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Abstract

Due to the public visible nature of blockchain, the seminal cryptocurrencies such as
Bitcoin and Ethereum do not provide sufficient level of privacy, i.e., the addresses of sender
and receiver and the transfer amount are all stored in plaintexts on blockchain. As the
privacy concerns grow, several newly emerged cryptocurrencies such as Monero and ZCash
provide strong privacy guarantees (including anonymity and confidentiality) by leveraging
cryptographic technique.

Despite strong privacy is promising, it might be overkilled or even could be abused in
some cases. In particular, anonymity seems contradict to accountability, which is a crucial
property for scenarios requiring disputes resolving mechanism, such as e-commerce.

To address the above issues, we introduce accountability to blockchain-based confidential
transaction system for the first time. We first formalize a general framework of confidential
transaction system with accountability from digital signature, homomorphic public-key en-
cryption and non-interactive zero-knowledge arguments, then present a surprisingly simple
and efficient realization called PGC. To avoid using general-purpose zero-knowledge proofs
(such as zk-SNARK and zk-STARK), we twist the ElGamal encryption as the underlying
homomorphic PKE and develop ciphertext-refreshing approach. This not only enables us
to prove transaction validity/correctness by using efficient Σ protocols and zero-knowledge
range proofs, but also makes PGC largely compatible with Bitcoin and Ethereum, which
could be used as a drop-in to provide confidential enforcements with accountability.
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1 Introduction
Unlike traditional bank systems and e-cash schemes, modern cryptocurrencies such as Bit-
coin [Nak08] and Ethereum [Woo14] establish a decentralized peer-to-peer electronic cash system
by maintaining an append-only ledger, known as blockchain. The ledger is global distributed
and synchronized by consensus mechanisms. An important property of blockchain is public
verifiability, that is, anyone can verify the validity of all transactions on the ledger. Bitcoin
attains this property by simply exposing all details public: the addresses of sender and receiver
as well as the transfer amount. According to [BBB+18], privacy for transactions consists of two
aspects: (1) anonymity, hiding the identities of sender and receiver in a transaction and (2)
confidentiality, hiding the transfer amount. While both Bitcoin and Ethereum provide some
weak anonymity through the unlinkability of account addresses to real world identities, it lacks
confidentiality, which is a serious limitation in privacy-preserving applications.

1.1 Motivation
Strong privacy is a double-edged sword. While confidentiality is arguably the primary concern of
privacy for blockchain-based cryptocurrencies, anonymity might be abused or even prohibitive
for applications that require accountability, since it somehow provides plausible deniability.
Suppose the employer pay salaries to employees via cryptocurrencies with strong privacy (e.g.,
Zcash [ZCa] or Monero [Noe15]). If the employer did not receive the right salary, how can he
justify this and demand justice. Vice versa, how can the employer justify that he indeed paid
the right salary to the right employee to resolve dispute.

1.2 Our Contributions
To address the aforementioned limitation, in this work we still concentrate on confidentiality, but
trade anonymity for accountability. We present PGC (Pretty Good Confidentiality), a simple
and efficient confidential transaction system with accountability. For the sake of simplicity and
portability, we take an account-based approach and focus only on the simplistic transaction layer
of cryptocurrencies. The network-level and consensus-level protocols/attacks are put aside for
the time being.

We first have to make a choice over commitment and encryption, which will be used as a
core primitive to attain confidentiality for PGC.

Encryption vs. Commitment. Maxwell [Max13] first introduced the notion of confidential
transaction in the context of UTXO model, with the purpose to provide privacy-enhancement
for Bitcoin. In CT, the input and output transfer amounts are hidden in Pedersen commit-
ments [Ped91]. To spend a UTXO a user first generates a zero-knowledge proof for validity of
transaction (the sum of the committed inputs is greater than the sum of committed outputs,
and all outputs are positive), then provides a signature to ensure the transaction to be approved.
Recently, an improved CT called Mimblewimble [Poe] was proposed. The improvement is based
on a clever observation that for a valid confidential transaction the difference between outputs
and inputs value must be 0, thus the difference between input and output Pedersen commit-
ments and the difference between corresponding randomness form an ECDSA key pair. The
sender can thus sign the transaction simply with the difference of randomness. This greatly
simplifies the structure of confidential transactions.

Nevertheless, commitment-based approach suffers from several drawbacks. On the first
place, users must be stateful. They have to keep track of the randomness and the value of each
incoming transaction. Otherwise, they are unable to spend it anymore, due to either unable to
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generate the zero-knowledge proof (lack of witness) or to generate the signature (lack of signing
key). This problem not only renders the overall protocol more complicated (the openings of
these commitments must be transferred to Bob through a separate secure channel), but also
incurs extra security burden to the design of wallet (the openings must kept in safety). As
indicated by Bünz et al. [BAZB19], failure to recover the randomness of a single commitment
could make an UTXO isolated and render an account totally unusable. On the second place,
they have to record the randomness and value of all incoming and outgoing transactions to
achieve accountability. Last but not the least, as pin-pointed by Bünz et al. [BBB+18], since
Pedersen commitment is only computational binding based on discrete logarithm assumption,
an adversary is able to open a given commitment to an arbitrary value when quantum computers
are available.

