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Abstract. Many advanced lattice based cryptosystems require to sam-
ple lattice points from Gaussian distributions. One challenge for this
task is that all current algorithms resort to floating-point arithmetic
(FPA) at some point, which has numerous drawbacks in practice: it
requires numerical stability analysis, extra storage for high-precision,
lazy/backtracking techniques for efficiency, and may suffer from weak
determinism which can completely break certain schemes.

In this paper, we give techniques to implement Gaussian sampling over
general lattices without using FPA. To this end, we revisit the approach
of Peikert, using perturbation sampling. Peikert’s approach uses continu-
ous Gaussian sampling and some decomposition Σ = AAt of the target
covariance matrix Σ. The suggested decomposition, e.g. the Cholesky
decomposition, gives rise to a square matrix A with real (not integer)
entries. Our idea, in a nutshell, is to replace this decomposition by an
integral one. While there is in general no integer solution if we restrict
A to being a square matrix, we show that such a decomposition can
be efficiently found by allowing A to be wider (say n × 9n). This can
be viewed as an extension of Lagrange’s four-square theorem to matri-
ces. In addition, we adapt our integral decomposition algorithm to the
ring setting: for power-of-2 cyclotomics, we can exploit the tower of rings
structure for improved complexity and compactness.

1 Introduction

Lattice based cryptography is a promising post-quantum alternative to cryp-
tography based on integer factorization and discrete logarithms. One of its at-
tractive features is that lattices can be used to build various powerful cryp-
tographic primitives including identity based encryption (IBE) [19, 8, 1, 11],
attribute based encryption (ABE) [5, 20], functional encryption [2], group signa-
tures [22, 23, 31] and so on [18, 7]. A core component of many advanced lattice
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based cryptosystems is sampling lattice points from discrete Gaussians, given a
short basis (i.e. a trapdoor) [19, 32, 25].

Gaussian sampling is important to prevent leaking secret information. In-
deed early lattice trapdoors have suffered from statistical attacks [30, 14, 37].
In 2008, Gentry, Peikert and Vaikuntanathan first showed that Gaussian distri-
butions [19] can prevent such leaks, and that Klein’s algorithm [21] could sample
efficiently from a negligibly close distribution. This algorithm uses the Gram-
Schmidt orthogonalization, which requires either arithmetic over the rationals
with very large denominators, or floating-point approximations. An alternative
algorithm was proposed by Peikert in [32], where most of the expensive compu-
tation, including floating-point arithmetic, can be done in an offline phase at the
cost of somewhat increasing the width of the sampled Gaussian. This technique
turned out to be particularly convenient in the lattice-trapdoor framework of
Micciancio and Peikert [25].

We now explain Peikert’s algorithm in more details. Let B be the input basis
and the target distribution be a spherical discrete Gaussian of width s, center
c and over the lattice L spanned by B. Note that spherical Gaussian sampling
over Zn is easy, by applying B as a transformation, it is also easy to sample
a Gaussian over L but of covariance Σ = BBt. To produce target samples,
Peikert proposed to use convolution, that is adding some perturbation vector of
covariance Σp = s2I−Σ on the center c. Indeed for continuous Gaussians, the
resulting distribution is of covariance s2I. In [32], Peikert showed that this fact
also holds for discrete Gaussians under some conditions. In summary, Peikert’s
approach consists of two phases:

– offline phase: one samples a perturbation vector of covariance Σp = s2I−Σ;
– online phase: one first samples a spherical Gaussian over Zn and then applies

the transformation of B.

The online sampling can be rather efficient and fully performed over the in-
tegers [32, 25, 17]. By contrast, the offline sampling uses continuous Gaussian
sampling and requires some matrix A such that Σp = AAt. The only sugge-
sted way to find such A is the Cholesky decomposition. Therefore high-precision
floating-point arithmetic is still heavily used in the offline phase.

We now list some of the numerous drawbacks of high-precision FPA when it
comes to practical efficiency and security in the wild.

– First, one needs to perform a tedious numerical stability analysis to deter-
mine what level of precision is admissible, and how much security is lost.
Indeed, while such analysis may be reasonable when done asymptotically,
doing a concrete and tight analysis requires significant effort [13, 33, 3, 34],
and may be considered too error-prone for deployed cryptography. Moreo-
ver, efficient numerical stability analysis for cryptosystems based on generic
decision problems remain open.

– Second, for a security level of λ-bits, it incurs significant storage overheads
as one requires at least a precision of λ/2 bits5 for each matrix entry, while

5 unless one assumes strong bounds on the number of attackers’ queries, as done in [34].
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the trapdoor basis itself only needs log(s) bits per entry, where s = poly(λ)
in simple cryptosystems.

– Thirdly, the requirement for high-precision arithmetic would significantly
slow down those sampling algorithms (may it be fix-point or floating-point
arithmetic). While it has been shown in [13] that one can do most of the
operations at lower precision, the proposed technique requires complicated
backtracking, and high-precision arithmetic from time to time. While asymp-
totically interesting, it is unclear whether this technique is practical; in par-
ticular it has, to our knowledge never been implemented. It also seems par-
ticularly hard to protect against timing attacks.

– Finally we mention the intrinsic weak determinism of floating-point arithme-
tic. It is essential to de-randomize trapdoor sampling, as revealing two diffe-
rent vectors close to a single target instantly reveals a (secret) short vector of
the lattice. Even with the same random stream, we need to assume that the
rest of the algorithm is deterministic. In the case of high-precision arithmetic,
one would for example have to assume that the mpfr library [16]6 behaves
exactly the same across different architectures and versions. But even at low
precision, the use of native floats can be tricky despite deterministic IEEE
standards. For example, while both Add and Multiply instructions are de-
terministically defined by the IEEE standard, the standard also allows the
combined ‘Multiply-and-Accumulate’ instruction to behave differently
from applying both instructions sequentially, as long as the result is at least
as precise [36]. As FPA addition is not associative, it is crucial to specify the
order of operations for matrix-vector products as part of the scheme, and
to not leave it as an implementation detail. Furthermore, compilers such as
gcc do not guarantee determinism when considering code optimization over
floating-point computation [29].

Our contribution. We present a new perturbation sampling algorithm in which
no floating-point arithmetic is used. Compared with Peikert’s algorithm [32],
our new algorithm has the following features. A more detailed comparison is
available in Section 5, with Tables 2 and 3.

– Similar quality. The final Gaussian width s achieved by our technique is only
larger than its minimum by a factor of 1 + o(1): the parameters of the whole
cryptosystems will be unaffected.

– No need for FPA and less precision. All operations are performed over inte-
gers of length about log s, while previous algorithms required floating points
with a mantissa of length at least λ/2 + log s.

– Less memory. While the intermediate matrix, i.e. the Gram root of the
covariance, is rectangular, it is integral and of a regular structure, requiring
only≈ n2 log s, instead of n2(λ+log s)/2 bits for Cholesky decomposition [32,
25].

6 https://www.mpfr.org/
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– Simpler base sampling. Only two kinds of base samplers are required: DZ,Lr
and DZ,r,c with c ∈ 1

L · Z, where L can be any integer larger than a po-
lynomial bound; choosing L as a power of two is known to be particularly
convenient [28].

In summary, not only do we get rid of FPA and its weak determinism, we also
improve time and memory consumption; when s = poly(λ) this improvement
factor is quasilinear. In practice, it may allow to implement an HIBE or ABE
with a few levels before having to resort to multi-precision arithmetic (note that
the parameter s grows exponentially with the depth of such schemes). Compared
to traditional samplers, we expect that the absence of floating-point arithmetic
in our sampler will make it more amenable to side-channel countermeasures such
as masking. We leave this for future work.

Techniques. Our main idea stems from the observation that, at least in the
continuous case, sampling a Gaussian of covariance Σ can be done with using a
matrix A such that AAt = Σ, may A not be a square matrix. This idea was
already implicit in [32, 28], and we push it further.

The first step is to prove that the above statement also holds in the discrete
case. We show that when A ·Zm = Zn, the distribution of Ax where x is drawn
from DZm,r is statistically close to DZn,r

√
AAt under some smoothness condition

with respect to the orthogonal lattice Λ⊥(A).
Now the difficult step under study boils down to finding a Gram root of a

given matrix (in the context of Peikert’s algorithm, AAt = dI − Σ). To avoid
the FPA issues, we want this Gram root integral. Driven by this, we proceed
to study the Integral Gram Decomposition Problem denoted by IGDPn,B,d,m
as follows: given an integral symmetric matrix Σ ∈ Zn×n with ‖Σ‖2 ≤ B,
find an integral matrix A ∈ Zn×m such that AAt = dIn − Σ. For n = 1,
Lagrange’s 4-square theorem has provided a solution to IGDP. Our goal is finding
an algorithmic generalization of such a decomposition to larger matrices, which
will be bootstrapped from the case of n = 1. Aiming at IGDPn,B,d,m, our initial
method is recursive, and can be summarized as the following reduction

IGDPn,B,d,m → IGDPn−1,B′,d,m′

where B′ ≈ B, m = m′ + dlogbBe + 4 and b is the base of the used gadget
decomposition. The reduction is constructive: by gadget decomposition (also
called b-ary decomposition), one first finds a matrix T such that TTt has the
same first row and column as dIn − Σ except the diagonal element, and then
clears out the remaining diagonal element by the 4-square decomposition given
by Lagrange’s theorem. However, this decomposition requires d � B, which
significantly enlarges the width of corresponding Gaussian. To overcome this
issue, we develop another tool called eigenvalue reduction, which can be viewed
as the following reduction:

IGDPn,B,d,m → IGDPn,B′,d−B,m−n
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with B′ � B. By eigenvalue reduction, the final overhead on the Gaussian
width is introduced during the decomposition on a small matrix, which beco-
mes negligible compared with the original parameter. Combining the integral
decomposition for d � B and the eigenvalue reduction, we arrive at a solution
to IGDPn,B,d,m of a somewhat large B, say B = ω(n4). This is the case of some
advanced lattice based schemes, such as hierarchical IBE [1, 8] and ABE [20].
Furthermore, if a few, say O(log n), bits of rational precision are permitted, we
can find an almost integral Gram root for general positive definite matrices.

