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Abstract. Logical cryptanalysis, first introduced by Massacci in 2000, is a viable
alternative to common algebraic cryptanalysis techniques over boolean fields.
With XOR operations being at the core of many cryptographic problems, recent
research in this area has focused on handling XOR clauses efficiently. In this pa-
per, we investigate solving the point decomposition step of the index calculus
method for prime degree extension fields F2n , using SAT solving methods. We
experimented with different SAT solvers and decided on using WDSAT, a solver
dedicated to this specific problem. We extend this solver by adding a novel break-
ing symmetry technique and optimizing the time complexity of the point decom-
position step by a factor of m! for the (m+1)th Semaev’s summation polynomial.
While asymptotically solving the point decomposition problem with this method
has exponential worst time complexity in the dimension l of the vector space
defining the factor base, experimental running times show that the the presented
SAT solving technique is significantly faster than current algebraic methods based
on Gröbner basis computation. For the values l and n considered in the experi-
ments, the WDSAT solver coupled with our breaking symmetry technique is up
to 300 times faster then MAGMA’s F4 implementation, and this factor grows with
l and n.

Keywords: discrete logarithm, index calculus, elliptic curves, point decomposition,
symmetry, satisfiability, DPLL algorithm

1 Introduction

The index calculus algorithm originally denoted a technique to compute discrete log-
arithms modulo a prime number, but it now refers to a whole family of algorithms
adapted to other finite fields and to some algebraic curves. It includes the Number Field
Sieve (NFS) [21], dedicated to logarithms in Zq and the algorithms of Gaudry [14] and
Diem [7] for algebraic curves in Fqn , where q = pk. Index calculus algorithms pro-
ceed in two main steps. The sieving (or point decomposition) step concentrates most
of the number theory and algebraic geometry needed overall. By splitting random el-
ements over a well-chosen factor base, it produces a large sparse matrix, the rows of
which are “relations”. In a second phase, the matrix step produces ”good” combina-
tions of the relations by finding a non-trivial vector in the kernel of this matrix. This in



turn enables the efficient computation of any discrete logarithm on the input domain.
A crucial step of the index calculus on elliptic curves is to solve the point decomposi-
tion problem (PDP), by generating sufficiently many relations among suitable points on
the curve. Using the so-called summation polynomials attached to the curve, this boils
down to solving a system of polynomial equations whose solutions are the coordinates
of points. The resulting algorithm has complexity O(q2−2/n), but this hides an expo-
nential factor in n which comes from the hardness of solving the point decomposition
problem.

Consequently, when q is large, n ≥ 3 is small and log q > cm for some constant c,
the Gaudry-Diem algorithm has a better asymptotic complexity then generic methods
for solving the discrete logarithm problem and Gröbner basis algorithms have become
a well-established technique [17] to solve these systems. Since a large number of in-
stances of PDP needs to be solved, most of the research in the area has focused on
improving the complexity of this step. Several simplifications such as symmetries and
polynomials with lower degree obtained from the algebraic structure of the curve have
been proposed [9].

When we consider elliptic curves defined over F2n with n prime, solving the PDP
system via Gröbner basis quickly becomes a bottleneck, and index calculus algorithms
are slower than generic attacks, from a theoretical and a practical point of view. More-
over, it is not known how to define the factor base in order to exploit all the symmetries
coming from the algebraic structure of the curve, without increasing the number of vari-
ables when solving PDP [33]. Finally, note that for random systems, pure Gröbner basis
algorithms are both theoretically and practically slower than simpler methods, typically
exhaustive search [5,22], hybrid methods [2] and SAT solvers. It is thus natural that we
turn our attention towards combinatorics tools to solve the PDP in characteristic 2.

Until recent years, SAT solvers have been proven to be a powerful tool in the crypt-
analysis of symmetric schemes. They were successfully used for attacking secret key
cryptosystems such as Bivium, Trivium, Grain, AES [15,20,16,28,27]. However, their
use in public key cryptosystems has rarely been considered. A prominent example is
the work of Galbraith and Gebregiyorgis [13], where they explore the possibility of
replacing available Gröbner basis implementations with generic SAT solvers (such as
MINISAT), as a tool for solving the polynomial system for the PDP over binary curves.
They observe experimentally that the use of SAT solvers may potentially enable larger
factor bases to be considered.

In this paper, we take important steps towards fully replacing Gröbner basis tech-
niques for solving PDP with constraint programming ones. First, we model the point
decomposition problem as a logical formula, with a reduced number of clauses, when
compared to the model used in [13]. We compare different SAT solvers and decide that
the recently introduced WDSAT solver [31] is most adapted to this problem and yields
fastest running times. Secondly, we propose a breaking symmetry technique and we
implement it as an extension of this solver. We show that by using the extended solver,
the proven worst case complexity of solving a PDP is O( 2ml

m! ), where m is the num-
ber of points in the decomposition and l is the dimension of the vector space defining
the factor base. This is to be compared against the Gröbner basis algorithm proposed
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in [10], whose runtime O(2ωn/2) (with n ∼ ml and ω the linear algebra constant) is
proven under heuristic assumptions.

We experimented with the index calculus attack on the discrete logarithm for elliptic
curves over prime degree binary extension fields. We obtain an important speedup in
comparison with the best currently available implementation of Gröbner basis (F4 [10]
in MAGMA [4]) and generic solvers [29,1,28]). Consequently, we were able to display
results for a range of parameters l and n that were not feasible with previous approaches.
In addition, our experiments show that Gröbner basis cannot compete with SAT solvers
techniques in terms of memory requirements. To illustrate, a system, which is solved
with the extended WDSAT solver using only 17MB of memory, requires more than
200GB when using the Gröbner basis method.

