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Abstract. The need for structured and trusted common parameters is often cited as one of the major
drawbacks of pairing-based SNARKs. Although multiparty computation techniques can be used to
address this, the resulting parameters are circuit dependent and this costly process must be repeated
for every circuit. Recent proposals to switch to a weaker updatable model for parameter generation are
not yet sufficiently efficient. We propose a new model for updatability which generates the common
reference string in two phases, each of them updatable: in the first phase, parameters are generated for
a set of universal quadratic constraints and in the second phase specific circuit dependent parameters
which impose some affine constraints can be derived from them non-interactively. We propose a concrete
construction based on (but more efficient than) Pinocchio.
An additional contribution of the paper is to obtain a very efficient argument for verifiable computation
using the same design principles which is based on weaker assumptions. The communication is ≈ 4d
group elements and verifying a proof requires computing ≈ 4d pairings and O(n+ d) exponentiations,
where n is the input size and d the circuit depth. While the argument for the quadratic constraints is
based on standard falsifiable assumptions, the argument for the linear constraints is based on a very
ad-hoc assumption about certain properties of arguments of membership in linear spaces.

1 Introduction

Zero-Knowledge proofs, and in particular, non-interactive ones have played a central role in both the theory
and practice of cryptography. A long line of research [33,37,26,25,22,16,30] has led to efficient pairing-based
Succint Non-interactive ARguments of Knowledge or SNARKs. These arguments are succint, in fact, they
allow to prove that circuits of arbitrary size are satisfied with a constant-size proof. They are also extremely
efficient concretely (3 group elements in the best construction for arithmetic circuits [23]).

Zero-Knowledge SNARKs have been famously used to provide privacy of transactions in the cryptocur-
rency setting, where they are now deployed both in ZCash and Ethereum. Despite of significant research in
finding alternatives to zk-SNARKs in these settings (for example BulletProofs [9]), none of them can really
compete with the extremely cheap verification procedure of SNARKs which is a fundamental requirement
in this setting.

The use of SNARKs with cryptocurrencies has motivated a lot of research and optimizations in their
implementation and also in theoretical aspects (e.g. [40,4,5,6]). Despite all the improvements, some aspects
of current constructions of SNARKs are still unsatisfactory. Probably the most problematic unsolved issue
is their reliance on long trusted structured parameters. Although this can be solved with multiparty com-
putation techniques, as famously done in the ZCash ceremony [8], the fact that the parameters are circuit
dependent means that this costly process must be repeated for every circuit. To deal with this issue, re-
cent research [24] designs a SNARK in which the common reference string can be updated by any party
non-interactively in a verifiable way, resulting in a properly generated common reference string (where the
simulation trapdoor is unknown to all parties) if at least one party is honest. Further, the common reference
string is universal and can be used for arbitrary circuits. However, the original construction proposed in [24],
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as well as more recent follow-up work [36], are still not sufficiently practical. The main contribution of this
paper is to construct an efficiently updatable scheme for both arithmetic and boolean circuits, with very
little overhead in performance in all aspects and with similar security properties as the state-of-the-art.

Our second contribution improves the security guarantees provided by SNARKs. One of the important
motivations of SNARKs is their application to the problem of verifiable delegation of computation, in which
a resource constrained verifier asks the prover to do a costly computation and requires a proof that it is
done correctly. Although it is well known that succintness cannot be achieved under falsifiable assumptions
[17], such impossibility results do not apply in this setting, where the input of the circuit is public, and it
could be in principle possible to achieve very efficient constructions based on falsifiable assumptions. Using
the same basic design principle as for our updatable SNARK, we makes a significant step towards this
direction by giving a scheme which is quite efficient (≈ 4d source group elements for the proof and O(n+ d)
verification complexity, for d the depth of the circuit and n the size of the input) for arithmetic circuits. Our
solution is still not satisfactory as to rule out a certain class of attacks, it makes a (falsifiable) but ad-hoc
and circuit dependent assumption on some properties of QANIZK arguments of membership in linear spaces
[29,35,30,34,20,13].

We now discuss in more detail our contributions, as well as the comparison with previous work and our
techniques.