One may wonder if we can at least solve the first issue by using a computational hiding
and perfectly binding commitment, say ElGamal commitment, instead of using Pedersen com-
mitment. We note that this patch does not help. The reason is that all users in CT share
the same commitment instance (this means trapdoor is not available), and thus each user still
has to be stateful. Actually, the above disadvantages seem inherent for all commitment-based
confidential transaction systems [Max13, Poe].

Observing that PKE can be viewed as a computationally hiding and perfectly binding com-
mitment in which secret key serves as a natural trapdoor to recover message, we can simply
address the aforementioned issues by equipping each user with a PKE instance rather than
making all users share the same global commitment.

1.3 Overview of PGC
Now, we are ready to give a brief technical overview of PGC, which is built from digital signature,
public-key encryption and non-interactive zero-knowledge arguments. In PGC, each account
is equipped with a key pair, which could be used for both encryption and signature. The
public key is used as the address of the account. The balance of each account is kept as an
encryption of the real value under individual public key. Let CA and CB be the encrypted
balances of Alice and Bob respectively. Now, suppose Alice wants to transfer v coins to Bob.
She constructs the transaction via the following steps: (1) encrypt v under her public key
pkA and Bob’s public key pkB respectively to obtain Cout and Cin; (2) prove the validity of
this transaction in a zero-knowledge way: (i) Cout and Cin are two encryptions of the same
message under pkA and pkB; (ii) her current balance deducting the amount encrypted in Cout
is still positive; (3) sign (Cout, Cin) with resulting zero-knowledge proof πvalid using her secret
key. The final transaction is roughly of the form (pkA, Cout, pkB, Cin, πvalid, σ). The validity of
this transaction can be publicly verifiable by checking the signature and zero-knowledge proof.
If the transaction is valid, it will be posted on the blockchain. Accordingly, Alice’s balance
(resp. Bob’s balance) will be updated as CA = CA − Cout (resp. CB = CB + Cin). Such
balance update operation implicitly requires that the underlying PKE scheme satisfies additive
homomorphism. In addition, whenever there is a dispute over some transaction recorded on the
blockchain, either the sender or the receiver is able to reveal the exact amount of the transaction
by simply providing a zero-knowledge proof, without exposing their secret keys.

In summary, signature is used to prove ownership of an account, PKE is used to hide the
balance and transferred amount, while zero-knowledge argument is used to prove the validity and
correctness of transactions. Though the high-level idea is pretty simple, an efficient instantiation
of this framework turns out to be non-trivial. Before identifying the potential technical obstacles
and introducing our approaches, it is instructive to list our design disciplines of PGC in mind
in advance:
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• system does not rely on a trusted setup

• users are stateless, i.e., there is no need to maintain a state – information on demand can
always be computed from data on the blockchain

• only uses simple and efficient cryptographic schemes based on well-studied assumptions,
desirably compatible with Bitcoin and Ethereum

1.3.1 Public-Key Cryptosystems

To be compatible with Bitcoin and Ethereum, we choose ECDSA as the signature scheme. Let
G = ⟨g⟩ be a cyclic group of prime order p. The secret key sk is a random element in Zp, and
the public key pk = gsk. With the aim to use this key pair for both signature and encryption
in mind, ElGamal encryption with message encoded in the exponent [CGS97] is arguably the
most simple and nature candidate for PKE. This choices of ECDSA and ElGamal PKE bring
us at least three benefits:

• The key pair is identical to that used in Bitcoin and similar to that used in Ethereum1.
This makes our PGC compatible to Bitcoin and Ethereum to a large extent.

• ElGamal encryption is additively homomorphic. This enables balance update operation.
Moreover, users could be stateless – the account state (i.e., balance) can be computed
from the data on the blockchain with corresponding secret key on demand. There is no
need to keep track of the randomness and messages beneath transactions.

• ElGamal encryption is zero-knowledge protocols friendly. Its algebra structure allows us
to prove Cout and Cin are two encryptions of the same message under two public keys via
an efficient Σ-protocol. See Protocol B.1 for the details.

1.3.2 Working with Efficient Range Proof

Besides proving Cout and Cin encrypt the same message, we still have to prove the value v
encrypted in Cout and value encrypted in CA − Cout (the current balance deducts v) lie in the
right range. The specific tool for this task is zero-knowledge range proof. For both efficiency
and security concern, we are going to use Bulletproof [BBB+18], which is efficient and free of
trusted setup. Its security is based on discrete logarithm assumption. This makes our whole
PGC system based on solely the DDH assumption. Next, we identify the obstacles of making
these two range proofs, and how we overcome them.

The first range proof. It turns out that the standard ElGamal encryption cannot work with
Bulletproof, because Bulletproof only accepts statements of the form if Pedersen commitment.
One may notice that the second component of the ElGamal encryption could be viewed as
a Pedersen commitment with public parameter (pk, g), thus it seems that we can feed the
Bulletproof with the second component. But, this does not make sense due to the corresponding
sk is an obvious trapdoor of such commitment, with which a malicious prover can open the
second component to arbitrary value (not necessarily equal the one fixed by the ciphertext) and
thus compromises the desired argument of knowledge.