Our experiments suggest that this improved PDP resolution does not render the index
calculus attack faster than generic methods for solving the ECDLP in the case of prime
degree extension fields F2n .

This paper is organized as follows. Section 2 gives an overview of the index calculus
algorithm on elliptic curves, introduces the PDP problem and briefly recalls algebraic
and combinatorial techniques used in the literature to solve this problem. Section 3
details the reasoning models used in our experiments. Section 4 explains the breaking
symmetry technique that we implement in a SAT solver. In Section 5 we give worst
time complexity estimates for solving a PDP instance and derive the complexity of our
SAT-based index calculus algorithm. Finally, Section 6 presents benchmarks obtained
with our implementation. We compare this against results obtained using MAGMA’s F4
implementation and several available best generic SAT-solvers, such as MINISAT [29]
and CRYPTOMINISAT [28].

2 An Overview of Index Calculus

In 2008 and 2009, Gaudry [14] and Diem [7] independently proposed a technique to
perform the point decomposition step of the index calculus attack for elliptic curves
over extension fields, using Semaev’s summation polynomials [24]. Since this paper
focuses on binary elliptic curves, we introduce Semaev’s summation polynomials here
directly for these curves.

Let F2n be a finite field and E be an elliptic curve defined by the equation

E : y2 + xy = x3 + ax2 + b, (1)

with a, b ∈ F2n . Using standard notation, we take F̄2n to be the algebraic closure of
F2n and E(F2n) (resp. E(F̄2n)) to be the set of points on the elliptic curve defined over
F2n (resp. F̄2n ). Let O to be the point at infinity on the elliptic curve. For m ∈ N, the
mth-summation polynomial is a multivariate polynomial in F2n [X1, . . . , Xm] with the
property that, given points P1, . . . , Pm ∈ E(F̄2n), then P1 + . . .+Pm = O if and only
if Sm(xP1

, . . . , xPm
) = 0. We have that

S2(X1, X2) = X1 + X2, (2)

S3(X1, X2, X3) = X2
1X

2
2 + X2

1X
2
3 + X1X2X3 + X2

2X
2
3 + b,
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and for m ≥ 4 we have the following recursive formula:

Sm(X1, . . . , Xm) = (3)
ResX(Sm−k(X1, . . . , Xm−k−1, X), Sk+2(Xm−k, . . . , Xm, X)).

The polynomial Sm is symmetric and has degree 2m−2 in each of the variables. Let V
be a vector subspace of F2n/F2, whose dimension l will be defined later. We define the
factor basis B to be :

B = {(x, y) ∈ E(F2n)|x ∈ V }.

Heuristically, we can easily see that the factor base has approximatively 2l elements.
Given a point R ∈ E(F2n), the point decomposition problem is to find m points
P1, . . . , Pm ∈ B such that R = P1 + . . . + Pm. Using Semaev’s polynomials, this
problem is reduced to the one of solving a multivariate polynomial system.

Definition 1. Given s ≥ 1 and an l-dimensional vector subspace V of F2n/F2 and f ∈
F2n [X1, . . . , Xm] any multivariate polynomial of degree bounded by s, find (x1, . . . , xm) ∈
V m such that f(x1, . . . , xm) = 0.

Using the fact that F2n is an n-dimensional vector space over F2, the equation
f(x1, . . . , xm) = 0 can be rewritten as a system of n equations over F2, with ml vari-
ables. In the literature, this is called a Weil restriction [14] or Weil descent [23]. The
probability of having a solution to this system depends on the ratio between n and l.
Roughly, when n/l ∼ m the system has a reasonable chance to have a solution.

Recent work on solving the decomposition problem has focused on using advanced
methods for Gröbner basis computation such as Faugère’s F4 and F5 algorithms [10,11].
This is a natural approach, given that similar techniques for small degree extension
fields in characteristic > 2 yielded index calculus algorithms which are faster than the
generic attacks on the DLP.

A common technique when working with Semaev’s polynomials is to use a sym-
metrization process in order to further reduce the degree of the polynomials appearing
in the PDP system. In short, since Sm is symmetric, we can rewrite it in terms of the
elementary symmetric polynomials e1 =

∑
1≤i1≤m Xi1 , e2 =

∑
1≤i1,i2≤m Xi1Xi2 ,

. . ., em =
∏

1≤i≤m Xi. We denote S′m+1 the polynomial obtained after symmetrizing
Sm+1 in the first m variables, i.e. we have S′m+1 ∈ F2n [e1, . . . , em, Xm+1].

In [33], the authors report on experiments lead on systems obtained using a care-
ful choice of the vector space V and application of the symmetrization process. Using
Magma’s F4 available implementation, we experimented with both the symmetric and
the non-symmetric version for PDP systems and found, as in [33], that the symmet-
ric version yields better results. Therefore, in order to set the notation, we detail this
approach here.

Let t be a root of a defining polynomial of F2n over F2. Following [33], we choose
the vector space V to be the dimension-l subspace generated by 1, t, t2, . . . , tl−1. There-
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fore we can write:

e1 = d1,0 + . . . + d1,l−1t
l−1

e2 = d2,0 + . . . + d2,2l−2t
2l−2 (4)

. . .

em = dm,0 + . . . + dm,m(l−1)t
m(l−1)

where the di,j with 1 ≤ i ≤ m, 0 ≤ j ≤ i(l − 1) are binary variables. After choosing
xm+1 ∈ F2n and substituting e1, . . . , em as in Equation (4), we get:

S′m+1(e1, . . . , em, xm+1) = f0 + . . . + fn−1t
n−1,

where fi, 0 ≤ i ≤ n − 1 are polynomials in the binary variables di,j , 1 ≤ i ≤ m,
0 ≤ j ≤ i(l − 1) . After a Weil descent, we obtain the following polynomial system

f0 = f1 = . . . = fn−1 = 0. (5)

One can see that with this approach, the number of variables is increased by a factor
m, but the degrees of the polynomials in the system are seriously reduced. Further
simplification of this system can be obtained if the elliptic curve has a rational point of
order 2 or 4 [13]. Since this is a restriction, we did not implement this approach and
used the system in Equation (5) as the starting point for our SAT model of the point
decomposition problem.