1.1 First Contribution: an Updatable and Universal zk-SNARK

Our Results. Arithmetic Circuit Satisfiability can be encoded as a system of quadratic and linear con-
straints. One the one hand, quadratic equations encode correct evaluation of the multiplication gates while
the linear constraints encode the linear relations of the output of multiplication gates at level i with the
input of gates at level i+ 1.

Quadratic Arithmetic Programs [16] are a particular way to encode circuit satisfiability following this
approach but in which the set of linear equations is empty because the consistency checks and linear relations
are absorbed into many quadratic equations. For instance, given a circuit φ : Z3

p → Zp such that the first
multiplication gate computes (2x1 + x2)x3 and the second gate multiplies the output of this gate by x1 + 3,
the system of constraints is:

(2c1 + c2)c3 = c4 c4(c1 + 3) = c5.

The quadratic equations are then proven simultaneously in constant-size by writing them as a polynomial
equation which is verified at a single point encoded in the common reference string. We refer to this as
polynomial aggregation technique. This way of encoding the circuit has the advantage that additive gates
are essentially “for free”.

Our approach instead is to use the encoding considered in [7], which is also the natural encoding if one
wants to prove linear and quadratic equations separately. Namely, if c1, c2, c3 are the inputs and ai, bi, ci,
i = 4, 5 are respectively the left, right and output wires of the multiplication gates, we can encode the circuit
as:

– aibi = ci, i = 4, 5 (quadratic constraints)
– a4 = 2c1 + c2, b4 = c3, a5 = c4, b5 = c1 + 3 (affine constraints).

The quadratic constraints can be proven in constant size with the same polynomial aggregation technique.
On the other hand, the affine constrains can be proven using a specially tailored proof system such as the
very efficient quasi-adaptive NIZK proof systems for membership in linear spaces [29,30].

The set of quadratic equations is independent of the circuit. On the other hand, the crs associated to the
linear constraints is circuit dependent, as the crs of the argument of membership in linear spaces depends on
the generating matrix of the space. Therefore, it makes sense to define crs generation as a two step process
in which first a general quadratic crs is defined, and then a specialized circuit dependent crs is derived.

This approach turns out to be quite practical. The “quadratic” universal crs can be trivially seen to be
updatable (it essentially includes only all powers of a secret value, i.e. all the monomials in the terminology
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of [24]). On the other hand, the “affine part” of the crs is a linear transformation of the generating matrix
of the linear space, and is easy to additively update.

An important point is that the argument of membership in linear spaces is used as an argument of
knowledge (in fact, the linear space in question is all of the space, and the statement is trivially true). It
is not hard to prove that in the generic group model these arguments have knowledge soundness, as it was
already proven in [13] for a specific choice of distribution of a linear space.

Our resulting argument which combines the proof of quadratic and linear constraints ends up being
similar to Pinocchio. However, the knowledge soundness of the linear subspace argument allows to extract
a witness from it and eliminate some terms which are redundant, resulting in a proof size of (5G1,G2) as
opposed to the original scheme in asymmetric groups (7G1,G2) [40,6].

Previous Work. Our arguments for arithmetic and boolean circuit satisfiability are a few elements above
the state-of-the-art. A detailed performance comparison is given in Table 1. The most efficient schemes in
terms of proof size are [23] for arithmetic circuits

Scheme
CRS size Runtime

Proof size Setup Ass.
Universal Circ. spc. Prover Verifier

[21] O(m2) - O(m2) 36P +mE 42 			 KOE
Pinocchio[6] - 8m+ 7n+ np 8m+ 7n− np 12P + npE 8 7 KOE
[23] - 4m+ n 5m+ n− np 3P + npE 3 7 GG
Bulletproofs[9] m/2 - 8m 4mE O(log(m)) 3 RO
[24] O(m2) O(m+ n− np) O(m+ n− np) 5P + npE 3 			 GG
Sonic[36]a 4d 12m 60m(18m) 13P (9P ) 20(7) 			 GG,RO

This work 2(m+ n) n+m+ 7 2n+ 6m+ 4 9P + npE 6 			 GG

Table 1. Comparison of our results with other SNARKS. ’Circ. spc.’ indicates the size of the circuit dependent crs
and ’Ass.’ the assumption used for proving security of the corresponding scheme. Sizes are given in #group elements
in both base groups and the prover’s runtime in number of exponentiations in any of the base groups. m stands
for #multiplication gates, n #inputs, np #public inputs. P is the cost of computing a pairing, E the cost of a
exponentiation. A mark 3 means that the crs can be fully adversarially chosen, 7 means that the crs must be chosen
by a trusted party, and 			 means that any party can update the crs. KOE stands for a “knowledge of exponent” type
of assumption, GG for generic group model, RO for random oracle model.

a
The numbers in parenthesis are only achieved for batched proofs assuming the availability of helpers which do part of the computation.

