
PGC: Decentralized Confidential Payment System with
Auditability

Yu Chen ∗ Xuecheng Ma † Cong Tang ‡ Man Ho Au §

Abstract

Modern cryptocurrencies such as Bitcoin and Ethereum achieve decentralization by replacing a
trusted center with a distributed and append-only ledger (known as blockchain). However, removing
this trusted center comes at significant cost of privacy due to the public nature of blockchain. Many
existing cryptocurrencies fail to provide transaction anonymity and confidentiality, meaning that
addresses of sender, receiver and transfer amount are publicly accessible. As the privacy concerns
grow, a number of academic work have sought to enhance privacy by leveraging cryptographic tools.
Though strong privacy is appealing, it might be abused in some cases. Particularly, anonymity poses
great challenges to auditability, which is a crucial property for the adoption of decentralized payment
systems.

Aiming for a middle ground between privacy and auditability, we introduce the notion of au-
ditable decentralized confidential payment (ADCP) system. In addition to offering transaction con-
fidentiality, ADCP system supports two levels of auditability, namely regulation compliance and
global supervision. We present a generic construction of ADCP system from integrated signature
and encryption scheme and non-interactive zero-knowledge proof systems. We then instantiate our
generic construction by carefully designing the underlying building blocks, yielding a standalone
cryptocurrency called PGC. In PGC, the setup procedure is semi-transparent, and transaction cost
is independent of system scale, which is roughly 1.4KB and takes under 28ms to generate and 9ms
to verify.

At the core of PGC is an additively homomorphic public-key encryption scheme that we introduce,
twisted ElGamal, which is not only as secure as standard exponential ElGamal, but also friendly to
Sigma protocols and range proofs. This enables us to easily devise zero-knowledge proofs for basic
correctness of transactions as well as various application-dependent policies in a modular fashion.
Moreover, it is very efficient. Compared with the most efficient reported implementation of Paillier
PKE, twisted ElGamal is an order of magnitude better in key and ciphertext size and decryption
speed (for small message space), two orders of magnitude better in encryption speed. We believe
twisted ElGamal is of independent interest on its own right. Along the way of designing and reasoning
zero-knowledge proofs for PGC, we also obtain two interesting results. One is weak forking lemma
which is a useful tool to prove computational knowledge soundness. The other is a method to prove
no-knowledge of discrete logarithm, which is a complement of standard proof of discrete logarithm
knowledge.
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1 Introduction
Unlike traditional centralized banking systems, decentralized payment systems such as Bitcoin [Nak08]
and Ethereum [Woo14] realize peer-to-peer payment by maintaining an append-only public ledger known
as blockchain, which is globally distributed and synchronized by consensus protocols. In blockchain-
based decentralized payment systems (cryptocurrencies), validity of each transaction must be publicly
verified by the validators1 before being packed into a block. To facilitate public verification, the first
generation of cryptocurrencies such as Bitcoin and Ethereum simply make all transaction details (sender,
receiver and transaction amount) publicly accessible and thus are not privacy-preserving. According
to [BBB+18], privacy of decentralized payment system consists of two axes: (1) anonymity, the identities
of sender and receiver in a transaction tx is hidden from an external observer, and (2) confidentiality, the
value in a transaction tx is hidden from an external observer (only known by the associated sender and
receiver). While Bitcoin-like and Ethereum-like cryptocurrencies provide some weak anonymity through
unlinkability of account addresses to real world identities, they lack confidentiality, which is of paramount
importance.

1.1 Motivation
Auditability is a crucial property in all financial systems. In transaction-based payment system, au-
ditability roughly means that an auditor is able to check whether transactions are legal. Roughly, we
consider two types of auditability as follows:

• Regulation compliance: An external auditor can verify if a given set of transactions comply with
regulation policies by inquiring involved participants. In this type of auditing, auditor usually does
not process extra power over ordinary users, and thus auditing is interactive in nature (requiring
auditee’s consent). We refer to this kind of auditor as regulator.

• Global supervision: An internal auditor can inspect all the information in any transaction at his
will. In this type of auditing, auditor typically owns some extra privilege over ordinary users (e.g.
secret of system-wide parameters), and auditing is non-interactive (without auditee’s consent). We
refer to this kind of auditor as supervisor.

In centralized payment system where there exists a trusted center such as bank, Paypal or Alipay,
auditability is a built-in property since the center knows details of all transactions by default. However,
it is challenging to provide the same level of auditability in decentralized payment systems with strong
privacy guarantee.

In our point of perspective, strong privacy is a double-edged sword. While confidentiality is arguably
the primary concern of privacy for any payment system, anonymity might be abused or even prohibitive
for applications that require auditability, because anonymity provides plausible deniability2, which al-
lows participants to deny their involvements in given transactions. Particularly, anonymity denies the
feasibility of enforcing regulation compliance, since a regulator is unable to determine who is involved
in which transaction. Based on the above discussion, we conjecture that it may be impossible to con-
struct a decentralized payment system maintaining the same level of auditability as centralized payment
system while offering confidentiality and anonymity simultaneously without introducing some degree of
centralization or trust assumption. We are thus motivated to find a sweet balance between privacy and
auditablity in decentralized payment system.

1.2 Our Contributions
In this work, we stick to confidentiality, but trade anonymity for regulation compliance, and show further
how to enable supervision. We summarize our contributions as follows.

Auditable decentralized confidential payment system. We introduce the notion of auditable
decentralized confidential payment (DCP) system with a formal security model. For the sake of sim-
plicity, we take an account-based approach and focus only on the transaction layer, and treat the

1In cryptocurrencies jargon, validators are known as miners.
2Plausible deniability [FMMO19]: no outsider observer can tell if a user meant to be involved in a transaction.
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network/consensus-level protocols as black-box and ignore attacks against them. We first define se-
curity requirement for confidential payment system, i.e., authenticity, confidentiality and soundness.
Authenticity stipulates that only the owner of an account can spend his coin. Confidentiality requires
the account balance and transfer amount are hidden. Soundness captures that no adversary is able to
generate an invalid transaction that passes verification. We then formalize security requirements for
auditing. The weaker form of auditability — regulation compliance requires soundness and minimal in-
formation disclosure, namely, no malicious auditee participant can convince the regulator to accept false
claims and the regulator learns nothing other than the auditing results. The stronger form of auditability
— supervision requires consistency, namely for any transaction the view of supervisor is consistent with
that of the intended receiver. Meanwhile, even the supervisor cannot potentially break the authenticity
and soundness of confidential payment system (cause loss of property).

We then present a generic construction of ADCP from two building blocks, namely, integrated sig-
nature and encryption (ISE) schemes and non-interactive zero-knowledge (NIZK) proof systems. In our
generic ADCP construction, ISE plays an important role. First, it guarantees that each account can
safely use a single keypair for both encryption and signing. This feature greatly simplifies the overall
design from both conceptual and practical aspects. Second, the encryption component of ISE ensures
that the resulting ADCP system is complete, meaning that as soon as a transaction is recorded on the
blockchain, the payment is settled and takes effect immediately – receiver’s balance increases with the
same amount that sender’s balance decreases, and the receiver can spend his coin on his will. This is in
contrast to many commitment-based cryptocurrencies that require out-of-band transfer, which are thus
not complete. The effect of NIZK is three folds: (1) enables a sender to prove that transactions satisfies
the default monetary invariants (validity policy) of a payment system; (2) allows an auditee to prove that
any set of confidential transactions he participated comply with a wide range of application-dependent
regulation policies; (3) guarantees that no user can evade the oversight of the supervisor. In summary,
our generic ADCP construction is simple, complete, and supports flexible auditing.

PGC: a simple and efficient instantiation. While the generic ADCP construction is relatively
simple and intuitive, an efficient realization is more technically involved. We instantiate the generic
construction by designing a new ISE and carefully devising suitable NIZK proof system. We refer to
the resulting decentralized payment system as PGC (stands for Pretty Good Confidentiality). Notably,
in addition to the advantages inherited from the generic construction, PGC admits transparent setup,
and its security is based solely on the widely-used discrete logarithm assumption. To demonstrate the
efficiency and usability of PGC, we implement it as a standalone cryptocurrency, and also deploy it as
smart contracts. We report the experimental results in Section 8.

1.3 Technical Overview
We discuss our design choice in the generic construction of ADCP, followed by techniques and tools
towards a secure and efficient instantiation, namely, PGC.

1.3.1 Design Choice in Generic Construction of ADCP

Pseudonymity vs. Anonymity. Early blockchain-based cryptocurrencies offers pseudonymity, that
is, addresses are assumed to be unlinkable to their real world identities. However, a variety of de-
anonymization attacks [RS13, BKP14] falsified this assumption. On the other hand, a number of cryp-
tocurrencies such as Monero and Zcash sought to provide strong privacy guarantee, including both
anonymity and confidentiality. In this work, we aim for finding a sweet balance between privacy and
auditability. As indicated in [GGM16], identity is crucial to any regulatory system. Therefore, we choose
to offer privacy in terms of confidentiality, and still stick to pseudonymous system. Interestingly, we view
pseudonymity as a feature rather than a weakness, and assume that an auditor is able to link account
addresses to real world identities. This opens the possibility to conduct auditing. We believe this is the
most promising avenue for real deployment of DCP that requires auditability.
PKE vs. Commitment. A typical approach to achieve transaction confidentiality is to commit the
balance and transaction amount using a global homomorphic commitment scheme (e.g., the Pedersen
commitment [Ped91]), then derive a secret from blinding randomnesses to prove correctness of transaction
and authorize transfer. The seminal DCP systems [Max, Poe] follow this approach.
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Nevertheless, commitment-based approach suffers from several drawbacks. First, the resulting DCP
systems are not complete. Due to lack of decryption capability, senders are required to honestly transmit
the openings of outgoing commitments (includes randomness and amount) to receivers in an out-of-band
manner. This issue makes the system much more complicated, as it must be assured that the out-of-
band transfer is correct and secure. Second, users must be stateful since they have to keep track of the
randomness and amount of each incoming commitment. Otherwise, failure to open a single incoming
commitment will render an account totally unusable, due to either incapable of creating the NIZK proofs
(lack of witness), or generating the signature (lack of signing key). This incurs extra security burden to
the design of wallet (guarantee the openings must be kept in a safe and reliable way). Last but not the
least, as stated by Bünz et al. [BBB+18], as Pedersen commitment is only computational binding based
on discrete logarithm assumption, an adversary will be able to open a given commitment to an arbitrary
value when quantum computers are available, which is a serious issue in any payment system.

Observe that homomorphic PKE can be viewed as a computationally hiding and perfectly binding
commitment, in which the secret key serves as a natural trapdoor to recover message. With these factors
in mind, our design equips each user with a PKE keypair rather than making all users share a global
commitment.

Integrated Signature and Encryption vs. SIG+PKE. Intuitively, to secure a DCP system, we
need a PKE scheme to provide confidentiality, and a signature scheme to provide authenticity. If we
follow the principle of key separation, i.e., use different keypairs for encryption and signing operations
respectively, the overall design would be complicated. In that case, each account will be associated with
two keypairs, and consequently account address generation turns out to be very tricky. If we derive the
address from one public key, which one should be chosen? If we derive the address from the two public
keys, then additional mechanism is needed to link the two public keys together.

A better solution is to adopt key reuse strategy, i.e., use the same keypair for both encryption and
signing. This will greatly simplify the design of overall system. However, reusing keypairs may create new
security problems. As pointed out in [PSST11], the two operations may interact with one another badly,
in such a way as to undermine the security of one or both of the primitives, e.g., the case of textbook RSA
encryption and signature. In this work, we propose to use integrated signature and encryption (ISE)
scheme with joint security, wherein a single keypair is used for both signature and encryption components
in a secure manner (cf. Section 2.5 for definition), to replace the naive combination of signature and
encryption. To the best of our knowledge, this is the first time that ISE is used in DCP system to ensure
provable security. We remark that the existing proposal Zether [BAZB20] essentially adopts the key reuse
strategy, employing a signature scheme and an encryption scheme with same keypair. Nevertheless, they
do not explicitly identify the usage of key reuse strategy and formally address joint security.

1.3.2 Overview of Our Generic Construction of ADCP

We present a generic construction of ADCP system from ISE and NIZK. We choose the account-based
model for simplicity and usability. In our generic ADCP construction, user creates an account by
generating a keypair of ISE, in which the public key is used as account address and secret key is used to
control the account. The state of an account consists of a serial number (a counter that increments with
every outgoing transaction) and an encrypted balance (encryption of plaintext balance under account
public key). State changes are triggered by transactions from one account to another. A publicly
accessible and append-only ledger called blockchain records monetary transactions in an immutable
manner, and account states can always be deduced from history transactions on the blockchain.

For ease of exposition, we describe our ADCP construction in an incremental manner. We first outline
the design of DCP that support regulation compliance, then sketch how to enable global supervision.

Basic DCP. Let C̃s and C̃r be the encrypted balances of two accounts controlled by Alice and Bob
respectively. Suppose Alice wishes to transfer v coins to Bob. She constructs a confidential transaction via
the following steps. First, she encrypts v under her public key pks and Bob’s public key pkr respectively
to obtain Cs and Cr, and sets memo = (pks, pkr, Cs, Cr). Then, she produces a NIZK proof πlegal for
the system-wide legality policy: (i) Cs and Cr are two encryptions of the same transaction amount
under pks and pkr; (ii) the transaction amount lies in a right range; (iii) her remaining balance is
not negative. Finally, she signs serial number sn together with memo and πlegal under her secret key,
obtaining a signature σ. The entire transaction is of the form (sn,memo, πlegal, σ). In this way, validity
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of a transaction is publicly verifiable by checking the signature and NIZK proof. If the transaction is
valid, it will be recorded on the blockchain. Accordingly, Alice’s balance (resp. Bob’s balance) will be
updated as C̃s = C̃s − Cs (resp. C̃r = C̃r + Cr), and Alice’s serial number increments. Such balance
update operation implicitly requires that the underlying PKE scheme is additively homomorphic.

In summary, the signature component is used to provide authenticity (proving ownership of an ac-
count), the encryption component is used to hide the balance and transfer amount, while zero-knowledge
proofs are used to prove the legality of transactions in a privacy-preserving manner.
Regulation compliance. A trivial solution to enforce auditability is to make the relevant participants
reveal their secret keys. However, this approach will expose all the related transactions to the auditor, and
thus does not satisfy minimal information disclosure. Note that the relationship between plain account
states/transaction amounts and their encrypted form can be expressed as NP relations. Regulation
compliance can thus be easily achieved by leveraging NIZK. Moreover, the symmetric structure of memo
allows either the sender or the receiver can prove that transactions comply with a variety of application-
dependent policies. We provide examples of several regulation policies as below:

• Anti-money laundering: the sum of a collection of outgoing/incoming transactions from/to a par-
ticular account is limited.

• Tax payment: a user pays the tax according to a prior-fixed tax rate.

• Selectively disclosure: the transfer amount of some transaction is indeed some value.

Global supervision. A naive solution to enable supervision is to have the supervisor maintain a big
database for all users. However, this naive solution comes with three deficiencies: (i) the complexity
of key management grows linearly with the number of keys, and thus being inadequate for large-scale
applications; (ii) collecting decryption keys require consent of all users, which could be difficult to
conduct in practice; (iii) in the key reuse setting, the supervisor can easily compromise the authenticity
with decryption keys. Our solution is to use PKE with global key escrow property [CTW21]. In more
details, the supervisor plays the role of global key escrow center, and the sender encrypts transaction
amount using global escrow PKE. The consistency and security of supervision follow from that of global
escrow PKE and the fact that the global decryption key is independent of each individual user’s key
pair. Note that Chen et al. [CTW21] shows two generic approaches of building global escrow PKE. One
is from PKE and NIZK, the other is from three-party non-interactive key exchange. We choose the first
approach since it can compile any PKE in-use to a global escrow one, and therefore global supervision
can be designed as an add-on mechanism.

1.3.3 PGC: a secure and efficient instantiation

A secure and efficient instantiation of the above ADCP construction turns out to be more technical
involved. Before proceeding, it is instructive to list the desirable features in mind:

1. Transparent setup – do not require a trusted setup. This property is of uttermost importance in
the setting of cryptocurrencies.3

2. Efficient – only employ lightweight cryptographic schemes based on well-studied assumptions.

3. Modular – build the whole scheme from reusable gadgets.

The above desirable features suggest us to devise efficient NIZK that admits transparent setup, rather
than resorting to general-purpose zk-SNARKs, which are heavyweight or require trusted setup. Besides,
the encryption component of ISE should be zero-knowledge proofs friendly.

We begin with the instantiation of ISE. A common choice is to select Schnorr signature [Sch91] as
the signature component and exponential ElGamal PKE [CGS97] as the encryption component.4 This
choice brings us at least three benefits: (i) Schnorr signature and ElGamal PKE share the same discrete-
logarithm (DL) keypair (i.e., pk = gsk ∈ G, sk ∈ Zp), thus we can simply use the common public

3We argue that in some cases semi-transparent setup is also acceptable. Looking ahead, when adding global escrow
property, the parameter of supervisor’s part does not admit transparent setup, but even with the associated trapdoor, the
supervisor is still unable to break authenticity and soundness.

4In the remainder of this paper, we simply refer to the exponential ElGamal PKE as ElGamal PKE for ease of exposition.
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key as account address. (ii) The signing operation of Schnorr’s signature is largely independent to the
decryption operation of ElGamal PKE, which indicates that the resulting ISE scheme could be jointly
secure. (iii) ElGamal PKE is additively homomorphic. Efficient Sigma protocols can thus be employed
to prove linear relations on algebraically-encoded values.