Techniques in the ring setting. The aforementioned algorithms apply to the
ring setting, but the decompositions break the ring structure and thus lose
the efficiency improvement provided by rings. To improve efficiency, we devi-
sed ring-based algorithms. The IGDPn,B,d,m problem is naturally generalized to
the ring setting by adding the underlying ring R as a parameter. To tackle the
IGDPR,n,B,d,m problem, we first study the special case IGDPR,1,B,d,m. We pro-
pose an analogue of 4-square decomposition in the power-of-2 cyclotomic ring,
i.e. R2w = Z[x]/(xw + 1) where w = 2l. At a high level, our solution performs
the reduction

IGDPR2w,1,B,d,m → IGDPRw,1,B′,d′,m′ ,

where B′ ≈ B, d = d′ + b2k−1
b2−1 , m = m′ + k and b is the gadget base, k =

dlogbBe, which projects the problem onto a subring. To build this reduction,
we make use of ring gadgets: given f ∈ R2w, the ring gadget computes a set of
ai = bi−1 +xci(x

2) ∈ R2w such that f +
∑k
i=1 aia

?
i can be viewed as an element

in the subring Rw and all ci’s are small. The resulting integral decomposition
inherits the tower of rings structure and hence can be stored efficiently despite
the output being wider by a factor of O(logw). Finally, this decomposition in
the ring setting can be combined with the previous integer setting algorithm to
yield an algorithm for solving IGDPR2w,n,B,d,m.

Related work. While we are not aware of works on the Integral Gram Decompo-
sition Problem, the rational version of this question arises as a natural mathe-
matical and algorithmic question for the representation of quadratic forms. For
example, Cassel [9] showed that a rational solution exists for m = n+ 3; we are
unaware of an efficient algorithm to find such a solution. Lenstra [24] proposed
a polynomial time rational solution for m = 4n.

However, such rational solutions are not very satisfactory in our context, as
the denominators can get as large as the determinant of the input lattice. In
fact, if rational arithmetic with such large coefficient is deemed acceptable, then
one could directly use an implementation of Klein-GPV [21, 19] algorithm over
the rationals.

In a concurrent work [10], Chen, Genise and Mukherjee proposed a notion
of approximate trapdoor and adapted the Micciancio-Peikert trapdoor [25] to
the approximate trapdoor setting. In the analysis of the preimage distribution,
they used a similar linear transformation theorem for discrete Gaussians. Their
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preimage sampling calls perturbation sampling as a “black-box” so that our
technique is well compatible with [10].

Furthermore in [15], Ducas and Prest applied FFT techniques to improve
the Klein-GPV algorithm in the ring setting. Similarly, Genise and Micciancio
exploited the Schur complement and developed a discrete perturbation algorithm
in [17]. Yet in practice these methods still resort to floating-point arithmetic.

Roadmap. We start in Section 2 with some preliminary material. Section 3 shows
that rectangular Gram roots allow to sample according to the desired distribu-
tion. In Section 4, we introduce the Integral Gram Decomposition Problem and
detail the algorithms to solve it. We provide a detailed comparison with Peikert’s
perturbation sampler in Section 5. Finally we propose a variant of our integral
matrix decomposition geared to the ring setting in Section 6.

2 Preliminaries

2.1 Notations

We use log and ln to denote respectively the base 2 logarithm and the natural
logarithm. Let ε > 0 denote some very small number; we use the notational

shortcut ε̂ = ε+O(ε2). One can check that 1+ε
1−ε = 1 + 2ε̂ and ln

(
1+ε
1−ε

)
= 2ε̂.

For a distribution D over a countable set, we write z ←↩ D when the random
variable z is sampled from D, and denote by D(x) the probability of z = x.
For a real-valued function f and a countable set S, we write f(S) =

∑
x∈S f(x)

assuming that this sum is absolutely convergent (which is always the case in this
paper). Given two distributions D1 and D2 of common support E, the max-log
distance between D1 and D2 is

∆ML(D1, D2) = max
x∈E
| ln(D1(x))− ln(D2(x))|.

As shown in [28], it holds that ∆ML(D1, D2) ≤ ∆ML(D1, D3) +∆ML(D2, D3).

2.2 Linear algebra

We use bold lower case letters to denote vectors, and bold upper case letters to
denote matrices. By convention, vectors are in column form. For a matrix A, we
denote by Ai,j the element in the i-th row and j-th column, and by Ai:j,k:l the
sub-block (Aa,b)a∈{i,··· ,j},b∈{k,··· ,l}. Let bAe be the matrix obtained by rounding
each entry of A to the nearest integer. Let In be the n-dimensional identity
matrix.

Let Σ ∈ Rn×n be a symmetric matrix. We write Σ > 0 when Σ is positive
definite, i.e. xtΣx > 0 for all non-zero x ∈ Rn. It is known that Σ > 0 if and
only if Σ−1 > 0. We also write Σ1 > Σ2 when Σ1 − Σ2 > 0. It holds that
Σ1 > Σ2 > 0 if and only if Σ−12 > Σ−11 > 0. Similarly, we write Σ1 ≥ Σ2 or
Σ1−Σ2 ≥ 0 to state that Σ1−Σ2 is positive semi-definite. If Σ = AAt, we call
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A a Gram root of Σ. In particular, if a Gram root A is a square and invertible
matrix, we call A a square Gram root7. When the context permits it, we denote√

Σ for any square Gram root of Σ.

For a positive definite matrix Σ, let e1(Σ) be the largest eigenvalue of Σ,
then e1(Σ) > 0. Let Σ1,Σ2 be positive definite matrices and Σ = Σ1 + Σ2,
then Σ > 0 and e1(Σ) ≤ e1(Σ1) + e1(Σ2). We recall the spectral norm ‖A‖2 =

maxx 6=0
‖Ax‖
‖x‖ =

√
e1(AtA) and the Frobenius norm ‖A‖F =

√∑
i,j A2

i,j . It is

known that ‖At‖2 = ‖A‖2, ‖AB‖2 ≤ ‖A‖2‖B‖2 and ‖A‖2 ≤ ‖A‖F . We also

write ‖A‖max = maxi,j |Ai,j | and ‖A‖col = maxj
√∑

i A
2
i,j .

2.3 Lattices

A lattice is a discrete additive subgroup of Rm, and is the set of all integer
linear combinations of linearly independent vectors b1, · · · ,bn ∈ Rm. We call
B =

(
b1 · · · bn

)
a basis and n the dimension of the lattice. If n = m, we call

the lattice full-rank. We denote by L(B) the lattice generated by the basis B.

Let L̂ = {u ∈ span(L) | ∀v ∈ L, 〈u,v〉 ∈ Z} be the dual lattice of L. For k ≤ n,
the k-th minimum λk(L) is the smallest value r ∈ R such that there are at least
k linearly independent vectors in L whose lengths are not greater than r.

Given A ∈ Zn×m with m ≥ n, we denote the orthogonal lattice8 defined by
A by Λ⊥(A) = {v ∈ Zm | Av = 0}. When the rank of A is n, the dimension of
Λ⊥(A) is (m− n).

2.4 Gaussians

Let ρR,c(x) = exp
(
−π(x− c)tR−tR−1(x− c)

)
be the n-dimensional Gaussian

weight with center c ∈ Rn and (scaled)9 covariance matrix Σ = RRt. Because
ρR,c(x) = exp

(
−π(x− c)tΣ−1(x− c)

)
is exactly determined by Σ, we also

write ρR,c as ρ√Σ,c. When c = 0, the Gaussian function is written as ρR or ρ√Σ

and is called centered. When Σ = s2In, we write the subscript
√

Σ as s directly,
and call s the width.

The discrete Gaussian distribution over a lattice L with center c and covari-
ance matrix Σ is defined by the probability function DL,

√
Σ,c(x) =

ρ√Σ,c(x)

ρ√Σ,c(L)
for

any x ∈ L. We recall some notions related to the smoothing parameter.

Definition 1 ([27], Definition 3.1). Given a lattice L and ε > 0, the ε-

smoothing parameter of L is ηε(L) = min
{
s | ρ1/s

(
L̂
)
≤ 1 + ε

}
.

7 When n ≥ 2, any Σ > 0 has infinitely many square Gram roots.
8 Take note that we are here not considering the “q-ary orthogonal lattice” Λ⊥q (A) =
{v ∈ Zm | Av = 0 mod q}.

9 The scaling factor is 2π and we omit it in this paper for convenience.
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Definition 2 ([32], Definition 2.3). Given a full-rank lattice L, ε > 0 and

a positive definite matrix Σ, we write
√

Σ ≥ ηε(L) if ηε

(√
Σ
−1 · L

)
≤ 1 i.e.

ρ√Σ−1

(
L̂
)
≤ 1 + ε.

We define η≤ε (Zn) =
√

ln(2n(1+1/ε))
π . We will use the following results later.

Proposition 1. Given a lattice L and ε > 0, then ηε(rL) = r·ηε(L) for arbitrary
r > 0.

Proposition 2. Let Σ1 ≥ Σ2 > 0 be two positive definite matrices. Let L be a
full-rank lattice and ε ∈ (0, 1). If

√
Σ2 ≥ ηε(L), then

√
Σ1 ≥ ηε(L).

Proof. Notice that ρ√
Σ−1

1

(x) = exp(−πxtΣ1x) ≤ exp(−πxtΣ2x) = ρ√
Σ−1

2

(x),

hence ρ√
Σ−1

1

(
L̂
)
≤ ρ√

Σ−1
2

(
L̂
)

. By Definition 2, we complete the proof. ut

Lemma 1 ([27], Lemma 3.3). Let L be an n-dimensional lattice and ε ∈
(0, 1). Then ηε(L) ≤ η≤ε (Zn) · λn(L). In particular, for any ω(

√
log n) function,

there is a negligible ε such that ηε(Zn) ≤ ω(
√

log n).

Lemma 2 ([27], implicit in Lemma 4.4). Let L be a lattice and ε ∈ (0, 1).
If r ≥ ηε(L), then ρr(c + L) ∈ [ 1−ε1+ε , 1]ρr(L) for any c ∈ span(L).