Given that Pinocchio was implemented and deployed, and our argument improves its performance, and
that updatability and universal crs seem great advantages in practice, there are reasons to argue that the
approach is practical and might compensate for the overhead w.r.t state-of-the-art.

Previous approaches to deal with the problem of generating the long structured parameters needed
for SNARK were using multiparty computation techniques [5]. Several authors have studied the effects on
security of relaxing the trust on parameter generation. Bellare et al. [3] give security definitions for subversion
resistant SNARKs, in which parameters are controlled by an adversary. They prove that subversion zero-
knowledge and subversion soundness cannot be achieved simultaneously. [1,15] study how to prove that
SNARKs are subversion zero-knowledge.

The notion of updatable common reference string was proposed by Groth et al. in [24]. Such a notion
relaxes the trust in the common parameter generation step by allowing each party to non-interactively
contribute a share of the final secret. They construct a scheme which is subvertible zero-knowledge and
updatable sound and has a universal crs. The size of the crs is quadratic in the (maximal) size of any circuit
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to be proven, although for efficiency, a specific circuit dependent linear crs can be derived incurring in an
additional cubic cost for each derivation.

In concurrent work independent of ours, Maller et al. [36] proposed a new updatable scheme. The starting
point (separating affine and quadratic constraints, inspired by [7]) is similar to ours, except that their
techniques are a combination of the interactive setting ([7,9]) and SNARKs. The resulting scheme is less
efficient than ours specially in terms of prover runtime and proof size. They also give a batched version,
i.e. the same statement is proved many times, in a stronger model where helpers are introduced — untrusted
parties which are willing to give out computation power to help with some part of the computation — and
the resulting scheme is slightly more efficient in terms of verification but is still less efficient in the other
parameters.

1.2 Second Contribution: Towards Efficient Verifiable Computation based on Falsifiable
Assumptions

Our Results. We construct an argument for proving that an arithmetic circuit φ : Znp → Zn′p is correctly
evaluated, of size (3d+2)G1 +(d+2)G2 group elements and verification requires 4d+6 parings and O(n+d)
exponentiations, where d is the depth of the circuit and n the size of the input. For boolean circuits, the
argument can be made zero-knowledge and the resulting proof has size O((n− npub) + d), where npub is the
number of public inputs, while verification remains the same.

Proving that a circuit is correctly evaluated under falsifiable assumptions is easy if we eliminate the
requirement that the proof size and the verifier complexity are sublinear in the circuit size. On the other
hand, the tautological assumption “the scheme is sound” is falsifiable, as one can efficiently check if an
adversary breaks soundness by verifying if the computation is incorrect while the proof is accepted. In
particular, one can use a SNARK to prove correctness of computation and make the (falsifiable) assumption
that it is sound.

Obviously, this is not so interesting from a theoretical point of view. The challenge is to reduce the proof
that the scheme is sound into falsifiable assumptions as standard as possible. We achieve this objective only
partially: we reduce soundness to 3 types of attacks, an attack against a certain q-assumption in bilinear
groups, a kernel MDDH Assumption [38] and finally an attack against an ad-hoc and circuit dependent
(but falsifiable) assumption which relates to certain properties of the QANIZK argument for membership in
linear spaces. To give more confidence in the latter, we show that it is generically equivalent to the discrete
logarithm. We think it should be possible to eliminate this assumption in future work.

A first approach to prove correct computation under falsifiable assumptions is simply to encode circuit
satisfiability as a set of quadratic and affine constraints as described before. Leaving affine constraints aside,
if one aims for sublinear proofs some kind of aggregation mechanism for quadratic equations needs to be
used. We are only aware of one work with such results (in the crs model), [20] and it requires perfectly
binding commitments to the witness (a valid assignment to the equations). In particular, this means the
resulting proof would be linear in the circuit size.