Obstacle of working with Bulletproof. To design efficient NIZK proofs for the basic correctness
policies and various application-dependent policies, we also need range proofs to prove the encrypted
values lie in the right interval. In more details, we need to prove that the value v encrypted in Cs and
the value encrypted in C̃s −Cs (the current balance subtracts v) lies in the right range. State-of-the-art
range proof is Bulletproof [BBB+18], which enjoys efficient proof generation/verification, logarithmic
proof size, and transparent setup. As per the desirable features of our instantiation, Bulletproof is an
obvious choice. Recall that Bulletproof only accepts statements of the form of Pedersen commitment
grhv. To guarantee soundness, the DL relation between commitment key (g, h) must be unknown to
the prover. Note that an ElGamal ciphertext C of v under pk is of the form (gr, pkrgv), in which the
second part ciphertext can be viewed as a commitment of v under commitment key (pk, g). To prove v
lies in the right range, it seems that we can simply run the Bulletproof on pkrgv. However, this usage is
insecure since the prover owns an obvious trapdoor, say sk, of such commitment key.

There are two approaches to circumvent this obstacle. The first approach is to commit v with
randomness r under commitment key (g, h), then prove (v, r) in gvhr is consistent with that in the
ciphertext (gr, pkrgv). Similar idea was used in Quisquis [FMMO19]. The drawback of this approach is
that it brings extra overhead of proof size as well as proof generation/verification. The second approach
is due to Bünz et al. [BAZB20] used in Zether. They extend Bulletproof to Σ-Bullets, which enables
the interoperability between Sigma protocols and Bulletproof. Though Σ-Bullets is flexible, it requires
custom design and analysis from scratch for each new Sigma protocols.

Twisted ElGamal - our customized solution. We are motivated to directly use Bulletproof in
a black-box manner, without introducing Pedersen commitment as a bridge or dissecting Bulletproof.
Our idea is to twist standard ElGamal, yielding the twisted ElGamal. We sketch twisted ElGamal
below. The setup algorithm picks two random generators (g, h) of G as global parameters, while the
key generation algorithm is same as that of standard ElGamal. To encrypt a message m ∈ Zp under
pk, the encryption algorithm picks r

R←− Zp, then computes ciphertext as C = (X = pkr, Y = grhm).
The crucial difference to standard ElGamal is that the roles of key encapsulation and session key are
switched and the message m is lifted on a new generator h.5 Clearly, twisted ElGamal retains additive
homomorphism, and is as efficient and secure as the standard exponential ElGamal (as we will rigorously
prove later). More importantly, it is zero-knowledge friendly. Note that the second part of twisted
ElGamal ciphertext (even encrypted under different public keys) can be viewed as Pedersen commitment
under the same commitment key (g, h), whose DL relation is unknown to all users. Such structure makes
twisted ElGamal compatible with all zero-knowledge proofs whose statement is of the form Pedersen
commitment. In particular, one can directly employ Bulletproof to generate range proofs for values
encrypted by twisted ElGamal in a black-box manner, and these proofs can be easily aggregated. Next,
we abstract two distinguished cases.
Prover knows the randomness. In our generic DCP construction, to create a transaction, sender encrypts
transfer amount under his public key, then proves the encrypted amount lies in the right range. This
case generalizes scenarios in which the prover is the producer of ciphertexts. Concretely, consider a
twisted ElGamal ciphertext C = (X = pkr, Y = grhv), to prove m lies in the right range, the prover
first executes a Sigma protocol on C to prove the knowledge of (r, v), then invokes a Bulletproof on Y
to prove v lies in the right range. The proof of knowledge property follows since the output of Sigma
protocol’s extractor equals that of Bulletproof’s extractor with overwhelming probability based on the
hardness of DLP related to (g, h). See Section 5.2.2 for the details.
Prover knows the secret key. In our generic DCP construction, sender also needs to prove the amount
encrypted by C̃s − Cs lies in the right range. Here, C̃s is the encryption of his current balance, which
is the accumulation of all previous incoming and outgoing transfers. Note that the randomness beneath
C̃s − Cs is generally unknown to the sender, even assuming homomorphism on randomness.6 This case

5As indicated in [CZ14], the essence of ElGamal is Fsk(g
r) = pkr forms a publicly evaluable pseudorandom functions

over G. The key insight of switching is that Fsk is in fact a permutation.
6Most encryption schemes are not randomness recovering.
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generalizes scenarios where the prover is the recipient of ciphertexts. Due to lack of randomness as
witness, the prover cannot directly invoke Bulletproof as above. We solve this problem by developing
ciphertext refreshing approach. The prover first decrypts C̃s − Cs to v using sk, then generates a new
ciphertext C∗

s of v under fresh randomness r∗, and proves that C̃s − Cs and C∗
s do encrypt the same

message under his public key. As we will see later, this can be efficiently done by a Sigma protocol
using sk as witness. Now, the prover is able to prove that v encrypted by C∗

s lies in the right range by
composing a Sigma protocol and a Bulletproof, via the same way as the first case. See Section 5.2.3 for
the details.

The above range proofs provide two specialized “proof gadgets” for proving encrypted values lie in
the right range. We refer to them as Gadget-1 and Gadget-2 hereafter. As we will see, all the NIZK
proofs used in this work can be built from these two gadgets and simple Sigma protocols. Such modular
design helps to reduce the footprint of overall cryptographic code, and have the potential to admit
parallel proof generation/verification. We highlight the two “gadgets” are interesting on their own right
as privacy-preserving tools, which may find applications in other domains as well, e.g., secure machine
learning [TMZC17].

Additional results. Along the way of designing the zero-knowledge proofs for PGC, we obtain two
interesting results. The first one is weak forking lemma, which is a relaxed version of standard forking
lemma. Weak forking lemma provides a useful tool of rigorously proving argument of knowledge based
on average-case hard assumption embedded in public parameters, for example, Bulletproof and inner
product argument. See Theorem 2.3 for details. The second one is a simple trick of proving no-knowledge
of discrete logarithm, which is an interesting complement of the classical protocol of proving knowledge
of discrete logarithm. See the discussion in Section 6.4 for details.

Enforcing regulation policies. In the above, we have discussed how to employ Sigma protocols and
Bulletproof to enforce the basic system-wide legality policy for transactions. In fact, we are able to
enforce a variety of regulation polices that can be expressed as linear constraints over transfer amounts.

• Limit policy: let ctx1, . . . , ctxn be a collection of confidential transaction sent from/to a particular
account pk, and let Ci be the corresponding encryptions of transfer amounts vi under pk. This
policy stipulates that

∑n
i=1 vi ≤ amax, where amax is an upper bound depending on application.

The prover could be either the sender or the receiver of ctxi, who are not required to keep track of
history randomness. To enforce this policy, the prover utilizes additive homomorphism to compute
to compute C =

∑n
i=1 Ci, then uses Gadget-2 to generate a proof for compliance of this policy.

The auditor can enforce limit policy anti-laundering money.

• Rate policy: let ctx1 be an incoming transaction sent to pk, ctx2 be an transaction sent from pk,
in which C1 and C2 are the corresponding encryptions of transfer amounts v1 and v2 under pk.
This policy stipulates v1/v2 = ρ, where ρ is an application-dependent rate. Without much loss of
generality, we assume ρ = α/β, where α and β are two integers. To demonstrate this policy, the
prover utilizes additive homomorphism to compute C ′

1 = β ·C1 and C ′
2 = α ·C2, then prove that C1

and C2 encrypt the same value under pk. The auditor can enforce rate policy to ensure taxpayer
paid tax according to the rules.

• Open policy: let ctx be a confidential transaction from pks to pkr, and Cu be the encryption of
transfer amount under pku, where the subscript u could be either s or r. This policy stipulates
that the underlying transfer amount is indeed v, where v is an application-dependent value. Either
the sender or receiver of ctx prove this via a classic Sigma protocol for discrete logarithm equality,
using his secret key sk as witness. This policy can be used to enforce selective-disclosure.

1.4 Related Work
The seminal cryptocurrencies such as Bitcoin and Ethereum do not provide sufficient level of privacy. In
the past years privacy-enhancements have been developed along several lines of research. We provide a
brief overview below.

The first direction aims to provide confidentiality. Maxwell [Max] initiates the study of confidential
transaction. He proposes a DCP system by employing Pedersen commitment to hide transfer amount
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and using range proofs to prove correctness of transaction. Mimblewimble/Grin [Poe, Gri] further im-
prove Maxwell’s construction by reducing the cost of signatures. The second direction aims to enhance
anonymity. A large body of works enhance anonymity via utilizing mixing mechanisms. For instance,
Coinjoin [Max13], CoinShuffle [RMK14], TumbleBit [HAB+17], Dash [Das], and Mixcoin [BNM+14] for
Bitcoin and Möbius [MM] for Ethereum. The third direction aims to attain both confidentiality and
anonymity. Monero [Noe15] achieves confidentiality via similar techniques used in Maxwell’s DCP sys-
tem, and provides anonymity by employing linkable ring signature and stealth address. Zcash [ZCa]
achieves strong privacy by equipping two types of addresses and leveraging key-private PKE and zk-
SNARK.

Despite great progress in privacy-enhancement, the aforementioned schemes are not without their
limitations. In terms of reliability, most of them require out-of-band transfer and thus are not complete.
In terms of efficiency, some of them suffer from slow transaction generation due to the use of heavy
advanced cryptographic tools. In terms of security, some of them are not proven secure based on well-
studied assumption, or rely on trusted setup.

Another related work is zkLedger [NVV18], which offers strong transaction privacy and privacy-
preserving auditing. To attain anonymity, zkLedger uses a novel table-based ledger in combination with
the OR proof techniques. As a consequence, the transaction size is linear in the total number of users in
the system, and the efficiency of auditing is not only determined by the complexity of policy, but may
also depends on the number of total transactions, which could be prohibitively expensive. This makes
zkLedger only suitable for a small scale of participants (e.g. consortium of banks). Besides, zkLedger
does not present formal threat model and security proof for the whole system. For instance, the claimed
privacy seems questionable due to the use of correlated randomnesses. In comparison, our work focuses
on confidentiality. We present a generic construction of DCP system with formal threat model and
security proof as well as an efficient instantiation. As a bonus of dropping anonymity, our DCP system
enjoys good scalability. The transaction size depends on the number of participants rather than the total
number of users in the system, and the efficiency of auditing depends only on the complexity of policies.

Concurrent and independent work. Fauzi et al. [FMMO19] put forward a new design of cryptocur-
rency with strong privacy called Quisquis in the UTXO model. They employ updatable public keys
to achieve anonymity and a slight variant of standard ElGamal encryption to achieve confidentiality.
Bünz et al. [BAZB20] propose a confidential payment system called Zether, which is compatible with
Ethereum-like smart contract platforms. They use standard ElGamal to hide the balance and transfer
amount, and sketch how to acquire anonymity using one-out-of-many proof. (Recently, Diamond [Dia21]
points out that one-out-of-many proof does not lead to anonymity and proposes many-out-of-many proof
instead.) Both Quisquis and Zether design accompanying zero-knowledge proofs from Sigma protocols
and Bulletproof, but take different approaches to tackle the incompatibility between ElGamal encryp-
tion and Bulletproof. Quisquis introduces ElGamal commitment to bridge ElGamal encryption, and uses
Sigma protocol to prove consistency of bridging. Finally, Quisquis invokes Bulletproof on the second
part of ElGamal commitment, which is exactly a Pedersen commitment. Zether develops a custom ZKP
called Σ-Bullets, which is a dedicated integration of Bulletproof and Sigma protocol. Given an arithmetic
circuit, Σ-Bullets ensures that a public linear combination of the circuit’s wires is equal to some witness
of a Sigma protocol. This enhancement in turn enables proofs on algebraically-encoded values such as
ElGamal encryptions or Pedersen commitments in different groups or using different commitment keys.

We highlight the following crucial differences of our work to Quisquis and Zether: (i) We focus on
confidentiality, and trade anonymity for auditability. (ii) We use jointly secure ISE, rather than ad-hoc
combination of signature and encryption, to build DCP system in a provably secure way. (iii) As for
instantiation, PGC employs our newly introduced twisted ElGamal rather than standard ElGamal to hide
balance and transfer amount. The nice structure of twisted ElGamal enables the sender to generate range
proof for encrypted transfer amount by directly invoking Bulletproof in a black-box manner, without any
extra bridging overhead as Quisquis. The final proof for transaction correctness is obtained by assembling
small “proof gadgets” together in a simple and modular fashion, which is flexible and reusable. This
is opposed to Zether’s approach, in which zero-knowledge proof is produced by a Σ-Bullets as a whole,
while building case-tailored Σ-Bullets requires to dissect Bulletproof and skillfully design its interface to
Sigma protocol.
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1.5 Additions to Conference Version
Since the initial publication of this work in [CMTA20], twisted ElGamal and accompanying zero-
knowledge proofs have been used in the construction of several DCP systems, such as in MiniLedger [CB21]
and SPL ZK-Token [Sol]. Compared to the conference version [CMTA20], we add the following contri-
butions:

Enhanced security notion. To better capture realistic attack, we enhance the confidentiality notion
for basic DCP by allowing the adversary to make reveal query to open confidential transactions (cf.
Section 3.5). We also prove that our generic ADCP construction already satisfies such enhanced con-
fidentiality notion. In the conference version, we only prove our efficient instantiation PGC achieves
weak authenticity. By a careful analysis, we now demonstrate that PGC already satisfies standard
authenticity.
Support global supervision. We refine the concept of auditing by considering two types of audit,
namely regulation compliance and global supervision. Particularly, we show how to leverage global
escrow PKE to support global supervision in a generic and flexible manner. This work wins the first
prize in the 2020 Financial Cryptography contest in China [Fin].
Optimizations. We optimize the code implementation of PGC and include it in Kunlun library [libb],
bringing roughly 2× speed up.

2 Preliminaries
Basic Notations. Throughout the paper, we denote the security parameter by λ ∈ N. A function
is negligible in λ, written negl(λ), if it vanishes faster than the inverse of any polynomial in λ. Let
X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two distribution ensembles indexed by λ. We say that X and Y are
statistically indistinguishable, written X ≈s Y , if the statistical distance between Xλ and Yλ is negligible
in λ. We say that X and Y are computationally indistinguishable, written X ≈c Y , if the advantage
of any PPT algorithm in distinguishing Xλ and Yλ is negl(λ). A probabilistic polynomial time (PPT)
algorithm is a randomized algorithm that runs in time poly(λ). If A is a randomized algorithm, we
write z ← A(x1, . . . , xn; r) to denote that A outputs z on inputs (x1, . . . , xn) and randomness r. For
notational clarity we usually omit r and write z ← A(x1, . . . , xn). For a positive integer n, we use [n]

to denote the set of numbers {1, . . . , n}. For a set X, we use |X| to denote its size and use x
R←− X to

denote sampling x uniformly at random from X. We use UX to denote the uniform distribution over X.

Below, we review the cryptographic assumptions and primitives that will be used in this work.

2.1 Cryptographic Assumptions
Let GroupGen be a PPT algorithm that on input a security parameter λ, outputs description of a cyclic
group G of prime order p = Θ(2λ), and a random generator g for G. In what follows, we describe the
discrete-logarithm based assumptions related to (G, g, p)← GroupGen(1λ).

Definition 2.1 (Discrete Logarithm Assumption). The discrete logarithm assumption holds if for any
PPT adversary, we have:

Pr[A(g, h) = a s.t. ga = h] ≤ negl(λ),

where the probability is over the randomness of GroupGen(1λ), A’s random tape, and the random choice
of h R←− G.

Definition 2.2 (Decisional Diffie-Hellman Assumption). The DDH assumption holds if for any PPT
adversary, we have: ∣∣Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣ ≤ negl(λ),

where the probability is over the randomness of GroupGen(1λ), A’s random tape, and the random choices
of a, b, c R←− Zp.
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Definition 2.3 (Divisible Decisional Diffie-Hellman Assumption). The divisible DDH assumption holds
if for any PPT adversary, we have:∣∣∣Pr[A(g, ga, gb, ga/b) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣∣ ≤ negl(λ),

where the probability is over the randomness of GroupGen(1λ), A’s random tape, and the random choices
of a, b, c R←− Zp.

As proved in [BDZ03], the divisible DDH assumption is equivalent to the standard DDH assumption.

2.2 Commitments
A non-interactive commitment scheme is a two-party protocol between a sender and a receiver with two
stages. At the committing stage, the sender commits to some value m by sending a commitment to the
receiver. At the opening stage, the sender can open the commitment by providing m and some auxiliary
information, by which the receiver can verify that the value it received is indeed the value committed by
the sender during the committing stage. Formally, a commitment scheme consists of three polynomial
time algorithms as below:

• Setup(1λ): on input a security parameter λ, output public parameters pp. We assume that pp
includes the descriptions of message space M , randomness space R, and commitment space C. pp
will be used as implicit input of the following two algorithms.

• Com(m; r): the sender commits a message m by choosing uniform random coins r, and computing
c← Com(m; r), then sends c to receiver.

• Open(c,m, r): the sender can later decommit c by sending m, r to the receiver; the receiver outputs
Com(m; r)

?
= c.

Correctness. For all pp ← Setup(1λ), all m ∈ M and all r ∈ R, we have Open(Com(m; r),m, r) = 1.
For security, we require hiding and binding.
Hiding. A commitment Com(m; r) should not reveal anything about its committed value of m. Let A
be an adversary against hiding, we define its advantage via the following experiment:

AdvA(λ) = Pr

β′ = β :

pp← Setup(λ);
(m0,m1)← A1(pp);

β
R←− {0, 1}, r R←− R, c← Com(mβ ; r);

β′ ← A2(c);

− 1

2
.

