low-level encodings of zero are generally
not available in iO constructions. However the Cheon et al. attack against CLT13 was extended in
[CGH+15] to matrix branching programs where the input can be partitioned into 3 independent
sets. The attack was further extended in [CLLT17] to branching programs without a simple input
partition structure, using a tensoring technique. For GGH13 based obfuscation, Miles, Sahai and
Zhandry introduced "annihilation attacks" that can break a certain class of matrix branching pro-
grams [MSZ16]; the attack was later extended in [CGH17] to break the [GGH+13b] obfuscation
under GGH13, using a variant of the input partitioning attack. Finally, Chen, Vaikuntanathan and
Wee described in [CVW18] an attack against iO over GGH15, based on computing the rank of a
well chosen matrix. In general, the above attacks only apply against branching programs with a sim-
ple structure, and breaking more complex constructions (such as dual-input branching programs) is
currently infeasible.



Multilinear maps with independent slots. Many constructions based on multilinear maps
require independent slots in the plaintext, so that multiple computations can be performed in par-
allel over the slots when evaluating the multilinear map. For example [GLW14] and [GLSW15]
use independent slots to obtain improved security reductions for witness encryption and obfusca-
tion. Multilinear maps with independent slots were also used in the circuit based constructions of
[AB15,Zim15], a promising approach for program obfuscation. The construction from [FRS17], which
gives a powerful technique for preventing zeroizing attacks against iO, is also based on multilinear
maps with independent slots.

The CLT13 multilinear map scheme inherently supports a composite integer encoding space, with
a plaintext ring Z/GZ '

⊕n
i=1 Z/giZ for small secret primes gi’s and G = g1 · · · gn. For example, in

the construction from [FRS17], every branching program works independently modulo each gi. In
that case, the main difference with the original CLT13 is that the attacker can obtain encodings of
subring elements which are zero modulo all gi’s except one; for example, in [FRS17] this would be
done by carefully choosing the input so that all branching programs would evaluate to zero except
one. Whereas in the original CLT13 construction, one never provides encodings of subring elements;
instead one uses an "all-or-nothing" approach: either the plaintext element is zero modulo all gi’s,
or it is non-zero modulo all gi’s (with high probability).

The attack and countermeasure from [GLW14]. At Crypto 2014, Gentry, Lewko and Waters
observed that CLT13 with independent slots leads to a simple lattice attack in dimension 2, which
efficiently recovers the (secret) plaintext ring

⊕n
i=1 Z/giZ [GLW14, Appendix B]. Namely, when

using CLT13 with independent slots, the attacker can obtain encodings where all slots are zero
modulo gi except one. For example, for a matrix branching program evaluation as in [FRS17], the
result of the program evaluation could have the form:

A(x) ≡
n∑
i=1

hi · (ri +mi · (g−1i mod pi)) ·
x0
pi

(mod x0)

where mi = 0 for all i except mj 6= 0 for some 1 ≤ j ≤ n. This implies:

gj ·A(x) ≡ hj(rjgj +mj)
x0
pj

+
∑
i 6=j

gjhiri
x0
pi

(mod x0)

and therefore gj · A(x) mod x0 is "small". This implies that we can recover gj (while normally the
gi’s are secret in CLT13) using lattice reduction in dimension 2. Moreover, once we know gj , we
can simply multiply the evaluation by gj to obtain a "small" result, even if the evaluation of the
branching program is non-zero modulo gj ; in particular, this cancels the effect of the protection
against input partitioning from [FRS17].

The countermeasure considered in [GLW14, Appendix B] is to give many "buddies" to each gi, so
that we do not have a plaintext element which is non-zero modulo a single isolated gi. Then, either
an encoding is 0 modulo gi and all its prime buddies gj , or it is (whp) non-zero for all of them. In
other words, instead of using individual gi’s to define the plaintext slots, every slot is defined modulo
a product of θ prime gi’s, for some 1 ≤ θ < n. Therefore, we obtain a total of n/θ plaintext slots
(instead of n). While the above attack can be extended by multiplying A(x) by the θ corresponding
gi’s, for large enough θ the right-hand side of the equation is not "small" anymore and the attack is
thwarted.

Our contributions. In this paper we identify an attack based on higher dimension lattice reduction
that breaks the countermeasure from [GLW14, Appendix B] for a wide range of parameters, with
significant impact on the security of CLT13 multilinear maps with independent slots. More precisely,
our contributions are as follows:
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1. Analysis of the attack from [GLW14]. Our first contribution is to provide a theoretical
study of the above attack, in order to derive a precise bound on θ as a function of the CLT13
parameters (there was no explicit bound in [GLW14]), where θ is the number of primes gi’s for
each plaintext slot. We argue that, when ν denotes the number of bits that can be extracted
from zero-testing in CLT13, the 2-dimensional lattice attack requires:

αθ <
ν

2
(1)

where α is the bit size of the gi’s.

2. Breaking the countermeasure from [GLW14]. Our main contribution is to extend the 2-
dimensional attack to break the countermeasure for larger values of θ. Our attack is based on
higher dimension lattice reduction, by using a similar orthogonal lattice attack as in [NS99] for
solving the hidden subset sum problem. Our attack uses ` encodings cj where the corresponding
plaintexts have only θ non-zero components modulo the gi’s (instead of ` = 1 in the previous
attack). Using a lattice attack in dimension `+ 1, we show that our attack requires the approx-
imate condition

(
1 + 1

`

)
αθ < ν. Therefore, for moderately large values of `, we get the simpler

condition:
αθ < ν

which improves (1) by a factor 2.
In the same vein, we show how to further improve this condition by considering products of

encodings of the form cj · dk for 1 ≤ j ≤ ` and 1 ≤ k ≤ d, where as previously the plaintexts of
the cj ’s have only θ non-zero components modulo the gi’s. In that case, using a variant of the
previous lattice attack (this time in dimension `+ d), the bound improves to:

αθ = O(ν2)

While the original attack from [GLW14] recovers the secret plaintext ring of CLT13, we addi-
tionally recover the plaintext messages mj for the encodings cj .

We provide in Section 4.5 the result of practical experiments. For the original parameters
of [CLT13], our attack takes a few seconds for θ = 40, and a few hours for θ = 160, while the
original attack from [GLW14] only works for θ = 1. In summary, our attack is more powerful
than the attack in [GLW14], as it additionally recovers the plaintext messages, moreover for much
larger values of θ. Finally, we suggest a set of secure parameters for CLT13 multilinear maps
that prevents our extended attack. For λ = 80 bits of security, we recommend to take θ ≥ 1789.

3. A total break of CLT13 with independent slots. We show how to combine our attack
with the Cheon et al. attack from [CHL+15], in order to recover all secret parameters of CLT13.
More precisely, our approach consists in applying the lattice attack to generate intermediate-level
encodings of zero; then the Cheon et al. attack is applied on these newly-created encodings of
zero, to recover all secret parameters.

4. Application to CLT13-based constructions. Finally we show how to apply our attack to
several schemes based on CLT13 multilinear maps with independent slots, namely the construc-
tions from [GLW14,GLSW15,Zim15] and [FRS17]. In particular, we extend our attack to the case
of matrix encodings and matrix product evaluations, as typically used in program obfuscation.

Source code. We provide in Appendix B the source code of our attacks in Sage [S+17].

2 The CLT13 Multilinear Map Scheme

We first recall the CLT13 multilinear map scheme over the integers [CLT13]. For n ∈ Z≥1, the
instance generation of CLT13 generates n distinct secret "large" primes p1, . . . , pn of size η bits, and
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publishes the modulus x0 =
∏n
i=1 pi. We let γ denote the bit size of x0; therefore γ ' n · η. One

also generates n distinct secret "small" prime numbers g1, . . . , gn of size α bits. The plaintext ring is
composite, i.e. a plaintext is an element m = (m1, . . . ,mn) of the ring Z/GZ '

⊕n
i=1 Z/giZ where

G =
∏n
i=1 gi. Let κ ∈ Z≥1 be the multilinearity parameter. For k ∈ {1, . . . , κ}, an encoding at level

k of the plaintext m is an integer c ∈ Z such that

c ≡ rigi +mi

zk
(mod pi) , for all 1 ≤ i ≤ n (2)

for "small" random integers ri of bit size ρ. The random mask z ∈ (Z/x0Z)× is the same for
all encodings. It is clear that two encodings at the same level can be added, and the underlying
plaintexts get added in the ring Z/GZ. Similarly, the product of two encodings at level i and j gives
an encoding of the product plaintexts at level i + j, as long as the numerators in (2) do not grow
too large, i.e. they must remain smaller than each pi.

For an encoding at the last level κ, one defines the following zero-testing procedure. The instance
generation publishes the zero-testing parameter pzt, defined by

pzt =
n∑
i=1

hiz
κ(g−1i mod pi)

x0
pi

mod x0 , (3)

where hi ∈ Z are "small" random integers of size nh bits. Given an encoding c at the last level κ,
we compute the integer:

ω := pzt · c mod x0 ≡
n∑
i=1

hi(ri +mi(g
−1
i mod pi))

x0
pi

(mod x0) (4)

and we consider that c encodes the zero message if ω is "small" compared to x0. Namely, if mi = 0
for all i, we obtain ω ≡

∑n
i=1 hiri

x0
pi

(mod x0), and since the integers hi and ri are "small", the
resulting ω will be "small" compared to x0.