We recall the convolution theorem with respect to discrete Gaussians that
was introduced in [32].

Theorem 1 (Adapted from Theorem 3.1 [32]). Let Σ1,Σ2 ∈ Rn×n be
positive definite matrices. Let Σ = Σ1 + Σ2 and let Σ3 ∈ Rn×n be such that
Σ−13 = Σ−11 + Σ−12 . Let L1,L2 be two full-rank lattices in Rn such that

√
Σ1 ≥

ηε(L1) and
√

Σ3 ≥ ηε(L2) for ε ∈ (0, 1/2). Let c1, c2 ∈ Rn. Then the distribution
of x1 ←↩ DL1,

√
Σ1,x2−c2+c1

where x2 ←↩ DL2,
√

Σ2,c2
is within max-log distance

4ε̂ of DL1,
√

Σ,c1
.

2.5 Integral decompositions

Lagrange’s four-square theorem states that every natural number can be repre-
sented as the sum of four integer squares. An efficient algorithm to find such a
decomposition was given by Rabin and Shallit [35].

Theorem 2 (Rabin-Shallit algorithm [35]). There is a randomized algo-
rithm for expressing N ∈ N as a sum of four squares which requires an expected
number of O(log2N log logN) operations with integers smaller than N .

Another important integral decomposition for our work is the b-ary decompo-
sition, more conveniently formalized with the gadget vector g = (1, b, · · · , bk−1)t

in [25], hence called gadget decomposition. It says that for any n ∈ (−bk, bk)∩Z,
there exists a vector c ∈ Zk such that 〈c,g〉 = n and ‖c‖∞ < b. The cost
of such a decomposition is dominated by O(k) Euclidean divisions by b that
are particularly efficient in practice when b is a power of 2. Note that ‖g‖2 =
(b2k − 1)/(b2 − 1).

8



3 Gaussian Sampling with an Integral Gram Root

In Peikert’s sampler [32], one samples perturbation vectors from a Gaussian
with certain covariance, say DZn,r

√
Σ during the offline phase. Among existing

perturbation samplers [32, 25, 17] this requires floating-point arithmetic in the
linear algebraic steps.

To avoid FPA, our starting point is the following observation: given an in-
tegral Gram root of Σ − In, one can sample from DZn,r

√
Σ without resorting

to FPA and in a quite simple manner. The main result of this section is the
following theorem.

Theorem 3 (Sampling theorem). Let Σ ∈ Zn×n such that Σ − In ≥ In.
Given A ∈ Zn×(n+m) such that AAt = Σ−In, A·Zn+m = Zn and λm(Λ⊥(A)) ≤
L, let D̃A(L′, r) denote the distribution of DZn,r, 1

L′ ·c
where c = Ax with x ←↩

DZn+m,L′r. For ε ∈ (0, 1/2), r ≥ ηε(Zn) and L′ ≥ max{
√

2, (L/r) · η≤ε (Zm)},
then

∆ML

(
D̃A(L′, r), DZn,r

√
Σ

)
≤ 8ε̂.

We give an algorithmic description in Algorithm 1.

Algorithm 1: New perturbation sampling algorithm NewPert(r,Σ)

Input: a covariance matrix Σ ∈ Zn×n and some r ≥ ηε(Zn).
Output: a sample x from a distribution within max-log distance 8ε̂ of DZn,r

√
Σ.

Precomputation:
1: compute A ∈ Zn×(n+m) such that AAt = Σ− In, A · Zn+m = Zn and
λm(Λ⊥(A)) ≤ L (see Section 4 for details)
Sampling:

2: sample x←↩ DZn+m,Lr by base sampler DZ,Lr
3: c← Ax
4: sample y←↩ DZn,r, 1

L
·c by base samplers DZ,r, c

L
with c ∈ {0, 1, · · · , L− 1}

5: return y

To prove Theorem 3, we need the following linear transformation lemma for
discrete Gaussians.

Lemma 3 (Linear Transformation Lemma). Let A ∈ Zn×m such that A ·
Zm = Zn. Let Σ = AAt. For ε ∈ (0, 1/2), if r ≥ ηε(Λ

⊥(A)), then the max-log
distance between the distribution of y = Ax where x ←↩ DZm,r and DZn,r

√
Σ is

at most 4ε̂.

Remark 1. Lemma 3 was used implicitly in [26, 6] and our proof follows similar
steps. Again, a general linear transformation theorem is stated in [10].

Remark 2. Lemma 3 implies similar bounds for other metrics, such as the Kullback-
Leibler divergence [33] and the Rényi divergence [3, 34].
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Proof. By assumption, both distributions have the same support Zn. Thus it suf-
fices to prove that the probability of y = y is (almost) proportional to ρr

√
Σ(y).

Given y = Ax, all integral solutions of x such that Ax = y form the coset
x + Λ⊥(A). Thus, for y = Ax, we have

Pr(y = y) ∝ ρr(x + Λ⊥(A)).

Let y′ = AtΣ−1y and x⊥ = x − y′, then y′ ∈ span(At) = {Atv | v ∈ Rn}
and Ax⊥ = Ax −AAtΣ−1y = 0, which implies that x⊥ ∈ span(Λ⊥(A)) and
x⊥ ⊥ span(At). Moreover, for any v ∈ Λ⊥(A), it can be verified that 〈y′,v〉 = 0.
It immediately follows that y′ ⊥

(
x⊥ + Λ⊥(A)

)
. Then, we have

ρr(x + Λ⊥(A)) = ρr(y
′ + x⊥ + Λ⊥(A))

= ρr(y
′) · ρr(x⊥ + Λ⊥(A))

= exp
(
− π
r2
· y′ty′

)
· ρr(x⊥ + Λ⊥(A))

= exp
(
− π
r2
· ytΣ−1y

)
· ρr(x⊥ + Λ⊥(A))

= ρr
√

Σ(y) · ρr(x⊥ + Λ⊥(A)).

Applying Lemma 2, it follows that

Pr(y = y) ∝ ρr√Σ(y) ·
[

1− ε
1 + ε

,
1 + ε

1− ε

]
.

By a routine computation, we complete the proof. ut

Proof of Theorem 3. By Lemmata 3 and 1, the max-log distance between the
distribution of c = Ax and DZn,L′r

√
Σ−In

is at most 4ε̂. By scaling, we have

that the max-log distance between the distribution of 1
L′ · c and D 1

L′ ·Z
n,r
√

Σ−In

is still at most 4ε̂. It can be verified that

r

√(
(Σ− In)−1 + I−1n

)−1 ≥ ηε( 1

L′
· Zn

)
.

Combining Theorem 1, the proof follows. ut

3.1 Reducing λm(Λ⊥(A))

As shown in Theorem 3, with an integral Gram root, the sampling of DZn,r
√

Σ is

converted into two kinds of base samplings: DZ,L′r and DZ,r,c with c ∈ 1
L′ ·Z. One

sometimes may prefer to work with small L′ whose size is mainly determined
by λm(Λ⊥(A)). The following lemma suggests that given a matrix A, one can
construct an orthogonal lattice of relatively small successive minima by padding
A with some gadget matrices

(
In bIn · · · bk−1In

)
.

Lemma 4. Let A ∈ Zn×m with ‖A‖2 ≤ B. For b, k ∈ N such that bk > B, let
A′ =

(
In bIn · · · bk−1In A

)
, then λm+(k−1)n(Λ⊥ (A′)) ≤

√
nk(b− 1)2 + 1.

10



Proof. Let G =
(
bIn · · · bk−1In

)
∈ Zn×(k−1)n. Since ‖A‖max ≤ ‖A‖2 ≤ B < bk,

by the gadget decomposition, we have A = C1 + GC2 where C1 ∈ Zn×m,
C2 ∈ Z(k−1)n×m and ‖Ci‖max < b for i = 1, 2.

Notice that P1 =

(
G A

−In(k−1)

−Im

)
contains (n(k − 1) +m) linearly indepen-

dent vectors of Λ⊥ (A′), then so does P2 = P1 ·
(

S⊗In −C2

Im

)
=

(
G·(S⊗In) C1

−S⊗In C2

−Im

)
,

where S =

 1 −b
1 −b

. . . −b
1

 ∈ Z(k−1)×(k−1). As ‖P2‖col ≤
√
nk(b− 1)2 + 1,

the proof is finished. ut

Remark 3. Lemma 4 provides a solution to reduce L′ at the cost of more base
samplings and some overhead on the final Gaussian width. In practice, it is
optional to pad gadget matrices considering the tradeoff. In later discussions, we
shall omit this trick and just focus on λm(Λ⊥(A)).

4 Integral Gram Decompositions

In Section 3, we have explicated how to sample perturbation vectors using no
FPA with an integral Gram root. The computation of such an integral Gram
root is developed in this section. Let us first formally define the Integral Gram
Decomposition Problem.

Definition 3 (IGDPn,B,d,m). Let n,B, d,m ∈ N. The Integral Gram Decompo-
sition Problem, denoted by IGDPn,B,d,m, is defined as follows: given an integral
symmetric matrix Σ ∈ Zn×n with ‖Σ‖2 ≤ B, find an integral matrix A ∈ Zn×m
such that AAt = dIn −Σ.

Our final goal is to solve IGDPn,B,d,m with fixed (n,B) while keeping d =
(1 + o(1))B and m relatively small.

Our first approach (Section 4.1) only allows a decomposition of sufficiently
diagonally dominant matrices, i.e. d� B, which implies a large overhead on the
final width of the Gaussian. Fortunately, when the parameter B is somewhat
large, say ω(n4), this can be fixed by first resorting to some integral approxima-
tions of Cholesky Gram roots and then working on the left-over matrix of small
norm. We call this procedure eigenvalue reduction and describe it in Section 4.2.
Finally, we combine these two algorithms and give several example instances in
Section 4.3.

4.1 Decomposition for diagonally dominant matrices

We present an algorithm to compute an integral Gram root of Σ′ = dIn−Σ for
a relatively large d. It is formally described in Algorithm 2.