A commitment scheme is perfectly hiding if AdvA(λ) = 0 even for unbounded adversary, is statistical
hiding (resp. computational hiding) if AdvA(λ) = negl(λ) w.r.t. unbounded adversary (resp. PPT
adversary).
Binding. A commitment c cannot be opened to two different messages. Let A be an adversary against
binding, we define its advantage via the following experiment:

AdvA(λ) = Pr

[
m0 ̸= m1∧

c = Com(m0; r0) = Com(m1; r1)
:

pp← Setup(λ);
(c,m0, r0,m1, r1)← A(pp);

]
.

A commitment scheme is perfectly binding if AdvA(λ) = 0 even for unbounded adversary (a.k.a.
∀m0 ̸= m1, their commitment values are disjoint), is statistical binding (resp. computational binding) if
AdvA(λ) = negl(λ) w.r.t. unbounded adversary (resp. PPT adversary).
Pedersen Commitment. Below we recall the Pedersen commitment [Ped91]:

• Setup(1λ): run (G, p, g) ← GroupGen(1λ), pick h
R←− G∗, then output pp = (G, p, g, h). Here,

M = R = Zp, C = G.

• Com(m; r): on input message m ∈ Zp and randomness r
R←− Zp, output c← gmhr.

• Open(c,m, r): output “1” if c = gmhr and “0” otherwise.
The Pedersen commitment is perfectly hiding and computational binding under the discrete logarithm

assumption.
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2.3 Public-Key Encryption
A PKE scheme consists of four polynomial time algorithms as follows.

• Setup(1λ): on input a security parameter λ, output public parameters pp. We assume pp also
includes the descriptions of message space M , ciphertext space C, and randomness space R.

• KeyGen(pp): on input pp, output a public key pk and a secret key sk.

• Enc(pk,m): on input a public key pk and a plaintext m, output a ciphertext c. When emphasizing
the randomness r used for encryption, we denote this by c← Enc(pk,m; r).

• Dec(sk, c): on input a secret key sk and a ciphertext c, output a plaintext m or a distinguished
symbol ⊥ indicating that c is invalid.

Correctness. For all pp← Setup(1λ), all (pk, sk)← KeyGen(pp) and all m ∈M (here M is the message
space), we have Dec(sk,Enc(pk,m)) = m.

Homomorphism. For any public key pk, any (m1, r1), (m2, r2) ∈ M × R, we have Enc(pk,m1; r1) +
Enc(pk,m2; r2) = Enc(pk,m1+m2; r1+r2). Here, we slight abuse the symbol “+” to denote component-
wise operation over space C ×C. Additive homomorphism on message already suffices for most applica-
tions: Enc(pk,m1)+Enc(pk,m2) is an encryption of (m1+m2) of pk under some appropriate randomness.
When both ciphertext space and message space are finite cyclic groups, we can naturally define scalar
multiplication, which is a special case of additive homomorphism: for all k ∈ Zp, k · Enc(pk,m) is an
encryption of km under pk.

2.4 Signature
A signature scheme consists of four polynomial time algorithms as follows.

• Setup(1λ): on input a security parameter λ, output public parameters pp. We assume pp also
includes the descriptions of message space M , signature space Σ, and randomness space R.

• KeyGen(pp): on input pp, output a public key vk and a secret key sk.

• Sign(sk,m): on input sk and a message m, output a signature σ.

• Verify(pk,m, σ): on input pk, a message m, and a purported signature σ, output “1” indicating
acceptance or “0” indicating rejection.

Correctness. For all pp← Setup(1λ), all (vk, sk)← KeyGen(pp) and all m ∈M (here M is the message
space), it holds that Verify(pk,m, Sign(sk,m)) = 1.

2.5 Integrated Signature and Encryption Scheme
Haber and Pinkas [HP01] introduced the concept of combined public key (CPK) scheme, which is a combi-
nation of a signature scheme (Setup,KeyGen,Sign,Verify) and encryption scheme (Setup,KeyGen,Enc,Dec):
the existing Sign, Verify, Enc, Dec algorithms are preserved, while the two sets of Setup, KeyGen algo-
rithms are combined into a single one. Paterson et al. [PSST11] revisited this topic and gave a generic
construction of combined public key scheme from identity-based encryption.

In this work, we use a special case of combined public key scheme which we refer to as integrated
signature and encryption scheme (ISE). Compared to general CPK, ISE stipulates that the keypair is
non-splittable, i.e., the keypair cannot be divided into two parts so that one is used for the encryption
component and the other one is used for the signature component. This requirement excludes the naive
Cartesian product construction of CPK. ISE uses the same keypair for both signing and encryption, thus
the two operations may interfere with one another, in such a way to undermine the security of one or
both of the components. For this reason, joint security must be considered when ISE is used, which
captures potentially dangerous interactions. Please refer to [PSST11] for more detailed discussion on
this point.
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In the context of our DCP construction, the joint security of ISE stipulates that the PKE compo-
nent is IND-CPA secure in the single-plaintext/two-recipient setting even in the presence of a signing
oracle, while the signature component is sEUF-CMA secure even in the presence of two encryption
oracles. Note that in the public key setting the adversary can always perfectly simulate encryption
oracles itself, thus standard sEUF-CMA security implies that the signature component is secure in
the joint sense and we only need to enhance the IND-CPA security for the PKE component. Let
ISE = (Setup,KeyGen,Sign,Verify,Enc,Dec). We formally define the case-tailored joint security model
used in this work.

Definition 2.4 (Joint Security for ISE). We say an ISE is jointly secure (case-tailored for DCP setting)
if its encryption and signature components satisfy the following security notions respectively.

IND-CPA security (1-plaintext/2-recipient) in the presence of a signing oracle. Let A be an
adversary against the PKE component and define its advantage in the following experiment:

AdvA(λ) = Pr

β = β′ :

pp← Setup(1λ);
(pki, ski)← KeyGen(pp) for i = 1, 2;
(state,m0,m1)← AOsign(pp, pk1, pk2);

β
R←− {0, 1};

Ci ← Enc(pki,mβ) for i = 1, 2;

β′ ← AOsign

2 (state, C1, C2);

−
1

2
.

Here, Osign provides unlimited access to signing oracle with respect to sk1 and sk2. More precisely, Osign

returns Sign(ski,m) on input i ∈ {1, 2} and m ∈ M . The encryption component is IND-CPA secure in
1-plaintext/2-recipient setting if no PPT adversary A has non-negligible advantage in the above security
experiment.
sEUF-CMA security. The security requirement for the signature component is exactly the standard
sEUF-CMA security. Let A be an adversary against the signature component and define its advantage
in the following experiment:

AdvA(λ) = Pr

 Verify(pk,m∗, σ∗) = 1
∧ (m∗, σ∗) /∈ Q :

pp← Setup(λ);
(pk, sk)← KeyGen(pp);
(m∗, σ∗)← AOsign(pp, pk);

 .

The setQ records the historical message/signature pairs obtained viaOsign, which returns σ ← Sign(sk,m)
on input m. The signature component is sEUF-CMA if no PPT adversaryA has non-negligible advantage
in the above security experiment.

2.6 Zero-Knowledge Protocols
We first recall the definition of interactive proof systems.

Definition 2.5 (Interactive Proof System). An interactive proof system is a two party protocol in which
a prover can convince a verifier that some statement is true without revealing any knowledge about why
it holds. Formally, it consists of three PPT algorithms (Setup, P, V ) as below.

• The Setup algorithm on input 1λ, outputs public parameters pp. Let Rpp ⊆ X ×W be an NP
relation indexed by pp. We say w ∈W is a witness for a statement x iff (x,w) ∈ Rpp. Rpp naturally
defines a family of public-parameters-dependent NP languages:

Lpp = {x | ∃w ∈W s.t. (x,w) ∈ Rpp}

From now on, we will drop the subscript pp occasionally when the context is clear.

• P and V are a pair of interactive algorithms, which both take pp as implicit input and the statement
x as common input. We use the notation tr ← ⟨P (x), V (y)⟩ to denote the transcript of an execution
between P and V , where P has input x and V has input y. We write ⟨P (x), V (y)⟩ = b depending
on whether V accepts, b = 1, or rejects, b = 0. When the context is clear, we will also slightly
abuse the notation of ⟨P (x), V (y)⟩ to denote V ’s view (ViewV ) in the interaction, which consists
of V ’s input tape, random tape and incoming messages sent by P .
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An interactive proof system satisfies the following two properties:

Completeness. For any (x,w) ∈ Rpp where pp← Setup(1λ), we have:

Pr[⟨P (x,w), V (x)⟩ = 1] = 1

Statistical soundness. For any x /∈ Lpp where pp← Setup(1λ), any cheating prover P ∗, we have:

Pr[⟨P ∗(x), V (x)⟩ = 1] ≤ negl(λ)

If we restrict P ∗ to be a PPT cheating prover in the above definition, we obtain an interactive argument
system.

Public coin. An interactive proof/argument system is public-coin if all messages sent from V are chosen
uniformly at random and independent of P ’s message.

We then recall several zero-knowledge extensions of interactive zero knowledge proof systems that
will be used in this work.

Definition 2.6 (Zero-Knowledge Argument of Knowledge). We say an interactive proof system is a
zero-knowledge argument of knowledge if it satisfies standard completeness, argument of knowledge and
zero knowledge.

Following [BCC+16], we use computational witness-extended emulation to define argument of knowl-
edge. Intuitively, this definition says that whenever a malicious prover produces an accepting argument
with some probability, there exists an emulator producing a similar argument with roughly the same
probability together with a witness.

Computational witness-extended emulation. For all deterministic polynomial time P ∗ there exists
an expected PPT emulator E such that for all PPT interactive adversaries A = (A1,A2)

Pr


pp← Setup(λ);
(x,w)← A1(pp);
tr ← ⟨P ∗(x,w), V (x)⟩;
tr is accepting;
A2(tr) = 1

− Pr


pp← Setup(λ);
(x,w)← A1(pp);
(tr, w′)← EO(x);
(x,w′) ∈ Rpp;
A2(tr) = 1

 ≤ negl(λ)

where the oracle O = ⟨P ∗(x,w), V (x)⟩ permits rewinding to a specific point and resuming with fresh
randomness for the verifier from this point onwards. In the definition, s is interpreted as the state of
P ∗, including the randomness and auxiliary input. According to the definition, whenever P ∗ makes a
convincing argument in state s, E can extract a witness. This is why it defines argument of knowledge.
Computational zero-knowledge. For any malicious PPT V ∗ there exists an expected PPT simulator
S such that for any pp← Setup(1λ) and (x,w) ∈ Rpp, we have:

⟨P (x,w), V ∗(x)⟩ ≈c S(x)

Computational zero-knowledge can be strengthened to statistical (resp. perfect) zero-knowledge by
requiring the views are statistically indistinguishable (resp. identical).

Definition 2.7 (Sigma Protocol (Σ-protocol) [Dam]). An interactive proof system is called a Sigma
protocol if it follows the following communication pattern (3-round public-coin):

1. (Commit) P sends a first message a to V ;

2. (Challenge) V sends a random challenge e to P ;

3. (Response) P replies with a second message z.

and satisfies standard completeness and the variants of soundness and zero-knowledge as below:

Special soundness. For any x and any pair of accepting transcripts (a, e, z), (a, e′, z′) with e ̸= e′,
there exists a PPT extractor outputs a witness w for x.
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Special honest-verifier zero-knowledge (SHVZK). There exists a PPT simulator S such that for
any (x,w) ∈ Rpp and randomness e, we have:

⟨P (x,w), V (x, e)⟩ ≡ S(x, e)

Definition 2.8 (Range Proof). For a commitment scheme over total ordering message space M and
randomness space R, a range proof is a zero-knowledge argument of knowledge for the following language:

L = {c | ∃m ∈M, r ∈ R s.t. c = Com(m; r) ∧ x ∈ [a, b]}

Interaction is typically expensive or impossible in some cases. Thus, removing interaction is of
particular interest in practice. However, non-interactive zero-knowledge (NIZK) proofs for non-trivial
languages are impossible in the plain model. We need to consider NIZK in the common reference
string (CRS) model, wherein a string is generated after setup phase, and made available to everyone to
prove/verify statement.
Definition 2.9 (Non-Interactive Zero-Knowledge Proof [BFM88, FLS90]). A NIZK proof system in the
CRS model consists of four PPT algorithms (Setup,CRSGen, P, V ):

• Setup(1λ): same as that of ordinary zero-knowledge proof system, which on input a security pa-
rameter λ, output public parameters pp.

• CRSGen(pp): on input pp, output a common reference string crs.

• P (crs, x, w): on input crs and a statement-witness pair (x,w) ∈ Rpp, output a proof π. We also
denote this process by π ← Prove(crs, x, w).

• V (crs, x, π): on input crs, a statement x, and a proof π, outputs “0” if rejects and “1” if accepts.
We also denote this process by b← Verify(crs, x, π).

A NIZK proof system in the CRS model satisfies the following requirements:
Completeness. For any (x,w) ∈ Rpp where pp← Setup(1λ),

Pr

[
V (crs, x, π) = 1 :

crs← CRSGen(pp);
π ← P (crs, x, w);

]
= 1.

Statistical soundness. For any cheating prover P ∗,

Pr =

 x /∈ L∧
V (crs, x, π) = 1

:
pp← Setup(1λ);
crs← CRSGen(pp);
(x, π)← P ∗(crs);

 ≤ negl(λ).

This definition is in the adaptive sense in that P ∗ may choose x after seeing crs. Statistical soundness
can be relaxed to computational soundness by restricting P ∗ to be a PPT algorithm. In this case, a
proof system degenerates to an argument system.
Computational zero-knowledge. For any pp ← Setup(1λ), any PPT adversary A = (A1,A2), there
exists a PPT simulator S = (S1,S2) such that:

Pr


crs← CRSGen(pp);
(x,w)← A1(crs);
π ← P (crs, x, w);
A2(crs, x, π) = 1

− Pr


(crs, τ)← S1(pp);
(x,w)← A1(crs);
π ← S2(crs, x, τ);
A2(crs, x, π) = 1

 ≤ negl(λ).

This definition is also in the adaptive sense in that A1 may adaptively choose x after seeing crs. Compu-
tational zero-knowledge can be strengthened to statistical zero-knowledge by requiring the above holds
even for unbounded A.

Interestingly, in the random oracle model NIZK is possible without explicitly relying on common
reference string. The celebrated Fiat-Shamir transform [FS86] shows how to compile a Sigma protocol
into a NIZK by modeling cryptographic hash function as random oracle. It not only removes interaction,
but also strengthens honest-verifier zero-knowledge to full zero-knowledge (against malicious verifiers).
Fiat-Shamir transform actually applies to any public-coin SHVZK argument of knowledge. Formally, we
have the following theorem.
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Theorem 2.1 (Fiat-Shamir Transform [BR93, FKMV12]). Let (Setup, P, V ) be a (2k+1)-move public-
coin SHVZK argument of knowledge, x be the statement, ai be prover’s ith round message and ei be
verifier’s ith round challenge, H is a hash function whose range equal to verifier’s challenge space. By
setting ei = H(a1, . . . , ai) in (Setup, P, V ), we obtain (Setup, PH, V H), which is a NIZK assuming H is a
random oracle.7

General Forking Lemma. We recall the general forking lemma of [BCC+16, BBB+18] that will be
used in our proofs. Suppose that we have a (2k + 1)-move public-coin argument with k challenges,
e1, . . . , ek in sequence. Let ni ≥ 1 for i ∈ [k]. Consider Πk

i=1ni accepting transcripts whose challenges
satisfying the following tree format. The tree has depth k and Πk

i=1ni leaves. The root of the tree is
labeled with the statement. Each node of depth i < k has exactly ni children, each labeled with a distinct
value of the ith challenge ei. This can be referred to as an (n1, . . . , nk)-tree of accepting transcripts,
which is a natural generalization of special soundness for Sigma protocols where k = 1 and n = 2. For
the simplicity in the following lemma, we assume that the challenge space is Zp and p = Θ(2λ).

Theorem 2.2 (Forking Lemma [BCC+16, BBB+18]). Let (Setup, P, V ) be a (2k+1)-move, public-coin
interactive protocol. Let E be a PPT witness extraction algorithm that succeeds with probability 1−µ(λ)
for some negligible function µ(λ) in extracting a witness from an (n1, . . . , nk)-tree of accepting transcripts.
If Πk

i=1ni is bounded by a polynomial in λ, then (Setup, P, V ) has witness-extended emulation.

Forking lemma is a useful tool to prove witness-extended emulation, a.k.a. proof of knowledge. We
note that the condition of standard forking lemma is required to hold regardlessly of the distributions
of public parameters and instance. Such a strong form of condition is impossible to achieve in the
computational setting when we need to argue that the output of extractor is indeed the witness based on
average-case assumptions over public parameters. For example, the cases of inner product argument and
Bulletproof [BBB+18]. We are thus motivated to introduce a weaker form of forking lemma by relaxing
the condition, which still suffices to imply computational witness-extended emulation. In what follows,
we formulate weak forking lemma by capturing the relaxed condition via an interactive game.

Theorem 2.3 (Weak Forking Lemma). Let (Setup, P, V ) be a (2k + 1)-move, public-coin interactive
protocol. Let E be a PPT witness extraction algorithm that succeeds with overwhelming probability in
extracting a witness from an (n1, . . . , nk)-tree of accepting transcripts in the following game:

Pr


pp← Setup(1λ);
x← A(crs);

w ← E(crs, x, tr);
tr is accepting⇒ (x,w) ∈ Rpp

 ≥ 1− negl(λ)

If such E exists for any PPT adversary A and Πk
i=1ni is bounded by a polynomial in λ, then (Setup, P, V )

has computational witness-extended emulation.

3 Definition of Auditable Decentralized Confidential Payment
System

We formalize the notion of auditable decentralized confidential payment system in account-based model,
adapting the notion of decentralized anonymous payment system [ZCa].