Our solution is to divide the set of constraints into d sets of quadratic and affine constraints, one per
multiplicative level of the circuit. Namely, if φ : Znp → Zn′p is an arithmetic circuit of depth d, correct
evaluation at level i is expressed by the following system:

– (quadratic constraints) ci,j = ai,jbi,j for j = 1, . . . , ni.
– (affine constraints) ai,j , bi,j are affine combinations of output wires of previous levels.

For quadratic constraints, our technical innovation is to eliminate the need for binding commitments.
More specifically, given adversarially chosen commitments (the commitments need to be shrinking but not
hiding, as the argument does not need to be zk and it is important that they are deterministic) Li (resp. Ri,
Oi) to all the left (resp. right, output) wires at level i, we give an argument with constant-size verification
which proves:

If (ai, bi, Li, Ri, Oi) is such that Li, Ri open to ai, bi then Oi opens to ci = ai ◦ bi.
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We think of this building block as a “quadratic knowledge transfer argument”, as it shows that if an
adversary knows an opening for left and right wires, it also knows an opening of the output wires at next
level. Formally, this property is formalized as a promise problem because the verifier of the argument never
checks that Li, Ri open to ai, bi (otherwise the verification of the argument would be linear in the witness).
Using a quadratic arithmetic program encoding of the quadratic constraints we construct a proof which can
be proven secure under a certain q-assumption.

With this building block, the problem of constructing the argument is reduced to arguing that left
and right wires are correctly assigned, i.e. proving that affine constraints are satisfied. We build a “linear
knowledge transfer” argument with constant verification time showing that:

Given an opening of the commitments to the output wires O1, . . . , Oi which is consistent with L1, . . . , Li
and R1, . . . , Ri then it is also consistent with Li+1 and Ri+1.

Correct evaluation of the circuit can be easily proven by combining these two building blocks. Since
the input of the circuit is public, a consistent assignment O1, L1, R1, . . . , Od, Ld, Rd of the circuit wires is
known by the reduction in the proof of soundness. Any adversary breaking soundness must output another
assignment which disagrees with it starting from some level i. If the adversary may output as part of its
proof L1, . . . , Li, R1, . . . , Ri, O1, . . . , Oi−1, O

∗
i , with O∗i 6= Oi. Then the reduction knows openings of Li, Ri

and it can break the soundness of the quadratic knowledge transfer argument. On the other hand, if it sends
L1, . . . , L

∗
i , R1, . . . , R

∗
i , O1, . . . , Oi−1, where L∗i 6= Li or R∗i 6= Ri, then it knows valid openings of Oj until

level i− 1 and it can break the soundness of the “linear knowledge transfer”.

To construct the latter, we use again QANIZK arguments of membership in linear spaces. Although
soundness of these arguments can be proven under standard assumptions, it turns out that this is not
sufficient to rule out a certain kind of attack. The issue arises when one tries to prove that two shrinking
commitments open to the same value. Let A,B be the commitment keys. If x = Aw and y = Bw are
commitments to the same value, obviously (

x
y

)
∈ Im

(
A
B

)
. (1)

Let π as a QANIZK proof for (1). In our linear knowledge transfer argument, π should convince the verifier
that:

“If x = Aw for some known w, and π verifies then y = Bw.”

The problem is that for any w′ such that x = Aw = Aw′, an adversary can set y = Bw′ and compute
π honestly with w′. In other words, the adversary could be “switching witnesses” at some point when we
are trying to argue that it must always know an opening which is consistent with the input. Our reduction
shows that, under fairly standard assumptions in bilinear groups, this is the only possible successful attack.

On the other hand, the “witness switching attack” is easy to rule out, as it requires the attacker to
know two openings for x but this breaks the binding property of the first commitment. However, because
the commitment is shrinking we do not know how to extract w′ to get a reduction to the binding property.
We show that such an attack is equivalent to proving with the QANIZK argument for linear spaces that
vectors of a certain form are in the space. We prove that generically this is equivalent to breaking the binding
property, (or computing discrete logarithms).