Our idea is twisting ElGamal to ensure the second component free of obvious trapdoor.
In addition to g, we pick another random generator h. Now, the global public parameter is

1Ethereum also uses the discrete logarithm key pair, but uses the hash of public key rather than public key
itself as the account address.
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(G, g, h, p). We modify the standard ElGamal encryption as follows. The key pair is still of
the form (pk = gsk ∈ G, sk ∈ Zp). The encryption of v is tweaked as (X = pkr, Y = grhv).
Decryption can be done by computing Y/Xsk−1 . Now, the second component can be viewed
as a Pedersen commitment for v under randomness r, where the public parameter is (g, h)
and trapdoor is unknown to all users. Thus, we can safely invoke Bulletproof to generate a
range proof of v hidden in statement grhv. Luckily, the twisted ElGamal encryption is IND-
CPA secure under the divisible DDH assumption, which is equivalent of the standard DDH
assumption. Besides, it retains the nice algebra structure and thus still admits efficient Σ-
protocol for plaintexts equality.
The second range proof. Another technical obstacle emerges when dealing with the second
range proof. In Bulletproof, the prover has to use the opening of the commitment as the witness
to generate the proof. This is fine when dealing with the first range proof for v encrypted by Cout
lies in the right range, because the prover knows the corresponding randomness and value. But,
it seems difficult to make a range proof for the value encrypted by CA − Cout via Bulletproof.
The problem stems from the stateless feature of PGC – users do not have to keep track of any
states including the randomness under all coming and going transactions, thus the randomness
beneath CA − Cout is typically unknown even assuming homomorphism on randomness.2

We resolve this problem by developing ciphertext refreshing approach. Note that Alice (the
prover) knows sk and thus can decrypt CA − Cout, say v′.3 She can thus generate a new
ciphertext C ′ of v′ under fresh randomness r′, and proves CA−Cout and C ′ are two encryptions
of the same message under the same public key. Then, she can invoke Bulletproof on the second
component of C ′ with witness (r′, v′). Note that CA − Cout and C ′ are encrypted under the
same public key, thereby the plaintext equality argument can be reduced to discrete logarithm
equality argument, which in turn can be efficiently proved by a Σ-protocol with witness sk. See
Protocol B.2 for the details.

1.3.3 Achieving Accountability

In our confidential transaction system the transferred amount is encrypted, and thus it seems
difficult to achieve accountability. A naive solution is making the user involved in the transaction
in dispute give out his secret key. However, this will expose all the transactions related to
this user in clear. Our approach again leverages the power of zero-knowledge protocols. Let
Ci = (pkri , h

rgv) be the ciphertext in the disputed transaction. The user with pki can account
Ci by simply publishing a zero-knowledge proof for Ci is indeed an encryption of v under pki.
Looking ahead, this argument can proved by the Σ-protocol for discrete logarithm equality. See
Protocol B.2 for the details.

1.4 Related Work
Maxwell [Max13] first introduced confidential transactions (CT), in which every transaction
amount involved is hidden from public view using a commitment. To enable public valida-
tion of the blockchain, a zero-knowledge proof of validity (range proof) is appended in every
transaction. Mimblewimble [Poe] further improves CT by reducing the cost of signature. To
further achieve anonymity, Monero [Noe15] employs linkable ring signature and stealth address,
ZCash based on Zerocash [BCG+14] utilizes shielded addresses and general purpose succinct
zero-knowledge proofs. Ma et al. [MDH+17] proposed a confidential transaction scheme from

2Most encryption schemes are not randomness recovering, e.g., the ElGamal encryption.
3In fact, as we will see shortly, ciphertext refreshing could be done efficiently by partial decryption-then-

randomization.
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the linear encryption [BBS04] and the range proof based on Boneh-Boyen signature [CCS08].
We note that the zero-knowledge proofs used in the aforementioned CT proposals either require
a trusted setup (e.g. zk-SNARK [BCG+13, GGPR13] and range proof [CCS08]) or only been
asymptotically efficient but practically large (e.g. zk-STARK [BBHR18]).

Concurrent work. Fauzi et al. [FMMO18] proposed a new design for anonymous cryptocur-
rencies called Quisquis. They mainly employed updatable public keys to achieve anonymity,
and used similar cryptographic mechanism to achieve confidentiality.

Bünz et al. [BAZB19] proposed a fully-decentralized, confidential payment system called
Zether, which is compatible with Ethereum and other smart contract platforms. In more details,
they chosen ElGamal encryption to instantiate the underlying PKE, and developed a custom
ZKP named Σ-Bullets to instantiate the ZKPoK.

Compared to their work, we focus solely on building a blockchain-based confidential trans-
action system, and address the accountability for the first time. Our system is insensitive of
account type and network/consensus-level protocols, and thus can be used as a drop-in en-
hancement to provide confidentiality to many existing cryptocurrencies, such as Bitcoin and
Ethereum. From technical aspect, we use the twisted ElGamal as the underlying PKE scheme
rather than the standard ElGamal adopted in [FMMO18, BAZB19], and develop ciphertext
refreshing approach. This design enables us not only to prove plaintext equality and account
transfer amount via efficient Sigma protocol, but also to generate range proofs by directly in-
voking Bulletproof in a black-box manner. We believe our technique might also benefit the
design of Quisquis and Zether by simple adaption.

2 Preliminaries
2.1 Basic Notations
For a set X, we use x

R←− X to denote the operation of sampling x uniformly at random from
X, and use |X| to denote its size. We use UX to denote the uniform distribution over X.
For a positive integer d, we use [d] to denote the set {1, . . . , d}. We denote λ ∈ N as the
security parameter. We say that a quantity is negligible, written negl(λ), if it vanishes faster
than the inverse of any polynomial in λ. A probabilistic polynomial time (PPT) algorithm is
a randomized algorithm that runs in time poly(λ). If A is a randomized algorithm, we write
z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r.
For notational clarity we usually omit r and write z ← A(x1, . . . , xn).