3.1 Data Structures
We begin by describing the data structures used by an auditable DCP system.

Blockchain. An auditable DCP system operates on top of a blockchain B. The blockchain is publicly
accessible, i.e., at any given time t, all users have access to Bt, the ledger at time t, which is a sequence
of transactions. The blockchain is also append-only, i.e., t < t′ implies that Bt is a prefix of Bt′ .

7To get a unifying syntax of NIZK, one can also interpret the description of H as common reference string.
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Public parameters. A trusted party generate public parameters pp at the setup time of system, which
is used by system’s algorithms. We assume that pp always include an integer vmax, which specifies the
maximum possible number of coins that the system can handle. Any balance and transfer below must
lie in the integer interval V = [0, vmax].
Account. Each account is associated with a keypair (pk, sk), an encoded balance C̃ (which encodes
plaintext balance ṽ), as well as an incremental serial number sn (used to prevent replay attacks). Both
sn, C̃, and pk are made public. The public key pk serves as account address, which is used to receive
transactions from other accounts. The secret key sk is kept privately, which is used to direct transactions
to other accounts and decodes encoded balance.
Confidential transaction. A confidential transaction ctx consists of three parts, i.e., sn, memo and
aux. Here, sn is the current serial number of sender account pks, memo = (pks, pkr, C) records basic
information of a transaction from sender account pks to receiver account pkr, where C is the encoding
of transfer amount, and aux denotes the auxiliary information, which is application-dependent.
Policies. Except system-wide legality policy that all transaction must satisfy, transactions under au-
diting should also been proved to comply with application-dependent regulation policies. Observe that
the value-encoding tuples naturally constitute polynomially decidable relations, policies over transfer
amounts and balances can thus be expressed by NP relations. Looking ahead, this allow participants
to prove compliance with specified policies by leveraging NIZK.

We formally capture polices as predicates over public key and related transactions. Let {ctxi}ni=0 be a
set of confidential transactions related to pk, i.e., for each ctxi, pk is either the sender or the receiver, and
vi be the transfer amount of ctxi. A policy over {vi}ni=1 is satisfied if and only if f(pk, {ctxi}ni=0) = 1. The
basic correctness policy for a single transaction in any payment system requires the transfer amount lies in
the correct range and the sender account is solvent, we denote the associated predicate as flegal(pk, ctx).
We list more useful policies as below: (i) limit policy –

∑n
i vi ≤ amax, the associated predicate is

flimit(pk, {ctxi}ni=1); (i) rate policy – v1/v2 = ρ, the associated predicate is frate(pk, (ctx1, ctx2)); (i) open
policy – v = v∗, the associated predicate is fopen(pk, ctx).

3.2 Entities
In an ADCP system, there are the following types of entities:

Users: each user may control several accounts.
Validator: checking the validity of proposed transactions.
Regulator: checking if a given set of transactions satisfies regulation policies by interacting with involved
users. Typically, regulators are authorities in the real world, and do not hold any secret,
Supervisor: inspecting any confidential transaction without interaction with involved users. Typically,
supervisor owns a global trapdoor.

3.3 Auditable Decentralized Confidential Payment System
An auditable DCP system is a tuple of polynomial-time algorithms defined as below:

• Setup(λ): on input a security parameter λ, output public parameter pp and possibly an associated
secret parameter sp. A trusted party executes this algorithm once-for-all to setup the whole system.
pp will be used as an implicit input in the rest algorithms.

• CreateAccount(ṽ, sn): on input an initial balance ṽ and a serial number sn, output a keypair (pk, sk)
and an encoded balance C̃. A user runs this algorithm to create an account.

• RevealBalance(sk, C̃): on input a secret key sk and an encoded balance C̃, output the balance ṽ in
plaintext. A user runs this algorithm to reveal the balance.

• CreateCTx(sks, pks, pkr, v): on input a keypair (sks, pks) of sender account, a receiver account
address pkr, and a transfer amount v, output a confidential transaction ctx. A user runs this
algorithm to transfer v coins from account pks to account pkr.
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• VerifyCTx(ctx): on input a confidential transaction ctx, output “0” denotes valid and “1” denotes
invalid. Validators run this algorithm to check the validity of proposed confidential transaction ctx.
If ctx is valid, it will be recorded on the blockchain B. Otherwise, it is discarded.

• UpdateCTx(ctx): for each fresh ctx appearing on the blockchain B, the corresponding sender and
receiver update their encoded balances to reflect the change, i.e., the sender account decreases with
v coins while the receiver account increases with v coins.

• JustifyCTx(pk, sk, {ctx}, f): on input a user’s keypair (pk, sk), a set of confidential transactions he
participated and a policy f , output a proof π for f(pk, {ctx}) = 1. A user runs this algorithm to
generate a proof for auditing.

• AuditCTx(pk, {ctx}, f, π): on input a user’s public key, a set of confidential transactions he partic-
ipated, a policy f and a proof, output “0” denotes accept and “1” denotes reject. A regulator runs
this algorithm to check if f(pk, {ctx}) = 1.

• OpenCTx(sp, ctx): on input secret parameter sp, output the transaction amount of ctx. A supervisor
runs this algorithm to inspect confidential transactions.

3.4 Correctness
Correctness of basic DCP functionality requires that a valid ctx will always be accepted and recorded
on the blockchain, and the states of associated accounts will be updated properly, i.e., the balance of
sender account decreases the same amount as the balance of receiver account increases. Correctness of
regulation compliance requires honestly generated proofs for transactions complying with policies will
always be accepted. Correctness of supervision requires that for any honestly generated transactions the
views of supervisor and intended receiver are identical.

3.5 Security Model
Following the treatment of Quisquis [FMMO19], we focus solely on the transaction layer of a cryptocur-
rency, and assume network-level or consensus-level attacks are out of scope.

Intuitively, an auditable DCP system should provide authenticity, confidentiality and soundness as
standard DCP system, and also support secure auditing. Authenticity requires that the sender can only
be the owner of an account, nobody else (who does not know the secret key) is able to make a transfer
from this account. Confidentiality requires that other than the sender and receiver (who does not know
the secret keys of sender and receiver), no one can learn the value hidden in a confidential transaction.
While the former two notions address security against outsider adversary, soundness addresses security
against insider adversary (e.g. the sender himself). It requires that no PPT adversary is able to generate
a ctx = (sn,memo, aux) such that VerifyCTx(ctx) = 1 but memo does not satisfy flegal, even it knows the
secret key of sender. Secure auditing requires the audit is sound and zero-knowledge.

We formalize the notions of authenticity, confidentiality and soundness via security experiments. Let
A be an adversary attacking a DCP system. We assume that A can not only induce honest parties
to perform DCP operations, but can also corrupt some honest parties. Formally, we capture attack
behaviors as adversarial queries to oracles implemented by a challenger CH. We list the oracles available
to the adversary as below.

• OregH: A queries this oracle for registering an honest account. CH keeps track of this type of queries
by maintaining a list Thonest, which is initially empty. Upon receiving a fresh query, CH responds
as below: picks a random balance ṽ and a serial number sn, runs CreateAccount(ṽ, sn) to obtain
(pk, sk) and C̃. CH records (pk, sk, C̃, ṽ, sn) in Thonest, then returns (pk, C̃, sn) to A. This oracle
captures that A can observe the public information of honest accounts in the system. Hereafter,
let Qhonest be the maximum number of honest account registration queries that A makes.

• OregC: A queries this oracle with a public key pk, an initial encoded balance C̃ as well as an initial
serial number sn. CH keeps track of this type of queries by maintaining a list Tcorrupt, which is
initially empty. Upon receiving a fresh query, CH records (pk,⊥, C̃,⊥, sn) in Tcorrupt. We stress
that pk and C̃ submitted by A may not be honestly generated, and pk is not allowed to be the one
in Thonest. This oracle captures that A can fully control some accounts in the system.
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• OextH: A queries this oracle with a public key pk that was registered as an honest account, a.k.a. in
Thonest. CH returns the associated sk to A and moves this entry to Tcorrupt. This oracle captures
that A can corrupt some honest accounts.

• Otrans: A queries this oracle with (pks, pkr, v) to conduct a confidential transaction, subject to the
restriction that pks ∈ Thonest. This restriction is natural because for pks ∈ Tcorrupt, A can generate
the confidential transaction itself. CH keeps track of this type of queries by maintaining a list
Tctx, which is initially empty. Upon receiving a fresh query, CH responds as below: If v does not
constitute a valid transaction originated from pks with balance ṽs, i.e., v /∈ V or (ṽs − v) /∈ V,
CH returns ⊥. Else, CH runs ctx ← CreateCTx(sks, pks, pkr, v), updates the state of associated
accounts, records (ctx, v) to Tctx, then sends ctx to A. This oracle captures that A can instruct
any honest account to generate specific transactions as its will.

• Oreveal: A queries this oracle with ctx to reveal a confidential transaction, subject to the restriction
that pks, pkr ∈ Thonest. This restriction is natural because if either pks ∈ Tcorrupt or pkr ∈ Tcorrupt,
A can open the confidential transaction itself. Upon receiving a fresh query, CH first checks if ctx
is valid. If not, CH returns ⊥. Else, CH decrypts the memo part using either sks or skr, then
sends the resulting value to A. This oracle captures a rather strong “CCA-style” attack, a.k.a. A
can instruct any honest account to reveal confidential transactions and observe the results.

• Oinject: A submits a confidential transaction ctx, subject to the restriction that ctx has not been
recorded in Tctx. If VerifyCTx(ctx) = 1, CH updates the states associated account state and records
(ctx,⊥) to Tctx. Otherwise, CH ignores. This oracle captures that A can dishonestly generate any
(possible malformed) transactions itself.

Authenticity. We define authenticity via the following security experiment between A and CH.

AdvA(λ) = Pr

[
VerifyCTx(ctx∗) = 1 ∧

pk∗s ∈ Thonest ∧ ctx∗ /∈ Tctx(pk
∗
s)

:
pp← Setup(λ);
ctx∗ ← AO(pp);

]
.

Here ctx∗ = (sn∗,memo∗ = (pk∗s , pk
∗
r , C

∗), aux∗) is a confidential transaction from pk∗s , Tctx(pk
∗
s) denotes

the set of all the confidential transactions originated from pk∗s in Tctx. A DCP system satisfies authenticity
if no PPT adversary has non-negligible advantage in the above experiment.

Confidentiality. We define confidentiality via the following security experiment between A and CH.

AdvA(λ) = Pr

β = β′ :

pp← Setup(λ);
(state, pk∗s , pk

∗
r , v0, v1)← AO

1 (pp);

β
R←− {0, 1};

ctx∗ ← CreateCTx(sk∗s , pk
∗
s , pk

∗
r , vβ);

β′ ← AO
2 (state, ctx

∗);

− 1

2
.

To prevent trivial attacks, A is subject to the following restrictions: (i) pk∗s , pk∗r chosen by A are required
to be honest accounts, and A is not allowed to make corrupt queries to either pk∗s or pk∗r ; (ii) A2 is not
allowed to query Oreveal with ctx∗; (iii) let ṽs be the balance of pk∗s , vsum be the accumulation of the
transfer amounts in Otrans queries related to pk∗s after ctx∗ (vsum is a variable with initial value 0), both
ṽs − v0 − vsum and ṽs − v1 − vsum are required to lie in V.

Restrictions (i), (ii) prevents trivial attack by decryption, while restriction (iii) prevents inferring β
by testing whether overdraft happens. A DCP system satisfies confidentiality if no PPT adversary has
non-negligible advantage in the above experiment.

Soundness. We define soundness via the following security experiment between A and CH.

AdvA(λ) = Pr

[
VerifyCTx(ctx∗) = 1
∧ flegal(memo∗) = 0

:
pp← Setup(λ);
ctx∗ ← AO(pp);

]
.

Here, ctx∗ = (sn∗,memo∗, aux∗). A DCP system satisfies soundness if no PPT adversary has non-
negligible advantage in the above experiment.
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Secure auditing. We then sketch the security requirements of auditing for ADCP system. For regula-
tion compliance, we require:

• Soundness: no PPT adversary can fool the regulator to accept a false auditing result.

• Minimal information disclosure: the regulator learns nothing other than the auditing result.

For global supervision, we require:

• Consistency: no PPT adversary can generate a transaction such that supervisor’s view is different
from the real receiver’s view.

• Robustness: even the supervisor with sp cannot break the authenticity and soundness.

4 DCP with Auditability
4.1 A Generic Construction of Auditable DCP from ISE and NIZK
We present a generic construction of auditable DCP from ISE and NIZK in an incremental manner.
In a nutshell, we use homomorphic PKE to encode the balance and transfer amount, use NIZK to
enforce senders to build confidential transactions honestly and make validity publicly verifiable, and
use digital signature to authenticate transactions. Let ISE = (Setup,KeyGen,Sign,Verify,Enc,Dec) be
an ISE scheme whose PKE component is additively homomorphic on message space Zp. Let NIZK =
(Setup,CRSGen,Prove,Verify)8 be a NIZK proof system for Llegal (which will be specified later). The
construction is as below.

• Setup(1λ): on input a security parameter λ, runs ppise ← ISE.Setup(1λ), ppnizk ← NIZK.Setup(1λ),
crs← NIZK.CRSGen(ppnizk), outputs pp = (ppise, ppnizk, crs).

• CreateAccount(ṽ, sn): on input an initial balance ṽ ∈ Zp and a serial number sn ∈ {0, 1}n (e.g.,
n = 256), runs ISE.KeyGen(ppise) to generate a keypair (pk, sk), computes C̃ ← ISE.Enc(pk, ṽ; r)
as the initial encrypted balance, sets sn as the initial serial number9, outputs public key pk and
secret key sk. Fix the public parameters, the KeyGen algorithm naturally induces an NP relation
Rkey = {(pk, sk) : ∃r s.t. (pk, sk) = KeyGen(r)}.

• RevealBalance(sk, C̃): on input secret key sk and encrypted balance C̃, outputs ṽ ← ISE.Dec(sk, C̃).

• CreateCTx(sks, pks, v, pkr): on input sender’s keypair (pks, sks), the transfer amount v, and re-
ceiver’s public key pkr, the algorithm first checks if (ṽs − v) ∈ V and v ∈ V (here ṽs is the current
balance of sender account pks). If not, returns ⊥. Otherwise, it creates a confidential transaction
ctx via the following steps:

1. compute Cs ← ISE.Enc(pks, v; r1), Cr ← ISE.Enc(pkr, v; r2), set memo = (pks, pkr, Cs, Cr),
here (Cs, Cr) serve as the encoding of transfer amount;

2. run NIZK.Prove with witness (sks, r1, r2, v) to generate a zero-knowledge proof πlegal for
memo = (pks, pkr, Cs, Cr) ∈ Llegal, where Llegal is defined as below:

Llegal = {(pks, pkr, Cs, Cr) | ∃sks, r1, r2, v s.t. Cs = Enc(pks, v; r1) ∧ Cr = Enc(pkr, v; r2)

∧ v ∈ V ∧ (pks, sks) ∈ Rkey ∧ Dec(sks, C̃s − Cs) ∈ V}

Llegal can be decomposed as Lequal ∧ Lright ∧ Lsolvent:

Lequal = {(pks, Cs, pkr, Cr) | ∃r1, r2, v s.t. Cs = Enc(pks, v; r1) ∧ Cr = Enc(pkr, v; r2)}
Lright = {(pks, Cs) | ∃r1, v s.t. Cs = Enc(pks, v; r1) ∧ v ∈ V}

Lsolvent = {(pks, C̃s, Cs) | ∃sks s.t. (pks, sks) ∈ Rkey ∧ Dec(sks, C̃s − Cs) ∈ V}
8We describe our generic DCP construction using NIZK in the CRS model. The construction and security proof carries

out naturally if using NIZK in the random oracle model instead.
9By default, ṽ and sn should be zero, r should be a fixed and publicly known randomness, say the zero string 0λ. This

settlement guarantees that the initial account state is publicly auditable. Here, we do not make it as an enforcement for
flexibility.
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3. run σ ← ISE.Sign(sks, (sn,memo), πlegal), here sn is the current serial number of pks;
4. output the entire confidential transaction ctx = (sn,memo, aux), where aux = (πlegal, σ).

• VerifyCTx(ctx): on input ctx = (sn,memo, aux), first parses memo = (pks, pkr, Cs, Cr), aux =
(πlegal, σ), then checks its validity via the following steps:

1. check if sn is a fresh serial number of pks (this can be done by inspecting the blockchain);
2. check if ISE.Verify(pks, (sn,memo, πlegal), σ) = 1;
3. check if NIZK.Verify(crs,memo, πlegal) = 1.

If all the above tests pass, outputs “1”, validators confirm that ctx is valid and record it on the
blockchain via consensus protocol, sender updates his balance as C̃s = C̃s−Cs and increments the
serial number, and receiver updates his balance as C̃r = C̃r +Cr. Else, outputs “0” and validators
discard ctx.

On the basis that all confidential transactions on the blockchain satisfying the system-wide legality
policy, we further describe how to enforce a variety of regulation policies.

• JustifyCTx(pks, sks, {ctxi}ni=1, flimit): on input pks, sks, {ctxi}ni=1 and flimit, first parses ctxi =
(sni,memoi = (pks, pkri , Cs,i, Cri), auxi), then runs NIZK.Prove with witness sks to generate a
proof πlimit for the statement (pks, {Cs,i}1≤i≤n, amax) ∈ Llimit, where Llimit is defined as:

{(pk, {Ci}1≤i≤n, amax) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧
∑n

i=1 vi ≤ amax}

A user runs this algorithm to prove compliance with limit policy, i.e., the sum of vi sent from
account pks is less than amax. The same algorithm can be used to proving the sum of vi sent to
the same account is less than amax.