In all our subarguments the verification equations are pairing product equations, so they can be made
zk with Groth-Sahai proofs [26]. However, our proof uses in a fundamental way that the input of the
verification is public. Therefore, it only works when the commitment to the inputs is extractable. The
resulting scheme is not practical as it requires bit-by-bit commitments. However, it can be easily extended
to boolean circuits with a proof size of O(n− npub + d), which is an interesting improvement over state-of-
the-art, as all constructions in the crs model under falsifiable assumptions are linear in the circuit size (see
[25] and concrete improvements thereof, mainly [20]).
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Previous Work. As explained in [31], previous work on verifiable delegation on computation can be roughly
classified into a) designated verifier schemes [32], b) schemes under very strong assumptions: “knowledge of
exponent” type (e.g. [16,40]), generic or algebraic group model (e.g.[23,36]), assumptions related to obfusca-
tion, or homomorphic encryption [39] or c) interactive arguments [19].

Kalai et al. [31], based on [19], constructed the first publicly verifiable non-interactive delegation scheme
for boolean circuits from a simple constant size assumption in bilinear groups. Their crs is circuit de-
pendent but they made it universal using a crs for the a universal circuit. 3. The verifier’s runtime is
O((n+d)polylog(s)), and the communication complexity is O(d ·polylog(s)), where s is the size of the circuit,
and in most other parameters it is far from being efficient (crs size, prover complexity).

2 Preliminaries

Given some distribution D we denote by x← D the process of sampling x according to D. For a finite set S,
x← S denote an element sampled from the uniform distribution over S. For a probabilistic polynomial time
turing machine (PPT) A, we denote by output ← A(input) to the process of sampling enough randomness

r ∈ {0, 1}∗ for running A(input; r) and then assign the output to output. We sometimes write output
r←

A(input) to make explicit reference of r, the random coins used by A.

Bilinear Groups. Let G be some probabilistic polynomial time algorithm which on input 1λ, where λ
is the security parameter, returns the group key which is the description of an asymmetric bilinear group
gk := (p,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of prime order p, the elements P1,P2 are
generators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable, non-degenerate bilinear
map, and there is no efficiently computable isomorphism between G1 and G2.

Elements in Gγ , are denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T} and PT := e(P1,P2). For
simplicity, we often write [a]1,2 for the pair [a]1, [a]2. The pairing operation will be written as a product ·,
that is [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in boldface. Given a
matrix T = (ti,j), [T]s is the natural embedding of T in Gs, that is, the matrix whose (i, j)th entry is ti,jPs.
We denote by |Gs| the bit-size of the elements of Gs.

In refers to the identity matrix in Zn×np , 0m×n and 1m×n the all-zero and all-one matrices in Zm×np ,
respectively, and eni the ith element of the canonical basis of Znp (simply I, 0, 1, and ei, respectively, if n
and m are clear from the context).

Lagrange Interpolation. Given an arbitrary set R = {r1, . . . , rm} ⊂ Zp, we define the jth Lagrange
interpolation polynomial as:

λj(X) :=
∏
6̀=j

(X − r`)
(rj − r`)

.

We define also t(X) =
∏n
j=1(X − rj). It is a well known fact that given a set of values xj , j = 1, . . . ,m,

p(X) =
∑m
j=1 xjλj(X) is the unique polynomial of degree at most m− 1 such that p(rj) = xj .

Lagrangian Pedersen Commitments. Given a set of points R of cardinal m, the Lagrangian Pedersen
commitment in Gγ for some γ ∈ {1, 2} to a vector x ∈ Zmp is defined as

Comck(x; r) =

m∑
i=1

xi[λi(s)]γ + r[t(s)]γ ,

3 There’s the technicality that a verifier running in time sub-linear in the circuit size can not even read the circuit,
which is part of the input of the universal circuit. For this reason, they restricted the circuits to be to log space
uniform boolean cicuits
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where r ← Zp is the randomness of the commitment and the commitment key is ck = ([λ1(s)]γ , . . . ,
[λm(s)]γ , [t(s)]γ), for s ← Zp. The commitments are perfectly hiding and computationally binding un-
der the discrete logarithm assumption. In some contexts we will not need the commitments to be hid-
ing and we will take r = 0 and also eliminate [t(s)]γ from ck. Note that Comck(x; r) is the polynomial
P (X) =

∑m
i=1 xiλi(X) + rt(X) evaluated in [s]γ , and we sometimes refer to it as [P (s)]γ .