2.1 Solving the decomposition problem using SAT solvers

Before presenting our approach for finding solutions of the PDP using SAT solvers, we
give preliminaries on the Satisfiability problem, its terminology and solving techniques.
A SAT solver is a special purpose program to solve the SAT problem. Using SAT solvers
as a cryptanalytic tool requires expressing the cryptographic problem as a Boolean for-
mula in conjunctive normal form (CNF). The basic building block of a CNF formula
is a literal, which is either a propositional variable or its negation. An OR-clause is a
non-exclusive disjunction (∨) of literals x1 ∨ x2 ∨ . . .∨ xk. A CNF formula is a unique
OR-clause or a conjunction (∧) of at least two OR-clauses. An interpretation of a given
propositional formula consists in assigning a truth value (TRUE /FALSE) to each of its
variables. A CNF formula is said to be satisfiable if there exists at least one interpre-
tation under which the formula is TRUE, and it is said to be unsatisfiable otherwise.
The propositional satisfiability problem (SAT) is the problem of determining whether a
(usually CNF) formula is satisfiable.

In the remainder of this paper, we will refer to an OR-clause simply by a clause,
since CNF is the standard form used in SAT solvers. A clause where the operation be-
tween literals is an exclusive OR, will be referred to as a XOR-clause. The use of the
logical XOR operator (⊕) is common in cryptography. When working on cryptographic
problems the CNF form can be extended to a CNF-XOR form, which is a conjunction of
both OR-clauses and XOR-clauses.
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The most straightforward method for solving the SAT problem is to complete the
truth table associated to the formula in question. This is equivalent to an exhaustive
search method and thus impractical. Luckily, in some cases a partial assignment on the
set of variables can determine whether a clause is satisfiable. Assigning l, a literal from
the partial assignment, to TRUE will lead to :

1. Every clause containing l is removed (since the clause is satisfied).
2. In every clause that contains ¬l this literal is deleted (since it can not contribute to

the clause being satisfied).

The second rule above can lead to obtaining a clause composed of a single literal, called
a unit clause. Since this is the only literal left which can satisfy the clause, it must be
set to TRUE and therefore propagated. The described method is called unit propagation.
The reader can refer to [3] for more details.

A conflict occurs when it exists at least one clause with all literals assigned to FALSE
in the formula. If this case is a consequence of a direct assignment, or eventually of Unit
Propagation, this has to be undone. This is commonly known as backtracking.

Example 1. For instance, these two atomic operations can be illustrated thanks to the
following sample built on a set of 5 clauses numbered C1 to C5.

C1 : ¬x1 ∨ x2 ∨ ¬x4

C2 : x1 ∨ x3 ∨ x4

C3 : x1 ∨ ¬x3

C4 : x1 ∨ x3

C5 : x2 ∨ x4

Assigning the variable x1 to FALSE leads the clause C1 to be satisfied by the literal
x1. As well and as a consequence, clauses C2, C3 and C4 cannot be satisfied thanks to
the literal x1. Hence, x1 can be deleted from these clauses. Then, C3 is a unit clause
composed of the literal ¬x3 and as a consequence, x3 has to be assigned to FALSE. We
say that the truth value of x3 is inferred through unit propagation.

When we set x3 to its inferred value FALSE, we apply the second rule to clauses
C2 and C4. As a consequence, clause C4 can not be satisfied by any of its literals.
This constitutes a conflict and it invokes a backtracking procedure. The backtracking
procedure consists in going back to the state that the formula was in, before the last
assumption was made. In our example, the last assumption was that x1 is FALSE and
thus, we go back to the initial state.

The basic backtracking search with unit propagation that we described composes
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6], which is a state-of-the-
art complete SAT solving technique. DPLL works by trying to assign a truth value to
each variable in the CNF formula, recursively building a binary search tree of height
equivalent (at worst) to the number of variables. After each variable assignment, the
formula is simplified by unit propagation. If a conflict is met, a backtracking procedure
is launched and the opposite truth value is assigned to the last assigned literal. If the
opposite truth value results in conflict as well, we backtrack to an earlier assumption
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or conclude that the formula is unsatisfiable - when there are no earlier assumptions
left. The number of conflicts is a good measure for the time complexity of a SAT prob-
lem solved using a DPLL-based solver. If the complete search tree is built, the worst
case complexity is O(2v), where v is the number of variables in the formula. Figure 1
illustrates the binary search tree resulting from the resolution of Example 1.

x1

X x2

X x3

x4

OK

F T

F T

F

F

Fig. 1: Binary search tree constructed with the DPLL algorithm.

A common variation of the DPLL is the conflict-driven clause learning (CDCL) al-
gorithm [26]. In this variation, each encountered conflict is described as a new clause
and added to the formula (learning). State-of-the-art CDCL solvers, such as MINISAT
and GLUCOSE, have been shown to be a powerful tool for solving CNF formulas. How-
ever, they are not equipped to handle XOR-clauses and thus parity constraints have to
be translated into CNF. Since handling CNF-clauses derived from XOR constraints is not
necessarily efficient, recent works have concentrated on coupling CDCL solvers with
a XOR-reasoning module. Furthermore, these techniques can be enhanced by Gaus-
sian elimination, as in the works of Soos et al. (resulting in the CRYPTOMINISAT
solver) [28,27], Han and Jiang [16], Laitinen et al.[20,19].