• AuditCTx(pks, {ctxi}ni=1, πlimit, flimit): on input pks, {ctxi}ni=1, πlimit and flimit, first parses ctxi =
(sni,memoi = (pks, pkri , Cs,i, Cri), auxi), outputs NIZK.Verify(crs, (pks, {Cs,i}1≤i≤n, amax), πlimit).
The auditor runs this algorithm to check compliance with limit policy.

• JustifyCTx(pku, sku, {ctx}2i=1, frate): on input pku, sku, {ctxi}2i=1 and frate, the algorithm parses
ctx1 = (sn1,memo1 = (pk1, pku, C1, Cu,1), aux1) and ctx2 = (sn2,memo2 = (pku, pk2, Cu,2, C2), aux2),
then runs NIZK.Prove with witness sku to generate a zero-knowledge proof πrate for the statement
(pku, Cu,1, Cu,2, ρ) ∈ Lrate, where Lrate is defined as:

{(pk, C1, C2, ρ) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ v1/v2 = ρ}

A user runs this algorithm to demonstrate compliance with tax rule, i.e., proving v1/v2 = ρ.

• AuditCTx(pku, {ctxi}2i=1, πrate, frate): on input pku, {ctxi}2i=1, πrate and frate, first parses ctx1 =
(sn1,memo1 = (pk1, pku, C1, Cu,1), aux1), ctx2 = (sn2,memo2 = (pku, pk2, Cu,2, C2), aux2), outputs
NIZK.Verify(crs, (pku, Cu,1, Cu,2, ρ), πrate). An auditor runs this algorithm to check compliance
with rate policy.

• JustifyCTx(sku, ctx, fopen): on input pku, sku, ctx and fopen, parses ctx = (sn, pks, pkr, Cs, Cr, aux),
then runs NIZK.Prove with witness sku (where the subscript u could be either s or r) to generate
a proof πopen for the statement (pku, Cu, v) ∈ Lopen, where Lopen is defined as:

{(pk, C, v∗) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ v∗ = ISE.Dec(sk, C)}

A user runs this algorithm to demonstrate compliance with open policy.

• AuditCTx(pku, ctx, πopen, fopen): on input pku, ctx, πopen and fopen, the algorithm first parses ctx =
(sn, pks, pkr, Cs, Cr, aux), then outputs NIZK.Verify(crs, (pku, Cu, v

∗), πopen), where the subscript
u could be either s or r. An auditor runs this algorithm to check compliance with open policy.

19



Remark 4.1. We note that sender’s current balance can be inferred from the blockchain. Therefore, it is
not necessary to include sender’s current balance in the transaction. To speed up the process, validators
can maintain a local database of validation state (including the set of mutable accounts), in the same way
as most implementation of existing account-based cryptocurrencies (such as Nxt, Ethereum, Bitshares,
NEM, Tezos).

We sketch show how to support the optional global supervision property. Follow the approach outlined
in the introduction part, in the setup stage the supervisor generates an ISE keypair (pka, ska), then
includes pka as part of public parameter and sets ska as secret parameter. When sender creates a
confidential transaction, he will encrypt the transfer value under (pks, pkr) and pka, and generate the
accompanying zero-knowledge proof for plaintext equality. The supervisor can inspect any confidential
transaction by decrypting Ca using ska.

pp pka, ska sn pks, pkr, Cs, Cr Ca πequal πright πsolvent σ

memo πlegal

signed message

auxoptional to enable global supervision

Figure 1: Data structure of confidential transaction in ADCP.

4.2 Analysis of Generic Auditable DCP Construction
Correctness of our generic DCP construction follows readily from the correctness of ISE and completeness
of NIZK. For the security of our DCP construction, we have the following theorem.

Theorem 4.1. Assuming the security of ISE and NIZK, the above ADCP construction is secure.

Proof. We prove this theorem via the following three lemmas.

Lemma 4.2. Assuming the security of ISE’s signature component and the adaptive zero-knowledge
property of NIZK, our ADCP construction satisfies authenticity.

Proof. We proceed via a sequence of games. Let Si be the probability that A wins in Game i.

Game 0. The real experiment for authenticity. CH interacts with A as below.

1. Setup: CH runs ppise ← ISE.Setup(1λ), ppnizk ← NIZK.Setup(1λ), and crs← NIZK.CRSGen(ppnizk),
then sends pp = (ppise, ppnizk, crs) to A.

2. Queries: Throughout the experiment, A can adaptively query OregH, OregC, OextH, Otrans and Oinject,
and CH answers these queries as described above.

3. Forge: A outputs ctx∗ = (sn∗,memo∗ = (pk∗s , pk
∗
r , C

∗
s , C

∗
r ), π

∗
legal, σ

∗), and wins if pk∗s ∈ Thonest ∧
VerifyCTx(ctx∗) = 1 ∧ (sn∗,memo∗) /∈ Tctx(pk

∗
s).

According to the definition, we have:

AdvA(λ) = Pr[S0]

Game 1. Game 1 is same as Game 0 except CH makes a random guess for the index of target pk∗s at
the beginning, i.e., randomly picks an index j ∈ [Qhonest]. If A makes an extraction query of pkj in the
learning stage, or A picks pk∗s ̸= pkj in the challenge stage, CH aborts.
Let W be the event that CH does not abort. It is easy to see that Pr[W ] = 1/Qhonest. Conditioned on
CH does not abort, A’s view in Game 0 is identical to that in Game 1. Thereby, we have:

Pr[S1] = Pr[S0] · Pr[W ]
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Game 2. Same as Game 1 except that CH runs (crs, τ)← S1(ppnizk) in the Setup stage, then generates
the zero-knowledge proof by running S2 in the simulation mode. We make this modification to avoid
using secret key (part of the witness) to generate the zero-knowledge proofs. More precisely, in the Setup
stage CH runs (crs, τ) ← S1(ppnizk). When handling transaction queries, CH runs S2(crs, τ,memo) to
generate πlegal for memo ∈ Llegal. By a direct reduction to the adaptive zero-knowledge property of the
underlying NIZK, we have:

|Pr[S2]− Pr[S1]| ≤ negl(λ)

We now argue that no PPT adversary has non-negligible advantage in Game 2.

Claim 4.3. Assuming the sEUF-CMA security of ISE’s signature component, Pr[S2] ≤ negl(λ) for all
PPT adversary A.

Proof. Suppose there exists a PPT A has non-negligible advantage in Game 2, we can build an adversary
B breaks the sEUF-CMA security of ISE with the same advantage. Given the challenge (ppise, pk

∗), B
simulates Game 2 as follows:

1. Setup: B runs ppnizk ← NIZK.Setup(1λ), (crs, τ) ← S1(ppnizk), then sends pp = (ppise, ppnizk, crs)
to A. B also randomly picks an index j ∈ [Qhonest].

2. Queries: Throughout the experiment, A can query the following types of oracles adaptively. B
answers these queries by maintaining two lists Thonest and Tcorrupt, which both are initially empty.

• OregH: On the i-th query, B picks a random balance ṽ and a serial number sn, then proceeds
as below:

– If i ̸= j, B runs CreateAccount(ṽ, sn) to obtain (pk, sk) and the initial encrypted balance
C̃ ← ISE.Enc(pk, ṽ), then records (pk, sk, C̃, ṽ, sn) in Thonest.

– If i = j, B sets pk = pk∗, B computes C̃ ← ISE.Enc(pk, ṽ), then records (pk,⊥, C̃, ṽ, sn)
in Thonest.

Finally, B returns (pk, C̃, sn) to A.
• OregC: A makes this query with a public key pk, a serial number sn and an initial encrypted

balance C̃. B records (pk,⊥, C̃,⊥, sn) in Tcorrupt.
• OextH: A makes a query with pk in Thonest. If pk = pkj , B aborts. Else, B returns sk to A,

then moves the corresponding entry to Tcorrupt.
• Otrans: A makes a transaction query (pks, pkr, v) subject to the restriction that pks ∈ Thonest.

Let sn be the serial number, C̃s be the encrypted balance of pks. B proceeds as below:
(a) compute Cs ← ISE.Enc(pks, v), Cr ← ISE.Enc(pkr, v);
(b) set memo = (pkr, pks, Cr, Cs), compute πlegal ← S2(crs, τ,memo);
(c) if pks ̸= pkj , generate a signature σ for (sn,memo, πlegal) with sks; else, generate such

signature σ by querying the signing oracle.
B updates the states of associated accounts, inserts ctx to Tctx, then returns ctx to A.

• Oreveal: A makes a reveal query ctx subject to the restriction that pks, pkr ∈ Thonest. B
proceeds as below:
(a) check if VerifyCTx(ctx) = 1, if not, return ⊥;
(b) parse memo = (pks, pkr, Cs, Cr), suppose pkκ ̸= pk∗ (here the subscript κ could be r or

s), then use skκ to decrypt Cκ, and send the decryption result to A.
• Oinject: A submits a confidential transaction ctx. If VerifyCTx(ctx) = 1, B inserts (ctx,⊥) to

Tctx and updates the states of associated accounts. Otherwise, B ignores.

3. Forge: Finally, A outputs ctx∗ = (sn∗,memo∗, aux∗), where memo∗ = (pk∗s , pk
∗
r , C

∗
s , C

∗
r ) and aux∗ =

(π∗
legal, σ

∗).

If pk∗s ̸= pkj , B aborts. Otherwise, B forwards (sn∗,memo∗, σ∗) to its own challenger. It is easy to see
that B’s simulation for Game 2 is perfect. Thus, B wins with the same advantage as A wins. This proves
Claim 4.3.
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This proves Lemma 4.2.

Lemma 4.4. Assuming the security of ISE’s signature component, the security of ISE’s PKE component,
and the zero-knowledge property of NIZK, our ADCP construction satisfies confidentiality.

Proof. We proceed via a sequence of games. Let Si be the probability that A wins in Game i.

Game 0. The real experiment for confidentiality. CH interacts with A as below.

1. Setup: CH runs ppise ← ISE.Setup(1λ), ppnizk ← NIZK.Setup(1λ), and crs← NIZK.CRSGen(ppnizk),
then sends pp = (ppise, ppnizk, crs, pka) to A.

2. Pre-challenge queries: Throughout the experiment, A can adaptively query OregH, OregC, OextH,
Otrans, Oreveal and Oinject, CH answers these queries as prescribed.

3. Challenge: A picks sender pk∗s , receiver pk∗r and two transfer values v0, v1 as the challenge, subject
to the restriction that pk∗s , pk∗r ∈ Thonest and both v0 and v1 constitute valid transactions from pk∗s .
CH picks a random bit β, computes ctx∗ ← CreateCTx(sk∗s , pk

∗
s , pk

∗
r , vβ), inserts (ctx∗,⊥) to Tctx,

updates the states of accounts pk∗s and pk∗r , then sends ctx∗ to A as the challenge.

4. Post-challenge queries: After receiving the challenge, A can continue query OregH, OregC, OextH,
Otrans and Oinject, CH responds the same way as in pre-challenge stage, but with the following
exceptions: (i) reject A’s OextH query with pk∗s or pk∗r ; (ii) reject A’s Otrans query with pk∗s if it will
make either (ṽ∗s − v0 − vsum) or (ṽ∗s − v1 − vsum) fall outside of V. Here, vsum is the accumulation
of transfer amounts related to pk∗s in post-challenge Otrans queries.

5. Guess: A outputs a guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except CH makes a random guess for index of target accounts (pk∗s , pk
∗
r ) at

the beginning, i.e., randomly picks two distinct indices j, k ∈ [Qhonest]. If A makes an extraction query to
pkj or pkk in pre-challenge queries, or A picks (pk∗s , pk

∗
r ) ̸= (pkj , pkk) in the challenge stage, CH aborts.

Let W be the event that CH does not abort. It is easy to see that Pr[W ] = 1/Qhonest(Qhonest − 1).
Conditioned on CH does not abort, A’s view in Game 0 is identical to that in Game 1. Therefore, we
have:

Pr[S1] = Pr[S0] · Pr[W ]

Game 2. Same as Game 1 except that CH runs (crs, τ)← S1(ppnizk) in the Setup stage, then generates
all zero-knowledge proofs by running S2 in the simulation mode. More precisely, when handling trans-
action queries and challenge queries, CH runs S2(crs, τ,memo) to generate πlegal for memo ∈ Llegal. By
a direct reduction to the adaptive zero-knowledge property of the underlying NIZK, we have:

|Pr[S2]− Pr[S1]| ≤ negl(λ)

Game 3. Let E be the event that A makes a valid reveal query ctx with pkj and pkk as participants
while ctx is not recorded in Tctx or ctx is recorded in Tctx but the corresponding value is ⊥. In other
words, E denotes the event that A generates a fresh valid confidential transaction between pkj and pkk
itself. Game 3 is same as Game 2 except that CH aborts if E happens. By the difference lemma, we
have:

|Pr[S3]− Pr[S2]| ≤ Pr[E]

By a direct reduction to the sEUF-CMA security of the ISE’s signature component (two user setting),
we conclude that Pr[E] ≤ negl(λ).

We now argue that no PPT adversary has non-negligible advantage in Game 3.

Claim 4.5. Assuming the IND-CPA security (1-plaintext, 2-recipient) of the ISE’s encryption compo-
nent, |Pr[S3]− Pr[W ]/2| ≤ negl(λ) for all PPT adversary A.
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Proof. Suppose there exists a PPT adversary A has non-negligible advantage in Game 2, we can build
an adversary B breaks the IND-CPA security (1-plaintext, 2-recipient) of ISE’s encryption component
with the same advantage. Given the challenge (ppise, pka, pkb), B simulates Game 3 as follows:

1. Setup: B runs ppnizk ← NIZK.Setup(1λ), S1(ppnizk)→ (crs, τ), sends pp = (ppise, ppnizk, crs) to A.
B randomly picks two indices j, k ∈ [Qhonest].

2. Pre-challenge queries: Throughout the experiment, A can query OregH, OregC, OextH, Otrans and
Oinject adaptively. B answers these queries by maintaining two lists Thonest and Tcorrupt, which both
are initially empty.

• OregH: On the i-th query, B randomly picks an initial balance ṽ and serial number sn and
proceeds as below:

– If i ̸= j and k, B runs CreateAccount(ṽ, sn) to obtain (pk, sk) and encrypted balance
C̃ ← ISE.Enc(pk, ṽ), then records (pk, sk, C̃, ṽ, sn) in Thonest.

– If i = j or k, B sets pk = pka or pkb, B computes C̃ ← ISE.Enc(pk, ṽ), then records
(pk,⊥, C̃, ṽ, sn) in Thonest.

Finally, B returns (pk, C̃, sn) to A.
• OregC: A makes this query with a public key pk, a serial number sn and an initial encrypted

balance C̃. B records (pk,⊥, C̃,⊥, sn) in Tcorrupt.
• OextH: A makes this query with pk in Thonest. If pk = pkj or pkk, B aborts. Else, B returns

the associated sk to A, then moves the corresponding entry to Tcorrupt.
• Otrans: A makes a transaction query (pks, pkr, v) subject to the restriction that pks ∈ Thonest.

Let sn and C̃s be the serial number and encrypted balance of pks, B proceeds as below:
(a) compute Cs ← ISE.Enc(pks, v), Cr ← ISE.Enc(pkr, v);
(b) set memo = (pkr, pks, Cr, Cs), compute πlegal ← S2(crs, τ,memo);
(c) if pks ̸= {pkj , pkk}, generate a signature σ for (sn,memo, πlegal) with sks; else, generate

such signature σ by querying the signing oracle of the underlying ISE.
B updates the associated account state, then returns ctx to A.

• Oreveal: A makes a reveal query ctx = (sn,memo = (pks, pkr, Cs, Cr), aux) subject to the
restriction that pks, pkr ∈ Thonest. If event E happens, B directly aborts. Otherwise, B
proceeds as below:
(a) if the participants are pkj and pkk and ctx ∈ Tctx, B returns the corresponding v;
(b) else let pkκ ̸= pkj , pkk (where the subscript κ could be either s or r), B decrypts Cκ with

skκ and sends the result to A.
• Oinject: A submits a confidential transaction ctx. If VerifyCTx(ctx) = 1, B inserts (ctx,⊥) to

Tctx and updates the states of associated accounts. Otherwise, B ignores.

3. Challenge: A picks sender pk∗s , receiver pk∗r and two transfer values v0, v1 as the challenge, subject
to the restriction that pk∗s , pk

∗
r ∈ Thonest and both v0 and v1 constitute a valid transaction from

pk∗s . If (pk∗s , pk∗r ) ̸= (pkj , pkk), B aborts. Else, B submits (v0, v1) to its own challenger and receives
back C∗ = (C∗

s , C
∗
r ), which is an encryption of vβ under (pk∗s , pk

∗
r ). Let sn∗ and C̃∗

s be the serial
number and encrypted balance of pk∗s , B then prepares ctx∗ as follows:

(a) set memo∗ = (pk∗s , pk
∗
r , C

∗
s , C

∗
r ).

(b) generate π∗
legal ← S2(crs, τ,memo∗).

(c) query the signing oracle of ISE to obtain a signature σ∗ of (sn∗,memo∗) under sk∗s .

B inserts (ctx∗,⊥) to Tctx, updates the states of accounts pk∗s and pk∗r , then sends ctx∗ to A as the
challenge.
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4. Post-challenge queries: After receiving the challenge, A can continue query to OregH, OregC, OextH,
Otrans, Oreveal and Oinject, B responds the same way as in pre-challenge stage, but with the following
exceptions: (i) reject A’s OextH query with pk∗s or pk∗r ; (ii) reject A’s Otrans query with pk∗s if it will
make either (ṽ∗s − v0− vsum) or (ṽ∗s − v1− vsum) fall outside of V. Here, vsum is the accumulation of
transfer amounts related to pk∗s in post-challenge Otrans queries; (iii) reject A’s Oreveal query with
ctx∗.