The algorithm proceeds by induction, reducing IGDPn,B,d,m to IGDPn−1,B′,d,m′
where B′ and m are slightly larger than B and m′ respectively. To do so, one first

11



constructs T ∈ Zn×k such that TTt and Σ′ have the same first row and column,
and then proceeds iteratively over (Σ′ −TTt)2:n,2:n. In the construction of T,
to clear out the off-diagonal elements, we make use of a gadget decomposition
〈ci,g〉 = Σ′1,i (i > 1). The remaining diagonal element, namely Σ′1,1 − ‖g‖2, is
then handled by the 4-square theorem.

To ensure the inductive construction goes through, Algorithm 2 requires a
certain strongly positive definiteness condition. We need that d−Σi,i ≥ ‖g‖2, but
we also need to account for the perturbation TTt subtracted from Σ′ during the
induction. The correctness and efficiency of this algorithm is given in Lemma 5.

Algorithm 2: Integral matrix decomposition for a strongly diagonally
dominant matrix DiagDomIGD(Σ, d, b, k)

Input: a symmetric matrix Σ ∈ Zn×n,
two integers b, k ≥ 2 such that bk ≥ ‖Σ‖max + k(n− 1)b2,

an integer d such that d ≥ b2k−1
b2−1

+ bk.

Output: A =
(
L1 · · · Lk D1 · · · D4

)
∈ Zn×n(k+4) such that AAt = dIn −Σ

where Li ∈ Zn×n is a lower-triangular matrix whose diagonal elements are bi−1

and Di ∈ Zn×n is a diagonal matrix.
1: g← (1, b, · · · , bk−1)t

2: calculate x = (x1, x2, x3, x4)t ∈ Z4 such that ‖x‖2 = d−Σ1,1 − ‖g‖2 using
Rabin-Shallit algorithm (Theorem 2)

3: if n = 1 then
4: return (gt,xt)
5: end if
6: for j = 2, · · · , n do
7: calculate cj ∈ Zk such that 〈cj ,g〉 = −Σ1,j by gadget decomposition
8: end for

9: C←
(
c2 · · · cn

)t ∈ Z(n−1)×k, T←
(

gt xt

C

)
∈ Zn×(4+k)

10: Π←
(
Σ + TTt

)
2:n,2:n

11:
(
L′1 · · · L′k D′1 · · · D′4

)
← DiagDomIGD(Π, d, b, k) {Recursive call}

12:
(
v′1 · · · v′k

)
← C

13: Li ←
(
bi−1

v′i L′i

)
∈ Zn×n for i = 1, · · · , k

14: Di ←
(
xi

D′i

)
∈ Zn×n for i = 1, · · · , 4

15: return A =
(
L1 · · · Lk D1 · · · D4

)

Remark 4. For tighter parameters, we consider ‖Σ‖max instead of direct ‖Σ‖2
in Algorithm 2, which does not affect the main result, i.e. Corollary 1.
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Lemma 5. Algorithm 2 is correct. More precisely, let Σ ∈ Zn×n be symmetric

and d, b, k ∈ Z such that bk ≥ ‖Σ‖max + k(n − 1)b2 and d ≥ b2k−1
b2−1 + bk. Then

DiagDomIGD(Σ, d, b, k) outputs A ∈ Zn×n(k+4) such that AAt = dIn −Σ.

Moreover, DiagDomIGD(Σ, d, b, k) performs O(kn3+n log2 d log log d) arithme-
tic operations on integers of bitsize O(log d).

Proof. There are n calls to the Rabin-Shallit algorithm in Algorithm 2, and all
input integers are at most 2d. Thus the total cost of the Rabin-Shallit algo-
rithm is O(n log2 d log log d) operations on integers of bitsize O(log d). There are

also n(n−1)
2 gadget decompositions, and the total cost is O(n2k) operations on

integers of bitsize at most k log b ≤ log d. For matrix multiplication, we follow
the textbook algorithm, thus the total cost is O(n3k) operations on integers of
bitsize at most O(log d). This yields the overall running time complexity.

We now prove the correctness. Since d − Σ1,1 ≥ d − ‖Σ‖max ≥ ‖g‖2, the
existence of a 4-square decomposition x is ensured. For Σ1,j with j > 1, we have
|Σ1,j | ≤ ‖Σ‖max < bk, which implies the existence of cj and ‖cj‖∞ < b. Then
it can be verified that

dIn −Σ−TTt =

(
0 0t

0 Π′

)
where Π′ = dIn−1 −Π ∈ Z(n−1)×(n−1) and Π = Σ2:n,2:n + Ξ with Ξ = CCt.

Notice that ‖cj‖ ≤ b
√
k, hence ‖Π‖max ≤ ‖Σ‖max + kb2. Further we have that

bk ≥ ‖Π‖max + k(n− 2)b2 and d ≥ b2k − 1

b2 − 1
+ bk.

So far, all parameter conditions indeed hold for d and Π correspondingly. The-
refore, the induction goes through and Algorithm 2 is correct. ut

Notice that ‖Σ‖max ≤ ‖Σ‖2, we immediately get the following result.

Corollary 1. Let n,B, d, b, k ∈ N such that bk ≥ B+k(n−1)b2 and d ≥ b2k−1
b2−1 +

bk. Then there exists a solution to IGDPn,B,d,n(k+4) and it can be calculated by
Algorithm 2.

To use such a decomposition for perturbation sampling, we also need to
control λm−n(Λ⊥(A)). Lemma 6 shows that this can easily be done by padding
the output A with an identity matrix In.

Lemma 6. Let A = DiagDomIGD(Σ, d − 1, b, k) ∈ Zn×m where m = n(k + 4).
Let A′ =

(
In A

)
, then A′ · Zn+m = Zn, the dimension of Λ⊥(A′) is m, and

λm(Λ⊥(A′)) ≤ max

b2√n,
√
d− b2k − 1

b2 − 1
+ ‖Σ‖max

 .
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Proof. Let S =

 1 −b
1 −b

. . . −b
1

 ∈ Z(k−1)×(k−1).We define D =
(
D1 · · · D4

)
∈

Zn×4n,L =
(
L1 · · · Lk

)
∈ Zn×kn such that A =

(
L D

)
. We also define L =

L·(S⊗In) =
(
L1 L2 − bL1 · · · Lk − bLk−1

)
, then ‖L‖max < b2 and the diagonal

elements of Li − bLi−1 are 0. Let

P =

(
A
−Im

)
·
(

S⊗ In
I4n

)
=

 L D
−S⊗ In

−I4n

 ,

then P contains m linearly independent vectors of Λ⊥(A′). A straightforward
computation yields that

‖P‖col ≤ max

b2√n,
√
d− b2k − 1

b2 − 1
+ ‖Σ‖max

 ,

which implies the conclusion immediately. ut

4.2 Eigenvalue reduction

The parameter requirements of Corollary 1 are rather demanding. Indeed, the
minimal d is at least B + b2k−2 + k(n − 1)b2 > 2B

√
k(n− 1), which results in

costly overhead on the final Gaussian width, and therefore on all the parameters
of the cryptosystem. Yet we claim that for some large B, say ω(n4), one can
overcome this issue with the help of some integral approximations of Cholesky
decompositions. The case of large B is of interest in advanced lattice based sche-
mes [1, 8, 20]. Note that by scaling, this constraint on B can even be removed if
one accepts to include a few (O(log n)) rational bits in the Gram decomposition.

This technique essentially can be summarized as a reduction from IGDPn,B,d,m
to IGDPn,B′,d−B,m−n in which B′ � B. One first splits dIn −Σ into two parts:
Σ′ = B · In −Σ and (d−B) · In. Exploiting an integral approximation of Cho-
lesky decomposition, one decomposes Σ′ as a Gram matrix LLt and a small
matrix Σ′′. Then it suffices to decompose (d − B)In + Σ′′, which implies the
reduction. As B′ � B, the overhead introduced by IGDPn,B′,d−B,m−n can be
negligible compared with the original B. The formal description is illustrated in
Algorithm 3, and an upper bound of B′ is shown in Lemma 7.

For better description, we define a function Fn : N→ N specified by n as

Fn(x) =

⌈√
n(n+ 1)x+

n(n+ 1)

8

⌉
.

Lemma 7. Let Σ ∈ Zn×n be a symmetric matrix and B ≥ ‖Σ‖2. Let (L,Π) =
EigenRed(Σ, B), then ‖Π‖2 ≤ Fn(B).
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Algorithm 3: Eigenvalue reduction EigenRed(Σ, B)

Input: a symmetric matrix Σ ∈ Zn×n with ‖Σ‖2 ≤ B.
Output: (L,Π) where L ∈ Zn×n, Π ∈ Zn×n is symmetric and

B · In −Σ = LLt −Π.

1: L←
⌊
L̃
⌉

where L̃ is the Cholesky Gram root of B · In −Σ

2: Π← LLt − (B · In −Σ)
3: return (L,Π)

Proof. Let ∆ = L − L̃, then ‖∆‖max ≤ 1
2 and ∆ is lower triangular. We have

‖∆‖2 ≤ ‖∆‖F ≤ 1
2 ·
√

n(n+1)
2 and ‖L̃‖2 ≤

√
2B, then

‖Π‖2 = ‖∆L̃t + L̃∆t + ∆∆t‖2 ≤ 2‖L̃‖2‖∆‖2 + ‖∆‖22 ≤ Fn(B).

We complete the proof. ut

Corollary 2. Let n,B, d,m ∈ N. There is a deterministic reduction from IGDPn,B,d,m
to IGDPn,Fn(B),d−B,m−n whose cost is dominated by one call to Cholesky decom-
position on some positive semi-definite matrix Σ ∈ Zn×n with ‖Σ‖2 ≤ 2B.

Remark 5. One may fear the re-introduction of Cholesky within our algorithm,
however we argue that it is in this context much less of an issue:

– costly FPA computation may still be needed, but they are now confined to
a one-time pre-computation, rather than a many-time off-line phase,

– the weak determinism of this FPA computation can be mitigated by running
pre-computation as part of the trapdoor generation algorithm, and providing
the pre-computed integral Gram decomposition as part of the secret key,

– the eigenvalue reduction algorithm can tolerate a rather crude approximation
of Cholesky without leading to a hard to detect statistical leak. At worse,
insufficient precision will simply fail to solve the IGDP instance at hand.
That is, only completeness is at stake, not security, and one may tolerate
rare failures.