More precisely, let ρf be the maximum bit size of the noise ri in the encodings. Then the integers
hirix0/pi have size roughly γ − η + nh + ρf , and therefore letting

ν = η − nh − ρf , (5)

the integers hirix0/pi have size roughly γ − ν bits. Therefore, when mi = 0 for all i, the integer ω
has size roughly γ − ν bits; whereas when mi 6= 0 for some i, we expect that ω is of full size modulo
x0, that is γ bits. The parameter ν in (5) corresponds to the number of bits that can be extracted
from zero-testing; namely from (4), the ν most significant bits of ω only depend on the plaintext
messages mi, and not on the noise ri. Note that to get a proper zero-testing procedure, one needs
to use a vector of n elements pzt; namely with a single pzt there exist encodings c with mi 6= 0 while
pzt · c is "small" modulo x0. In the rest of the paper, for simplicity, we consider a single pzt, as it is
usually the case in constructions over CLT13 multilinear maps. We refer to [CLT13, Section 3.1] for
the setting of the parameters.

3 Basic Attack against CLT13 with Independent Slots

Many constructions based on multilinear maps require independent slots in the plaintext, so that
multiple computations can be performed in parallel over the slots when evaluating the multilinear
map; see for example [GLW14,GLSW15] and [AB15,Zim15,FRS17]. The CLT13 multilinear maps
inherently provide independent slots, as the plaintext ring is

⊕n
i=1 Z/giZ for small secret primes

g1, . . . , gn. Therefore we can have independent computations performed over the n plaintext slots
modulo gi; for example, in the construction from [FRS17], every branching program works indepen-
dently modulo each gi.
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The basic attack from [GLW14]. When using CLT13 with independent slots, the attacker can
obtain encodings of plaintext elements where all slots are zero modulo gi except one. For example, in
the [FRS17] construction where each branching program works modulo gi, the attacker can choose
the input so that the resulting evaluation is 0 modulo all gi’s except one, say g1, without loss of
generality. Let c be a level-κ encoding of a plaintext m = (m1, . . . ,mn) where mi = 0 for all
2 ≤ i ≤ n. From (4) we obtain the following zero-testing evaluation:

ω ≡ h1 ·m1 · (g−11 mod p1) ·
x0
p1

+

n∑
i=1

hi · ri ·
x0
pi

(mod x0)

This implies:

g1 · ω ≡ h1 ·m1 ·
x0
p1

+

n∑
i=1

g1 · hi · ri ·
x0
pi

(mod x0)

and therefore g1 · ω mod x0 is significantly smaller than x0, as the integers hi and ri are "small".
This implies that we can recover g1, and similarly the other gi’s using lattice reduction in dimension
2, while normally the gi’s are secret in CLT13. This eventually recovers the plaintext ring.

The countermeasure from [GLW14]. The following countermeasure was therefore suggested by
the authors: instead of using individual gi’s to define the plaintext slots, every slot is defined modulo
a product of θ prime gi’s, where 2 ≤ θ < n. Therefore, a plaintext element cannot be non-zero
modulo a single prime gi; it has to be non-zero modulo at least θ primes gi’s. This gives a total of
n/θ plaintext slots (instead of n); for simplicity we assume that θ divides n.

Therefore, the original plaintext ring R = Z/g1Z×· · ·×Z/gnZ can be rewritten as R =
⊕n/θ

j=1Rj ,
where for all 1 ≤ j ≤ n/θ, the subrings Rj are such that Rj '

⊕θ
i=1 Z/g(j−1)θ+iZ. We can assume

that the attacker can obtain encodings of random subring plaintexts in Rj for any 1 ≤ j ≤ n/θ. In
that case, the attacker obtains an encoding c of m = (m1, . . . ,mn) ∈ R where mi ≡ 0 (mod gi) for
all i ∈ {1, . . . , n} \ {(j − 1)θ + 1, . . . , jθ}. In that case we will say that m has non-zero support of
length θ.

Analysis of the basic attack. In this section we analyze in more details the attack from [GLW14],
and we derive an explicit bound on the parameter θ, as a function of the other CLT13 parameters.
Given an integer 1 ≤ θ < n (the above attack is obtained for θ = 1), we consider a message having
non-zero support of length θ; that is, (without loss of generality) of the form m = (m1, . . . ,mn) ∈ Zn
with 0 ≤ mi < gi such that mi = 0 for θ + 1 ≤ i ≤ n, i.e. we assume that the non-zero support of
m is located in the first slot. We consider a top level κ encoding c of m, that is:

c ≡ rigi +mi

zκ
(mod pi) , 1 ≤ i ≤ n

with integers ri of bit size ρf . From zero-testing, we obtain from (4):

ω ≡ pzt · c ≡
θ∑
i=1

hi(g
−1
i mod pi)mi

x0
pi

+
n∑
i=1

hiri
x0
pi

(mod x0)

By multiplying out by g :=
∏θ
i=1 gi we obtain

gω ≡
θ∑
i=1

himi
g

gi

x0
pi

+

n∑
i=1

ghiri
x0
pi

(mod x0) ,

gω ≡ U (mod x0) (6)
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where U =
∑θ

i=1 himi(g/gi)(x0/pi) +
∑n

i=1 ghiri(x0/pi). Since the integers hi and ri are "small" in
order to ensure correct zero-testing, the integer U is "small" in comparison to x0. More precisely,
the proposition below shows that if g · U is a bit smaller than x0, then we can recover g and U by
lattice reduction in dimension 2.

Proposition 1. Let g, ω, U ∈ Z≥1 and x0 ∈ Z≥1 be such that gω ≡ U (mod x0), ω ∈ (Z/x0Z)×
and gcd(U, g) = 1. Assume that g · U < x0/10. Given ω and x0 as input, one can recover g and U
in polynomial time.

Proof. Without loss of generality we can assume g ≤ U , since otherwise we can apply the algorithm
with Uω−1 ≡ g (mod x0). Let B ∈ Z≥1 such that U ≤ Bg ≤ 2U . When the bit size of g and U is
unknown, such a B can be found by exhaustive search in polynomial time. We consider the lattice
L ⊆ Z2 of vectors (Bx, y) such that xω ≡ y (mod x0). From gω ≡ U (mod x0) it follows that L
contains the vector v = (Bg,U). We show that v is a shortest non-zero vector in L.

By Minkowski’s Theorem, we have λ1(L) ≤
√

2 det(L). From Hadamard’s Inequality, with
det(L) = Bx0, we obtain:

λ2(L) ≥
det(L)

λ1(L)
≥
√
det(L)√

2
=

√
Bx0√
2

>
√
5BgU ≥

√
5U.

Moreover, we have:
‖v‖ = ((Bg)2 + U2)1/2 ≤

√
5U.

This implies that ‖v‖ < λ2(L) and therefore v is a multiple of a shortest non-zero vector in L: we
write v = ku with ‖u‖ = λ1(L), and k ∈ Z\{0}. Letting u = (Bu1, u2), we have g = ku1 and
U = ku2. Hence k divides both g and U . Since gcd(g, U) = 1 one has k = ±1. This shows that v is
a shortest non-zero vector of L.

By running Lagrange-Gauss reduction on the matrix of row vectors:[
B ω
0 x0

]
one obtains in polynomial time a length-ordered basis (b1, b2) of L satisfying ‖b1‖ = λ1(L) and
‖b2‖ = λ2(L), which enables to recover g and U . ut

Using the same notations as in Section 2, the integer g =
∏θ
i=1 gi has approximate bit size θ · α,

while the integer U has an approximate bit size γ−η+nh+ρf+θα. From the condition g ·U < x0/10
of Proposition 1, we obtain by dropping the term log2(10), the simplified condition

γ − η + nh + ρf + θ · α+ θ · α < γ .

Writing as previously ν = η − nh − ρf for the number of bits that can be extracted during zero
testing, the attack works under the condition:

2αθ < ν (7)

where α is the bit size of the gi’s. In the next section we describe a high-dimensional lattice reduction
attack with an improved bound on θ.

4 Our new Attack against CLT13 with Independent Slots

Outline of our new attack. Our new attack improves the bound on θ compared to the attack
recalled in Section 3; it also enables to recover the underlying plaintext messages, instead of only
the CLT13 plaintext ring. The main difference is that we work with several messages instead of a
single one, using high-dimensional lattice reduction instead of dimension 2.
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Let ` ≥ 1 be an integer. Assume that we have level-κ encodings cj of plaintext elements mj =
(mj1, . . . ,mjn) for 1 ≤ j ≤ `, where each message has non-zero support of length θ. Without loss
of generality, we can assume that mji = 0 for all θ + 1 ≤ i ≤ n and all 1 ≤ j ≤ `. We consider the
zero-testing evaluations ωj = pzt · cj mod x0 of these encodings, which gives as previously:

ωj ≡
θ∑
i=1

hi(rji +mji(g
−1
i mod pi))

x0
pi

+
n∑

i=θ+1

hirji
x0
pi

(mod x0) , 1 ≤ j ≤ `

for integers rji. We can rewrite the above equation as:

ωj ≡
θ∑
i=1

αi ·mji +Rj (mod x0) , 1 ≤ j ≤ `

for some integers αi, where for each evaluation ωj , the integer Rj is "small" modulo x0. We can
see the above equation as an instance of a "noisy" hidden subset sum problem [NS99]. Namely,
the weights αi are hidden as in [NS99], but for each equation we have an additional hidden noisy
term Rj . Moreover, the weights αi = hi · (g−1i mod pi) · x0/pi have a special structure, instead of
being random in [NS99]. Thanks to this special structure, using a variant of the orthogonal lattice
approach from [NS99], we can recover the secret product g = g1 · · · gθ and the plaintext elements
mji, whereas in [NS99] the unknown mji can only be recovered in relatively small dimension.