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by
λ. We say that X and Y are statistically indistinguishable, written X ≈s Y , if the statistical
distance between Xλ and Yλ is negligible in λ. We say that X and Y are computationally
indistinguishable, written X ≈c Y , if the advantage of any PPT algorithm in distinguishing Xλ

and Yλ is negl(λ).

2.2 Cryptographic Assumptions
Let GroupGen be a PPT algorithm that takes as input a security parameter 1λ and outputs a
tuple (G, g, p), where G is a group of λ-bit prime order p, g is a random generator of G. In what
follows, we review the discrete-logarithm based assumptions w.r.t. GroupGen(1λ)→ (G, g, p).

Definition 2.1 (Discrete Logarithm Assumption). The discrete logarithm assumption states
that for any PPT adversary it holds that:

Pr[A(g, h) = a s.t. ga = h] ≤ negl(λ).
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The probability is defined over the random coins of GroupGen(1λ), A, and the random choice
of h R←− G.

Definition 2.2 (Decisional Diffie-Hellman Assumption). The DDH assumption states that for
any PPT adversary it holds that:∣∣∣Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣∣ ≤ negl(λ).

The probability is defined over the random coins of GroupGen(1λ), A, and the random choices
of a, b, c R←− Zp.

Definition 2.3 (Divisible Decisional Diffie-Hellman Assumption). The divisible DDH assump-
tion states that for any PPT adversary it holds that:∣∣∣Pr[A(g, ga, gb, ga/b) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣∣ ≤ negl(λ).

The probability is defined over the random coins of GroupGen(1λ), A, and the random choices
of a, b, c R←− Zp.

According to [BDZ03], the divisible DDH assumption is equivalent to the standard DDH
assumption.

2.3 Zero-Knowledge Proofs
We recall the notions of zero-knowledge argument of knowledge, sigma protocol and zero-
knowledge range proofs.

Let R ⊂ X ×W be a polynomial-time decidable relation over instance set X and witness
set W , and let L be the corresponding language, i.e., L = {x | ∃w : (x,w) ∈ R}. Let P and
V be two interactive algorithms. We use the notation ⟨P, V ⟩ denote a two-party protocol, and
⟨P, V ⟩(x) denote the final output of V . When the context is clear, we will also slightly abuse
the notation of ⟨P, V ⟩(x) to denote V ’s view in the interaction, which includes the common
input x, its randomness r and P ’s messages.

Definition 2.4 (Zero-Knowledge Argument of Knowledge). ⟨P, V ⟩ is a ZKPoK for language L
if the following requirements hold:

• Completeness. ∀x ∈ L, we have:

Pr[⟨P, V ⟩(x) = 1] = 1− c(λ)

Here, c(λ) is the completeness error. When c(λ) = 0, we obtain perfect completeness.

• Argument of Knowledge. For any malicious PPT P ∗ and any x ∈ L, if Pr[⟨P ∗, V ⟩(x)] =
px(λ), then there exists an expected PPT extractor Ext and a polynomial q(λ) such that:

Pr[ExtP
∗
(x) ∈ R] ≥ q(λ)

px(λ)− κ(λ)

Here, κ(λ) is the knowledge error.

• Zero Knowledge. For any malicious PPT V ∗ there is an expected PPT simulator Sim
such that for all x ∈ L, we have:

⟨P, V ∗⟩(x) ≈c Sim(x)
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An argument of knowledge is public-coin if all messages sent from V are chosen uniformly
at random and independent of P ’s message.

Definition 2.5 (Sigma-protocols (Σ-protocol)). ⟨P, V ⟩ is a Σ-protocol for language L if it
follows the following communication pattern (3-round public-coin):

1. (Commit) P sends a first message a to V ;

2. (Challenge) V sends a random element e to P ;

3. (Response) P replies with a second message z.

and satisfies standard completeness and the variants of soundness and zero-knowledge:

• Special soundness. For any x and any pair of accepting transcripts (a, e, z), (a, e′, z′)
for x with e ̸= e′, there exists a PPT extractor outputs a witness w for x.

• Special honest-verifier ZK. There exists a PPT simulator Sim such that for any x ∈ L
and randomness e, we have:

⟨P, V (e)⟩(x) ≡ Sim(x, e)

A public-coin SHVZK argument of knowledge can be crushed into a non-interactive argu-
ment of knowledge by applying the Fiat-Shamir transform [FS86], in which V ’s random challenge
e is set as the hash value of P ’s first round message a.

Definition 2.6 (Zero-Knowledge Range Proof). For a commitment scheme with message space
M and randomness space R, a zero-knowledge range proof is a SHVZK argument of knowledge
for the language:

L = {c | ∃m ∈M, r ∈ R s.t. c = Com(m; r) ∧ x ∈ [a, b]}

3 General Framework of Accountable CT
We formalize the general framework of confidential transaction system with accountability from
digital signature, homomorphic PKE and NIZK.

• Setup(1λ). This algorithm is used to setup the confidential transaction system. It takes as
input the security parameter 1λ, runs SIG.Setup(1λ), PKE.Setup(1λ) and NIZK.Setup(1λ)
to generate the global public parameter pp that will be used by all users algorithm.