– one may also completely avoid FPA by resorting to potentially less efficient
though more convenient square root approximation algorithm. In particular,
we note that the Taylor series of

√
1− x involves only power-of-2 denomina-

tors: one can design a “strongly deterministic” algorithm.

4.3 Putting them together

So far, we have introduced two algorithmic tools for IGDPn,B,d,m: the integral
decomposition for diagonally dominant matrices DiagDomIGD(Σ, d, b, k) and the
eigenvalue reduction EigenRed(Σ, B). They can be combined as follows: one first
applies the eigenvalue reduction iteratively and then decomposes the final left-
over matrix. We summarize this as IGD(Σ, d, B, t, b, k) in Algorithm 4, and prove
its correctness in Lemma 8.
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We follow the notation Fn given in Section 4.2, and also define its iterated

function F
(i)
n : N→ N for i ∈ N by: F

(0)
n (x) = x and F

(i+1)
n (x) = Fn

(
F

(i)
n (x)

)
.

Algorithm 4: Integral matrix decomposition IGD(Σ, d, B, t, b, k)

Input: a symmetric matrix Σ ∈ Zn×n with ‖Σ‖2 ≤ B,

non-negative integers b, k, t such that bk ≥ F (t)
n (B) + k(n− 1)b2,

an integer d such that d ≥ b2k−1
b2−1

+ bk +
∑t−1
i=0 F

(i)
n (B).

Output: A =
(
A1 A2

)
∈ Zn×(m1+m2) such that AAt = dIn −Σ where

m1 = nt and m2 = n(k + 4),
A1 ∈ Zn×m1 consists of t lower-triangular matrices,
A2 = DiagDomIGD(Π, d−

∑t−1
i=0 F

(i)
n (B), b, k) ∈ Zn×m2 where ‖Π‖2 ≤ F (t)

n (B).
1: A1 ← () (an empty matrix ∈ Zn×0·n), Π← Σ
2: for i = 1, · · · , t do
3: (L,Π)← EigenRed(Π, F

(i−1)
n (B))

4: A1 ←
(
A1 L

)
5: end for
6: A2 ← DiagDomIGD(Π, d−

∑t−1
i=0 F

(i)
n (B), b, k) ∈ Zn×m2

7: return
(
A1 A2

)

Lemma 8. Algorithm 4 is correct. More precisely, let Σ ∈ Zn×n be symmetric

and d,B, t, b, k ∈ N such that ‖Σ‖2 ≤ B, bk ≥ F
(t)
n (B) + k(n − 1)b2 and d ≥

b2k−1
b2−1 + bk +

∑t−1
i=0 F

(i)
n (B). Then IGD(Σ, d, B, t, b, k) outputs A ∈ Zn×m such

that AAt = dIn −Σ and m = n(t+ k + 4).

Remark 6. In practice, the calculation of the Gram root A can be accomplished
during the key generation and needs to run only once. Therefore, we do not take
into account the complexity of IGD(Σ, d, B, t, b, k).

Proof. It can be verified that

A1A
t
1 =

(
t−1∑
i=0

F (i)
n (B)

)
· In −Σ + Π

and

A2A
t
2 =

(
d−

t−1∑
i=0

F (i)
n (B)

)
· In −Π,

hence AAt = dIn−Σ. According to Lemmata 5 and 7, all conditions required by

the calls of EigenRed(Π, F
(i−1)
n (B)) and DiagDomIGD(Π, d−

∑t−1
i=0 F

(i)
n (B), b, k)

are satisfied. Therefore, Algorithm 4 is correct. ut

Now we give an upper bound of λm−n(Λ⊥(A)) in Lemma 9. Similar to
Lemma 6, we also pad the Gram root A with In.
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Lemma 9. Let A = IGD(Σ, d − 1, B, t, b, k) ∈ Zn×m where m = n(t + k + 4).
Let A′ =

(
In A

)
, then A′ · Zn+m = Zn, the dimension of Λ⊥(A′) is m, and

λm(Λ⊥(A′)) ≤ max

b2√n,
√√√√d+ F

(t)
n (B)− b2k − 1

b2 − 1
−
t−1∑
i=0

F
(i)
n (B), max

0≤i<t

√
2F

(i)
n (B) + n

 .

Proof. Let A =
(
A1 A2

)
where A1 ∈ Zn×m1 with m1 = nt and A2 ∈ Zn×m2

with m2 = n(k + 4). Let A′1 =
(
In A1

)
and A′2 =

(
In A2

)
, then

λm(Λ⊥(A′)) ≤ max{λm1(Λ⊥(A′1)), λm2(Λ⊥(A′2))}.

The matrix A1 consists of t lower-triangular matrices, denoted by L1, · · · ,Lt,
such that Li =

⌊
L̃i

⌉
and ‖L̃i‖col ≤ ‖L̃i‖2 ≤

√
2F

(i−1)
n (B) by Lemma 7. It follows

that ‖Li‖col ≤ ‖L̃i‖col +
√
n
2 ≤

√
2F

(i−1)
n (B) +

√
n
2 , and then we have

λm1(Λ⊥(A′1)) ≤ max
1≤i≤t

√
‖Li‖2col + 1 ≤ max

0≤i<t

√
2F

(i)
n (B) + n.

As for λm2(Λ⊥(A′2)), combining Lemmata 6 and 7 leads to that

λm2(Λ⊥(A′2)) ≤ max

b2√n,
√√√√d+ F

(t)
n (B)− b2k − 1

b2 − 1
−
t−1∑
i=0

F
(i)
n (B)

 .

The proof is completed. ut

As the parameters n and B have been determined before the key generation,
one can first choose suitable (t, b, k) and then proceed to minimize d satisfying
the requirements of Algorithm 4. We next discuss concrete parameter selections
according to the size of B.

Case 1: B = ω(n6). In this case, we insist on a common gadget setting: b = 2.
One can first fix (t, b) = (2, 2) and then choose k = 1 +

⌈
3
2 log(n+ 1) + 1

4 logB
⌉
.

The minimal d is bounded by B + 2(n+ 1)3
√
B = (1 + o(1))B.

Under this setting, the final integral Gram root A′ =
(
In A

)
is of size

n× (n+m) with m = n(k + 6), and λm(Λ⊥(A′)) ≤
√

2B + n for d ≤ 3B.

Case 2: B = ω(n4). We now insist on minimizing the total size of the output A.

To this end, one first sets (t, k) = (1, 3) and then selects b =
⌈
3n+

√
2n

1
3B

1
6

⌉
.

The minimal d is bounded by B + 2b4 = (1 + o(1))B.

Under this setting, the final integral Gram root A′ =
(
In A

)
is of size

n×(n+m) with m = 8n, and λm(Λ⊥(A′)) ≤ max{
√

2B+n, b2
√
n = O(n

7
6B

1
3 )}

for d ≤ 3B.
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Case 3: B = O(n4). In some scenarios,B can be relatively small, say Õ(n) [25, 4],
so that the current algorithm does not work directly. But we can still compute
an almost integral Gram root of dIn −Σ. By almost integral, we mean that we
resort to rationals of the form i/2ν , with only a few rational bits ν = O(log n).

The trick is rather simple: by scaling both d and B by a factor of 22ν , one
can reduce the case of small B to the case of a large one. This technique indeed
applies for any B and d > B + 1, when the scaling factor is sufficiently large.

As an example, we choose arbitrary ν ∈ Z such that 22νB = ω(n4). As

shown in Case 2, selecting (t, k, b) =
(

1, 3,
⌈
3n+

√
2n

1
3 (22νB)

1
6

⌉)
allows an

almost integral decomposition, and the minimal d is bounded by B+2b4 ·2−2ν =
(1 + o(1))B.

Under this setting, the final integral Gram root A′ = 2−ν ·
(
In A

)
is of size

n× (n+m) with m = 8n. A minor modification to apply Theorem 3 is that one
should consider λm(Λ⊥(2ν ·A′)) to fulfil Lemma 3. This can be done similarly:

λm(Λ⊥(2ν ·A′)) ≤ max{2ν
√

2B + n, b2
√
n = O(2

2
3νn

7
6B

1
3 )} for d ≤ 3B.

We compare above parameter selections according to some values including:
(1) m = m + n, determining the size of the Gram root; (2) L, an upper bound
of λm(Λ⊥(A′)) dominating L′ in Theorem 3; and (3) dmin, the minimum of d
proportional to the minimal final width. We summarize three cases in Table 1.

m = m+ n L dmin

Gadget base b = 2:
B = ω(n6)

O(n logB) O
(√

B
)

(1 + o(1))B

Large gadget base:
B = ω(n4)

9n O
(√

B + n
7
6B

1
3

)
(1 + o(1))B

Almost integral:
B = O(n4)

9n O
(

2ν
√
B + 2

2
3
νn

7
6B

1
3

)
(1 + o(1))B

Table 1. Parameter selections of the integral Gram decomposition. In the first two
cases, the final Gram root A′ is integral of size n×m. In the third one, the final Gram
root is 2−νA′ where A′ ∈ Zn×m and ν = 2 logn− 1

2
logB + ω(1) is an integer.

5 Comparisons with Peikert’s Perturbation Sampler

Throughout this section, Σ ∈ Zn×n is a positive semi-definite matrix, and s = rs′

is the final Gaussian width where r is the base sampling parameter and s′2 ∈ Z
such that s′2 ≥ e1(Σ)+1. The covariance of perturbation vectors is r2(s′2In−Σ).
The later discussions specialize to e1(Σ) = ω(n6), which can occur in advanced
cryptosystems, e.g. hierarchical IBE [1, 8] and ABE [20].10

10 When e1(Σ) is small, one can resort to the almost integral Gram root in Section 4.3.
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Applying the integral matrix decomposition from Section 4 along with The-
orem 3, we devise a variant of Peikert’s perturbation sampling algorithm. This
variant requires no floating-point arithmetic, and the intermediate matrix is inte-
gral. The centers of the base Gaussian samplings are integers scaled by a common
factor L′, which is easier to deal with. Moreover, our approach only enlarges the
final width by a factor of 1 + o(1).