4.1 Preliminaries on lattices

Let L be a lattice in Rd of rank 0 < n ≤ d. We recall that Hadamard’s Inequality gives the following
upper bound on the determinant of L:

det(L) ≤
∏
b∈B
‖b‖

for every basis B of L. Based on Hadamard’s Inequality, we prove the following simple lemma.

Lemma 2. Let 1 ≤ n ≤ d be integers and let L ⊆ Zd be a lattice of rank n. Let x1, . . . ,xn−1 ∈ L
be linearly independent. Then for every vector y ∈ L not in the linear span of x1, . . . ,xn−1, one has
‖y‖ ≥ det(L)/

∏n−1
i=1 ‖xi‖.

Proof. Since x1, . . . ,xn−1,y ∈ L are linearly independent, they generate a rank-n sublattice L′

of L and hence det(L) ≤ det(L′) as det(L) divides det(L′). By Hadamard’s Inequality, det(L) ≤
det(L′) ≤ ‖y‖ ·

∏n−1
i=1 ‖xi‖. The bound follows. ut

We recall that the LLL algorithm [LLL82], given an input basis of L, produces a reduced basis
of L with respect to the choice of a parameter δ ∈ ]1/4, 1[; we call such a basis δ-reduced. More
precisely, we will use the following theorem.

Theorem 3. Let 1 ≤ n ≤ d be integers and let L ⊆ Zd be a lattice of rank n. Let {bi : 1 ≤ i ≤ n}
be a basis of L. Let B ∈ Z≥1 be such that ‖bi‖2 ≤ B for 1 ≤ i ≤ n. Let δ ∈ ]1/4, 1[. Then
the LLL algorithm with reduction parameter δ outputs a δ-reduced basis {b′i : 1 ≤ i ≤ n} after
O(n5d log3B) operations. Moreover, the first vector in such a basis satisfies:

‖b′1‖ ≤ c(d−1)/2‖x‖

for every non-zero x ∈ L, and where c = 1/(δ − 1/4).
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4.2 Our first lattice-based attack

Setting. In this section, we describe our first attack based on the hidden subset-sum problem. We
consider plaintext elements m1, . . . ,m` ∈ Zn and write mji for the i-th entry of the j-th message,
where 0 ≤ mji < gi for all 1 ≤ i ≤ n and 1 ≤ j ≤ `. As previously, we assume that mji = 0 for
all θ + 1 ≤ i ≤ n. We write M for the matrix of row vectors mj for 1 ≤ j ≤ `; and we will denote
its columns by m̂i for 1 ≤ i ≤ n, that is, M =

[
m̂1 · · · m̂n

]
∈ Mat`×n(Z). By construction, the

vectors m̂i for θ + 1 ≤ i ≤ n are all zero. For 1 ≤ j ≤ `, we let cj denote an encoding of mj at the
last level κ:

cj ≡
rjigi +mji

zκ
(mod pi) , 1 ≤ i ≤ n

where rji ∈ Z are ρf -bit integers. Letting c = (cj)1≤j≤`, this gives a vector equation over Z`:

c ≡ z−κ (giri + m̂i) (mod pi) , 1 ≤ i ≤ n (8)

for ri = (rji)1≤j≤`. Let pzt be the zero-testing parameter, as defined in (3). From zero-testing we
obtain the following equations:

ωj ≡ cj · pzt ≡
θ∑
i=1

himji(g
−1
i mod pi)

x0
pi

+
n∑
i=1

hirji
x0
pi

(mod x0) , 1 ≤ j ≤ `

which can be rewritten as ωj ≡
∑θ

i=1 αimji +Rj (mod x0) where we use the shorthand notations:

αi := hi(g
−1
i mod pi)

x0
pi

, 1 ≤ i ≤ θ (9)

and Rj :=
∑n

i=1 hirji
x0
pi

for 1 ≤ j ≤ `. As a vector equation, this reads:

ω ≡ pzt · c ≡
θ∑
i=1

αim̂i +R (mod x0) (10)

with ω = (ωj)1≤j≤`; for 1 ≤ i ≤ θ the vectors m̂i are as above and R = (Rj)1≤j≤` =
∑n

i=1 hi
x0
pi
ri.

In the above equation, the components of R have approximate bit size ρR = γ−η+nh+ρf . Using as
previously ν = η−nh−ρf as the number of bits that can be extracted, we have therefore ρR = γ−ν.

Equation (10) is similar to an instance of the hidden subset sum problem. Namely, while the
vector ω and the integers x0 and θ are available to the attacker, the weights αi and the vectors m̂i

are hidden. As opposed to [NS99], there is an additional "noisy" vector R which is zero in [NS99].
Moreover by (9), the coefficients αi have a special structure induced by the CLT13 scheme, while in
[NS99] these are random coefficients. Therefore, the orthogonal lattice attack as described in [NS99]
does not directly apply to Equation (10). Instead, we show a variant attack that recovers the secret
CLT13 plaintext ring and the plaintexts {m̂i : 1 ≤ i ≤ θ}.

The orthogonal lattice attack. We consider the lattice L of vectors (Bu, v) ∈ Z`+1 such that
(u, v) is orthogonal to (ω, 1) modulo x0, where B ∈ Z≥1 is a scaling factor. Since L contains the
sublattice x0Z`+1, it has dimension `+ 1. This gives from (10), for every (Bu, v) ∈ L:

〈u,ω〉+ v ≡
θ∑
i=1

αi〈u, m̂i〉+ 〈u,R〉+ v ≡ 0 (mod x0)

and therefore the vector (〈u, m̂1〉, . . . , 〈u, m̂θ〉, 〈u,R〉+ v) is orthogonal modulo x0 to the vector
a = (α1, . . . , αθ, 1). To obtain balanced components, we use another scaling factor C ∈ Z≥1 and we
consider the vector:

pu,v := (C〈u, m̂1〉, . . . , C〈u, m̂θ〉, 〈u,R〉+ v )

8



In the original orthogonal lattice attack from [NS99], if a vector (Bu, v) ∈ L is short enough,
then the associated vector pu,v = (Cx, y) will also be short, and if (x, y) becomes shorter than
the shortest non-zero vector orthogonal to a modulo x0, we must have pu,v = 0, which implies
〈u, m̂i〉 = 0 for all 1 ≤ i ≤ θ. We will see that in our setting, because of the specific structure of the
coefficients αi’s, we only get 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ. Therefore, by applying lattice
reduction to L, we expect to recover the lattice of vectors u which are orthogonal to all m̂i modulo
gi; in particular, this will reveal the lattice determinant g =

∏θ
i=1 gi.

More precisely, we consider the lattice A⊥ of vectors (Cx, y) ∈ Zθ+1, such that (x, y) is orthogonal
to a = (α1, . . . , αθ, 1) modulo x0; therefore pu,v ∈ A⊥. The lattice A⊥ has dimension θ + 1 and we
have det(A⊥) = Cθx0. As mentioned previously the coefficients αi’s in the vector a have a particular
structure. Namely we have αi = (g−1i mod pi)hix0/pi, and therefore

gi · αi ≡ hi ·
x0
pi

(mod x0)

for all 1 ≤ i ≤ θ. Therefore the lattice A⊥ contains the θ linearly independent short vectors qi =
(0, . . . , 0, Cgi, 0, . . . , 0,−si) where si = hi · x0/pi. Using C := 2ρR−α, we get ‖qi‖ ' C · 2α. From
Lemma 2, if ‖pu,v‖ < det(A⊥)/

∏θ
i=1 ‖qi‖, then pu,v must belong to the linear span generated by

the qi’s; since the gi’s are distinct primes, this implies that it must belong to the sublattice generated
by the qi’s. In that case, we have:

〈u, m̂i〉 ≡ 0 (mod gi) , 1 ≤ i ≤ θ (11)

From det(A⊥) = Cθ · x0 and ‖qi‖ ' C · 2α, this happens under the approximate condition:

‖pu,v‖ < 2γ−α·θ (12)

Conversely, let Λ⊥ be the lattice of vectors u ∈ Z` satisfying (11), namely that are orthogonal
to every m̂i modulo gi for 1 ≤ i ≤ θ. This is a full-rank lattice of dimension ` and determinant
g =

∏θ
i=1 gi. Therefore, we heuristically expect that the lattice Λ⊥ contains ` linearly independent

vectors of norm roughly (detΛ⊥)1/` ' 2αθ/`. We show that from any short u ∈ Λ⊥, we can generate
a vector (u, v) with small v, and orthogonal to (ω, 1) modulo x0, and therefore a short vector
(Bu, v) ∈ L. For this we write 〈u, m̂i〉 = kigi with ki ∈ Z, and we have:

〈u,ω〉+ v ≡
θ∑
i=1

αi〈u, m̂i〉+ 〈u,R〉+ v ≡
θ∑
i=1

ki · gi · αi + 〈u,R〉+ v (mod x0)

≡
θ∑
i=1

ki · si + 〈u,R〉+ v (mod x0)

Therefore it suffices to let v := −〈u,R〉 −
∑θ

i=1 ki · si to obtain 〈u,ω〉+ v ≡ 0 (mod x0); the vector
(u, v) is then orthogonal to (ω, 1) modulo x0, and therefore (Bu, v) ∈ L. We obtain |v| ' ‖u‖ · 2ρR ;
therefore letting B := 2ρR , we get ‖(Bu, v)‖ ' 2ρR‖u‖. In summary, the lattice L contains ` linearly
independent vectors of norm roughly 2ρR+αθ/`.