3 Model description

This section gives in full detail the three models we used in our experiments: the alge-
braic one used by Yun-Ju et al [33], the CNF model used by Galbraith and Gebregiyor-
gis [13] and the model we propose.

3.1 The algebraic model

Since the logical models are constructed starting from the algebraic one, we present
first the model used when solving the PDP problem using Gröbner basis. The elemen-
tary symmetric polynomials ei are written in terms of the di,j binary variables, as in
Equation (4). Similarly, since we look for a set of solutions (x1, . . . , xm) ∈ V m, the Xi
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variables are written formally as follows:

X1 = c1,0+ . . . +c1,l−1t
l−1

X2 = c2,0+ . . . +c2,l−1t
l−1

. . .

Xm = cm,0+ . . . +cm,l−1t
l−1

where ci,j , with 1 ≤ i ≤ m, 0 ≤ j ≤ l − 1, are binary variables. Using Equation (??),
we derive the following equations:

d1,0 = c1,0+ . . . +cm,0

d1,1 = c1,1+ . . . +cm,1 (6)
. . .

dm,m(l−1) = c1,l· . . . ·cm,l.

The remaining equations correspond to polynomials fi, 0 ≤ i ≤ n − 1, obtained
in Equation (4) via the Weil descent on S′m+1. Recall that these are polynomials in
the binary variables di,j . We now describe how we derive logical formulas from this
system.

3.2 The CNF-XOR model

When creating constraints from a boolean polynomial system, the multiplication of
variables becomes a conjunction of literals and the sum of multiple terms becomes a
XOR-clause. From the two sets of equations in the algebraic model, we obtain two sets
of XOR-clauses, where the terms are single literals or conjunctions. To illustrate, the
logical formula derived from Equation (6) is as follows:

¬d1,0 ⊕ c1,0 ⊕ . . .⊕ cm,0

¬d1,1 ⊕ c1,1 ⊕ . . .⊕ cm,1 (7)
. . .

¬dm,m(l−1) ⊕ (c1,l ∧ . . . ∧ cm,l).

SAT solvers adapted for XOR reasoning in the literature contain XOR clauses formed
by xoring single literals, and not conjunctions of several ones. To follow this paradigm,
we have to transform the system above further. We substitute all conjunctions in a
XOR clause by a newly added variable. Let c′ be the variable substituting a conjunc-
tion (ci1,j1 ∧ ci2,j2 ∧ ... ∧ cik,jk). We have c′ ⇔ (ci1,j1 ∧ ci2,j2 ∧ ... ∧ cik,jk), which
rewrites as

(c′ ∨ ¬ci1,j1 ∨ ¬ci2,j2 ∨ ... ∨ ¬cik,jk) ∧
(¬c′ ∨ ci1,j1) ∧
(¬c′ ∨ ci2,j2) ∧ (8)
· · ·
(¬c′ ∨ cik,jk)
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For clarity, variables introduced by substitution of monomials containing exclu-
sively the variables ci,j will be denoted c′ and clauses derived from these substitutions
are said to be in the X-substitutions set of clauses. Similarly, substitutions of the mono-
mials containing only the di,j variables are denoted by d′ and the resulting set is referred
to as the E-substitutions set of clauses.

Note from Equation (8) that the number of clauses obtained by substitution of a
k-degree monomial is k + 1. This will be further discussed in our complexity analysis.

After substituting conjunctions, we will refer to the set of clauses obtained from
Equation (7) as the E-X-relation set of clauses. Finally, the equations corresponding
to polynomials fi, 0 ≤ i ≤ n − 1, are derived in the same manner and the resulting
clauses will be referred to as the F set of clauses.

That concludes the four sets of clauses in our SAT model. This model does not
represent a CNF formula, since the E-X-relation set and the F set are made up of XOR-
clauses. Hence, it will be referred to as the CNF-XOR model.

Proposition 1. Assigning all ci,j variables, for 1 ≤ i ≤ m and 1 ≤ j ≤ l, leads to the
assignment of all variables in the CNF-XOR model through unit propagation.

Proof. Let us examine the unit propagation process for each set of clauses separately.

1. Clauses in the X-substitutions set are obtained by transforming c′ ⇔ (ci1,j1 ∧
ci2,j2 ∧ ... ∧ cik,jk). We note that on the right of these equivalences there are only
ci,j variables and on the left there is one single c′ variable. The assignment of all
of the ci,j variables will yield the assignment of all variables on the left of the
equivalences, i.e. all c′ variables.

2. Clauses in the E-X-relations set are obtained by transforming the algebraic system
in (6). We observe that on the right of the equations there are only ci,j and c′

variables and on the left there is one single di,j variable. When all ci,j and all c′

variables are assigned, all di,j variables will have their truth value assigned through
unit propagation on the E-X-relation set.

3. Clauses in the E-substitutions set are obtained by transforming d′ ⇔ (di1,j1 ∧
di2,j2 ∧ ... ∧ dik,jk). Similarly as with the X-substitutions set, we have only di,j
variables on the right of these equivalences and one single d′ variable on the left.
The assignment of all of the di,j variables will thus yield the assignment of all d′

variables.
4. Finally, parity constraints in set F decide whether the obtained interpretation satis-

fies the formula.