We next compare our sampler with Peikert’s one [32] from the following as-
pects: the storage of the Gram root (Section 5.1), required base samplings (Section 5.2)
and the quality of final Gaussians (Section 5.3). Additionally, we discuss the ap-
plications within the Micciancio-Peikert trapdoor framework [25] in Section 5.4,
and show that exploiting the trapdoor, one can significantly reduce the size of
the matrix to be decomposed.

5.1 Required storage

For Peikert’s sampler, we follow the suggested setting where the precomputa-
tion is a standard (real) Cholesky Gram root of

√
(s′2 − 1)In −Σ. It requires

n(n+1)
2 (log s′+λ) bits of storage, where λ is a security parameter that is usually

set to O(n).
In our sampler, the intermediate matrix is A =

(
In A1 A2

)
∈ Zn+m where(

A1 A2

)
= IGD(Σ, s′2 − 2, B, t, b, k) ∈ Zn×m and m = n(t + k + 4). The

sub-matrix A1 consists of t lower-triangular matrices, and its storage is about

n(n+1)
2

(∑t−1
i=0 log

√
F

(i)
n (B)

)
bits. The parameter t can be very small, say t =

1, 2 (see Section 4.3), and {F (i)
n (B)}i decreases very fast at the beginning for

large B. Therefore, the actual storage of A1 is well bounded. As for A2, while
it is even wider, namely n × n(k + 4), its regular structure allows an efficient
storage. More precisely, treating (b, k) as global variables, it suffices to store
off-diagonal entries that are in (−b, b) in the first k blocks and diagonal ones
in the rest blocks (see Algorithm 2). Thus the storage of A2 is bounded by
n(n−1)

2 k log b + 2n log(s′), which is about n(n−1)
2 log(F

(t)
n (B)) + 2n log(s′) when

bk = O(F
(t)
n (B)).

We summarize in Table 2 the storage comparison. Despite the integral Gram
root A being wider, it can achieve asymptotically better storage efficiency than
the FPA solution. In fact, the storage is still an advantage even we apply the
almost integral decomposition in Section 4.3 to deal with small e1(Σ).

5.2 Base samplings

To generate an integral perturbation, one first samples from a Gaussian of covari-
ance r2((s′2−1)In−Σ). In Peikert’s sampler, this is accomplished by continuous
Gaussian sampling with high precision, which is expensive. In our sampler, this is
accomplished by sampling from DZn+m,L′r and then multiplying a scaled integral
Gram root, i.e. 1

L′A.
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Storage of Gram root

Peikert’s sampler ≈ n2

2
(log s′ + λ) where λ is the security parameter

Ours ≈ n2

4

(∑t
i=0 log(F

(i)
n (s′2)) + log(F

(t)
n (s′2))

)
Ours with t = 1 ≈ n2(log s′ + 1

2
logn)

Ours with t = 2 ≈ n2(log s′ + logn)

Table 2. The storage comparison. The concrete parameter selections of t = 1, 2 are
discussed in Section 4.3.

There are also some non-centered samplings. Peikert’s algorithm requires to
sample from DZ,r,c with a floating-point center. In our sampler, all Gaussian
centers are in 1

L′ · Z with some L′ ≥ λm(Λ⊥(A)).

We exhibit the comparison on the base samplings in Table 3. As shown in
Section 4.3, we may choose some L′ = O(s′+n

7
6 s′

2
3 ). When the padding trick is

used (see Section 3.1), L′ can be even smaller, namely O
(√
n log s′

)
. In concrete

implementations, we would suggest to set L′ to be a power-of-2 so that with a
minor modification, all samplings can be done by only two base samplers DZ,r
and DZ,r,1/2 as in [28]. Therefore, the base samplings required by us are easier
to implement than that by Peikert. While our sampler requires more centered
samples, (n + m) is O(n log s′) even O(n), which does not increase the base
sample number too much.

Centered samplings Non-centered samplings

Peikert’s sampler
DR,r
n times

DZ,r,c with c ∈ R
n times

Ours
DZ,L′r
O(n) times

DZ,r,c with c ∈ 1
L′ · Z

n times

Ours with padding
(Section 3.1)

DZ,L′r
O(n log s′) times

DZ,r,c with c ∈ 1
L′ · Z

n times

Table 3. The base sampling comparison. Here DR,r denotes the continuous Gaussian
over R of width r. In our sampler, the Gram root A ∈ Zn×(n+m). If no padding,

m = O(n) (say 8n) and L′ = O(s′ + n
7
6 s′

2
3 ) ≥ λm(Λ⊥(A)). If padding is used, m =

O(n log s′) and L′ = O(
√
n log s′).
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5.3 The quality of final Gaussians

In Peikert’s sampler, r ≥ ηε(Zn) and s′2 ≥ e1(Σ) + 1 so that the minimal s
is ηε(Zn)

√
e1(Σ) + 1. Our sampler also applies to any r ≥ ηε(Zn) according to

Theorem 3. As for s′, its minimum is (1 + o(1))
√
e1(Σ) (see Section 4.3). Thus

the minimal s achieved by us is (1 + o(1)) · ηε(Zn)
√
e1(Σ). As a conclusion, our

sampler only leads to a very small loss in the quality of final Gaussians.

5.4 The case of the Micciancio-Peikert trapdoor

In [25], Micciancio and Peikert propose a celebrated trapdoor framework which
has been the basis of various primitives [20, 12, 4]. In this framework, the matrix

Σ =

(
T
I

)(
Tt I

)
where T ∈ Zn1×n2 is the trapdoor with n1 � n1 + n2. The

Gaussian sampling is performed by an entity that knows the trapdoor T.
We now explain how to use the trapdoor to reduce the input size at the

beginning of the matrix decomposition of Σ′ = dIn −Σ (a similar idea is used
in [17]). More precisely, notice that

Σ′ = dIn −Σ =

(
dIn1

− 2TTt

(d− 2)In2

)
+

(
T
−I

)(
Tt −I

)
.

Hence, it suffices to decompose Σ′new = dIn1 − 2TTt whose dimension is n1,
which is much less than n = n1+n2.11 This trick needs neither extra computation
nor storage, and only enlarges the maximal elements in Σnew(= 2TTt) by a
factor of 2. Therefore we suggest to use this trick as the preprocessing of the
integral decomposition in the Micciancio-Peikert trapdoor framework.12

6 The Ring Setting

Many lattice cryptosystems use polynomial rings. In this setting, vectors and
matrices consist of ring elements, which improves storage and running time.
Some previous works [32, 25, 15, 17] provide ring-efficient Gaussian sampling
in which intermediate matrices preserve the ring structure, but require high-
precision FPA. One the other hand, the generic techniques in Section 4 avoid
high-precision FPA but require to take Z as a base ring, therefore not benefiting
from efficiency gains that are typically expected in the ring setting.

The goal of this section is to get the best of both worlds: being ring-efficient
and avoiding high-precision FPA. We realize that by proposing an integral de-
composition algorithm for the ring setting. By Theorem 3, this will imply a
Gaussian sampler that is both ring-efficient and FPA-free. To this end, we first
formally define the Integral Gram Decomposition Problem over the ring R.

11 The other block can be addressed by 4-square decomposition directly.
12 Note that this requires some new analysis of smoothness conditions.
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Definition 4 (IGDPR,n,B,d,m). Let R = Z[x]/Φ(x) where Φ(x) ∈ Z[x] and
n,B, d,m ∈ N. The Integral Gram Decomposition Problem over R, denoted
by IGDPR,n,B,d,m, is defined as follows: given an integral symmetric matrix
Σ ∈ Rn×n with ‖Σ‖2 ≤ B, find an integral matrix A ∈ Rn×m such that
AAt = dIn −Σ.

Clearly, IGDPR,n,B,d,m is a natural generalization of the IGDP problem which
introduces a new parameter: the ring R. The initial definition of IGDPn,B,d,m
(Definition 3) corresponds to the case R = Z. For simplicity we only discuss
power-of-2 cyclotomic rings, i.e. R2w = Z[x]/(xw + 1) with w = 2`. Similarly
to [15], the results can be extended to more general cyclotomic rings and convolu-
tion rings with smooth conductors. Why do we care about solving IGDPR,n,B,d,m
for trapdoor sampling? Indeed, a naive and functional approach is to embed
Σ in Zwn×wn via the coefficient embedding, then solve IGDPZ,wn,B,d′,m′ as in
Section 4. However, that would break the ring structure and cancel the main ad-
vantage of rings: efficiency. Therefore our goal is to directly solve IGDPR,n,B,d,m;
if m′ = m · ω̃(w), this improves the storage and running time (via the number
theoretic transform) of lattice Gaussian sampling by a factor Õ(w) compared to
the naive approach.

Technical roadmap. We first recall some preliminaries on cyclotomic rings
(Section 6.1). Next, we propose a solution for the special case IGDPR2w,1,B,d,m;
this particular case is also a generalization of the 4-square decomposition, for
self-adjoint ring elements instead of natural numbers. Our solution relies on a
technique called ring gadgets to reduce IGDPR2w,1,B,d,m to IGDPRw,1,B′,d′,m′ .
Naturally, a repeated application of ring gadgets allows to project the initial
problem onto Z eventually, which is then solved by 4-square decomposition.

Once we know how to decompose a single polynomial, a general solution to
IGDPR2w,n,B,d,m is easily derived by adapting Algorithm 2 to the ring setting
(Section 6.3). Compared with the generic solution (Section 4), the ring-based
integral decomposition reduces storage by a factor O(w) and running time by
a factor Õ(w), at the cost of increasing the number of columns of the integral
Gram root by O(logw). This leads to a simple ring-based sampler achieving the
same efficiency as the state of the art [17] (Section 6.4).

Comparison with the generic technique. Algorithms in Section 4 and in
this section operate on the same central idea: to recursively project the initial
problem into smaller dimensions. The only conceptual difference is how this
projection is done; as we now impose an additional constraint, i.e. preserving
the ring structure, projection requires to use ring gadgets in addition to matrix
decomposition. In addition, these algorithms treat the eigenvalue reduction and
the bottom case differently. We summarize used techniques as Table 4.
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Section 4
IGDPn,B,d,m

Section 6.2
IGDPR2w,1,B,d,m

Section 6.3
IGDPR2w,n,B,d,m

eigenvalue reduction Cholesky – structured Cholesky

projection integer gadget ring gadget integer gadget

bottom case 4-square 4-square IGDPR2w,1,B,d,m

Table 4. Different techniques in integral decompositions.