Therefore, by applying lattice reduction to the lattice L, we expect that the ` first vectors
{(Bui, vi) : 1 ≤ i ≤ `} of a reduced basis have norm roughly:

‖(Bui, vi)‖ ' 2ρR+αθ/` · 2ι(`+1)

where 2ι(`+1) is the Hermite factor for some positive constant ι depending on the lattice reduction
algorithm. With C = 2ρR−α, we have ‖pui,vi‖ ' ‖(Bui, vi)‖ for all 1 ≤ i ≤ `. From the condition
given by (12), we have that ui ∈ Λ⊥ if ‖pui,vi‖ < 2γ−α·θ; therefore we get the approximate condition:

ρR +
αθ

`
+ ι(`+ 1) < γ − αθ

9



Using ρR = γ − ν where ν is the number of bits that can be extracted, this condition becomes

αθ

(
1 +

1

`

)
+ ι(`+ 1) < ν . (13)

When the above condition is satisfied, we expect to recover a basis {ui : 1 ≤ i ≤ `} of the lattice
Λ⊥; then since det(Λ⊥) = g =

∏θ
i=1 gi, the absolute value of the determinant of the basis matrix

reveals g.
We observe that from the above bound the parameter ` can be kept relatively small (say ` ' 10),

as a larger ` would not significantly improve the bound; this implies that the lattice dimension
`+1 on which LLL is applied can be kept relatively small. Moreover for LLL, experiments show that
2ι ' 1.021 so that ι is approximately 0.03, and therefore for such small ` the term ι · (` + 1) is
negligible. Thus we can use the simpler approximate bound for our attack:

αθ < ν (14)

which gives a factor 2 improvement compared to the previous bound given by (7). In the next section
we will see how to get a much more significant improvement with αθ = O(ν2).

A proven variant. The above algorithm is heuristic only. Below we describe a proven variant that
can recover a vector u such that 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ, using the LLL reduction
algorithm. Although we only recover a single vector u instead of a lattice basis, this will be enough
when combined with the Cheon et al. attack to recover all secret parameters of CLT13 (see Section
5). We provide the proof in Appendix A.

Proposition 4. Let `, θ ∈ Z≥1, x0 ∈ Z≥1 and let gi ∈ Z≥2 be distinct α-bit prime numbers for
1 ≤ i ≤ θ and some α ∈ Z≥1. For 1 ≤ i ≤ θ, let αi ∈ Z such that gi · αi ≡ si (mod x0), for si ∈ Z
satisfying |si| ≤ 2ρR , for some ρR ∈ Z≥1. For 1 ≤ i ≤ θ, let m̂i ∈ Z` be vectors with entries in
[0, gi[∩Z for all i, and let R ∈ Z` such that ‖R‖∞ ≤ 2ρR . Let ω ∈ Z` such that ω ≡

∑θ
i=1 αim̂i+R

(mod x0). Assume that

αθ

(
1 +

1

`

)
+
`+ θ

2
+ log2(`

√
`+ 1 · θ) + 4 < log2(x0)− ρR . (15)

Given the integers `, θ, ρR, x0 and the vector ω, one can recover in polynomial time a vector u ∈ Z`
such that 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ, satisfying ‖u‖ ≤ 2`/2

√
`(`+ 1)(

∏θ
i=1 gi)

1/`.

We remark that by replacing log2(x0)−ρR by γ−ρR = ν, we recover, up to additional logarithmic
terms, the approximate bound established in (13).

4.3 Extended Orthogonal Lattice Attack

In this section we describe an extended attack that significantly improves the bound on θ established
in (14). Let `, d ≥ 1 be integers. As previously, we assume that we have encodings cj of plaintext
elements mj = (mj1, . . . ,mjn) for 1 ≤ j ≤ `, where only the first θ components of each mj are
non-zero, that is mji = 0 for θ + 1 ≤ i ≤ n. However, we assume that these encodings are at level
κ − 1, and that we also have an additional set of d level-1 encodings {c′k : 1 ≤ k ≤ d} of plaintext
elements xk = (xk1, . . . , xkn) for 1 ≤ k ≤ d. We can therefore obtain the following zero-testing
evaluations:

ωjk ≡ cj · c′k · pzt ≡
θ∑
i=1

himjixki(g
−1
i mod pi)

x0
pi

+
n∑
i=1

hirjki
x0
pi

(mod x0)

10



for some integers rjki. As previously, we can rewrite this equation as:

ωjk ≡
θ∑
i=1

αikmji +Rjk (mod x0)

where we let
αik = hixki(g

−1
i mod pi)

x0
pi

, 1 ≤ i ≤ θ, 1 ≤ k ≤ d

and Rjk =
∑n

i=1 hirjkix0/pi for all 1 ≤ j ≤ ` and 1 ≤ k ≤ d. As before, we denote by m̂i ∈ Z` the
vector with components mji for 1 ≤ j ≤ `, and similarly ωk and Rk the corresponding vectors in
Z`. Therefore the previous equation can be rewritten as:

ωk ≡
θ∑
i=1

αikm̂i +Rk (mod x0) (16)

The difference with Equation (10) from our first lattice attack is that the vectors m̂i satisfy d
equations for 1 ≤ k ≤ d, instead of a single equation. With more constraints on the vectors m̂i, we
can therefore break the countermeasure from [GLW14] for much higher values of θ.

As previously, for a scaling factor B ∈ Z≥1, we consider the lattice L of vectors (Bu,v) ∈ Z`+d
such that (u,v) is orthogonal to the d vectors {(ωk, ek) : 1 ≤ k ≤ d} modulo x0, where ek ∈ Zd are
the unit vectors for 1 ≤ k ≤ d. This gives for all 1 ≤ k ≤ d and all (Bu,v) ∈ L:

〈u,ωk〉+ vk ≡
θ∑
i=1

αik〈u, m̂i〉+ 〈u,Rk〉+ vk ≡ 0 (mod x0)

and therefore the vector (〈u, m̂1〉, . . . , 〈u, m̂θ〉, 〈u,R1〉+ v1, . . . , 〈u,Rd〉+ vd) is orthogonal modulo
x0 to the d vectors ak = (α1k, . . . , αθk, ek), where as previously ek are the unit vectors for 1 ≤ k ≤ d.
Again, using a scaling factor C ∈ Z≥1, we let

pu,v = (C〈u, m̂1〉, . . . , C〈u, m̂θ〉, 〈u,R1〉+ v1, . . . , 〈u,Rd〉+ vd) ,

where v = (v1, . . . , vd). As previously, we consider the lattice A⊥ of vectors (Cx,y) ∈ Zθ+d orthog-
onal to the d vectors ak modulo x0; therefore pu,v ∈ A⊥. The lattice A⊥ has dimension θ + d and
determinant Cθxd0. As previously the coefficients αik in the vectors ak have a special structure, since
they satisfy the congruence relations

gi · αik ≡ hi · xik ·
x0
pi

(mod x0)

for all 1 ≤ i ≤ θ and 1 ≤ k ≤ d. Therefore letting sik = hi · xik · x0/pi, the lattice A⊥ contains
the θ short vectors qi = (0, . . . , 0, Cgi, 0, . . . , 0,−si1, . . . ,−sid) for 1 ≤ i ≤ θ. Using C = 2ρR−α,
we get as previously ‖qi‖ ' C · 2α. We expect a reduced basis of A⊥ to have the first θ vectors
with approximately the same norm as the qi, and to have the last d vectors with norm U satisfying
(C · 2α)θ · Ud ' det(A⊥). Using det(A⊥) = Cθxd0, this gives U ' x0/2

αθ/d. This implies that,
heuristically, if ‖pu,v‖ < U , then pu,v must belong to the sublattice generated by the θ vectors
{qi : 1 ≤ i ≤ θ}. As previously, in that case we have that for all 1 ≤ i ≤ θ :

〈u, m̂i〉 ≡ 0 (mod gi) . (17)

Using the same reasoning as previously, we consider the lattice Λ⊥ of vectors u ∈ Z` satisfying
(17). Since Λ⊥ heuristically contains ` linearly independent vectors of norm roughly (detΛ⊥)1/` '
2αθ/`, the lattice L contains ` linearly independent vectors of norm roughly 2ρR+αθ/`. Therefore, by
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applying lattice reduction to the lattice L, we expect that the ` first vectors {(Bui,vi) : 1 ≤ i ≤ `}
of the basis have norm roughly:

‖(Bui, vi)‖ ' 2ρR+αθ/` · 2ι(`+d)

where 2ι(`+d) is the Hermite factor. With B = 2ρR and C = 2ρR−α, we have ‖pui,vi‖ ' ‖(Bui, vi)‖.
From the condition ‖pui,vi‖ < U , we get the condition:

ρR +
αθ

`
+ ι(`+ d) < γ − αθ

d

which gives using ρR = γ − ν:

αθ ·
(
1

`
+

1

d

)
+ ι(`+ d) < ν (18)

Remark that with d = 1 the previous bound gives Equation (13). Since (18) is symmetric in ` and
d, the optimum is to take ` = d. This gives the bound:

2αθ

`
+ 2ι` < ν (19)

In particular, it follows that the attack requires ` > 2αθ/ν, and we must have:

ι <
ν2

4αθ

Heuristically achieving a Hermite factor of 2ι2` requires 2Ω(1/ι) using BKZ reduction with block-
size β = ω(1/ι) [HPS11]. The attack has therefore complexity 2Ω(αθ/ν2); heuristically the attack has
polynomial-time complexity under the condition:

αθ = O(ν2)

which significantly improves our previous bound given by (14). Conversely, one expects that the
attack is prevented under the condition:

θ = ω

(
ν2

α
log λ

)
(20)

In Section 4.5 we provide concrete parameters for CLT13 multilinear maps with independent
slots. We will see that Condition (20) requires a much higher value for θ than the condition 2θα ≥ ν
for preventing the [GLW14] attack. Namely for λ = 80 bits of security, the bound 2θα ≥ ν already
holds for θ = 2, while a concrete variant of Condition (20) requires θ ≥ 1789.