• CreateAcct(pp). This algorithm is used to create an account. It takes as input pp, runs
PKE.KeyGen(pp) to generate a key pair (pk, sk), sets C∗ ← PKE.Enc(pk, 0; rdummy)

4 as
the encryption of initial balance, and initializes a nonce nonce. The public key pk is used
as the address of account, the secret key sk is kept by the user itself.5

• RevealAcct(sk, C∗). This algorithm is used to reveal the balance of an account. It takes
as input sk and the current encrypted balance C∗, outputs m← PKE.Dec(sk, C∗).

4Here, rdummy could be any fixed and publicly known randomness, say, the zero string 0λ. This treatment
admits the legality of the initial balance value is publicly auditable.

5Here, we adopt the key reuse strategy for simplicity and better efficiency, i.e., PKE and SIG share the same
key generation algorithm and one key pair is used for both encryption and signature.
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• CreateCTx(nonce1, C
∗
1 , pk1, sk1, v, pk2). This algorithm is used to transfer v coins from

account pk1 to account pk2. It takes as input the current nonce nonce1, encrypted balance
C∗
1 and the key pair (pk1, sk1) of the origin account, the coin value v, the public key pk2

of the destination account, builds the transaction tx via the following steps:

1. computes C1 ← PKE.Enc(pk1, v; r1), C2 ← PKE.Enc(pk2, v; r2), sets the meta infor-
mation of the transaction as meta = (nonce1, C

∗
1 , pk1, C1, pk2, C2);

2. runs NIZK.Prove with witness (sk1, r, s) to generate a proof πvalid for the statement
(C∗

1 , pk1, C1, pk2, C2) ∈ Lvalid, where Lvalid can be decomposed to L1 ∧ L2 ∧ L3:
– L1 = {(pk1, C1, pk2, C2) | ∃r1, r2, v s.t. Ci = PKE.Enc(pki, v; ri) for i = 1, 2}

L1 ensures that the value sent by pk1 equal to that received by pk2.
– L2 = {(pk1, C1) | ∃r1, v s.t. C1 = PKE.Enc(pk1, v; r1) ∧ v ∈ [0, 2ℓ]}

L2 ensures that the value sent by pk1 lies in a right range.
– L3 = {(pk1, C∗

1 , C1) | ∃sk1 s.t. PKE.Dec(sk1, C∗
1 − C1) ∈ [0, 2ℓ]}

L3 ensures that the balance of pk1 is enough for the transfer.
3. runs SIG.Sign(sk1, (meta, πvalid))→ σ, outputs the confidential transaction as ctx =

(meta, πvalid, σ).

• VerifyCTx(ctx). This algorithm is used to check the validity of ctx. It takes as input
ctx = (meta, πvalid, σ), parses meta = (nonce1, C

∗
1 , pk1, C1, pk2, C2), then checks its validity

via the following steps:

1. check if SIG.Verify(pk1,meta) = 1;
2. check if NIZK.Verify(meta, πvalid) = 1.

If both checks pass output “1”, else output “0”. Particularly, if the confidential transaction
is valid, the system appends ctx on the blockchain, and updates the balance of pk1 as
C∗
1 = C∗

1 − C1 and the balance of pk2 as C∗
2 = C∗

2 + C2.

• RevealCTx(ski, ctx, v). This algorithm is used to testify the value hidden in ctx is indeed v.
It takes as input ski, v and ctx = (meta, πvalid, σ), where ctx is a valid confidential transac-
tion recorded on the blockchain, meta = (nonce1, C

∗
1 , pk1, C1, pk2, C2), and ski is the secret

key corresponding to pki (the index i could be either 1 or 2), then runs NIZK.Prove with
witness ski to generate a proof πcorrect for statement (Ci, v) ∈ Lcorrect. Here, the language
Lcorrect is defined as {(Ci, v) | ∃ski s.t. v = PKE.Dec(ski, Ci)}. Anyone can check if the
value hidden in ctx is indeed the claimed v by running NIZK.Verify(Ci, v, πcorrect).

Theorem 3.1. Our PGC is sound based on the EUF-CMA security of signature and the
argument of knowledge of NIZKPoK, and is confidential based on the IND-CPA security of
PKE and the zero-knowledge property of NIZKPoK.

4 PGC: an Efficient Instantiation
We now present an efficient realization of the above framework. This is the most technical part
of this work. For digital signature, we choose ECDSA, which is also adopted by Bitcoin and
Etherum. For PKE, we twist the classical ElGamal encryption. The underlying reason has
been elaborated in the introduction part. Next, we present our twisted ElGamal encryption
and prove its security in the standard model.
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4.1 Instantiating the PKE
We first present our twisted ElGamal PKE as follows.

• Setup(1λ): run GroupGen(1λ) → (G, g, p), pick h
R←− G∗, set pp = (G, g, h, p) as global

public parameters. The randomness space R is Zp and the message space M is [0, 2ℓ− 1].

• Gen(pp): on input pp, choose sk
R←− Zp, set pk = gsk.

• Enc(pk,m; r): compute X = pkr, Y = grhm, output C = (X,Y ).

• Dec(sk, C): parse C = (X,Y ), compute gm = Y/Xsk−1 , then recover m from hm.