6.1 Preliminaries on cyclotomic rings

Let w ∈ N and Φw(x) ∈ Z[x] be the w-th cyclotomic polynomial. The w-th
cyclotomic ring is Rw = Z[x]/(Φw(x)) and the w-th cyclotomic field is Kw =
Q[x]/(Φw(x)). In this paper, we only discuss the case of power-of-2 cyclotomic
rings where w = 2` and Φ2w(x) = xw + 1. For such kind of rings, we have the
following tower of rings:

R2w ⊇ Rw ⊇ · · · ⊇ R2 = Z. (1)

Adjoints. Let Φ ∈ R[x] be monic with distinct roots over C, and f, g ∈
R[x]/(Φ(x)). We denote by f? the (Hermitian) adjoint of f , that is, the unique
element of R[x]/(Φ(x)) such that f?(ξ) = f(ξ) for any root ξ of Φ. This gene-
ralizes the complex conjugation of real numbers. We say that f is self-adjoint if
f = f?. It is easy to verify that ff? is self-adjoint and all self-adjoint elements
form a ring. When Φ is a cyclotomic polynomial, it holds that f?(x) = f(x−1).

Norms and gadgets. For f =
∑w−1
i=0 fix

i ∈ K2w, let ‖f‖ =
√∑w−1

i=0 |fi|2 be

its `2-norm, and ‖f‖∞ = maxi |fi| be its `∞-norm. For f = (f0, · · · , fn−1)t and

g = (g0, · · · , gn−1)t in Kn2w, let ‖f‖ =
√∑n−1

i=0 ‖fi‖2, ‖f‖∞ = maxi ‖fi‖∞ and

〈f ,g〉 =
∑
i fig

?
i ∈ K2w. For Σ ∈ Kn×n2w , let ‖Σ‖2 = maxx6=0

‖Σx‖
‖x‖ and ‖Σ‖max =

maxi,j ‖Σi,j‖∞. Moreover, the gadget decomposition generalizes naturally: given
the gadget vector g = (1, b, · · · , bk−1)t ∈ Rk2w, for any f ∈ R2w with ‖f‖∞ < bk,
there exists c ∈ Rk2w such that 〈c,g〉 = f and ‖c‖∞ < b, and it can be efficiently
computed.

Even and odd polynomials. Each f ∈ R2w can be uniquely written as:

f(x) = fe(x
2) + xfo(x

2),

where fe, fo are elements of the subring Rw ⊂ R2w. We say that fe (resp. fo) is
the even (resp. odd) part of f , and indeed it consists of the even-index (resp. odd-
index) coefficients of f , respectively. We also say that a polynomial is even (resp.
odd) if its odd (resp. even) part is zero. Any even polynomial of Z[x]/(xw + 1)
can be seen as an element of Z[y]/(yw/2 + 1) by the ring morphism y → x2.
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Ring gadgets. A key technical component of our algorithms in the ring setting
consists of projecting a self-adjoint polynomial f ∈ R2w onto the subring Rw.
More precisely, we exhibit a polynomial a ∈ R2w such that aa?+f is even (hence
is in the subring Rw) and self-adjoint. Let us write f = fe(x

2) + xfo(x
2); since

f is self-adjoint, it holds that fi = −fw−i for each coefficient fi of f , and we can
therefore write xfo(x

2) = xf̄o(x
2) + (xf̄o(x

2))? for some polynomial f̄o ∈ Rw
with only its lower-half coefficients nonzero. Taking a = 1− xf̄o(x2), we have:

f + aa? = fe(x
2) + xf̄o(x

2) + (xf̄o(x
2))? + (1− xf̄o(x2))(1− xf̄o(x2))?

= fe(x
2) + f̄o(x

2)(f̄o(x
2))? + 1

All the odd terms have been eliminated, and f+aa? is isomorphic to an element
of Rw. As an example, let us consider the following self-adjoint element of R16:

f = 32− 8x+ 2x2 − 9x3 + 9x5 − 2x6 + 8x7,

f = (32 + 2x2 − 2x6) + x(−8− 9x2) + (x(−8− 9x2))?.

Then we will take: a = 1− xf̄o(x2) = 1 + 8x+ 9x3. One can check that:

f + aa? = −74x6 + 74x2 + 178,

which is indeed in the subring R8. This projection is compatible with the use
of gadget matrices; more precisely, we can first decompose a polynomial using
gadget decomposition, and then apply the projection to each element of the
decomposition. Finally we have f +

∑k
i=1 aia

?
i is even, where ai = bi−1 +xci(x

2)

and
∑k
i=1 b

i−1ci = −f̄o. We will refer to these combined decomposition and
projection as ring gadgets.

6.2 Decomposition for ring elements

We proceed to generalize 4-square decomposition to the ring setting. Precisely,
our goal is to represent one integral self-adjoint ring element f ∈ R2w as 〈a,a〉
where a ∈ Rm2w is an integral polynomial vector. Equivalently, we seek to solve
the special case IGDPR2w,1,B,d,m.

Our solution is build upon the use of ring gadgets, defined at the end of
Section 6.1. As previously illustrated, a single application of a ring gadget can
be viewed as the reduction IGDPR2w,1,B,d,m → IGDPRw,1,B′,d′,m′ . Hence, we have
projected our problem onto a subring.

We can go further. As recalled in (1), the Ri’s are arranged in a tower of rings
structure, thus we can repeatedly apply ring gadgets to project IGDPR,1,B,d,m
onto a subring, until it is projected in R4. We note that the set of all self-adjoint
elements of R4 is exactly Z and thus IGDPR4,1,B,B,4 is easily solved via the
Rabin-Shallit algorithm. We have this chain of reductions:

IGDPR2w,1,B,d,m → IGDPRw,1,B′,d′,m′ → · · · → IGDPR4,1,B′′,d′′,m′′

We formally describe the procedure in Algorithm 5.
Lemma 10 shows the correctness and the complexity analysis of Algorithm 5.
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Algorithm 5: Decomposition of a single ring element REIGD(d, f, b, k)

Input: a self-adjoint f ∈ R2w with w = 2` ≥ 2,
two integers b, k ≥ 2 such that bk ≥ ‖f‖∞ + kwb2,

an integer d such that d ≥ b2k−1
b2−1

(`− 1) + bk.

Output: a =
(
a1 · · · ak(`−1) x1 x2 x3 x4

)
∈ Rk(`−1)+4

2w such that 〈a,a〉 = d− f ,

where x1, x2, x3, x4 ∈ Z and a1+jk+i = bi + a′i,j

(
x2

`−2−j
)

with a′i,j ∈ R2j+2 for

any 0 ≤ i < k and 0 ≤ j < `− 1.
1: g← (1, b, · · · , bk−1)t

2: if w = 2 then
3: calculate x = (x1, x2, x3, x4)t ∈ Z4 such that ‖x‖2 = d− f using the

Rabin-Shallit algorithm (Theorem 2)
4: return x
5: end if
6: calculate

(
a1 · · · ak

)
∈ Rk2w by using ring gadgets such that f +

∑
i aia

?
i is even

7: let f ′ ∈ Rw such that f ′(x2) = f − b2k−1
b2−1

+
∑
i aia

?
i

8: a′ =
(
a′1 · · · a′k(`−2) x1 x2 x3 x4

)
← REIGD

(
d− b2k−1

b2−1
, f ′, b, k

)
9: return a =

(
a′1(x2) · · · a′k(`−2)(x

2) ‖ a1 · · · ak ‖ x1 x2 x3 x4
)
∈ Rk(`−1)+4

2w

Lemma 10. Algorithm 5 is correct. More precisely, let w = 2` ≥ 2 and f ∈ R2w

be a self-adjoint polynomial, let d, b, k ∈ Z such that bk ≥ ‖f‖∞ + kwb2 and

d ≥ b2k−1
b2−1 (` − 1) + bk. Then REIGD(d, f, b, k) outputs a ∈ Rk(`−1)+4

2w such that
〈a,a〉 = d− f .

Moreover, REIGD(d, f, b, k) performs O(kw logw+ log2 d′ log log d′) arithme-

tic operations on integers of bitsize O(log d′) where d′ = d− b2k−1
b2−1 (`− 1).

Proof. Let fe ∈ Rw be the even part of f . Let ai = bi−1 + xci(x
2) where

ci ∈ Rw with ‖ci‖∞ < b and only its lower-half coefficients nonzero. Since

f(x) +
∑
i aia

?
i = f ′(x2) + b2k−1

b2−1 , we inductively conclude that 〈a,a〉 = d− f . A

routine computation shows that f ′ = fe +
∑
i cic

?
i and that ‖cic?i ‖∞ ≤ w

2 b
2. By

the same argument as in the proof of Lemma 5, the correctness follows.
Algorithm 5 proceeds recursively. At the highest level, there is one gadget

decomposition of (−f̄o), k polynomial multiplications over Rw and one recursive
call. At the bottom level, there is one 4-square decomposition. Thus the total
complexity is O(kw logw + log2 d′ log log d′) if one uses NTT techniques during
multiplication, and all involved integers are of bitsize at most O(log d′). ut

Lemma 10 implies a solution to IGDPR2w,1,B,d,m as the following corollary.

Corollary 3. Let `, B, d, b, k ∈ N and w = 2` ≥ 2 such that m = k(`−1)+4 and

d− b2k−1
b2−1 (`−1) ≥ bk ≥ B+kwb2. Then there exists a solution to IGDPR2w,1,B,d,m

and it can be calculated by Algorithm 5.

The output of Algorithm 5 consists of a series of vectors built upon the tower
of rings followed by 4 integers, hence the storage can be essentially the same as
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that of f due to the polynomials in the tower of rings being gradually sparser.
Detailed argument on the storage is given in Lemma 11.