This concludes the four types of variables present in the CNF-XOR model. ut

3.3 The CNF model

Since most of the modern SAT solvers can read and process CNF formulas, we explain
the classical technique for transforming a CNF-XOR model to a CNF model. In fact, this
is also the technique used in MAGMA’s available implementation for deriving a CNF
model from a boolean polynomial system.
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A XOR-clause is said to be satisfied when it evaluates to TRUE, i.e. when there
are an odd number of literals set to TRUE. The CNF-encoding of a ternary XOR-clause
(x1 ⊕ x2 ⊕ x3) is

(x1 ∨ ¬x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ ¬x3) ∧ (9)
(¬x1 ∨ ¬x2 ∨ x3) ∧

(x1 ∨ x2 ∨ x3)

Similarly, a XOR-clause of size k can be transformed to a conjunction of 2k−1 OR-
clauses of size k. Since the number of introduced clauses grows exponentially with the
size of the XOR-clause, it is a good practice to cut up the XOR-clause into manageable
size clauses before proceeding with the transformation. To cut a XOR-clause (x1⊕ . . .⊕
xk) of size k in two, we introduce a new variable x′ and we obtain the following two
XOR-clauses:

(x1 ⊕ . . .⊕ xi ⊕ x′) ∧
(xi+1 ⊕ . . .⊕ xk ⊕¬x′).

In our experiments with MINISAT in Section 6, we used a CNF model obtained after
cutting into ternary XOR-clauses, since any XORSAT problem reduces in polynomial
time to a 3-XORSAT problem [3]. To the best of our knowledge, MAGMA’s implemen-
tation adopts a size 5 for XOR clauses. The optimal size at which to cut the XOR-clauses
depends on the nature of the model and can be determined by running experiments us-
ing different values. Running these experiments was out of the scope of our work, as
the WDSAT solver does not use the CNF model.

We implemented all three models described in this section and we present Table 1 to
serve as a comparison on the number of variables, equations and clauses. Values for the
algebraic and CNF-XOR model are exact, whereas those for the CNF model are averages
obtained from experiments presented in Section 6.

Gröbner model CNF model CNF-XOR model
l n #Vars #Equations #Vars #CNF-clauses #Vars #CNF-clauses #XOR-clauses
6 19 51 52 5019 19577 767 2364 52
7 23 60 62 8223 32201 1101 3466 62
8 23 69 68 11036 43210 1510 4835 68
9 37 78 88 20969 82721 2000 6495 88

10 47 87 104 32866 130040 2577 8470 104
11 59 96 122 49538 196434 3247 10784 122

Table 1: The number of variables and equations/clauses for the three models.

In 2014, Galbraith and Gebregiyorgis [13] used MAGMA’s implementation to com-
pute the equivalent CNF logical formulas of the polynomial system resulting from the
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Weil descent of a PDP system and ran experiments using the general-purpose MINISAT
solver to get solutions for these formulas. One can see from Table 1 that the model they
used has a significantly larger number of clauses and variables, when compared to the
CNF-XOR model. This motivated our choice of the CNF-XOR model for this work.

4 Breaking symmetry

Since Semaev’s summation polynomials are symmetric, if {x1, . . . , xm} is a solution,
then all permutations of this set are solutions as well. These solutions are equivalent
and finding more than one is of no use for the PDP. When a DPLL-based SAT solver
is used (see Section 2.1), we observe redundancy in the binary search tree. Indeed, for
m = 3 when a potential solution {x1, x2, x3} has been eliminated, {x2, x1, x3} does
not need to be tried out. To avoid this redundancy, we establish the following constraint
x1 ≤ x2 ≤ . . . ≤ xm.

It would be tedious to add this constraint in the model itself. Any approach implies
adding clauses and weighing the SAT model. Instead, we decided to add this constraint
in the DPLL algorithm using a tree-pruning-like technique. In a classical DPLL imple-
mentation we try out both FALSE and TRUE for the truth value of a chosen variable.
In our breaking symmetry variation of DPLL, in some cases the truth value of FALSE
will not be tried out as all potential solutions after this assignment would not satisfy
the constraint x1 ≤ x2 ≤ . . . ≤ xm. Our variation of DPLL is detailed in Algorithm 1
and the line numbers that distinguish it from a classical DPLL algorithm are in bold.
Note that one crucial difference between the two algorithms is the choice of a variable
on line 4. While this choice is arbitrary in a classical DPLL algorithm, in Algorithm 1
variables need to be chosen in the order from the leading bit of x1 to the trailing bit of
xm. If this is not respected, our algorithm does not yield a correct answer.

Using the notation from Section 3, ci,j corresponds to the jth bit of the ith x-vector,
where 2 ≤ i ≤ m and 1 ≤ j ≤ l. We recall from Proposition 1 that assigning all
ci,j variables in the CNF-XOR model leads to the assignment of all variables through
unit propagation. In Algorithm 1, we decide whether to try out the truth value of FALSE
for ci,j or not by comparing two x-vectors bit for bit, in the same way that we would
compare binary numbers. When we are deciding on the truth value of ci,j we have the
following reasoning:

• If ci−1,j is FALSE, we try to set ci,j both to FALSE and TRUE (if FALSE fails). When
ci,j is set to FALSE, all of the potential xi solutions are greater than or equal to xi−1,
thus we continue with the same bit comparison on the next level. However, when
ci,j is set to TRUE, all of the potential xi solutions are strictly greater than xi−1 and
we no longer do bit comparison on further levels.
• If ci−1,j is TRUE, we only try out the truth value of FALSE and we continue to do

bit comparison since the potential xi solutions are greater than or equal to xi−1 at
this point.