Analogy of the attacks. In summary, we remark that our extended attacks share similarities
with the 2-dimensional attack from Section 3. For `, d ∈ Z≥1 our extended lattice attack works by
reducing the (`+ d)-dimensional lattice

L(`,d) = {(Bu,v) ∈ Z` × Zd : 〈(u,v), (ωk, ek)〉 ≡ 0 (mod x0), 1 ≤ k ≤ d} ,

where B ∈ Z≥1 is fixed. With this notation, the three attacks work by reducing the lattices L(1,1),
L(`,1) and L(`,d), respectively. Note that L(1,1) is the lattice {(Bu, v) ∈ Z2 : uω + v ≡ 0 (mod x0)}.
For the extended attacks, the ` × ` top-left submatrix of a reduced basis of L(`,d) (divided by B)
has determinant ±g. Note that this coincides with the 2-dimensional case ` = d = 1: the first
entry (divided by B) of the first vector in a reduced basis equals ±g (i.e. a "1 × 1 submatrix"
of determinant ±g). As such, our higher-dimensional attacks are consistent generalizations of the
2-dimensional attack.
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4.4 Recovering the plaintext elements

We show that our attack not only reveals the secret CLT13 plaintext ring but also the secret plaintext
elements {m̂i : 1 ≤ i ≤ θ}. Namely, the orthogonal lattice attack not only recovers g =

∏θ
i=1 gi, but

also constructs a matrix U of rows {uj : 1 ≤ j ≤ `} orthogonal to the vectors {m̂i : 1 ≤ i ≤ θ}
modulo gi and we can use this matrix U to recover the plaintext elements.

More precisely, we show that for each 1 ≤ i ≤ θ, we can recover the one-dimensional linear space
generated by m̂i modulo gi. The first step is to factor g =

∏θ
i=1 gi to recover the primes gi’s; this

is feasible if the gi’s are small enough.1 Since we have a basis of the vectors u with 〈u, m̂i〉 ≡ 0
(mod gi) for all 1 ≤ i ≤ θ, it suffices to compute the Z/giZ-kernel of the ` × ` basis matrix U of
this lattice; assuming that m̂i 6≡ 0 (mod gi), we have that ker(U) over Z/giZ has dimension 1 and
therefore we recover a non-trivial multiple λim̂i of the original messages m̂i modulo gi, for 1 ≤ i ≤ θ.
With the ECM [Len87] the factorization of g =

∏θ
i=1 gi can be computed in time exp(c

√
α lnα) for

some positive constant c and where α is the bit size of the gi’s, which gives a sub-exponential time
attack.

Alternatively, to avoid the factorization of g, we can compute the integer right kernel of the matrix
U g = [U | gI`], where I` denotes the identity matrix in dimension `. The following proposition shows
that we can recover in polynomial time a non-trivial multiple of the vector m̂ such that m̂ ≡ m̂i

(mod gi) for all 1 ≤ i ≤ θ.

Proposition 5. Let `, θ ∈ Z≥1. Let g1, . . . , gθ be distinct prime numbers. For 1 ≤ i ≤ θ, let m̂i ∈
Z` ∩ [0, gi[

` be vectors such that m̂i 6≡ 0 (mod gi) for every 1 ≤ i ≤ θ. Let {uj : 1 ≤ j ≤ `} be
a basis of the lattice of vectors u ∈ Z` such that 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ. Then,
given g =

∏θ
i=1 gi and the vectors {uj : 1 ≤ j ≤ `}, one can recover in polynomial time a vector

λ · m̂ ∈ Z` ∩ [0, g[` with gcd(λ, g) = 1 such that m̂ ≡ m̂i (mod gi) for all 1 ≤ i ≤ θ.

Proof. Let U denote the `× ` matrix with rows uj and let U g = U mod g ∈ Mat`×`(Z/gZ) denote
the matrix obtained by reduction. Since 〈uj , m̂i〉 ≡ 0 (mod gi) for all i, j, the vectors m̂i are in
the (Z/giZ)-kernel of U for each i and since m̂i 6≡ 0 (mod gi), each kernel has dimension 1 over
Z/giZ. From the Chinese Remainder Theorem, it follows that ker(U g) is a free Z/gZ-module of
rank 1. Namely, there exists a unique vector m̂ ∈ Z` ∩ [0, g[` satisfying m̂ ≡ m̂i (mod gi) for all i.
Then 〈uj , m̂i〉 ≡ 0 (mod gi) for all i, j if and only if 〈uj , m̂〉 ≡ 0 (mod g) for all j. In particular,
there exists k ∈ Z` such that (m̂,k) belongs to the Z-kernel of the matrix [U | gI`]. The integer
kernel of this matrix can be computed in polynomial time from g and U and the left `× ` submatrix
of the Hermite normal form of the basis of the Z-kernel gives in the first row a vector λm̂ with
λ ∈ (Z/gZ)×. ut

4.5 Concrete parameters and practical experiments

Concrete parameters. We provide concrete parameters for CLT13 multilinear maps with inde-
pendent slots, for various values of the security parameter λ. We start from the same concrete
parameters as provided in [CLT13]; we assume that the encoding noise is set so that the number of
extracted bits is ν = 2λ+ 12; we take α = λ. We then provide the minimum value of θ that ensures
the same level of security against lattice attacks; see Table 1. As in [CLT13], the goal is to ensure
that the best attack takes at least 2λ clock cycles.

While in Table 1 the number of independent slots nslots = bn/θc appears to be relatively small, we
show in Section 6.3 that when dealing with matrices of encodings (as in matrix branching programs),
the number of independent slots can be multiplied by a factor δ, where δ is the matrix dimension.
Moreover it is always possible to increase the number of slots nslots = bn/θc by increasing the value
of n.
1 For the concrete parameters provided in [CLT13], the gi’s are 80-bit primes; therefore the factorization is straight-
forward.
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Instantiation λ n η γ = n · η ν θ nslots

Small 52 1080 1981 2.1 · 106 116 540 2
Medium 62 2364 2055 4.9 · 106 136 1182 2
Large 72 8250 2261 18.7 · 106 156 1472 5
Extra 80 26115 2438 63.7 · 106 172 1789 14

Table 1. Concrete parameters for CLT13 multilinear maps with independent slots, for security
parameter λ.

Practical experiments. We have run our extended attack from Section 4.3 with the "Extra"
parameters of CLT13 from Table 1, for increasing values of θ. Note that for such parameters the
original attack from [GLW14] only applies for θ = 1. To improve efficiency we give as input to LLL
a truncated matrix basis, where we keep only the ν most significant bits. Table 2 shows that our
attack works in practice for much larger values of θ than the original attack from [GLW14]. We
provide in Appendix B the source code in Sage [S+17].

θ α ν ` = d lat. dim. running time
Basic attack [GLW14] 1 80 172 1 2 ε

Extended attack (Section 4.3) 2 80 172 2 4 ε

Extended attack (Section 4.3) 40 80 172 39 78 10 s
Extended attack (Section 4.3) 100 80 172 100 200 11 min
Extended attack (Section 4.3) 160 80 172 163 326 11 hours

Table 2. Running time of our LLL-based attack, as a function of the parameter θ, for the “Extra”
parameters of CLT13. The lattice dimension is `+ d = 2`.

5 Application to the Cheon et al. Attack

In 2015, Cheon et al. published in [CHL+15] a polynomial time attack against CLT13 resulting in
a total break of the multipartite Diffie-Hellman key exchange protocol. The attack relies on the
availability of low-level encodings of zero. In this section, we show how to adapt the Cheon et
al. attack to the setting of CLT13 with independent slots: we assume that no encodings of zero
are available to the attacker (otherwise the Cheon et al. attack would apply immediately), but as
previously the attacker can obtain low-level encodings where only θ components of the plaintext
are non-zero. In particular, this contributes to a cryptanalysis of CLT13 multilinear maps where
no encodings of zero are available beforehand; this was considered as an open problem in [CLR15,
Section 4].