5. Guess: Finally, A outputs its guess β′ for β.

If B aborts during the simulation for A’s challenger in Game 3, it will proceed to interact with its
own challenger and outputs a random guess for β. Otherwise, it will forward A’s output to its own
challenger. It is easy to see that B’s simulation for Game 2 is perfect. Thus, B’s advantage against the
ISE’s encryption component is |(1− Pr[W ])/2 + Pr[S3]− 1/2| = |Pr[S3]− Pr[W ]/2|, which is negligible
in λ assuming the IND-CPA security of ISE. This proves Claim 4.5.

We further have |Pr[S1] − Pr[W ]/2| ≤ negl(λ). Note that Pr[W ] is noticeable in λ. Putting all the
above together, we have |Pr[S0]− 1/2| = |Pr[S1]−Pr[W ]/2|/Pr[W ] = negl(λ). This proves Lemma 4.4.

Lemma 4.6. Assuming the soundness of NIZK, our DCP construction satisfies soundness.

Proof. Note that VerifyCTx(ctx∗) = 1∧ flegal(memo∗) = 0 implies that NIZK.Verify(crs,memo∗, π∗
legal) =

1 ∧memo∗ /∈ Llegal. The reduction is thus straightforward. We omit the details here.

Putting Lemma 4.2, 4.4 and 4.6 together, we proves the theorem.

The secure auditing property follows directly from the soundness and zero-knowledge properties of
the used NIZK, and the fact that supervisor’s keypair is independent of users. We omit the details for
its triviality.

5 PGC: an Efficient Instantiation
We now present an efficient realization of our generic DCP construction. We first instantiate ISE from
our newly introduced twisted ElGamal PKE and Schnorr signature, then devise NIZK proofs from Sigma
protocols and Bulletproof.

5.1 Instantiating ISE
We first describe twisted ElGamal encryption and recall Schnorr signature, which share the same setup
and key generation algorithms. We then formally prove their integration constitutes ISE that satisfies
joint security.

Twisted ElGamal. We propose twisted ElGamal encryption as the PKE component. Formally, twisted
ElGamal consists of four algorithms as below:

• Setup(1λ): run (G, g, p) ← GroupGen(1λ), pick h
R←− G∗, set pp = (G, g, h, p) as global public

parameters. The randomness and message spaces are Zp.

• KeyGen(pp): on input pp, choose sk
R←− Zp, set pk = gsk.

• Enc(pk,m; r): compute X = pkr, Y = grhm, output C = (X,Y ).

• Dec(sk, C): parse C = (X,Y ), compute hm = Y/Xsk−1 , recover m from hm.

Remark 5.1. As with the standard exponential ElGamal, decryption can only be efficiently done when
the message is small. However, it suffices to instantiate our generic DCP framework with small message
space (say, 32-bits). In this setting, our implementation shows that decryption can be very efficient.
Indeed, it is actually 30 times faster than the well-known homomorphic encryption scheme Paillier at
the same security level. See Section 7.1 for details.
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Correctness and additive homomorphism are obvious. The standard IND-CPA security can be proved
in the standard model based on the divisible DDH assumption. We provide the proof in Appendix A for
the sake of completeness.

In this work, we require twisted ElGamal is also secure in the single plaintext, two recipient set-
ting. A natural solution is simply concatenating independently encryptions for two recipients, a.k.a.,
Enc(pk1,m; r1)||Enc(pk2,m; r2). Security of this solution is implied by the results independently proved
by Bellare et al. [BBM00] and Baudron et al. [BPS00]. Kurosawa [Kur02] showed that for standard El-
Gamal PKE, randomness can be reused in the single-plaintext, multi-recipient setting. Zether [BAZB20]
utilizes Kurosawa’s result to make their zero-knowledge component more efficient. Thanks to the random
self-reducibility of the divisible DDH problem, our twisted ElGamal PKE is also secure in the single-
plaintext, multi-recipient setting even after implementing the randomness reusing trick. This not only
shortens the overall transaction size, but also improves the efficiency of the associated zero-knowledge
proofs. The security proof is summarized in the following theorem.

Theorem 5.1. Twisted ElGamal is IND-CPA secure (1-plaintext/2-recipient) based on the divisible
DDH assumption.

Proof. We proceed via two games. Let Si be the probability that A wins in Game i.

Game 0. The real IND-CPA security experiment in the 1-plaintext/2-recipient setting. Challenger CH
interacts with A as below:

1. Setup: CH runs pp← Setup(1λ), runs KeyGen(pp) twice independently to obtain (pk1 = gsk1 , sk1)

and (pk2 = gsk2 , sk2), then sends (pp, pk1, pk2) to A.

2. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and fresh
randomness r, computes X1 = pkr1, X2 = pkr2, Y = grhmβ , sends C = (X1, X2, Y ) to A.

3. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of Game 0, we have:

AdvA(λ) = Pr[S0]− 1/2.

Game 1. Same as Game 0 except CH generates the challenge ciphertext in a different way:

2. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and two in-
dependent randomness r and s, computes X1 = pkr1, X2 = pkr2, Y = gshmβ , sends C = (X1, X2, Y )
to A.

In Game 1, the distribution of C is independent of β, thus the following holds even for unbounded A:

Pr[S1] = 1/2

It remains to prove Pr[S1] and Pr[S0] are negligibly close. We prove this by showing if not so, we
can build an adversary B breaks the divisible DDH assumption with the same advantage. Let the public
parameter be (G, g, p), given the divisible DDH challenge instance (g, ga, gb, gc), B is asked to decide if
it is a divisible DDH tuple or a random tuple. To do so, B interacts with A by simulating A’s challenger
in the following IND-CPA experiment.

1. Setup: B picks t
R←− Zp, picks h

R←− G∗, sends pp = (G, g, h, p) and pk1 = gb and pk2 = gbt to A.
Here, b and bt serve as sk1 and sk2, which are unknown to B.

2. Challenge: A submits m0,m1 to B. B picks a random bit β and sets X1 = ga, X2 = gat, Y = gchmβ ,
sends C = (X1, X2, Y ) to A.

3. Guess: A outputs a guess β′ for β. B outputs “1” if β′ = β and “0” otherwise.

If (g, ga, gb, gc) is a divisible DDH tuple, B simulates Game 0 perfectly (with randomness c = a/b).
Else, B simulates Game 1 perfectly (with two independent randomness a/b and c). Thereby, we have
AdvB = |Pr[S0]− Pr[S1]|, which is negligible in λ by the divisible DDH assumption.

Putting all the above together, Theorem 5.1 follows. It is easy to see that this theorem extends to
1-message/n-recipient setting as well.
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Schnorr Signature. We choose Schnorr signature [Sch91] as the signature component. The choice
is out of the following reasons. First, the setup and key generation algorithms of Schnorr signature
are almost identical to those of twisted ElGamal. Second, the signing procedure of Schnorr signature
is irrelevant to the decryption procedure of twisted ElGamal. This suggests that we are able to safely
implement key reuse strategy to build ISE, as we will rigorously prove later.

Last but not the least, Schnorr signature is efficient and can be easily adapted to multi-signature
scheme, which is particularly useful in cryptocurrencies setting [BN06], e.g. shrinking the size of the
ledger [BDN18].

For the sake of completeness, we recall the Schnorr signature and sketch its security proof as below.

• Setup(1λ): run (G, g, p) ← GroupGen(1λ), pick a cryptographic hash function H : M × G → Zp,
where M denotes the message space. Finally, output pp = (G, g, p,H) as global public parameters.

• KeyGen(pp): on input pp, choose sk
R←− Zp, set pk = gsk.

• Sign(sk,m): pick r
R←− Zp, set A = gr, compute e = H(m,A), z = r+sk·e mod p, output σ = (A, z).

• Verify(pk, σ,m): parse σ = (A, z), compute e = H(m,A), output “1” if gz = A · pke and “0”
otherwise.

Theorem 5.2 ([PS00]). Assume H is a random oracle, Schnorr signature is sEUF-CMA secure based
on the discrete logarithm assumption.

We sketch the security proof due to Pointcheval and Stern [PS00] as follows. On a high level, the
reduction R (from DLP to the sEUF-CMA security of Schnorr signature) works as follows. Given the
DLP challenge instance (g, ga), R embeds ga into the public key (i.e., sets pk = ga), then simulates the
signing oracle by programming the random oracle H without knowledge of a and uses the oracle-replay
attack to obtain two different forgeries that share the signing randomness (A = gr) from the forger. This
enables R to solve for a.

ISE from Schnorr signature and twisted ElGamal encryption. By merging the Setup and KeyGen
algorithms of twisted ElGamal encryption and Schnorr signature, we obtain the ISE scheme, whose joint
security is captured by the following theorem.

Theorem 5.3. The obtained ISE scheme is jointly secure if the twisted ElGamal is IND-CPA secure
(1-plaintext/2-recipient) and the Schnorr signature is sEUF-CMA secure.

Proof. As we analyzed before, in our generic DCP construction we only require the PKE component of
ISE satisfying passive security, thus the security of the signature component is implied by its standalone
sEUF-CMA security. In what follows, we prove the security for the PKE component, namely IND-CPA
security (in the 1-plaintext/2-recipient setting) in the presence of a signing oracle for Schnorr signature.
We proceed via a sequence of games.

Game 0. The real security experiment for ISE’s PKE component (cf. Definition 2.4). Challenger CH
interacts with A as below:

1. Setup: CH runs pp← Setup(1λ), runs KeyGen(pp) twice independently to obtain (pk1 = gsk1 , sk1)

and (pk2 = gsk2 , sk2), then sends (pp, pk1, pk2) to A.

2. Queries: Throughout the experiment, A can make hash queries and signing queries. CH emulates
random oracle by maintaining a list Thash using standard lazy method. Thash is initially empty,
which stores triples (·, ·, ·) ∈M×G×Zp, an entry (m,A, e) indicates that e := H(m,A). Concretely,
CH responds A’s queries as below:

• Hash queries: On query (m,A), if there is an entry (m,A, e) in Thash, CH returns e. Else, CH
picks e

R←− Zp and inserts (m,A, e) in Thash, then returns e.
• Signing queries for sk1 or sk2: CH responds with the corresponding secret key. On query

(b,m) where b ∈ {0, 1} indicating which secret key is used, CH picks a fresh randomness
r

R←− Zp, sets A = gr, obtains e = H(m,A) by accessing the hash oracle, then computes
z = r + skb · e mod p, returns σ = (A, z).
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3. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and fresh
randomness r, computes X1 = pkr1, X2 = pkr2, Y = grhmβ , sends C = (X1, X2, Y ) to A.

4. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of Game 0, we have:

AdvA(λ) = Pr[S0]− 1/2.

Game 1. The same as Game 0 except that CH simulates signing oracle by programming random oracle
H, rather than using the real secret keys. To do so, CH emulates random oracle by maintaining a list
T ∗

hash, which is initially empty. T ∗
hash stores triples (·, ·, ·, ·, ·) ∈ M × G × Zp × Zp × {0, 1}, an entry

(m,A, e, ∗, ∗) indicates that e := H(m,A), where ∗ is the wild-card.

2. Queries: CH handles hash queries and signing queries as below.

• Hash queries: On query (m,A), if there is an entry (m,A, e, ∗, ∗) in T ∗
hash, CH returns e. Else,

CH picks e
R←− Zp, inserts (m,A, e,⊥,⊥) in T ∗

hash, then returns e.
• Signing queries for sk1 or sk2: On query (b,m), if there is an entry (m,A, e, z, b) (with the

same value of b and m) in the T ∗
hash list, CH simply returns σ = (A, z). Otherwise, CH picks

z, e
R←− Zp, sets A = gz/pkeb , if there is no entry indexed by (m,A) in T ∗

hash, then inserts
(m,A, e, z, b) in T ∗

hash and returns σ = (A, z). Else, CH aborts to avoid possible inconsistence
in programming.

Denote the event that CH aborts in Game 1 by E. Conditioned on E does not occur, A’s view in
Game 0 and Game 1 are identical. This follows from the fact that CH perfectly mimic the hash oracle
and signing oracle. Let Qhash and Qsign be the maximum number of hash queries and signing queries that
A makes during security experiment. By the union bound, we conclude that Pr[E] ≤ (QhashQsign)/p,
which is negligible in λ. In summary, we have:

|Pr[S1]− Pr[S0]| ≤ Pr[E] ≤ negl(λ)

It remains to bound Pr[S1]. We have the following claim.

Claim 5.4. Assume the IND-CPA security (1-plaintext/2-recipient) of twisted ElGamal PKE, Pr[S1] is
negligible in λ for any PPT adversary A.

Proof. We prove this claim by showing that if there exists a PPT adversary A has non-negligible advan-
tage in Game 1, we can build a PPT adversary B that breaks the IND-CPA security (single-message,
two-recipient) of twisted ElGamal PKE with the same advantage. Note that according to the defini-
tion of Game 1, CH can simulate the signing oracles without using the secret keys. Thereby, given
(pp, pk1, pk2), B can perfectly simulate Game 1 by forwarding the encryption challenge to its own chal-
lenger. This proves the claim.

Putting all the above together, Theorem 5.3 immediately follows.

5.2 Instantiating NIZK
Now, we design efficient NIZK proof systems for basic validity policy (Llegal) and more extended policies
(Llimit, Lrate, Lopen).

As stated in Section 4.1, Llegal can be decomposed as Lequal ∧ Lright ∧ Lsolvent. Let Πequal, Πright,
Πsolvent be NIZK for Lequal, Lright, Lsolvent respectively, and let πlegal := Πequal ◦Πright ◦Πsolvent, where
◦ denotes sequential composition.10 By the property of NIZK for conjunctive statements [Gol06], πlegal
is a NIZK proof system for Llegal. Now, the task breaks down to design Πequal, Πright, Πsolvent. We
describe them one by one as below.

10In the non-interactive setting, there is no distinction between sequential and parallel composition.
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5.2.1 NIZK for Lequal

According to our DCP construction and definition of twisted ElGamal, Lequal can be written as:

{(pk1, X1, Y1, pk2, X2, Y2) | ∃r1, r2, v s.t. Xi = pkrii ∧ Yi = grihv for i = 1, 2}.

As analyzed before, for twisted ElGamal randomness can be safely reused in the 1-plaintext/2-
recipient setting. Lequal can thus be simplified to:

{(pk1, pk2, X1, X2, Y ) | ∃r, v s.t. Y = grhv ∧Xi = pkri for i = 1, 2}.

Sigma protocol for Lequal. To obtain a NIZK for Lequal, we first design a Sigma protocol Σequal =
(Setup, P, V ) for Lequal. The Setup algorithm of Σequal is same as that of the twisted ElGamal. On
statement (pk1, pk2, X1, X2, Y ), P and V interact as below:

1. P picks a, b
R←− Zp, sends A1 = pka1 , A2 = pka2 , B = gahb to V .

2. V picks e
R←− Zp and sends it to P as the challenge.

3. P computes z1 = a+ er, z2 = b+ ev using witness w = (r, v), then sends (z1, z2) to V . V accepts
iff the following three equations hold simultaneously:

pkz11 = A1X
e
1 (1)

pkz12 = A2X
e
2 (2)

gz1hz2 = BY e (3)

(pk1, pk2, X1, X2, Y )

P V

w = (r, v)

a, b
R←− Zp

A1 ← pka1 , A2 ← pka2
B ← gahb

A1, A2, B

e
R←− Zp

e

z = a+ er
t = b+ ev

z, t check if
pkz1 = A1X

e
1

pkz2 = A2X
e
2

gzht = BY e

Figure 2: Σequal for Lequal: proof of knowledge of two twisted ElGamal ciphertexts encrypting the same
value under different public keys

Lemma 5.5. Σequal is a public-coin SHVZK proof of knowledge for Lequal.

Proof. We prove that all three properties required for Sigma protocol are met.
Perfect completeness is obvious from simple calculation.
To show special soundness, fix the initial message (A1, A2, B), suppose there are two accepting tran-

scripts (e, z, t) and (e′, z′, t′) with e ̸= e′, the witness can be extracted as below. From either (1) or (2),
we have z = a + er and z′ = a + e′r, which implies r = (z − z′)/(e − e′). Further from (3), we have
t = b+ ev and t′ = b+ e′v, which imply v = (t− t′)/(e− e′).
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To show special HVZK, for a fixed challenge e, the simulator S works as below: picks z, t
R←− Zp,

computes A1 = pkz1/X
e
1 , A2 = pkz2/X

e
2 , B = gzht/Y e. Clearly, (A1, A2, B, e, z, t) is an accepting

transcript, and it is distributed as in the real protocol.
This proves Lemma 5.5.

Applying Fiat-Shamir transform to Σequal, we obtain Πequal, which is actually a NIZKPoK for Lequal.
To support global supervision, the send has to encrypt the transfer value using 1-message/3-recipient
twisted ElGamal and then prove the correctness of encryption. For completeness, we include the accom-
panying NIZK in Appendix A.2.

5.2.2 NIZK for Lright

According to our DCP construction and the definition of twisted ElGamal, Lright can be written as:

{(pk,X, Y ) | ∃r, v s.t. X = pkr ∧ Y = grhv ∧ v ∈ V}.

For ease of analysis, we additionally define Lenc and Lrange as below:

Lenc = {(pk,X, Y ) | ∃r, v s.t. X = pkr ∧ Y = grhv}
Lrange = {Y | ∃r, v s.t. Y = grhv ∧ v ∈ V}

It is straightforward to verify that Lright ⊂ Lenc ∧ Lrange. Observe that each instance (pk,X, Y ) ∈
Lright has a unique witness, while the last component Y can be viewed as a Pedersen commitment of
value v under commitment key (g, h), whose discrete logarithm logg h is unknown to any users. To prove
(pk,X, Y ) ∈ Lright, we first prove (pk,X, Y ) ∈ Lenc with witness (r, v) via a Sigma protocol Σenc =
(Setup, P1, V1), then prove Y ∈ Lrange with witness (r, v) via a Bulletproof Λbullet = (Setup, P2, V2).