Lastly, we give further information which explain in full detail Algorithm 1. We use
a flag denoted compare to instruct whether to do bit comparison at the current search
tree level or not. On line 6 we reset the compare flag to TRUE since ci,j , when j = 0,

11



Algorithm 1 Function DPLL BR SYM(F , compare) : Recursive function implementing
the DPLL algorithm coupled with our breaking symmetry technique.
Input: Propositional formula F and a flag compare
Output: TRUE if formula is satisfiable, FALSE otherwise.
1: if all clauses and all XOR-clauses are satisfied then
2: return TRUE.
3: end if
4: choose next ci,j .
5: if j=0 then
6: compare← TRUE.
7: end if
8: if (compare is FALSE) or (i = 1) or (ci−1,j is set to FALSE) then
9: (contradiction, F ′)← ASSIGN(F , ¬ci,j).

10: if contradiction then
11: BACKTRACK().
12: compare← FALSE.
13: else
14: if DPLL BR SYM(F ′, compare) returns FALSE then
15: BACKTRACK().
16: compare← FALSE.
17: else
18: return TRUE.
19: end if
20: end if
21: end if
22: (contradiction, F ′)← ASSIGN(F , ci,j).
23: if contradiction then
24: BACKTRACK().
25: return FALSE.
26: end if
27: return DPLL BR SYM(F ′, compare).

corresponds to a leading bit of the next x-vector. Lastly, if-conditions on line 8 have to
be checked in the specified order.

Algorithm 1 presents a depth-first transversal of a binary search tree with a symme-
try breaking technique. We specifically designed it for the PDP, but it can be applied to
similar problems that deal with symmetry.

5 Time complexity analysis

As we explained in Section 2, the time complexity of a SAT problem in a DPLL context
is measured by the number of conflicts. This essentially corresponds to the number of
leaves created in the binary search tree. The worst case complexity of the algorithm is
thus 2h, where h is the height of the tree.

As per Proposition 1, we only reason on ci,j variables from the CNF-XOR model.
Therefore, h = ml and the worst-case complexity for the PDP is 2ml.

12



Furthermore, with the symmetry breaking technique explained in Section 4, we op-
timize this complexity by a factor of m!. Indeed, out of the m! permutations of the
solution set {x1, . . . , xm}, only one satisfies x1 ≤ x2 ≤ . . . ≤ xm (neglecting the
equality).

This concludes that the worst-case number of conflicts reached for one PDP compu-
tation is

2ml

m!
. (10)

Going further in the time complexity analysis, we observe that to find one conflict
we go through (in the worst case) all clauses in the model during unit propagation.
Hence, the running time per conflict grows linearly with the number of clauses. First,
let us count the number of clauses in the X-substitution set. For every 2 ≤ d ≤ m
there exist

(
m
d

)
· ld monomials of degree d given by products of variables ci,j , and

they each yield d + 1 clauses (see Equation (8)). In total, the number of clauses in the
X-substitutions set is

(

m∑
d=2

(
m

d

)
· ld)(d + 1).

Recall that degree one monomials are not substituted and thus do not produce new
clauses. We can adapt this reasoning for the E-substitutions set as well.

The number of XOR-clauses in the CNF-XOR model is equivalent to the number of
equations in the algebraic model. We have m(m+1)

2 (l− 1) +m in the E-X-relation set
and n in the F set.

Remark 1. Using this analysis, we approximate the number of clauses, denoted by C,
for m = 3, as all experiments presented in this paper are performed using the fourth
summation polynomial.

C ≈
(

3

2

)
· 3l2 +

(
3

3

)
· 4l3 +

((
3

2

))
· 3(3l − 2)2 + (6l − 3) + n ≈ (11)

≈ 4l3 + 171l2 − 210l + n + 69.

In practice, many monomials have no occurrence in the system after the Weil de-
scent process. In fact, the value in (11) is a huge overestimate and exact values for
l ∈ {6, . . . , 11} are shown in Table 1.

Assuming that we take m small, we conclude that the number of clauses in our
model is polynomial in l. Let T be a constant representing the time to process one
clause. The running time of the PDP is bounded by

T · C · 2ml/m!.

This allows us to establish the following result on the complexity of our SAT-based
index calculus algorithm.

Theorem 1. The complexity of the index calculus algorithm for solving ECDLP on a
curve defined over F2n , using a factor base given by a vector space of dimension l, is
Õ(2n+l), where the Õ hides a polynomial factor in l.
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Proof. In order to perform a whole ECDLP computation, one has to find 2l relations.
Following [8], the probability that a random point can be written as a sum of m factor
basis elements is heuristically approximated by 2ml

m!2n . The time complexity for the full
decomposition phase, using a dedicated WDSAT solver is:

CT2n+l.

ut

This worst case complexity is to be compared to the O(2ω
n
2 +l) complexity of

Faugère et al [12]. Both approaches rely on the heuristic approximation of the prob-
ability that a random point can be decomposed in the factor base. However, we under-
line here that Faugère et al’s proof of this result is based on heuristic assumption on
the Gröbner basis computation for PDP, while our analysis for the SAT-based approach
simply relies on the rigorously proved worst case for the DPLL search tree (10).

6 Experimental Results

We conducted experiments using S′4 on binary Koblitz elliptic curves [18] defined over
F2n . We experimented with Gröbner basis and SAT approaches. In [31], WDSAT is
reported to outperform the Gröbner basis methods, as well as all generic SAT solvers for
this particular problem. First, we confirm this by experimenting with higher parameters
and results are reported in Table 2. Secondly, we extend the WDSAT solver with our
symmetry breaking algorithm described in Section 4. Our symmetry breaking algorithm
yields faster running times and we were able to perform experiments using greater
parameters. Results are shown in Table 3. All tests were performed on a 2.40GHz Intel
Xeon E5-2640 processor.