5.1 The original Cheon et al. attack with encodings of zero

We first recall the basic Cheon et al. attack against CLT13. For simplicity, we take κ = 3; the attack
is easily extended to κ > 3. Consider a set A = {aj : 1 ≤ j ≤ n} of encodings of zero at level one,
a pair B = {b0, b1} of encodings at level one, and a set C = {ck : 1 ≤ k ≤ n} of encodings at level
one. We write aj ≡ aji/z (mod pi), bt ≡ bti/z (mod pi), ck ≡ cki/z (mod pi), with integers aji ≡ 0
(mod gi), for all 1 ≤ j, i, k ≤ n and t ∈ {0, 1}. We obtain the zero-testing evaluations:

ω
(t)
jk = ajbtckpzt mod x0 =

n∑
i=1

hi(g
−1
i mod pi)ajibticki

x0
pi
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where the equality holds over Z because the products ajbtck are level-3 encodings of 0. This can be
written in matrix form as

ω
(t)
jk =

[
aj1 · · · ajn

] bt1pzt,1 . . .
btnpzt,n


ck1...
ckn

 .
where pzt,i = hi(g

−1
i mod pi)x0/pi for all 1 ≤ i ≤ n. Writing out the matrices W t = (ω

(t)
jk )1≤j,k≤n

for t ∈ {0, 1}, one obtains the integer matrix equalities W t = A∆tC for t ∈ {0, 1}, where the rows
of A are the vectors (aj1, · · · , ajn)j , the columns of C are the vectors (ck1, · · · , ckn)k, and ∆t is the
diagonal matrix diag(bt1pzt,1, . . . , btnpzt,n).

Provided that at least one of W 0,W 1 is invertible over Q (say W 1), one then evaluates over Q
the matrix product:

W 0 ·W−1
1 = A(∆0∆

−1
1 )A−1

The attacker can thus compute the eigenvalues of W 0W
−1
1 , by factoring the characteristic polyno-

mial (over Q). By similarity of these matrices, these eigenvalues coincide with those of ∆0∆
−1
1 =

diag(b01/b11, . . . , b0n/b1n), which are {b0i/b1i : 1 ≤ i ≤ n}. These ratios are now enough to factor x0.
Namely, writing the quotients b0i/b1i = xi/yi for coprime integers xi, yi and using that bt ≡ bti/z
(mod pi), we obtain:

xib1 − yib0 ≡ (xib1i − yib0i)/z ≡ 0 (mod pi)

and therefore gcd(xib1 − yib0, x0) = pi with good probability. In summary, the Cheon et al. attack
recovers all secret pi’s in polynomial time given the low-level encodings of zero {aj : 1 ≤ j ≤ n}.

5.2 Adaptation of the Cheon et al. attack

We now show how to adapt the Cheon et al. attack when no encodings of zero are available, but the
attacker can obtain low-level encodings where only θ components of the underlying plaintexts are
non-zero. The attack is divided in two steps: first the attacker generates encodings of zero using the
orthogonal lattice attack from Section 4, and then applies the original Cheon et al. attack to reveal
the primes pi.

We consider the following setting with κ = 4. Let ` ≥ 1; we consider a set Y = {yj : 1 ≤ j ≤ `} of
level-one encodings of messages m1, . . . ,m` where only the first θ components of each mj are non-
zero. Moreover, we consider as in the previous section three sets A = {aj : 1 ≤ j ≤ n}, B = {b0, b1}
and C = {ck : 1 ≤ k ≤ n} of level-one encodings of non-zero messages.

First step: orthogonal lattice attack. We show that the orthogonal lattice attack from Section
4.2 can compute a short vector u ∈ Z` such that y′ = 〈u,y〉 is a level-1 encoding of zero, where
y = (y1, . . . , y`). We write for all 1 ≤ j ≤ `:

yj ≡
rji · gi +mji

z
(mod pi) , 1 ≤ i ≤ n,

with the usual CLT13 notations, where mji = 0 for θ + 1 ≤ i ≤ n. Note that our orthogonal lattice
attack from Section 4.2 uses level-κ encodings; therefore it can be applied on level-κ encodings of
the form:

ej = yj · a1 · b0 · c1 mod x0

for level-one encodings a1, b0, c1; we obtain:

ej ≡
r′ji · gi +mji · xi

zκ
(mod pi) , 1 ≤ i ≤ n
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for some r′ji ∈ Z and where xi is the i-th component of the plaintext corresponding to the encoding
a1 · b0 · c1. Clearly, since the messages {mj : 1 ≤ j ≤ `} have non-zero support of length θ, the
messages {(mji · xi)1≤i≤n : 1 ≤ j ≤ `} have non-zero support of length at least θ. Therefore,
applying the orthogonal lattice attack from Section 4.2 on the encodings ej (i.e. on the vector
ω = pzt · (ej)1≤j≤` mod x0), we obtain a vector u ∈ Z` such that 〈u, m̂i · xi〉 ≡ 0 (mod gi) for
all 1 ≤ i ≤ θ, where the m̂i’s are the vectors (m1i, . . . ,m`i) for 1 ≤ i ≤ θ. Provided that xi 6≡ 0
(mod gi), this implies 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ. Therefore, for all 1 ≤ i ≤ n, we can
write

∑`
j=1 ujmji = kigi for integers ki (and ki = 0 for θ + 1 ≤ i ≤ n). This gives:

y′ =
∑̀
j=1

ujyj ≡ gi

∑̀
j=1

ujrji + ki

 · z−1 (mod pi) , 1 ≤ i ≤ n

and therefore y′ is a level-1 encoding of zero, moreover with small noise since the vector u is short.
Note that we only need a single vector u; therefore the first step of the attack is proven by Proposition
4.

Second step: Cheon et al. attack. The second step consists in applying the Cheon et al. attack
with the three sets A′ = {y′ · aj : 1 ≤ j ≤ n}, B = {b0, b1} and C = {ck : 1 ≤ k ≤ n}. Since y′ is
an encoding of zero, all encodings in A′ are encodings of zero, and we can apply the Cheon et al.
attack on the three sets A′, B and C to recover all secret primes pi.

Since the orthogonal lattice attack more generally provides a set of ` vectors uj ∈ Z` (instead
of a single u; and all satisfying 〈uj , m̂i〉 ≡ 0 (mod gi) for all i), a variant of the above attack
with κ = 3 consists in starting from a set A = {aj : 1 ≤ j ≤ n} of ` = n encodings where
only the first θ components of the underlying plaintexts are non-zero, and then generating a set
A′ = {〈uj ,a〉 : 1 ≤ j ≤ n} of encodings of zero, with the vector of encodings a = (a1, . . . , an). One
can then apply the Cheon et al. attack as previously on the three sets A′, B and C.

Note that the first step of the attack above (i.e. the generation of encodings of zero) uses the
orthogonal lattice attack from Section 4.2 with the bound αθ < ν. The attack from Section 4.3 is
easily adapted to reach the improved bound αθ = O(ν2). In this case the attacker can obtain ` · d
level-two encodings of zero given by {〈uj , ck〉 : 1 ≤ j ≤ `, 1 ≤ k ≤ d} where ck is the vector of
encodings (cj · c′k)1≤j≤` with the encodings cj · c′k considered in Section 4.3.

6 Cryptanalysis of constructions based on CLT13 with independent slots

In this section we show that our orthogonal lattice attack from Section 4 can be applied to various
constructions over CLT13 multilinear maps with independent slots.

6.1 The multilinear subgroup elimination assumption from [GLW14,GLSW15]

The multilinear subgroup elimination assumption is used in [GLW14] for witness encryption and in
[GLSW15] for constructing program obfuscation, based on a single assumption, independent of the
particular circuit to be obfuscated. The multilinear subgroup elimination assumption is stated for
a generic model of composite-order multilinear maps. Below, we show that our attacks break this
assumption over CLT13 composite-order multilinear maps. We recall the definition from [GLSW15].

Definition 6 ((µ, ν)-multilinear subgroup elimination assumption [GLSW15]). Let G be a
group of order N = a1 · · · aµb1 · · · bνc where a1, . . . , aµ, b1, . . . , bν , c are µ+ ν+1 distinct primes. We
give out generators xa1 , . . . , xaµ , xb1 , . . . , xbν for each prime order subgroup except for the subgroup
of order c. For each 1 ≤ i ≤ µ, we also give out a group element hi sampled uniformly at random
from the subgroup of order ca1 · · · ai−1ai+1 · · · aµ. The challenge term is a group element T ∈ G that
is either sampled uniformly at random from the subgroup of order ca1 · · · aµ or uniformly at random
from the subgroup of order a1 · · · aµ. The task is to distinguish between these two distributions of T .
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For simplicity, we consider the assumption with µ = 1 and ν = 0; the generalization of our
attack to any (µ, ν) is straightforward. Therefore G is a group of order a1c. The challenge T ∈ G is
either generated at random from the subgroup of order a1c, or from the subgroup of order a1. In the
context of a CLT13 instantiation, we assume that a1 =

∏θ
i=1 gi and c =

∏n
i=θ+1 gi. In that case, a1

and c are not primes, but the assumption can still be considered for non-prime ai’s, bi’s and c. The
encoding T is then either generated from a random plaintext m ∈

⊕n
i=1 Z/giZ, or from a random

plaintext with only the θ first components non-zero, that is m ≡ 0 (mod gi) for θ + 1 ≤ i ≤ n.
It is easy to see that our attacks from Section 4.2 and Section 4.3 apply in this setting. Namely
when only the first θ components of the plaintext m corresponding to the challenge T are non-zero,
our attacks recover the product a1 =

∏θ
i=1 gi, whereas the attacks will fail when m is a random

plaintext. Therefore the challenge T is easily distinguished unless θ is large enough; more precisely,
θ must satisfy the bound given by (20) to prevent the attack.