Sigma protocol for Lenc. We begin with a Sigma protocol Σenc = (Setup, P, V ) for Lenc. The Setup
algorithm is same as that of twisted ElGamal. On statement x = (pk,X, Y ), P and V interact as below:

1. P picks a, b
R←− Zp, sends A = pka and B = gahb to V .

2. V picks e
R←− Zp and sends it to P as the challenge.

3. P computes z1 = a+ er, z2 = b+ ev using witness w = (r, v), then sends (z1, z2) to V . V accepts
iff the following two equations hold simultaneously:

pkz1 = AXe (4)
gz1hz2 = BY e (5)

Lemma 5.6. Σenc is a public-coin SHVZK proof of knowledge for Lenc.

Proof. We prove that all three properties required for Sigma protocol are met.
Perfect completeness is obvious from simple calculation.
To show special soundness, fix the initial message (A,B), suppose there are two accepting transcripts

(e, z = (z1, z2)) and (e′, z′ = (z′1, z
′
2)) with e ̸= e′, we can extract the witness as below. From (4), we

have z1 = a + er and z′1 = a + e′r, which implies r = (z1 − z′1)/(e − e′). Further from (5), we have
z2 = b+ ev and z′2 = b+ e′v, which imply v = (z2 − z′2)/(e− e′).

To show special HVZK, for a fixed challenge e, the simulator S works as below: picks z1, z2
R←− Zp,

computes A = pkz1/Xe, B = gz1hz2/Y e. Clearly, (A,B, e, z1, z2) is an accepting transcript, and it is
distributed as in the real protocol.

This proves Lemma 5.6.

Bulletproofs for Lrange. We employ the logarithmic size Bulletproof Λbullet = (Setup, P, V ) to prove
Lrange. To avoid repetition, we refer to [BBB+18, Section 4.2] for the details of the interaction between
P and V .

Lemma 5.7. [BBB+18, Theorem 3] Assuming the hardness of discrete logarithm problem, Λbullet is a
public-coin SHVZK argument of knowledge for Lrange.
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(pk,X, Y )

P V

w = (r, v)

a, b
R←− Zp

A← pka, B ← gahb

A,B

e
R←− Zp

e

z1 = a+ er
z2 = b+ ev

z1, z2 check if
pkz1 = AXe

gz1hz2 = BY e

Figure 3: Σenc for Lenc: proof of knowledge of twisted ElGamal ciphertext

Sequential composition. Let Γright = Σenc ◦Λbullet be the sequential composition of Σenc and Λbullet.
The Setup algorithm of Γright is a merge of that of Σenc and Λbullet. For range V = [0, 2ℓ − 1], it
first generates a group G of prime order p together with two random generators g and h, then picks
independent generators g,h ∈ Gℓ. Let P1 = Σenc.P , V1 = Σenc.V , P2 = Λbullet.P , V2 = Λbullet.V . We
have Γright.P = (P1, P2), Γright.V = (V1, V2).

Lemma 5.8. Assuming the discrete logarithm assumption, Γright = (Setup, P, V ) is a public-coin SHVZK
argument of knowledge for Lright.

Proof. The completeness and zero-knowledge properties of Γright follow from that of Σenc and Λbullet.
In order to prove argument of knowledge, it suffices to construct a PPT witness extraction algorithm

E. Let E1 and E2 be the witness extraction algorithm for Σenc and Λbullet respectively. Note that Γright is
a sequential composition of Σenc and Λbullet, thus an (n0, n1, . . . , nk)-tree of accepting transcripts for Γright
is a composition of an n0-subtree of accepting transcripts for Σenc (where n0 = 2) and an (n1, . . . , nk)-
subtree of accepting transcripts for Λbullet (see [BBB+18] for the concrete values of n1, . . . , nk).

E first runs E1 on n0-subtree of accepting transcripts to extract w = (r, v), then runs E2 on
(n1, . . . , nk)-subtree of accepting transcripts to extract w′ = (r′, v′). Finally, E outputs w if w = w′ and
aborts otherwise. Note that Πk

i=0ni is still bounded by a polynomial of λ.
According to Lemma 5.6, E1 outputs a witness of statement (pk,X, Y ) ∈ Lenc with probability 1.

According to Lemma 5.7, E2 outputs a witness of statement Y ∈ Lrange with overwhelming probability
assuming the hardness of DLP. We argue that E2’s output w′ = (r′, v′) equals E1’s output w = (r, v) with
overwhelming probability, since otherwise the relation gvhr = Y = gv

′
hr′ immediately yields a solution

logg h to the DLP instance (g, h). We thus conclude that E outputs a witness for x = (pk,X, Y ) ∈ Lright
with overwhelming probability. Thus, Γright satisfies computational witness-extended emulation.

Putting all the above together, Lemma 5.8 immediately follows.

Applying Fiat-Shamir transform to Γright, we obtain Πright, which is a NIZKAoK for Lright.

5.2.3 NIZK for Lsolvent

According to our generic DCP construction, Lsolvent is defined as:

{(pk, C̃, C) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ ISE.Dec(sk, C̃ − C) ∈ V}.

In the above, C̃ = (X̃ = pkr̃, Ỹ = gr̃hṽ) is the encryption of current balance ṽ of account pk under
randomness r̃, C = (X = pkr, Y = grhv) encrypts the transfer amount v under randomness r. Let
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C ′ = (X ′ = pkr
′
, Y ′ = gr

′
hm′

) = C̃ − C, Lsolvent can be rewritten as:

{(pk, C ′) | ∃r′,m′ s.t. C ′ = ISE.Enc(pk,m′; r′) ∧m′ ∈ V}.

By the additive homomorphism of twisted ElGamal, we have r′ = r̃ − r, m′ = ṽ − v. It seems that
we can prove Lsolvent using the same protocol for Lright. However, while the sender (playing the role of
prover) learns ṽ (by decrypting C̃ with sk), v and r, it generally does not know the randomness r̃. This is
because C̃ is the sum of all the incoming and outgoing transactions of pk, whereas the randomness behind
incoming transactions is unknown. The consequence is that r′ (the first part of witness) is unknown,
which renders us unable to directly invoke the Bulletproof on instance Y ′.

Our trick is encrypting the value m′ = (ṽ−v) under a fresh randomness r∗ to obtain a new ciphertext
C∗ = (X∗, Y ∗), where X∗ = pkr

∗ , Y ∗ = gr
∗
hm′ . C∗ could be viewed as a refreshment of C ′. In a nutshell,

we express Lsolvent as Lequal ∧ Lright, a.k.a. we have:

(pk, C ′) ∈ Lsolvent ⇐⇒ (pk, C ′, C∗) ∈ Lequal ∧ (pk, C∗) ∈ Lright

To prove that C ′ and C∗ encrypt the same value under public key pk, we cannot simply use a
Sigma protocol like Protocol 2, in which the prover uses the message and randomness as witness, as the
randomness r′ behind C ′ is typically unknown. Luckily, we are able to prove this more efficiently by
using the secret key as witness. Generally, Lequal can be written as:

{(pk, C1, C2) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ ISE.Dec(sk, C1) = ISE.Dec(sk, C2)}

When instantiated with twisted ElGamal, C1 = (X1 = pkr1 , Y1 = gr1hm) and C2 = (X2 = pkr2 , Y2 =
gr2hm) are ciphertexts under the same public key pk, then proving membership of Lequal is equivalent
to proving logY1/Y2

X1/X2 equals logg pk. This can be efficiently done by utilizing the Sigma protocol
Σddh = (Setup, P, V ) for discrete logarithm equality due to Chaum and Pedersen [CP92]. For the sake
of completeness, we describe it as below.

The Setup algorithm generates a cyclic group G of prime order p. Define the language Lddh as below:

Lddh = {(g1, h1, g2, h2) | ∃w ∈ Zp s.t. logg1 h1 = w = logg2 h2}

It is easy to see that logg1 h1 = logg2 h2 iff (g1, h1, g2, h2) constitutes a DDH tuple. On statement
x = (g1, h1, g2, h2), P interacts with V as below:

1. P picks a
R←− Zp, sends A1 = ga1 , A2 = ga2 to V ;

2. V picks e
R←− Zp and sends it to P as the challenge;

3. P computes z = a+ we with witness w and sends it to V . V accepts iff:

gz1 = A1h
e
1 ∧ gz2 = A2h

e
2

Lemma 5.9 ([CP92]). Σddh is a public-coin SHVZK proof of knowledge for Lddh.

Applying Fiat-Shamir transform to Σddh, we obtain a NIZKPoK Πddh for Lddh. We then prove
(pk, C∗ = (X∗, Y ∗)) ∈ Lright using the NIZKPoK Πright as we described before. Let Πsolvent = Πddh ◦
Πright, we conclude that Πsolvent is a NIZKPoK for Lsolvent by the properties of AND-proofs.

Putting all the sub-protocols described above, we obtain πlegal = Πequal ◦Πright ◦Πsolvent.

Theorem 5.10. Πvalid is a NIZKAoK for Lvalid = Lequal ∧ Lright ∧ Lsolvent.

Proof. The proof of this theorem follows from the properties of AND-proofs.

Two useful proof gadgets. The above construction contributes two useful “proof gadgets” for gener-
ating range proofs for values in encrypted form. Πright constitutes Gadget-1, which admits a prover to
generate range proofs with knowledge of message and randomness. Πright constitutes Gadget-2, which
admits a prover to generate range proofs with knowledge of secret key.
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e
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Figure 4: Σddh for Lddh: proof of knowledge of discrete logarithm equality/DDH tuple

5.2.4 NIZK for Llimit

According to our DCP construction and the definition of twisted ElGamal, Llimit can be written as:

{(pk, {Ci}1≤i≤n, amax) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧
∑n

i=1 vi ≤ amax}

Let Ci = (Xi = pkri , Yi = grihvi). By additive homomorphism of twisted ElGamal, the prover first
computes C =

∑n
i=1 Ci = (X = pkr, Y = grhv), where r =

∑n
i=1 ri, v =

∑n
i=1 vi. As aforementioned,

in PGC users are not required to maintain history state, which means that users may forget the related
random coins when cooperating with audit. Nevertheless, this is not a problem. It is equivalent to prove
(pk, C) ∈ Lsolvent, which can be done by using Gadget-2.

5.2.5 NIZK for Lrate

According to our DCP construction and the definition of twisted ElGamal, Lrate can be written as:

{(pk, C1, C2, ρ) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ v1/v2 = ρ}

Without much loss of generality, we assume ρ = α/β, where α and β are two positive integers that
are much smaller than p. Let C1 = (pkr1 , gr1hv1), C2 = (pkr2 , gr2hv2). By additive homomorphism
of twisted ElGamal, we compute C ′

1 = β · C1 = (X ′
1 = pkβr1 , Y ′

1 = gβr1hβv1), C ′
2 = α · C2 = (X ′

2 =
pkαr2 , Y ′

2 = gαr2hαv2). Note that v1/v2 = ρ = α/β if and only if hβv1 = hαv2 ,11 Lrate is equivalent to
(Y ′

1/Y
′
2 , X

′
1/X

′
2, g, pk) ∈ Lddh, which in turn can be efficiently proved via Πddh for discrete logarithm

equality using sk as witness, as already described in Protocol 4.

5.2.6 NIZK for Lopen

According to our DCP construction and the definition of twisted ElGamal, Lopen can be written as:

{(pk, C = (X,Y ), v) | ∃sk s.t. X = (Y/hv)sk ∧ pk = gsk}

The above language is equivalent to (Y/hv, X, g, pk) ∈ Lddh, which in turn can be efficiently proved via
Πddh for discrete logarithm equality, as already described in Protocol 4.

11Since both v1, v2, α, β are much smaller than p, no overflow will happen.
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6 Further Discussions
6.1 Transparent Setup
Benefit from our dedicate design, the global parameters of PGC are exactly the public parameters of
Bulletproofs, a.k.a. simply random generators (g, h,g,h) without special structure. We can thus use
hash function to dismiss trusted setup. We refer to [BBB+18] for more details on this point.

6.2 Enable Individual Supervision
Besides regulation compliance and global supervision, it is meaningful to consider individual supervision,
i.e., an auditor with some secret can conduct any fine-grained inspection against confidential transactions
of a specific user, but can do nothing else.

It is easy to see that the admissible auditing operations of ADCP are determined by the underlying
ISE. If using ordinary ISE, only regulation compliance is possible. If ISE’s encryption component satisfies
global escrow property, global supervision is enabled. If using global escrow HISE [CTW21], then both
regulation compliance, individual supervision (hand out user’s decryption key to the auditor), and global
supervision are supported.

6.3 Necessity of Composing Sigma Protocol with Bulletproof
We prove the membership of Lright by sequentially composing a Sigma protocol for Lenc and a Bulletproof
for Lrange. One may wonder if we can only use the Bulletproof for Lrange to fulfill this task. Actually,
that will be problematic. Consider a malicious prover P ∗ generates ciphertext dishonestly as below:
picks random r, r′ from Zq and v′ ∈ V, sets X = pkr, Y = gr

′
hv′ . P ∗ can thus use r′ and v′ as witness

to generate a valid Bulletproof for Y ∈ Lrange. However, the real message v encrypted by (X,Y ) falls
outside the range V with overwhelming probability, and thus (pk,X, Y ) /∈ Lright. This compromises
proof of knowledge. It is also instructive to examine where the security proof will break. Let (pk,X, Y )
be the statement and (r, v) be the corresponding randomness-message pair. To prove witness-extended
emulation via weak forking lemma, we hope to argue that the output of Bulletproof’s extractor (r′, v′)
equals (r, v) overwhelmingly based on the collision resistance of hash function H(x, y) = gxhy, which in
turn is implied the hardness of DLP related to (g, h). However, the condition of weak forking lemma
is required to hold for any PPT adversary A, and thus there is no way to embed the collision into the
input instance.

6.4 Ciphertext Refreshing vs. Key Switching
In order to safely use Bulletproof to prove the membership of Lsolvent, we refresh C ′ = (pkr

′
, gr

′
hm′

) to
C∗ = (pkr

∗
, gr

∗
hm′

), then directly invoking the Bulletproof on the second component of C∗ with witness
(r∗,m′). To ensure the soundness of the overall protocol, we also need another protocol to prove that
C ′ and C∗ encrypt the same message.

One may attempt to use “key switching” trick to avoid the overhead of refreshing. Note that pk = gsk,
thus gr

′
hm′ can be rewritten as (pkr

′
)sk

−1

hm′ . It seems that now we are able to invoke Bulletproof on
(pkr

′
)sk

−1

hm′ by interpreting (pkr
′
, h) as Pedersen commitment key and using (sk−1,m′) as the witness.

The soundness of the Bulletproof’s requires that the prover does not know the DL relation between
(pkr

′
, h). Is it possible for the prover to rigorously prove this intuition? It is well-known that one can

generate a proof of knowledge of discrete logarithm using the Schnorr’s protocol. But, how can the
prover give a proof of no-knowledge? Interestingly, the prover can prove that he indeed does not know
logh pk

r′ by proving his knowledge of logg pkr
′ . This makes sense because otherwise he can solve the DL

relation between (g, h), which contradicts to the assumption. Inevitably, an honest prover falls into a
deadlocked setting — he needs to know r′ to create a proof of knowledge of logg pkr

′ , which is exactly
the obstacle he want to overcome at the beginning. Even the soundness of the Bulletproof’s part holds,
additional mechanism is needed to prove that the extractor’s output is consistent to the message fixed
by the ciphertext, which seems difficult.

We distill the above reasoning to a trick of proving no-knowledge of discrete logarithm, which might
be of independent interest. Let y, g and h be group elements, where the DL relation between (g, h) is
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unknown. A prover can prove that he does not know the knowledge of α = logh y by proving knowledge
of β = logg y. The soundness follows because if the prover cheated (he knows α = logh y), then he must
be able to solve the discrete logarithm between g and h by computing βα−1.

g h

y

?
assumption

?α
claim

β

PoK

Figure 5: How to prove no-knowledge of x = logh y by assuming the DL relation between (g, h) is
intractable.

7 Optimizations
7.1 Faster Decryption for Twisted ElGamal
As in standard exponential ElGamal, to ensure additive homomorphism on message space Zp, message
in twisted ElGamal is also encoded to the exponent. This makes decryption inefficient even with knowl-
edge of secret key. This seems problematic because the exact balance is required to be known when
generating the range proof for solvency. Similar problem also occurs in other confidential transaction
systems [FMMO19, BAZB20].

Fortunately, this is not an issue. First, each user can learn its current balance by keeping track of the
incoming and outgoing transfers. While the outgoing transfer amounts are always known to the senders
themselves by default, the incoming transfer amounts are also known to the recipients in most times.
This makes sense because senders typically communicate the transfer amount to their recipients off-chain
in real-world applications. It remains to consider the worst case, i.e., the receivers do not know the exact
value of incoming transfer amounts. Suppose the transfer amount is restricted to the range [0, 2ℓ − 1]
by protocol specification. Related works [FMMO19, BAZB20] suggested that the receiver can figure out
m from gm by brute-force enumeration with time complexity O(2ℓ). Here, we recommend employing
dedicated algorithms to compute a discrete logarithm in an interval more efficiently. For instance,
Pollard’s kangaroo method [Pol78] and Galbraith-Ruprai algorithm [GR10] run in time O(2ℓ/2) with
constant memory cost, Shanks’s algorithm [Sha71] runs in time O(2ℓ/2) using a table of size O(2ℓ/2),
and Bernstein-Lange algorithm [BL12] runs in time O(2ℓ/3) using a table of size O(2ℓ/3).