Remark 4.1. Note that the message is encoded in the exponent, thus the decryption algorithm
will need to enumerate over the possible 2ℓ values, which works only for small values of ℓ,
i.e., ℓ = O(log λ). Similar situation also occurs in other confidential transaction systems such
as [MDH+17, FMMO18, BAZB19], which is not regarded as an issue. First, users typically
know their balances and transfer amounts (or at least a good estimate). Thus, brute-force
enumeration can be largely avoid in most times. Second, large range can be expressed by
several smaller ranges. Third, the average and amortized case complexity of search routine in
the decryption algorithm could be reduced to O(1) by maintaining a hash table of size O(2ℓ).
In this work, we set ℓ to be 32.

Homomorphism. The above twisted ElGamal satisfies both randomness and message additive
homomorphism, i.e., for any pk, (m1, r1) and (m2, r2), we have Enc(pk,m1; r1)+Enc(pk,m2; r2) =
Enc(pk,m1 +m2; r1 + r2). Here, we slightly abuse the notation “+” to denote component-wise
operation over ciphertext space G2. Looking ahead, additive homomorphism on message suffices
for our usage: Enc(pk,m1)+Enc(pk,m2) is an encryption of (m1+m2) under some appropriate
randomness.

Correctness is obvious. For security, we have the following theorem.

Theorem 4.1. Twisted ElGamal is IND-CPA secure based on the divisible DDH assumption.

Proof. We proceed via two games. Let Si be the probability that A wins in Game i.

Game 0. The real IND-CPA security experiment. Challenger CH interacts with A as below:

1. Setup: CH sends pk = gsk to A as the public key.

2. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and
a randomness r, computes X = pkr, Y = grhmβ , sends C = (X,Y ) to A.

3. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of Game 0, we have:

AdvA(λ) = Pr[S0]− 1/2

Game 1. Same as Game 0 except CH generates the challenge ciphertext in a different way

3. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and
two independent randomness r and s, computes X = pkr, Y = gshmβ , sends C = (X,Y )
to A.

9



In Game 1, the distribution of C is independent of β, thus we have:

Pr[S1] = 1/2

It remains to prove Pr[S1] and Pr[S0] are negligibly close. We prove this by showing if not
so, we can build an adversary B breaks the divisible DDH assumption with the same advantage.
Given (g, ga, gb, gc), B is asked to decide if it is a divisible DDH tuple or a random tuple. To
do so, B interacts with A by simulating A’s challenger in the following IND-CPA experiment.

1. Setup: B sends gb to A as the public key, where b is interpreted as the corresponding secret
key b ∈ Zp and unknown to B.

2. Challenge: A submits m0,m1 to B. B picks a random bit β and sets X = ga, Y = gchmβ ,
sends C = (X,Y ) to A.

3. Guess: A outputs a guess β′. B outputs “1” if β′ = β and “0” otherwise.

If (g, ga, gb, gc) is a divisible DDH tuple, B simulates Game 0 perfectly (with randomness
c = a/b). Else, B simulates Game 1 perfectly (with two independent randomness a/b and
c). Thereby, we have AdvB = |Pr[S0] − Pr[S1]|, which is negligible in λ by the divisible DDH
assumption.

Putting all the above together, the theorem follows.

4.2 Instantiating the NIZKPoK
The languages Lvalid and Lcorrect are fixed after choosing the twisted ElGamal encryption as
the PKE scheme. Now, we are ready to design efficient ZKPoK protocol for them.

We begin with Lvalid = L1∧L2∧L3. Our strategy is designing Σ-protocol for L1, then using
existing range proof in a black-box manner to prove L2 ∧ L3.

ZKPoK for L1. According to definition of the twisted ElGamal, L1 is defined as:

{(pk1, (X1, Y1), pk2, (X2, Y2)) | ∃r1, r2, v s.t. X1 = pkr11 ∧ Y1 = gr1hv ∧X2 = pkr22 ∧ Y2 = gr2hv}.

Given the common input (pk1, X1, Y1, pk2, X2, Y2), P and V interact in Σ1 as described below:

1. P picks a1, a2, b
R←− Zp, sends A1 = pka11 , A2 = pka22 , B1 = ga1hb, B2 = ga2hb to V .

2. V picks e
R←− Zp and sends it to P as the challenge.

3. P computes z1 = a1 + er1, z2 = a2 + er2, z3 = b + ev using witness w = (r1, r2, v),
then sends (z1, z2, z3) to V . V accepts the proof iff the following four equations hold
simultaneously:

pkz11 = A1X
e
1 (1)

pkz22 = A2X
e
2 (2)

gz1hz3 = B1Y
e
1 (3)

gz2hz3 = B2Y
e
2 (4)

Theorem 4.2. Σ1 is a public-coin SHVZK argument of knowledge for L1.
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Proof. Perfect completeness is obvious from simple calculation.
To show special soundness, fix the initial message (A1, A2, B1, B2), suppose there are two

accepted transcripts (e, z = (z1, z2, z3)) and (e′, z′ = (z′1, z
′
2, z

′
3)) with e = e′, we can extract the

witness as below. From equation (1), we have z1 = a1 + er1 and z′1 = a1 + e′r1, which imply
r = (z1−z′1)/(e−e′). From equation (2), we have z2 = a2+er2 and z′2 = a2+e′r2, which imply
s = (z2 − z′2)/(e− e′). From equation (1) and (3), we have z3 = b+ ev and z′3 = b+ e′v, which
imply m = (z3 − z′3)/(e− e′).