The Gröbner basis approach takes as input an algebraic model. We used the grevlex
ordering, as this is considered to be optimal in the literature. The MINISAT solver pro-
cesses a CNF model input, whereas CRYPTOMINISAT and WDSAT use the CNF-XOR
model. WDSAT can also process directly an algebraic model in ANF form. Using the
CNF-XOR model is a huge advantage, as it has far less clauses and variables than the CNF
model. Gaussian elimination can be beneficial for SAT instances derived from crypto-
graphic problems. However, it has been reported to yield slower running times for some
instances, as performing the operation is very costly. For this reason, CRYPTOMINISAT
and WDSAT do not include Gaussian elimination by default, but the feature can be
turned on explicitly. We experimented with both variants for both XOR-able solvers.

With WDSAT we set a custom order of branching variables, which allowed us to
make use of our findings in Proposition 1 and branch only on the ci,j variables. Cryp-
toMiniSat does not have this feature in current version as authors report that custom
order of branching variables leads to slower running times in most cases. We added this
feature to the source code of CryptoMiniSat and we ran tests both with a custom order
as per Proposition 1 and with the order chosen by the solver.

Table 2 compares different approaches, showing results from optimal variants of
each solving tool. Running times of all variants of CryptoMiniSat and WDSAT are
given in Appendix A. We experimented with different values of n for each l and we
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performed tests on 20 instances for each parameter size. Half of the instances have a
solution and the other half do not. We show running time and memory averages on
satisfiable and unsatisfiable instances separately, since these values differ between the
two cases. SAT solvers stop as soon as they find a solution and if this is not the case they
need to respond with certainty that a solution does not exist. Hence, running times of
SAT solvers are significantly slower when there is no solution. On the other hand, [33]
indicates that the computational complexity of Gröbner basis is lower when a solution
does not exist.

We set a timeout of 10 hours and a memory limit of 200GB for each run. Using
MINISAT, we were not able to solve the highest parameter instances (l = 8) within this
time frame. On the other hand, Gröbner basis computations for these instances halted
before timeout because of the memory limit. This data is in line with previous works.
[33] and [25] show experiments using the fourth summation polynomial with l = 6,
whereas the highest parameter size achieved in [13] is l = 8.

Table 2 shows the average runtime in seconds, the average number of conflicts and
the average memory use in MB. The WDSAT solver allocates memory statically, ac-
cording to predefined constant memory requirements. This explains why memory aver-
ages do not vary much between the different size parameters, or between satisfiable and
unsatisfiable instances.

SATisfiable UNSATisfiable
Approach l n Runtime #Conflicts Memory Runtime #Conflicts Memory

Gröbner

6 17 207.220 NA 3601 142.119 NA 3291
19 215.187 NA 3940 155.765 NA 4091

7 19 3854.708 NA 38763 2650.696 NA 38408
23 3128.844 NA 35203 2286.136 NA 35162

8 23 >200GB >200GB
261 >200GB >200GB

MINISAT

6 17 62.702 408189 12.7 270.261 1463309 24.2
19 229.055 1778377 23.6 388.719 2439933 29.8

7 19 406.918 1919565 33.6 6777.431 25180492 105
23 12945.613 61610582 152 13260.586 59289671 163

8 23 8027.974 63384411 256 >10 hours
26 >10 hours >10 hours

CMS WITH
PROP.1

6 17 15.673 61812 34.5 62.396 260843 39.3
19 14.128 53767 33.2 64.563 259688 42.1

7 19 176.463 484098 41.5 843.367 2077747 72.3
23 300.021 638152 48.9 1012.412 2070190 73.6

8 23 1700.949 2420937 76.7 11959.938 16756106 82.4
26 3000.831 4179236 79.4 14412.193 16783213 81.8

1 The non-prime degree case of n = 26 is not handled differently. The factor base is an l-
dimensional vector space and the Weil descent does not include specific reductions which can
be applied to non-prime degrees.
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SATisfiable UNSATisfiable
Approach l n Runtime #Conflicts Memory Runtime #Conflicts Memory

WDSAT with
Prop.1

6 17 .601 49117 1.4 3.851 254686 1.4
19 .470 38137 1.4 3.913 255491 1.4

7 19 9.643 534867 16.7 44.107 2073089 16.7
23 9.303 477632 16.7 47.347 2067168 16.7

8 23 68.929 2646071 16.8 525.057 16666331 16.8
26 185.480 6261107 16.9 533.607 16684378 16.9

Table 2: Comparing different approaches for solving the PDP.

Choosing the WDSAT variant without Gaussian elimination as optimal, we contin-
ued experiments for bigger size parameters using this variant coupled with the breaking
symmetry technique. Table 3 shows results for l = 6, 11 and n sizes up to 89. All values
are an average of 100 runs, as running times for satisfiable instances can vary remark-
ably. If we compare the number of conflicts for the first three l sizes of the complete
WDSAT solver with its symmetrical variant in Table 2, we observe a speedup factor
that rapidly approaches 6.2 This confirms our claims in Section 5 that the symmetry
breaking technique proposed in this paper yields a speedup by a factor of m!.

Comparing results for l = 6 and l = 7 in Table 3 with the equivalent results for
the Gröbner basis method in Table 2, we observe that WDSAT is up to 300 times faster
than Gröbner basis for the cases where there is no solution and up to 1700 times faster
for instances allowing a solution. This is a rough comparison, as the factor grows with
parameters l and n.

Lastly, we experimented with the collision search [32] generic method, using the
open source code at [30]. This implementation solves the discrete log problem in the
case of prime field curves. We did not adapt the code for extension fields and the com-
putation time for multiplication on the curve might vary between the two cases. Even
so, this allows for a rough comparison between the running times of generic methods
and the work presented in this paper. In a uni-thread environment, a whole collision
search computation for parameter n = 59 has an average runtime of 0.8 hours on our
platform. Computing 2l successful decompositions for parameters n = 59 and l = 9
would take more than 86 hours according to results in Table 3. The estimated running
time becomes immensely worse when we take into account unsuccessful decomposi-
tions as well. We conclude that for the case of prime degree extension fields, even with
the significant speedup that we achieved for the PDP, index calculus attacks are still not
practical compared to the PCS generic method.