6.2 The Zimmerman circuit obfuscation scheme

At Eurocrypt 2015, Zimmerman described a technique to obfuscate programs without matrix branch-
ing programs, based on composite-order multilinear maps [Zim15]. A plaintext m belongs to Z/NZ
for a composite modulus N = Nev · Nchk, and the ring Z/NZ is viewed as a direct product of an
"evaluation" ring Z/NevZ to evaluate the circuit, and of a "checksum" ring Z/NchkZ to prevent the
adversary from evaluating a different circuit; those two evaluations are performed in parallel. Using
the CLT13 notations from Section 2, one can let Nev =

∏θ
i=1 gi and Nchk =

∏n
i=θ+1 gi. In that case,

the parameter θ must satisfy the bound given by (20) to prevent our lattice attack.

6.3 The FRS17 construction for preventing input partitioning attacks

At Asiacrypt 2017, Fernando, Rasmussen and Sahai described three constructions of "stamping
functions" for preventing input-partitioning attacks on matrix branching programs [FRS17]. Their
third construction is based on permutation hash functions and is instantiated over CLT13 multilinear
maps with independent slots. More precisely, the permutation hash function is written as a matrix
branching program, and multiple such permutation hash functions hi are evaluated in parallel along
with the main matrix branching program; this is to ensure that only inputs of the form x‖h(x) can
be evaluated, where h(x) = h1(x)‖ · · · ‖ht(x), which prevents input partitioning attacks.

Matrix branching programs. We first recall the construction of [GGH+13b] to obfuscate matrix
branching programs. A matrix branching program BP of length np on `-bit inputs x ∈ {0, 1}` is
evaluated by computing:

C(x) = b0 ·
np∏
i=1

Bi,xinp(i) · bnp+1 (21)

where {Bi,b : 1 ≤ i ≤ np, b ∈ {0, 1}} are 2np square matrices and b0 and bnp+1 are bookend vectors;
then BP(x) = 0 if C(x) = 0, and BP(x) = 1 otherwise. The integer inp(i) ∈ {1, . . . , `} indicates which
bit of x is read at step i of the product matrix computation. The matrices Bi,b are first randomized
by choosing np + 1 random invertible matrices {Ri : 0 ≤ i ≤ np} and letting B̃i,b = Ri−1Bi,bR

−1
i

for 1 ≤ i ≤ np, with also b̃0 = b0R
−1
0 and b̃np+1 = Rnpbnp+1. We obtain a randomized matrix

branching program with the same result since the randomization matrices Ri cancel each other:

C(x) = b̃0 ·
np∏
i=1

B̃i,xinp(i) · b̃np+1.

The entries of the matrices B̃i,b are then independently encoded, as well as the bookend vectors
b̃0 and b̃np . We obtain the matrices and vectors B̂i,b = Encode{i+1}(B̃i,b), b̂0 = Encode{1}(b̃0) and

17



b̂np+1 = Encode{np+2}(b̃np+1). Here Encode{i}(·) denotes an encoding relative to the singleton i. The
matrix branching program from (21) can then be evaluated over the encoded matrices:

Ĉ(x) = b̂0 ·
np∏
i=1

B̂i,xinp(i) · b̂np+1 (22)

The resulting Ĉ(x) is then a last-level encoding that can be zero-tested to check if C(x) = 0, which
reveals the output of the branching program BP(x), without revealing the matrices Bi,b.

Parallel matrix branching programs: new attack bound. As explained in [FRS17], multiple
branching programs can be evaluated in parallel with composite order multilinear maps; with the
countermeasure from [GLW14] over CLT13, each branching program is then evaluated modulo a
product of θ of the primes gi’s. Consider the result of a matrix branching program as in (21), with
matrices of dimension δ ∈ Z≥1. In the following we derive a new bound for θ, as a function of the
matrix dimension δ.

Let `, d ≥ 1 be integers. For a set of input messages xjk we first rewrite (21) as:

yjk = C(xjk) ≡mj · vTk (mod G) (23)

for 1 ≤ j ≤ ` and 1 ≤ k ≤ d, where G =
∏n
i=1 gi. Assume that all matrix branching programs

evaluate to zero except one; in that case, without loss of generality we obtain yjk ≡ 0 (mod gi) for
all θ+1 ≤ i ≤ n and all j, k. This implies that we obtain the following zero-testing evaluations (with
the usual notations):

ωjk ≡
θ∑
i=1

hi(yjk mod gi)(g
−1
i mod pi)

x0
pi

+
n∑
i=1

hirjki
x0
pi

(mod x0) (24)

We rewrite (23) as yjk =
∑δ

a=1mjavka. Letting mjai = mja mod gi and vkai = vka mod gi for all
1 ≤ i ≤ θ, we obtain yjk ≡

∑δ
a=1mjaivkai (mod gi) and therefore:

ωjk ≡
θ∑
i=1

δ∑
a=1

himjaivkai(g
−1
i mod pi)

x0
pi

+
n∑
i=1

hirjki
x0
pi

(mod x0)

Letting αiak = hivkai(g
−1
i mod pi)x0/pi and Rjk =

n∑
i=1

hirjkix0/pi, this becomes

ωjk ≡
θ∑
i=1

δ∑
a=1

αiak ·mjai +Rjk (mod x0) ,

which gives, using the same vector notation as in Section 4:

ωk ≡
θ∑
i=1

δ∑
a=1

αiakm̂ai +Rk (mod x0) , 1 ≤ k ≤ d (25)

where the vectors ωk, m̂ai and Rk have dimension `, for all 1 ≤ k ≤ d and 1 ≤ a ≤ δ.
We see that Equation (25) is similar to Equation (16) from Section 4.3; namely we obtain a

noisy hidden subset-sum problem with dimension δ · θ instead of θ. Moreover, as in Section 4.3, the
hidden vectors m̂ai must satisfy d equations (for 1 ≤ k ≤ d). We can therefore replace θ by θδ in the
bounds from Section 4.3 and the extended orthogonal lattice attack applies and reveals g =

∏θ
i=1 gi.
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In particular, the attack has heuristic complexity 2Ω(αθδ/ν2) instead of 2Ω(αθ/ν2) and is prevented
under the new condition:

θδ = ω

(
ν2

α
log λ

)
Therefore, compared to the condition given by (20), the parameter θ can be divided by the matrix
dimension δ. This implies that the number of independent slots nslots = n/θ can be multiplied by δ.
For example, with a matrix dimension δ = 10 and the concrete parameters from Section 4.5, we can
use nslots = 140 instead of nslots = 14.

Remark 7. We note that the attack from Section 4.2 still applies independently of the matrix dimen-
sion δ; namely it can be applied on ` of the evaluations ωjk from (24), without taking into account
the particular structure of the messages yjk from (23). Therefore we must still ensure αθ ≥ ν to
prevent the attack from Section 4.2. We note that for the CLT13 parameters provided in Table 1,
this constraint is always satisfied.

Application to the FRS17 construction. The [FRS17] scheme constructs a modified matrix
branching program BP′ that receives as input u‖v1 . . . vt and checks whether vi = hi(u) for all
1 ≤ i ≤ t, where the hi’s are permutation hash functions; in that case, BP′ returns BP(u) where BP
is the original branching program; otherwise, it returns some non-zero value. It is easy to generate
an input u‖v1 . . . vt such that BP(u) = 0 and vi = hi(u) for all 1 ≤ i ≤ t except for some i = i?. This
corresponds to the setting considered in the previous section, where only one of the t + 1 parallel
matrix branching program will evaluate to a non-zero value; this provides evaluations yjk = BP′(xjk)
where yjk ≡ 0 (mod gi) for all θ + 1 ≤ i ≤ n and the above attack can recover the secret plaintext
ring

⊕n
i=1 Z/giZ of CLT13. The FRS17 construction should therefore be instantiated with the two

above constraints on the parameter θ.
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A Proof of Proposition 4

Let a = (α1, . . . , αθ, 1) ∈ Zθ+1. We let C = 2ρR−α+1 and consider the lattice A⊥ of vectors (Cx, y) ∈
Zθ ×Z such that (x, y) is orthogonal to a modulo x0. Further, we let B = θ2ρR+2 and let L ⊆ Z`+1

denote the lattice of vectors (Bu, v) ∈ Z`×Z such that the vector (u, v) is orthogonal to the vector
(ω, 1) modulo x0.

Let Λ⊥ be the lattice of vectors u ∈ Z` such that 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ. We
denote by u0 a shortest non-zero vector of Λ⊥. We write 〈u0, m̂i〉 = kigi with ki ∈ Z. To u0 we
thus associate the vector F (u0) = (Bu0,−

∑θ
i=1 kisi − 〈u0,R〉). From the definition of ω and the

congruence relations giαi ≡ si (mod x0), we have that (u0,−
∑θ

i=1 kisi − 〈u0,R〉) is orthogonal to
(ω, 1) modulo x0, and therefore F (u0) ∈ L.

Letting g =
∏θ
i=1 gi, we now show that F (u0) has square norm upper bounded by

‖F (u0)‖2 ≤ (`+ 1)B2‖u0‖2 ≤ `(`+ 1)B2g2/` . (26)

Indeed, we write ‖F (u0)‖2 ≤ B2‖u0‖2 + (
∑θ

i=1 |kisi|+ ‖u0‖‖R‖)2. From ‖m̂i‖ ≤
√
`2α, we obtain

2α−1|ki| ≤ |ki|gi ≤ ‖u0‖‖m̂i‖ ≤
√
`2α‖u0‖; i.e. |ki| ≤ 2

√
`‖u0‖ for all i. Combined with ‖R‖ ≤√

`‖R‖∞ ≤
√
`2ρR , this gives

θ∑
i=1

|kisi|+ ‖u0‖‖R‖ ≤
√
`‖u0‖ · (2ρR+1θ + 2ρR) ≤

√
`‖u0‖(2 · 2ρR+1θ) =

√
`B‖u0‖
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Therefore, ‖F (u0)‖2 ≤ B2‖u0‖2+`B2‖u0‖2 = (`+1)B2‖u0‖2. Now, since u0 has length λ1(Λ⊥),
it follows from Minkowski’s Theorem that ‖u0‖ ≤

√
`g1/` where g = det(Λ⊥), and (26) easily follows.