In Sect. 6 we use these commitments without randomness, that is Comck(·, 0). Consequently, P (X) =∑m
i=1 xiλi(X).

3 Security Definitions for SNARKs

Let R be a relation generator which on input 1λ outputs a family of polynomial time decidable relations
RΦ = {Rφ}, Rφ = {(φ, u,w)}, with associated language Lφ = {(φ, u) : ∃w (φ, u,w) ∈ Rφ}. For simplicity
of notation, we assume that RΦ implicitly or explicitly describes λ and Rφ implicitly or explicitly describes
RΦ.

For arithmetic circuits, R outputs RΦ = {Rφ : φ ∈ Φ} and a bilinear group gk, where

– for fixed values p,N , Φ is the set of all arithmetic circuits defined over Zp and such that the total number
of inputs plus multiplication gates is at most N ,

– Rφ = {(φ, (xpub,xsec),y) : φ(xpub,xsec) = y}, where we distinguish between public inputs xpub and
secret inputs xsec,

– gk is some bilinear group of order p.

The circuit φ computes a function Znp → Zn′p for some n, n′ ∈ N, npub + nsec = n. We define the language
Lφ = {(φ,xpub,y) : ∃xsec, (φ, (xpub,xsec),y) ∈ Rφ}. Without loss of generality, we assume that all outputs of
φ are the output of some multiplication gate. The statement is u = (φ,xpub,y) and the witness is w = (xsec)
or any information which can be efficiently computed from (u,w). For instance, we will often use as witness
(a, b, c) where a (resp. b, resp. c) is a valid assignment to all left (resp. right, resp. input and output of
multiplication gates) wires.

As discussed in [23], relations in practice arise in many ways and there are different possibilities to
generate them. Therefore we do not assume that the bilinear group (which determines p) is generated before
the family of circuits is chosen or the other way around, but we leave this decision to the specification of the
relation generator R.

Below we give the following syntactical definition for our argument system. It is inspired by the definitions
of Groth et al. [24], but with significant differences. The argument of Groth et al. generates a universal com-
mon reference string which is updatable. It allows to derive common reference strings for specific statements,
but this is just for efficiency purposes (in the actual scheme, the global crs is quadratic, while the specific
will be linear). That is, one could just use the global crs to create and verify proofs. In our case, there is
a global, universal crs which is incomplete, and to prove statements about circuits one needs to derive a
specific crs. Furthermore, both the global and the specific circuit dependent crs are updatable.

We note that our model of soundness assumes that the quadratic crs is updated before the linear crs is
created and updated. In particular, we assume that a single query (final Σ) and (final σ) is done. We could
extend this model to allow more queries of this form, but we need to make the restriction that for each
updated quadratic crs, the linear crs is generated from scratch. For the scheme to be sound, there needs to
be one honest update in the quadratic part and one in the linear part.

For simplicity of notation, we assume that the global crs is ΣΦ and the specialized crs σφ include a
description of the relations RΦ, Rφ, respectively.

Definition 1. An updatable non-interactive argument for a relation RΦ is a tuple P = (Setup,Setup.Upd,
Setup.Vrfy,Drv.Setup,Drv.Upd,Drv.Vrfy,Prove,Vrfy) such that:

– Setup(RΦ) is a probabilistic algorithm which produces a common reference string ΣΦ together with a proof
of correctness ρΦ,0.
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– Setup.Upd(ΣΦ, {ρΦ,i}hi=0) is a probabilistic algorithm which on input a relation RΦ, a common reference
string ΣΦ and proofs of correctness {ρΦ,i}hi=0 derives an updated common reference string Σ′Φ together
with a new proof ρΦ,h+1 and outputs (Σ′Φ, {ρΦ,i}

h+1
i=0 ).

– Setup.Vrfy(ΣΦ) is a deterministic algorithm which on input ΣΦ outputs a bit b ∈ {0, 1}.
– Drv.Setup(ΣΦ, Rφ, {ρΦ,i}hi=0) is a probabilistic algorithm which on input a relation Rφ ∈ RΦ, a common

reference string ΣΦ with a proof of correctness, outputs a common reference string σφ for Rφ together
with a proof of correctness ρφ,0.