Lemma 11. Let a be the output of Algorithm 5, then a can be stored using(
kw
2 log b+ 2 log(2d′)

)
bits where d′ = d − b2k−1

b2−1 (` − 1). In particular, when
d′ = O (‖f‖∞), the required storage is (w2 + 2) (log ‖f‖∞ +O(1)) bits.

Proof. The storage of (x1, x2, x3, x4) ∈ Z4 is bounded by 2 log(2d′). We notice

that a1+jk+i = bi + a′i,j

(
x2

`−2−j
)

for some a′i,j ∈ R2j+2 with even coefficients

being 0, odd coefficients in (−b, b), hence the storage of a1+jk+i is 2j log b and
then the storage of a is kw

2 log b+ 2 log(2d′). ut

6.3 Decomposition for positive definite Σ′ ∈ Rn×n
2w

We now show how to solve the generalized problem IGDPR2w,n,B,d,m. Our ring-
setting matrix decomposition is illustrated in Algorithm 6. The high level idea
is the same in spirit to Algorithm 4, except that we replace the Rabin-Shallit
algorithm with a decomposition based on ring gadgets (Algorithm 5). For Σ′ =
dIn − Σ ∈ Rn×n2w , one first calculates some T ∈ Rn×k2w such that TTt has the
same first row and column as Σ′, except the diagonal element, and then proceeds

iteratively over (Σ′ −TTt)2:n,2:n ∈ R(n−1)×(n−1)
2w . During construction of T we

deal with off-diagonal elements by gadget decomposition, and decompose the
remaining diagonal element with Algorithm 5. Detailed analysis is shown in
Lemma 12.

Lemma 12. Algorithm 6 is correct. More precisely, let w = 2` ≥ 2 and Σ ∈
Rn×n2w be a symmetric matrix, let d, b, k ∈ Z such that bk ≥ ‖Σ‖max + knwb2

and d ≥ b2k−1
b2−1 `+ bk. Then RMIGD(d,Σ, b, k) outputs A ∈ Rn×n(k`+4)

2w such that

AAt = dIn −Σ.
Moreover, RMIGD(d,Σ, b, k) performs O(n3kw logw+n log2 d′ log log d′) arithme-

tic operations on integers of bitsize at most O(log d′), and A can be stored using(
n2

2 kw log b+ 2n log(2d′)
)

bits where d′ = d− b2k−1
b2−1 `.

Proof (sketch). A routine computation shows that ‖CCt‖max ≤ kwb2. Following
the same argument as the proof of Lemma 5, we confirm the correctness.

According to Lemma 10, all involved integers are of bitsize at most O(log d′),
and the complexity is mainly contributed by (1) the gadget decompositions, (2)
calls to Algorithm 5 and (3) matrix multiplications. More specifically, there are
O(n2) times gadget decompositions, hence the total complexity of this part is
O(kwn2). There are n calls to Algorithm 5 that entirely costs O(nkw logw +
n log2 d′ log log d′) according to Lemma 10. Furthermore, the cost of all matrix
multiplications is bounded by O(kn3w logw). To sum up, the running time of
RMIGD(d,Σ, b, k) is dominated by O(n3kw logw + n log2 d′ log log d′).

From Lemma 11, the storage of D is n
(
kw
2 log b+ 2 log(2d′)

)
and that of each

Li is n(n−1)
2 w log b. The overall storage thus is

(
n2

2 kw log b+ 2n log(2d′)
)

. ut
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Algorithm 6: Integral matrix decomposition in ring setting
RMIGD(d,Σ, b, k)

Input: a symmetric matrix Σ ∈ Rn×n2w with w = 2` ≥ 2,

integers d, b, k ≥ 2 such that bk ≥ ‖Σ‖max + knwb2 and d ≥ b2k−1
b2−1

`+ bk.

Output: A =
(
L1 · · · Lk D

)
∈ Rn×n(k`+4)

2w such that AAt = dIn −Σ

where Li ∈ Rn×n2w is a lower-triangular matrix with diagonal elements being bi−1

and off-diagonal elements of `∞-norm less than b,
D ∈ Rn×n(k(`−1)+4)

w is a block diagonal matrix with each block being the output
of REIGD(d, f, b, k) for some f ∈ R2w.

1: g← (1, b, · · · , bk−1)t ∈ Rk2w
2: x← REIGD(d− ‖g‖2,Σ1,1, b, k) ∈ Rk(`−1)+4

2w {Call to Algorithm 5}
3: if n = 1 then
4: return (gt,xt)
5: end if
6: for j = 2, · · · , n do
7: calculate cj ∈ Rk2w such that 〈cj ,g〉 = −Σ1,j by gadget decomposition
8: end for

9: C←
(
c2 · · · cn

)t ∈ R(n−1)×k
2w , T←

(
gt xt

C

)
∈ Rn×(k`+4)

2w

10: Π←
(
Σ + TTt

)
2:n,2:n

11:
(
L′1 · · · L′k D′

)
← RMIGD(d,Π, b, k) {Recursive call}

12:
(
v′1 · · · v′k

)
← C

13: Li ←
(
bi−1

v′i L′i

)
∈ Rn×n2w for i = 1, · · · , k

14: D←
(

xt

D′

)
∈ Rn×n(k(`−1)+4)

2w

15: return A =
(
L1 · · · Lk D

)

Corollary 4. Let `, B, d, b, k ∈ N and w = 2` ≥ 2 such that m = n(k`+ 4) and

d− b2k−1
b2−1 ` ≥ bk ≥ B + knwb2. Then there exists a solution to IGDPR2w,n,B,d,m

and it can be calculated by Algorithm 6.

Lemma 13 shows a result related to the smoothness condition. Arguments in
the proof of Lemma 9 still apply to the ring setting due to the similar structure
of the output Gram root. The minor difference is that we should use the `2-norm
to measure the “size” of each entry that is a ring element instead of an integer.
Therefore we omit the proof.

Lemma 13. Let A′ = RMIGD(d,Σ, b, k) ∈ Rn×m2w with w = 2` ≥ 2 and m =
n(k`+ 4) and A =

(
InwMw(A′)

)
∈ Znw×(n+m)w where Mw maps each entry

of A′ to its coefficient matrix of size w × w. Then

λmw(Λ⊥(A)) ≤ max

b2√nw,
√
d− b2k − 1

b2 − 1
`+ bk + 1

 .
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The idea of eigenvalue reduction (Section 4.2) is compatible with the ring
setting as well, if one uses structure-preserving Cholesky decomposition as in [15].
Additionally, for Algorithm 5, one may also subtract some gg? approximation
from f at the beginning, and then work on a small polynomial.

6.4 Comparative results of the ring-based sampler

Combining the eigenvalue reduction and Algorithm 6, a ring-based integral de-
composition is available. Based on it, one can devise a perturbation sampler for
the ring case. Here we skip detailed arguments and just present some compari-
sons. Let us first recall the following notations:

– ` ∈ N, w = 2`, n ∈ N and N = nw.
– Σ ∈ Rn×n2w is a symmetric matrix over R2w that is identified with a symme-

tric matrix over ZN×N . We focus on the case of e1(Σ) = ω(N7).
– s′2 ∈ N and s′2 > e1(Σ) + 1.
– M ∈ N such that the integral Gram root A =

(
IN A′

)
∈ ZN×(N+M).

– L ∈ N is an upper bound of λM (Λ⊥(A)). The base samplings include DZ,L′r
and DZ,r,c with c ∈ 1

L′ · Z, where L′ ≈ L.

Comparison with the generic sampler. Table 5 shows the comparison be-
tween the ring-based sampler and the generic one. Note that in both the gene-
ric and ring cases, the parameter L = O(s′) and the minimal Gaussian width
smin = (1 + o(1))

√
e1(Σ). Thus we do not include them in Table 5.

Storage M

Ring, large gadget base ≈ N( 2n+1
2

log s′+ n
2

logN) O(Nl)

Generic, large gadget base ≈ N2(log s′ + 1
2

logN) O(N)

Ring, gadget base b = 2 ≈ N( 4n+3
4

log s′ + n logN) O(Nl log s′)

Generic, gadget base b = 2 ≈ N2(log s′ + logN) O(N log s′)

Table 5. Comparisons between the ring-based sampler and the generic ones.

As a conclusion, our ring-based integral decomposition reduces the required
memory by a factor of O(w) but increases the number of centered base samplings
(i.e. M) by O(logw). The smoothness condition and the quality of the output
Gaussian are asymptotically the same in two kinds of samplers.

Comparison with the sampler of [17]. Genise and Micciancio proposed
a ring-based perturbation sampler in [17]. To generate a perturbation vector
in Zw(2+log q), they first sample w log q integer Gaussians and then sample a
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Gaussian of covariance dI2 −Σ ∈ R2×2
2w . To minimize the storage, the sampler

only stores the matrix Σ and performs all algebraic computation on the fly.13

As shown in Section 5.4, our ring-based sampler can also reduce the procedure
to the sampling of DZ2w,

√
dI2−Σ in which n = 2. The storage comes from the

integral Gram root of
√
dI2 −Σ. We summarize the comparison in Table 6.

Storage Time

Genise-Micciancio sampler ≈ 6w log s′ Θ(w logw log q)

Our ring-based sampler ≈ w(5 log s′ + 2 logw) Θ(w logw log q)

Table 6. Comparisons between the Genise-Micciancio sampler and ours. We use large
gadget base in our sampler. We do not take into account the storage of the trapdoor
itself that is O(w log q log s′).

The Genise-Micciancio sampler and ours require asymptotically the same
memory. Particularly, if one regards the integral Gram root as a part of the
trapdoor, the increase is negligible compared with the storage of trapdoor itself.
As for running time, the costs of two samplers are dominated by the matrix
multiplication of the trapdoor T ∈ R2×log q

2w . Applying FFT or NTT techniques
yields the same complexity of Θ(w logw log q). Nevertheless, our sampler (The-
orem 3) just requires base samplings and integral polynomial multiplications.
This not only gets rid of FPA, but also makes the whole algorithm much simpler
and highly parallelizable.

As a conclusion, our ring-based sampler achieves the same storage and time
efficiency asymptotically as the state of the art [17] but in a simpler manner.
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