In this work, we choose to implement the Shanks’s algorithm, since it admits flexible time/space trade-
off and is amenable to parallelization. In more details, by building a key-value map of size O(2s) (with EC
point as key and its discrete logarithm as value), the running time complexity drops to O(2ℓ−s). Assume
each EC point on the underlying curve can be represented by m bits, then a direct implementation
requires at least O(2sm) bits to store the key-value map. Very recently, Chatzigiannis et al. [CCN21]
observes that when the set of keys is much smaller than the set of all EC points, the size of key-value map
can be greatly reduced. In this work, we use non-cryptographic hash (such as Murmurhash) to encoding
the keys in a more compact form. On elliptic curve P-256 (also known as secp256r1 and prime256v1),
when ℓ = 32, s = 23, the average decryption time is approximately 0.6ms by using a key-value map of
size 64MB. This demonstrates that Shanks’s algorithm is more preferable in practice for small range. If
larger range are needed, say [0, 264), the sender can represent a 64-bit value v by a concatenation of two
32-bit values v1||v0, then encrypts v1 and v0 independently under receiver’s public key, i.e., replacing
Cr = Enc(pkr, v) with Cr,1 = Enc(pkr, v1) and Cr,0 = Enc(pkr, v0).12 In this way, time complexity of
decryption only grows linearly in the size of bit-length rather than exponentially.

12We remark that extra zero-knowledge proofs are needed to ensure that the values are encrypted in a correct form.
Similar idea was mentioned in Zether [BAZB20] without details.
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7.2 More Efficient Assembly of NIZK
Towards a modular design of NIZK for Llegal, we break this task to designing NIZK proofs for Lequal, Lright
and Lsolvent separately. Particularly, to build NIZK for Lright (asserting a twisted ElGamal ciphertext
encrypts a message in expected range), we compose a Sigma protocol Σenc for Lenc and a Bulletproof
Λbullet for Lrange sequentially, then apply the Fiat-Shamir transform. The resulting Πright for Lright can
be used as a sub-protocol when proving membership in Lsolvent.

When comes to instantiation, we can reassemble the sub-protocols in a more efficient manner. Recall
that Πequal is a NIZKoK for Lequal, Πenc ◦ Λbullet is a NIZKPoK for Lright, and Πenc ◦Πddh ◦ Λbullet is a
NIZKPoK for Lsolvent. The first observation is that the first Πenc can be removed since Πequal already
proves knowledge of Cs. Moreover, benefit from the nice feature of twisted ElGamal, two Bulletproofs
can be generated and verified in aggregated mode, rather than being invoked twice independently. This
trick roughly reduces the size of range proof part by half.

7.3 Eliminate Explicit Signature
At a high level, our DCP construction utilizes signature to provide authenticity and uses NIZK to provide
soundness. The celebrated Fiat-Shamir transform [FS86] squashes an interactive public-coin proof into
a non-interactive one by setting the verifier’s challenges as the hash of the prover’s history messages.
Particularly, the Fiat-Shamir transform can convert a three round public-coin proof of knowledge into a
signature scheme [AABN02]. To generate a signature of message m, the signer runs the PoK itself (with
sk as the witness) by setting the challenge e as H(I,m), where H is a hash function modeled as a random
oracle, I is the prover’s first round message. The signature is the proof, i.e., the entire transcript.

Based on this connection between signature and ZKPs, Bünz et al. [BAZB20] suggested that one
can leverage ZKPs to provide signature functionality instead of employing a separate signature scheme.
However, their construction signs both the memo part and the NIZK proof part (cf. specification of
CreateTransferTx (line 9) in Figure 3 [BAZB20]). Thus, the signing operation and signature are still
explicit.

In PGC, when building NIZK for Lsolvent we use Σddh for Lddh as a sub-protocol, which is exactly
a proof of knowledge of sender’s secret key sks. Therefore, the signature component can be subsumed
into the NIZK proof. More precisely, by appending all the information except πddh to the prover’s first
round message in Σddh, the obtained zero-knowledge proof πddh for Lddh also acts as sender’s signature
of (sn,memo, πlegal\πddh).13 Moreover, [FKMV12] shows that NIZK proof obtained via the Fiat-Shamir
transform from any Sigma protocol (with quasi unique response) for a hard relation is simulation sound
and thus also non-malleable. We conclude that the signature scheme derived from Σddh is sEUF-CMA
secure. Therefore, authenticity and confidentiality still hold. In this way, PGC obtains the signature
functionality for free.

sn pks, pkr, Cs, Cr Ca

randomness reuse

fast decryption

πequal ◦ (π1
enc ◦ π1

bullet) ◦ (C∗ ◦ πddh ◦ π2
enc ◦ π2

bullet) σ

absorbed
absorbed

aggregated

Figure 6: CTx structure of PGC and optimizations.

13A subtlety here is that our approach does not enable us to sign the whole information of (sn,memo, πlegal), since there
seems no way to append πlegal (containing πddh) to the first round message of Σddh before generating it.

35



8 Comparison and Performance
8.1 Comparison to Related Works
We briefly compare PGC to other known account-based DCP in terms of functionalities.

Table 1: Comparison to other account-based DCP

Scheme transparent
setup scalability confidentiality anonymity regulation supervision

zkLedger ✓+ DL O(n) ? ✓ O(m, |f |) 7

Zether ✓+ DL O(1) ✓ 7 O(|f |) 7

PGC ✓+ DL O(1) ✓ 7 O(|f |) ✓

n is the number of system users, m is the number of all transactions on the ledger. In zk-
Ledger [NVV18], ctx size is linear of n, which is fixed at the very beginning. The regulation efficiency
is linear of both m and |f | due to anonymity. Besides, its confidentiality is questionable due to
the use of correlated randomness. Zether [BAZB20] potentially supports regulation, although not
explicitly discussed in the paper. When PGC supports global supervision, it inherently relies on
semi-transparent setup.

8.2 Benchmark of PGC
We first give a prototype implementation of PGC as a standalone cryptocurrency in C++ based on
OpenSSL, and collect the benchmarks on a MacBook Pro with an Intel i7-4870HQ CPU (2.5GHz) and
16GB of RAM. The source code of PGC is publicly available at Github [liba]. For demo purpose only,
we only focus on the transaction layer. The experimental results are described in the table below.

Unfortunately, we cannot find implementation of any existing cryptocurrencies in the account-based
model with transaction confidentiality and auditing capability for a concrete comparison. As a closely
related work, Zether [BAZB20] provides transaction confidentiality but there is no reported implemen-
tation as a standalone cryptocurrency. We note that Zether can be instantiated on Ethereum smart
contract platform. Thus, we also consider PGC on top of the Ethereum smart contract platform for
comparison with Zether.

Table 2: The computation and communication complexity of PGC.

PGC ctx size transaction cost (ms)
big-O bytes generation verify

confidential transaction (2 log2(ℓ) + 22)|G|+ 11|Zp| 1408 27.10 7.55

auditing policies proof size auditing cost (ms)
big-O bytes generation verify

limit policy (2 log2(ℓ) + 4)|G|+ 5|Zp| 622 24.85 7.15
rate policy 2|G|+ 1|Zp| 98 0.39 0.52
open policy 2|G|+ 1|Zp| 98 0.21 0.31

Here we set the maximum number of coins as vmax = 2ℓ − 1, where ℓ = 32. PGC operates elliptic
curve P-256 [Ope], which has 128 bit security. The elliptic points are expressed in their compressed
form. Each G element can be stored as 33 bytes, and Zp element can be stored as 32 bytes. PGC also
supports other elliptic curves. The experimental result of auditing cost for limit policy is obtained
by considering two transactions. We emphasize that the proof size is independent of the number of
transactions, while the efficiency of proof generation and verification will not degrade much as the
number of transactions grows, since homomorphic add of twisted ElGamal is pretty fast.

Similar to Zether, PGC can provide privacy-preserving service for Ethereum and other smart con-
tract platforms. In order to properly compare PGC mechanism with Zether mechanism [BAZB20],
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we further deploy PGC as an Ethereum smart contract. The experimental results and comparison to
Zether [BAZB20] are described in the table below.

Table 3: PGC vs. Zether as smart contracts.

scheme operation gas Cost EC Cost transaction size (bytes)

Zether
Burn 384k 329k 320
Fund 260k 41k 64

Transfer 7188k 6455k 1472

PGC
Burn 310k 161k 183
Fund 172k 42k 33

Transfer 8282k 6695k 1310
We measure the total gas cost which includes the basic cost for sending a transaction, the storage
cost, the proof/signature verification, and transaction size. In order to be consistent with Zether’s
result, we do not include the basic Ethereum transaction data.

The comparison results demonstrate that the performance of PGC is similar to Zether. Besides, PGC
can bring confidential payment ability to ETH and other ERC-20 tokens on Ethereum, while Zether does
not support ERC-20 tokens.

8.3 Benchmark of Twisted ElGamal
Twisted ElGamal is an important building block of PGC. It is additively homomorphic over Zp, and
enjoys nice interoperability with signature and zero-knowledge proofs. Moreover, its practical efficiency
is competitive to other homomorphic PKE schemes based on number-theoretic assumptions, for example,
the Paillier PKE [Pai99]. These features makes twisted ElGamal extremely useful in numerous privacy-
preserving scenarios beyond cryptocurrencies.

Efficiency. We provide the benchmark of twisted ElGamal, and compare it with Paillier PKE imple-
mented in open-source libpaillier [libc]. The experimental results are collected from the same platform
as PGC.

Table 4: Benchmarks of twisted ElGamal and Paillier PKE (average of 1000 runs)

timing (ms) Setup KeyGen Enc Dec ReRand HomoAdd HomoSub Scalar
Paillier — 1644.53 32.211 31.367 — 0.0128 — —

twisted ElGamal 8.8s+5.1s 0.009 0.089 0.367 0.100 0.005 0.005 0.074

size (bytes) public parameters public key secret key ciphertext
Paillier — 384 384 768

twisted ElGamal 66 33 32 66

For a fair comparison, we choose 32 bits message space and 128 bit security level [key] (twisted
ElGamal operates on elliptic curve prime256v1 and Paillier operates on 3072 bit modulus). In twisted
ElGamal, the setup algorithm runs “one-and-for-all”, it first generates and serializes a key-value
hash map (roughly 64MB) to accelerate decryption (this step takes roughly 8.8s), then loads it to
the memory (this step takes roughly 5.1s). The hash map could be included as a part of public
parameters, which can be safely shared among users. The decryption time decreases linearly as the
hash map size grows. In Paillier PKE, global setup is not supported, and libpaillier does not provide
APIs for re-randomization, homomorphic subtraction and scalar operations.

ZKP friendliness. Next, we demonstrate the advantages of twisted ElGamal over standard ElGamal
in terms of zero-knowledge proof friendliness. We compare the efficiency of two useful gadgets built from

37



standard ElGamal and twisted ElGamal respectively. Gadget-1 allows a sender to prove the message
m encrypted under C = Enc(pk,m; r) lies in range [0, 2ℓ). In this setting, the prover knows m and r.
Gadget-2 allows a receiver to prove the message m encrypted under C = Enc(pk,m) lies in range [0, 2ℓ).
In this setting, the prover knows sk and thus is able to learn m by decrypting C.

In either cases, Gadget-2 can be built from Gadget-1 by re-randomizing the ciphertext and appending
a NIZK for consistency of re-randomization. Note that twisted ElGamal and its accompanying Sigma
protocols are as efficient as their standard version, so the efficiency difference of gadgets lies in the Bul-
letproof’s bridging overhead. To see the comparison results more clearly, we fix baselines of two gadgets
and only focus on the invoking cost. We set the baseline of Gadget-1 as a (twisted) ElGamal cipher-
text, a NIZKPoK for plaintext and randomness knowledge, as well as a Bulletproof; set the baseline of
Gadget-2 additionally includes a re-randomized (twisted) ElGamal ciphertext and a NIZK for consistency
of re-randomization. The Bulletproof’s bridging overhead is computed as the difference with the base-
line of Gardet-1/2. When implementing Gadget-1/2 with standard ElGamal, the Bulletproof’s bridging
overhead includes generating a Pedersen commitment hrgm and a NIZKPoK for its consistency to the
ElGamal ciphertext (gr, pkrgm). In contrast, when implementing Gadget-1/2 with twisted ElGamal, the
Bulletproof’s bridging overhead is zero.

Table 5: Bulletproof’s bridging overheads of standard ElGamal and twisted ElGamal.

bridging overhead building block size generation verify

Gadgets-1/2 standard ElGamal n(2|G|+ |Zp|) n(2Exp) n(2Exp+1Add)
twisted ElGamal 0 0 0

n is the number of ciphertexts that need to be processed. In many of the range proof applications like
secure machine learning, a single prover needs to conduct range proofs via gadgets-1/2 for million of
ciphertexts. In this case, the saving is significant.

Very recently, exponential ElGamal and Paillier are accepted as ISO standard [ISO]. Based on better
ZKP friendliness over exponential ElGamal and better efficiency over Paillier, we believe twisted ElGamal
has the potential to be a candidate of standardized homomorphic PKE in the future.
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A Missing Proofs and Protocols
A.1 Security Proof of Twisted ElGamal
Theorem A.1. Twisted ElGamal is IND-CPA secure based on the divisible DDH assumption.

Proof. We proceed via two games. Let Si be the probability that A wins in Game i.

Game 0. The real IND-CPA security experiment. Challenger CH interacts with A as below:

1. Setup: CH generates pp and keypair according to the definition, then sends pp and pk = gsk to A.

2. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and ran-
domness r, computes X = pkr, Y = grhmβ , sends C = (X,Y ) to A.

3. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of Game 0, we have:

AdvA(λ) = Pr[S0]− 1/2

Game 1. Same as Game 0 except CH generates the challenge ciphertext in a different way.

3. Challenge: A submits m0,m1 to CH as the target messages. CH picks a random bit β and two
independent randomness r and s, computes X = pkr, Y = gshmβ , sends C = (X,Y ) to A.

In Game 1, the distribution of C is independent of β, thus we have:

Pr[S1] = 1/2

It remains to prove Pr[S1] and Pr[S0] are negligibly close. We prove this by showing if not so, one can
build an adversary B breaks the divisible DDH assumption with the same advantage. Given (g, ga, gb, gc),
B is asked to decide if it is a divisible DDH tuple or a random tuple. To do so, B interacts with A by
simulating A’s challenger in the following IND-CPA experiment.

1. Setup: B sets pp = (G, g, h, p) as public parameters, sets gb as the public key, where b is interpreted
as the corresponding secret key b ∈ Zp and unknown to B. B sends pp and pk = gb to A.

2. Challenge: A submits m0,m1 to B. B picks a random bit β and sets X = ga, Y = gchmβ , sends
C = (X,Y ) to A.

3. Guess: A outputs a guess β′. B outputs “1” if β′ = β and “0” otherwise.

If (g, ga, gb, gc) is a divisible DDH tuple, B simulates Game 0 perfectly (with randomness c = a/b).
Else, B simulates Game 1 perfectly (with two independent randomness a/b and c). Thereby, we have
AdvB = |Pr[S0]− Pr[S1]|, which is negligible in λ by the divisible DDH assumption.

Putting all the above together, Theorem A.1 follows.

Remark A.1. We stress that twisted ElGamal does not require trusted setup. It remains secure even the
adversary knows the discrete relation between (g, h).

A.2 NIZK for 1-message/3-recipient Twisted ElGamal Encryption
To enable global supervision, the sender need to encrypt the transfer amount using 1-message/3-recipient
twisted ElGamal, then proves the correctness of encryption. According to our ADCP construction and
definition of twisted ElGamal, Lequal can be written as:

{(pk1, X1, Y1, pk2, X2, Y2, pk3, X3, Y3) | ∃r1, r2, r3, v s.t. Xi = pkrii ∧ Yi = grihv for i = 1, 2, 3}.

As analyzed before, for twisted ElGamal randomness can be safely reused in the 1-plaintext/2-
recipient setting. Lequal can thus be simplified to:

{(pk1, pk2, pk3, X1, X2, X3, Y ) | ∃r, v s.t. Y = grhv ∧Xi = pkri for i = 1, 2, 3}.
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Sigma protocol for Lequal. To obtain a NIZK for Lequal, we first design a Sigma protocol Σequal =
(Setup, P, V ) for Lequal. The Setup algorithm of Σequal is same as that of the twisted ElGamal. On
statement (pk1, pk2, pk3, X1, X2, X3, Y ), P and V interact as below:

1. P picks a, b
R←− Zp, sends A1 = pka1 , A2 = pka2 , A3 = pka3 , B = gahb to V .

2. V picks e
R←− Zp and sends it to P as the challenge.

3. P computes z = a + er, t = b + ev using witness w = (r, v), then sends (z, t) to V . V accepts iff:
(i) pkzi = AiX

e
i for i = {1, 2, 3}; (ii) gzht = BY e.

(pk1, pk2, pk3, X1, X2, X3, Y )

P V

w = (r, v)

a, b
R←− Zp

A1 ← pka1 , A2 ← pka2 , A3 ← pka3
B ← gahb

A1, A2, B

e
R←− Zp

e

z = a+ er
t = b+ ev

z, t check if
pkz1 = A1X

e
1

pkz2 = A2X
e
2

pkz3 = A3X
e
3

gzht = BY e

Figure 7: Σequal for Lequal: proof of knowledge of three twisted ElGamal ciphertexts encrypting the same
value under different public keys

Lemma A.2. Σequal is a public-coin SHVZK proof of knowledge for Lequal.

We omit the proof here since it is similar to the 1-message/2-recipient case.
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