– Drv.Upd(σφ, {ρφ,i}hi=0) is a probabilistic algorithm which on input a common reference string σφ and
proofs of correctness {ρφ,i}hi=0 derives an updated common reference string σ′φ together with a new proof

ρφ,h+1 and outputs (σ′φ, {ρφ,i}
h+1
i=0 ).

– Drv.Vrfy(σφ, {ρφ,i}hi=0) is a deterministic algorithm which on input a common reference string σφ and a
sequence of proofs {ρφ,i}hi=0 outputs b ∈ {0, 1}.

– Prove(σφ, φ, u, w) is a probabilistic algorithm which on input σφ, (φ, u,w) ∈ Rφ outputs a proof π.
– Vrfy(σφ, (φ, u), π) is a deterministic algorithm which on input σφ, (φ, u) outputs b ∈ {0, 1}.

We consider the following definitions for our argument. They are inspired by [24,36]. We define perfect
completeness in the usual way. In Subversion Zero-Knowledge an adversary is allowed to request either real
or simulated proofs for many specialized crs with associated arbitrary updates. Given an extractor which
extracts the simulation trapdoor for all the queries, even an unbounded adversary should be unable to
distinguish real from simulated proofs.

Definition 2. A non-interactive argument for a relation R is

– Perfectly complete if for all PPT algorithms A the advantage |1− Pr[COMPA(RΦ)]| is negligible in λ.
– P is S-Zero-Knowledge (Subvertible Zero-Knowledge) if for all PPT algorithms A the probability |Pr[

S-ZKA(RΦ)]− 1/2| is negligible in λ.
– P is U-knowledge sound (updatable knowledge sound) if for all PPT algorithms A there exists a PPT

extractor χA such that the probability Pr[U-KSNDA,χA(RΦ)] is negligible in λ.

Definition 3. An updatable argument is perfectly correct if the probability of each of the following events is
1.

1. Setup.Vrfy(ΣΦ, ρΦ,0) = 1 conditioned on (ΣΦ, ρΦ,0)← Setup(RΦ).
2. Setup.Vrfy(Σ′Φ, {ρΦ,i}

h+1
i=0 ) = 1 conditioned on (Σ′Φ, {ρΦ,i}

h+1
i=0 )← Setup.Upd(ΣΦ, {ρΦ,i}hi=0) and Setup.Vrfy(

ΣΦ, {ρΦ,i}hi=0) = 1
3. Drv.Vrfy(σφ, ρφ,0) = 1 conditioned on (σφ, ρφ,0)← Drv.Setup(ΣΦ, Rφ, {ρΦ,i}hi=0) and Setup.Vrfy(ΣΦ) = 1.
4. Drv.Vrfy(σ′φ, {ρφ,i}

h+1
i=0 ) = 1 conditioned on (σ′φ, {ρφ,i}

h+1
i=0 ) ← Drv.Upd(σφ, {ρφ,i}hi=0) and Drv.Vrfy(σφ,

{ρφ,i}hi=0) = 1

3.1 Cryptographic Assumptions

Definition 4. Let k ∈ N. We call Dk a matrix distribution if it outputs (in PPT time, with overwhelming
probability) matrices in Zk+1×k

p .

The Kernel Diffie-Hellman Assumption [38] says one cannot find a non-zero vector in one of the groups
which is in the co-kernel of A. We use the split assumption (or Dk-SKerMDH) which says one cannot find
a pair of vectors in Gk+1

1 ×Gk+1
2 such that the difference of the vector of their discrete logarithms is in the

co-kernel of A.

Assumption 1 (Split Kernel Diffie-Hellman Assumption [20]) For all non-uniform PPT adversaries
A:

Pr
[
[r]1, [s]2 ← A(gk, [A]1,2) : r 6= s ∧ x>A = s>A

]
= negl(λ),

where the probability is taken over gk ← G(1λ), A← Dk and the coin tosses of adversary A.
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MAIN COMPA{RΦ}
(σφ, (ρφ,i)

h
i=1, (φ, u,w))← A(RΦ)

b← Drv.Vrfy(σφ, (ρφ,i)
h
i=1)

If b = 0 or (φ, u,w) /∈ Rφ return 1
π ← Prove(σφ, (φ, u,w))
Return Verify(σφ, (φ, u))