Let x1 = (Bu1, v1) be the first vector in a (3/4)-reduced basis of the lattice L, obtained
from LLL. By Theorem 3, it satisfies ‖x1‖ ≤ 2`/2‖F (u0)‖, that is, combined with (26), ‖x1‖ ≤
2`/2

√
`(`+ 1)Bg1/`. In particular, we obtain the bounds

‖u1‖ ≤ 2`/2
√
`(`+ 1) · g1/` (27)

|v1| ≤ 2`/2B
√
`(`+ 1) · g1/`. (28)

For simplicity we write K = 2`/2
√
`(`+ 1)g1/`. Now, to the vector x1 ∈ L, we associate, for C as

above, the vector f(x1) = (C〈u1, m̂1〉, . . . , C〈u1, m̂θ〉, 〈u1,R〉 + v1) ∈ A⊥. Because (Bu1, v1) ∈ L,
it is a direct check that f(x1) ∈ A⊥. Its square norm is upper bounded by

‖f(x1)‖2 ≤ C2
θ∑
i=1

‖u1‖2‖m̂i‖2 + (‖u1‖‖R‖+ v1)
2.

Using once again that ‖m̂i‖ ≤ 2α
√
` and ‖R‖ ≤ 2ρR

√
`, and combining with (27) and (28), we

obtain

‖f(x1)‖2 ≤ C2K2 · θ`22α + (K
√
`2ρR +KB)2 ≤ C2K2 · θ`22α + (2K

√
`B)2

= K2`(C2θ22α + 4B2)

so that, using C2θ22α ≤ B2 = 16θ222ρR , this gives

‖f(x1)‖ ≤ 4
√
5 ·
√
` · θ ·K · 2ρR . (29)

We now consider the vectors {qi : 1 ≤ i ≤ θ} defined by qi = (0, . . . 0, Cgi, 0, . . . , 0,−si) ∈ Zθ+1.
They are linearly independent; moreover, from the congruence relations giαi ≡ si (mod x0) for 1 ≤
i ≤ θ we deduce that for all i, 〈qi,a〉 ≡ 0 (mod x0); i.e. qi ∈ A⊥. Further, as |si| ≤ 2ρR , their norm is
upper bounded by ‖qi‖2 ≤ C2g2i +22ρR ≤ C2g2i +Cg

2
i ≤ 2C2g2i because Cgi ≥ 2ρR−α+1 ·2α−1 = 2ρR .

Consequently,
θ∏
i=1

‖qi‖ ≤ 2θ/2Cθ
θ∏
i=1

gi = 2θ/2Cθg. (30)

Now, (15) together with g ≤ 2αθ, implies (1 + 1/`) log2(g) + (` + θ)/2 + log2(4
√
5
√
`+ 1θ`) <

log2(x0)−ρR and, by raising to the power of 2, we obtain g1+1/` ·2`/2 ·2θ/2 ·4
√
5
√
`+ 1θ` < x0/2

ρR .
This is equivalent to

g1/` · 2`/2 · 2ρR · 4
√
5
√
`+ 1 · θ` < Cθx0

Cθ2θ/2g
. (31)

The left hand side is lower bounded by ‖f(x1)‖ by (29), and the right hand side is upper bounded
by det(A⊥)/

∏θ
i=1 ‖qi‖, by (30) together with det(A⊥) = Cθx0. Therefore (31) implies ‖f(x1)‖ <

det(A⊥)/
∏θ
i=1 ‖qi‖. It follows from Lemma 2 that f(x1) is in the linear span generated by the

vectors {qi : 1 ≤ i ≤ θ}. Since gi are prime numbers for 1 ≤ i ≤ θ, we conclude that f(x1) is in
the sublattice generated by the vectors {qi : 1 ≤ i ≤ θ}. Consequently, for all 1 ≤ i ≤ θ, one has
〈u1, m̂i〉 ≡ 0 (mod gi).

The rows {bj : 1 ≤ j ≤ `+ 1} of the matrix[
BI` −ωT
0 x0

]
,

where I` denotes the ` × ` identity matrix, form a Z-basis of L. Hence, by running LLL on this
matrix with δ = 3/4, we obtain a vector x1 of which the first ` entries, divided by B, produce a
vector u = u1 satisfying 〈u1, m̂i〉 ≡ 0 (mod gi) for all i. By Theorem 3, the algorithm terminates
in polynomial time. ut
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B Source code of the lattice attacks

n=4
eta =60
alpha =20
nh=10
rho =20
theta=2
gam=n*eta
ell=4
d=3

def test ():
p=[ random_prime (2^eta ,False ,2^(eta -1)) for i in range(n)]
x0=prod(p)
g=[ random_prime (2^alpha ,False ,2^( alpha -1)) for i in range(n)]
invg=[ inverse_mod(g[i],p[i]) for i in range(n)]
h=[ZZ.random_element (2^(nh -1) ,2^nh) for i in range(n)]

m=[ZZ.random_element (2^ alpha) for i in range(theta )]+
[0 for i in range(n-theta)]

r=[ZZ.random_element (2^rho) for i in range(n)]
w=(sum([h[i]*m[i]*invg[i]*x0/p[i] for i in range(theta )])+

sum([h[i]*r[i]*x0/p[i] for i in range(n)])) % x0

print "x0=",x0
print "p=",p
print "g=",g
print "m=",m
print "w=",w
pg=prod([g[i] for i in range(theta )])
print "pg=",pg

print "\nBasic␣attack:␣we␣should␣have␣nh+rho+2* theta*alpha <eta"
print "nh+rho+2* theta*alpha=%d,␣eta=%d" % (nh+rho +2* theta*alpha ,eta)

rhoR=gam -eta+nh+rho
B=2^ rhoR
M=Matrix ([[B,w],

[0,x0]])
ML=M.LLL()
print "rec␣pg=",abs(ML[0,0]/B),abs(ML[0,0]/B)==pg

# extended attack
m=Matrix ([[ZZ.random_element (2^ alpha) for i in range(theta )]+

[0 for i in range(n-theta)]
for j in range(ell )])

r=Matrix ([[ZZ.random_element (2^ rho) for i in range(n)]
for j in range(ell )])

w=[(sum([h[i]*m[j,i]*invg[i]*x0/p[i] for i in range(theta )])+
sum([h[i]*r[j,i]*x0/p[i] for i in range(n)])) % x0

for j in range(ell)]

M=Matrix(ZZ,ell+1,ell+1)
for i in range(ell):

M[i,i]=B
M[i,-1]=w[i]

M[-1,-1]=x0
ML=M.LLL()
MLg=ML[:ell ,:ell]/B
print "\nExtended␣attack:␣"
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print "we␣should␣have␣theta*alpha *(1+1/ ell)+nh+rho <eta"
print "theta*alpha *(1+1/ ell)+nh+rho=",N(theta*alpha *(1+1/ ell)+nh+rho),
print "eta=",eta
print "rec␣pg=",abs(MLg.det()),abs(MLg.det ())==pg

# with multiple vectors
x=Matrix ([[ZZ.random_element (2^ alpha) for i in range(theta)]

for k in range(d)])
w=Matrix ([[( sum([h[i]*m[j,i]*x[k,i]*invg[i]*x0/p[i]

for i in range(theta )])+
sum([h[i]*r[j,i]*x0/p[i] for i in range(n)])) % x0

for j in range(ell)] for k in range(d)])
M=Matrix(ZZ,ell+d,ell+d)
for i in range(ell):

M[i,i]=B
for k in range(d):

M[i,ell+k]=w[k,i]
for i in range(ell ,ell+d):

M[i,i]=x0

ML=M.LLL()
MLg=Matrix(ZZ,ML[:ell ,:ell]/B)
print "\nWith␣multiple␣vectors:␣"
print "we␣should␣have␣theta*alpha *(1/d+1/ell)+nh+rho <eta"
print "theta*alpha *(1/d+1/ ell)+nh+rho=",
print N(theta*alpha *(1/d+1/ ell)+nh+rho),"eta=",eta
rpg=abs(MLg.det())
print "rec␣pg=",rpg ,rpg==pg

print "With␣factoring:"
print "␣␣Normalized␣messages:"
for i in range(theta):

mg=Matrix(Integers(g[i]),m[:,i]).T
print "␣",mg/mg[0,0]

print "␣␣Recovered␣messages:"
for i in range(theta):

MLgi=MLg.change_ring(Integers(g[i]))
print "␣",MLgi.right_kernel (). matrix ()

print "Without␣factoring:"
print "␣␣Normalized␣message:"
v=Matrix(Integers(pg),[[crt([m[j,i] for i in range(theta)],

[g[i] for i in range(theta )])
for j in range(ell )]])

print "␣",v[0]/v[0,0]

print "␣␣Recovered␣message:"
MLext=Matrix(ZZ,ell ,2*ell)
MLext[:ell ,:ell]=MLg
for i in range(ell):

MLext[i,ell+i]=pg
print "␣",MLext.right_kernel (). matrix ()[0][: ell]
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