To show special HVZK, for a fixed challenge e, the simulator Sim works as below: picks
z1, z2, z3

R←− Zp, computes A1 = pkz11 /Xe
1 , A2 = pkz22 /Xe

2 , B1 = gz1hz3/Y e
1 , B2 = gz2hz3/Y e

2 .
This finishes the proof.

ZKPoK for L2. According to definition of the twisted ElGamal, L2 is defined as:

{(pk1, X1, Y1) | ∃r1, v s.t. X1 = pkr11 ∧ Y1 = gr1hv ∧ v ∈ [0, 2ℓ]}.

Observe that the statement ∃r1, v s.t. X1 = pkr11 ∧Y1 = gr1hv has already been proved in L1, it
suffice to prove ∃r1, v s.t. Y1 = gr1hv ∧ v ∈ [0, 2ℓ]. Note that the instance Y1 can be viewed as a
Pedersen commitment of value v under public parameters (g, h), where the discrete logarithm
of logg h is unknown to any users. Thereby, we can directly invoke Bulletproof [BBB+18] to
prove this fact by using (r1, v) as witness.

ZKPoK for L3. According to the definition of twisted ElGamal, L3 is defined as:

{(pk1, C∗
1 , C1) | ∃sk1 s.t. PKE.Dec(sk1, C∗

1 − C1) ∈ [0, 2ℓ − 1]}.

Let the current encrypted balance C∗
1 = (X∗

1 = pkr∗1 , Y1 = gr
∗
hm), which encrypts the current

balance m of pk1 under some randomness r∗. Here, the value m can be revealed by decrypting
C using sk1, but the randomness r∗ is unlikely known to the account owner. This is because C∗

1

is the sum of all the incoming and outgoing transactions, in which the randomness underlying
incoming transactions is unknown. Let C̃1 = C∗

1 − C1, which is of the form (X̃1 = pkr̃1, Ỹ1 =
gr̃hm−v). By the additive homomorphism of twisted ElGamal, proving L3 is equivalent to show
that the value m− v encrypted in C̃ lie in the claimed range.

As we discussed above, the randomness r∗ underlying C∗
1 is unknown, which in turn implies

that r̃ is unknown, even exploiting the randomness homomorphism of twisted ElGamal.6 The
consequence is that we can not directly invoke the Bulletproof with instance Ỹ1, since we do
not know the associated witness. Our trick is encrypting the value (m − v) under new fresh
randomness r′ to obtain a new ciphertext C ′

1 = (X ′
1, Y

′
1), where X ′

1 = pkr
′

1 , Y ′
1 = gr

′
hm−v.7 Now,

we can first prove C̃ and C ′ are the encryption of the same value, then invoke the Bulletproof on
instance Y ′

1 = gr
′
hm−v and witness (r′,m−v). It remains to show how to prove (C̃, C ′) ∈ Lequal,

where Lequal is defined as:

{(C̃, C ′) | ∃sk1 s.t. PKE.Dec(sk1, C̃) = PKE.Dec(sk1, C ′)}

Note that C̃ = (pkr̃1, g
r̃hm−v) and C ′ = (pkr

′
1 , g

r′hm−v) are encrypted under the same public
key pk1, then proving membership of Lequal is equivalent to prove the discrete logarithm of
logỸ /Y ′ X̃/X ′ equals logg pk1 with witness sk1. This can be efficiently done by using the Σ-
protocol for discrete logarithm equality [CGS97]. For completeness, we describe this protocol
in Appendix B.2.

6By the randomness homomorphism, we have r̃ = r∗ − r1.
7Actually, the ciphertext C̃1 could be efficiently refreshed by firstly using sk1 to compute hm−v and then

masking with newly chosen fresh randomness. There is no need to recover m−v, which might be time-consuming.
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Let Σ be the protocol obtained by composing Σ1 for L1, Bulletproof for L2, and Σ3 ◦
Bulletproof for L3 in a parallel manner. We have the following lemma.

Lemma 4.3. Σ is a public-coin zero-knowledge argument of knowledge for L1 ∧ L2 ∧ L3.

Proof. The proof of this lemma follows from the properties of AND-proofs. Σ can be made
non-interactive by applying the Fiat-Shamir transform.

ZKPoK for Lcorrect. According to the definition of twisted ElGamal, Lcorrect can be written
as:

{(pki, Ci, v) | ∃ski s.t. Xi = (Yi/h
v)ski ∧ pki = gski}

Again, this can be efficiently proved by the Σ-protocol for discrete logarithm equality. See
Protocol B.2 for the details.

5 Future Works
We defer the performance analysis as the future work.
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A Basic Cryptographic Schemes
A.1 Commitments
A non-interactive commitment scheme is a two-party protocol between a sender and a receiver
with two stages. At the committing stage, the sender commits to some value m by sending a
commitment to the receiver. At the opening stage, the sender can open the commitment by
providing m and some auxiliary information, by which the receiver can verify that the value it
received is indeed the value committed by the sender during the committing stage. Formally, a
commitment scheme consists of three polynomial time algorithms as below:

• Setup(1λ): on input security parameter 1λ, generates public parameter pp. We assume
that pp includes the descriptions of message space M , randomness space R. pp will be
used as implicit input of the following two algorithms.

• Com(m; r): the sender commits a message m by choosing uniform random coins r, and
computing c← Com(m; r), then sends c to receiver.

• Open(c,m, r): the sender can later decommit c by sending m, r to the receiver; the receiver
outputs Com(m; r)

?
= c.