7 Conclusions and Future Work

Gröbner basis methods have been shown powerful in solving the PDP in the index calcu-
lus attack for elliptic curves defined over small degree extension fields in characteristic
> 2. In this paper we argue that for finite fields in characteristic 2 a SAT-based approach

2 We compare the cases where there is no solution, as these have more stable averages.
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SATisfiable UNSATisfiable
l n Runtime #Conflicts Memory Runtime #Conflicts Memory

6
17 .220 17792 1.4 .605 43875 1.4
19 .243 19166 1.4 .639 44034 1.4

7
19 2.205 130062 1.4 6.859 351353 1.4
23 3.555 189940 1.4 7.478 350257 1.4

8
23 29.584 1145966 17.0 81.767 2800335 17.0
26 39.214 1426216 17.0 85.822 2803580 17.0

9

37 447 10557129 17.1 1048 22396994 17.1
47 609 12675174 17.2 1167 22381494 17.2
59 611 11297325 17.3 1327 22390211 17.3
67 677 11608420 17.4 1430 22388053 17.4

10

47 5847 95131900 17.3 11963 179019409 17.3
59 6849 97254458 17.4 13649 179067171 17.4
67 6530 88292215 17.4 14555 179052277 17.4
79 7221 86174432 17.5 16294 179043408 17.5

11

59 64162 727241718 19.2 135801 1432191354 19.2
67 70075 741222864 19.3 145357 1432183842 19.3
79 61370 599263451 19.4 161388 1432120827 19.4
89 85834 736610196 19.5 175718 1432099666 19.5

Table 3: Experimental results using the complete WDSAT solver. Running times are in seconds
and memory use is in MB.

yields more practical results. We started by explaining that general-purpose SAT solvers
cannot yield considerably faster running times because the number of variables in a SAT
model is significantly larger than the number of variables in the algebraic model.

Our first contribution is to propose a PDP CNF-XOR model with only ml core vari-
ables, whose assignment propagates all remaining variables in the model. To solve this
model we use a SAT solver dedicated to solving systems derived from a Weil descent.
As our second contribution, we optimized the time complexity of this solver by a factor
of m! using a symmetry breaking technique.

We presented experiments for the PDP on prime degree extension fields in charac-
teristic 2, using parameter sizes of up to l = 11 and n = 89. This presents a significant
improvement over the current state-of-the-art, as experiments using l greater than 8 have
never been shown before for this case. Moreover, memory is no longer a constraint for
the PDP when the Gröbner basis computation is replaced with SAT solving.

Regarding future perspectives, it would be interesting to test the performance of
SAT solvers on the simplified system obtained by considering the action of 2-torsion
and 4-torsion points on the factor base, as in [13].
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A Comparing different variations of CryptoMiniSat and WDSAT

SATisfiable UNSATisfiable
Approach l n Runtime #Conflicts Memory Runtime #Conflicts Memory

CMS

6 17 133.983 775948 48.4 363.513 1709971 59.5
19 560.080 3396192 64.1 1172.740 5726372 70.1

7 19 1210.612 5713259 85.3 10258.351 26079224 117
23 3637.032 12159752 80.4 19857.454 47086152 130

8 23 9846.554 18509058 123 >10 hours
26 6905.477 13269631 115 >10 hours

CMSGE

6 17 119.866 677336 54.5 436.811 1877699 64.2
19 224.484 1219840 58.7 615.952 2763754 76.5

7 19 893.425 3722805 86.5 3587.929 8642108 107
23 580.007 1753040 82.4 3253.786 8183887 132

8 23 11265.010 19604250 155 >10 hours
26 3933.637 7920920 157 >10 hours

CMS WITH
PROP.1

6 17 15.673 61812 34.5 62.396 260843 39.3
19 14.128 53767 33.2 64.563 259688 42.1

7 19 176.463 484098 41.5 843.367 2077747 72.3
23 300.021 638152 48.9 1012.412 2070190 73.6

8 23 1700.949 2420937 76.7 11959.938 16756106 82.4
26 3000.831 4179236 79.4 14412.193 16783213 81.8

CMSGE
WITH PROP.1

6 17 17.698 62161 39.1 86.049 294428 63.2
19 16.301 52730 39.8 88.738 293859 62.7

7 19 220.037 479197 51.2 2551.277 2418051 72.5
23 367.105 653673 59.4 1329.494 2380614 93.1

8 23 2493.328 2419268 112 19058.671 19359334 164
26 4956.952 4171674 126 19907.670 19534832 167

WDSAT with
Prop.1

6 17 .601 49117 1.4 3.851 254686 1.4
19 .470 38137 1.4 3.913 255491 1.4

7 19 9.643 534867 16.7 44.107 2073089 16.7
23 9.303 477632 16.7 47.347 2067168 16.7

8 23 68.929 2646071 16.8 525.057 16666331 16.8
26 185.480 6261107 16.9 533.607 16684378 16.9

WDSATGE
with Prop.1

6 17 9.193 48178 1.4 56.718 253123 1.4
19 7.041 36835 1.4 58.876 252799 1.4

7 19 169.629 528383 16.7 736.863 2062232 16.7
23 159.101 473223 16.7 779.432 2060501 16.7

8 23 1290.702 2630567 16.8 9124.361 16639322 16.8
26 3404.765 6231289 16.9 9623.677 16636122 16.9

Table 4: Comparing different variations of CryptoMiniSat and WDSAT for solving the PDP.
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