For correctness, we require that for all pp← Setup(1λ), any m ∈M and any r ∈ R, we have
Open(Com(m; r),m, r) = 1. For security, we require hiding and binding.

Hiding. A commitment Com(m; r) should not reveal anything about its committed value of
m. Let A be an adversary against hiding, we define its advantage via the following experiment:

AdvA(λ) = Pr

β′ = β :

pp← Setup(λ);
(m0,m1)← A1(pp);

β
R←− {0, 1}, r R←− R, c← Com(mβ; r);

β′ ← A2(c);

− 1

2
.

A commitment scheme is perfectly hiding if AdvA(λ) = 0 even for unbounded adversary, is
statistical hiding (resp. computational hiding) if AdvA(λ) = negl(λ) w.r.t. unbounded adversary
(resp. PPT adversary).
Binding. A commitment c cannot be opened to two different messages. Let A be an adversary
against binding, we define its advantage via the following experiment:

AdvA(λ) = Pr

[
m0 ̸= m1∧

c = Com(m0; r0) = Com(m1; r1)
:

pp← Setup(λ);
(c,m0, r0,m1, r1)← A(pp);

]
.

A commitment scheme is perfectly binding if AdvA(λ) = 0 even for unbounded adversary
(a.k.a. ∀m0 ̸= m1, their commitment values are disjoint.), statistical binding (resp. computa-
tional binding) if AdvA(λ) = negl(λ) w.r.t. unbounded adversary (resp. PPT adversary).

Pedersen Commitment. We recall the celebrated Pedersen commitment as follows:

• Setup(1λ): on input 1λ, runs GroupGen(1λ) to obtain (G, p, g), picks h
R←− G∗, outputs

pp = (G, p, g, h). Here, M = R = Zp, C = G.

• Com(m; r): on input message m ∈ Zp and randomness r
R←− Zp, outputs c← grhm.

• Open(c,m, r): outputs “1” if c = grhm and “0” otherwise.

The Pedersen commitment is perfectly hiding and computational binding under the discrete
logarithm assumption.
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A.2 Signatures
A signature scheme with message space M and signature space Σ consists of three polynomial
time algorithms as follows.

• Setup(1λ): on input a security parameter 1λ, output public parameters pp.
• KeyGen(pp): on input pp, output a verification key vk and a signing key sk.
• Sign(sk,m): on input sk and a message m ∈M , output a signature σ ∈ Σ.
• Verify(vk,m, σ): on input vk, a message m, and a purported signature σ, output 1 indi-

cating acceptance or 0 indicating rejection.

For correctness, we require that for all pp ← Setup(1λ), all (vk, sk) ← KeyGen(λ) and all
m ∈ M , we have Verify(vk,m,Sign(sk,m)) = 1. For security, the exitential unforgeability
against chosen message attack (EUF-CMA) is defined as below:

EUF-CMA. Let A = (A1,A2) be an adversary against signature and define its advantage in
the following experiment:

AdvA(λ) = Pr

 Verify(vk,m∗, σ∗) = 1
∧ m∗ /∈ Q :

pp← Setup(λ);
(vk, sk)← KeyGen(pp);

(m∗, σ∗)← AOsign(·)(pp, vk);

 .

Here Osign(·) is a signing oracle that on input m outputs σ ← Sign(sk,m). The set Q
records queries to Osign(·). A signature is EUF-CMA if no PPT adversary A has non-negligible
advantage in the above security experiment.

B Protocols
B.1 Proving Plaintext Equality
B.2 Proving Discrete Logarithm Equality
Let G be a cyclic group of prime order p, g1 and g2 be two generators of G, h1 and h2 be two
elements of G. Define the language Llog

equal as below:

Llog
equal = {(g1, h1, g2, h2) | ∃w ∈ Zp s.t. logg1 h1 = w = logg2 h2}

Given the common input (g1, h1, g2, h2), P interacts with V in the Σ-protocol as below using
witness w:

1. P picks a
R←− Zp, sends A1 = ga1 , A2 = ga2 to V ;

2. V picks e
R←− Zp and sends it to P as the challenge;

3. P computes z = a+ we and sends it to V . V accepts the proof iff:

gz1 = A1h
e
1 ∧ gz2 = A2h

e
2

Theorem B.1. Σ2 is a public-coin SHVZK argument of knowledge for Llog
equal.
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(pk1, X1, Y1, pk2, X2, Y2)

P V

w = (r1, r2, v)

a1, a2, b
R←− Zp

A1 ← pkr11 , A2 ← pkr22
B1 ← ga1hb, B2 = ga2hb

A1, A2, B1, B2

e
R←− Zp

e

z1 = a1 + er1
z2 = a2 + er2
z3 = b+ ev

z1, z2, z3 check if
pkz11 = A1X

e
1

pkz22 = A2X
e
2

gz1hz3 = B1Y
e
1

gz2hz3 = B2Y
e
2

Figure 1: Σ1 – ZKPoK for L1: two ciphertexts encrypt the same value

(g1, h1, g2, h2)

P (w) V

a
R←− Zp

A1 ← ga1 , A2 ← ga2

A1, A2

e
R←− Zp

e

z = a+ ew
z check if

gz1 = A1h
e
1

gz2 = A2h
e
2

Figure 2: Σ2 – ZKPoK for Llog
equal: discrete logarithm equality
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