MAIN S-ZKA,χA(RΦ)

b← {0, 1}
r ← {0, 1}A.rl(λ)
st← A(RΦ; r)
{(σφj , τφj ) : Rφj ∈ RΦ}

q
j=1 ← χA(RΦ; r)

b′ ← AOpf (st)
return b′ = b

Opf(σφj , {ρφj ,i}hi=0, u, w)

if Drv.Vrfy(σφj , (ρφj ,i)
h
i=1) = 0

return ⊥
if b = 0 return SimProve(σφ, (φ, u), τφj )
else return Prove(σφ, (φ, u,w))

MAIN U-KSNDA,χA(RΦ)

Qρ,Φ, Qφ, Qρ,φ ←⊥;

(φ, u, π)
r← AOupd(RΦ)

w ← χA(σφ, r)
return

(
Vrfy(σφ, u, φ, π)∧

(φ, u,w) /∈ Rφ ∧ (σφ, φ) ∈ QΦ
)

Oupd(intent, φ, σφ,h, {ρφ,i}hi=1)

if intent = setup Σ
if Qρ,Φ 6=⊥ return ⊥
else (ΣΦ,0, ρΦ,0)← Setup(RΦ)

Qρ,Φ ← Qρ,Φ ∪ {ρΦ,0}

if intent = update Σ
if Setup.Vrfy(ΣΦ,h, {ρΦ,i}hi=0) = 0
return ⊥
else (ΣΦ,h+1, {ρΦ,i}h+1

i=0 )
← Setup.Upd(ΣΦ, {ρΦ,i}hi=0)
Qρ,Φ ← Qρ,Φ ∪ {ρΦ,h+1}

if intent = final Σ

if
(

Setup.Vrfy(ΣΦ,h, {ρΦ,i}hi=0) = 0

∨({ρΦ,i}hi=0 ∩Qρ,Φ = ∅)
)

return ⊥
else ΣΦ = ΣΦ,h

if intent = setup σ
if φ ∈ Qφ ∨Qρ,Φ = ∅

return ⊥
else

(σφ,0, ρφ,0)← Drv.Setup(ΣΦ, Rφ, {ρΦ,i}hi=0)
Qφ ← Qφ ∪ {φ}
Qρ,φ ← Qρ,φ ∪ {(φ, ρφ,0)}

if intent = update σ
if 0 = Drv.Vrfy(φ, σφ,h, {ρφ,i}hi=0)

return ⊥
else

(σφ,h+1, {ρφ,i}h+1
i=0 )←

Drv.Upd(σφ,h, {ρφ,i}hi=0)
Qρ,φ ← Qρ,φ ∪ {(φ, ρφ,h+1)}

if intent = final σ

if
(

Drv.Vrfy(φ, σφ,h, {ρφ,i}hi=0) = 0

∨ {(φ, ρφ,i)}hi=0 ∩Qρ,φ
)

= ∅ return ⊥
else σφ ← σφ,h

Fig. 1. Security Games.
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This assumption is generically hard for all distributions for which Dk-KerMDHγ is hard, whenever k > 2.

For our construction based on falsifiable assumptions, we introduce an assumption which is similar to
the q-SFrac Assumption considered in [18], but in the source group.

Assumption 2 ((R, q)-RSDH Assumption) Let R be an arbitrary set of integers. The (R, q-Rational
Strong Diffie-Hellman Assumption holds in G1 if the following probability is negligible in λ:

Pr

[
gk ← G(1λ);

([z]1, [w]1)← A(gk,
{

[si]1
}q−1
i=1

,
{

[si]2
}q
i=1

);

∣∣∣∣ e([z]1, [1]2) = e([w]1, [t(s)]2)
z 6= 0

]
,

where t(s) =
∏
r∈R(s − r), and the probability is taken over gk ← G(1λ), s ← Zp and the coin tosses of

adversary A.

It is important to note that it is possible to check if an adversary has succeeded in breaking the assumption,

since given
{

[si]1
}q−1
i=1

,
{

[si]2
}

the value [t(s)]2 can be constructed as a linear combination of {[si]2}qi=1 given
R.

The intuition why the assumption is generically hard is as follows. Since [z]1, [w]1 are given in group G1,
the adversary must construct them as a linear combinations of all elements it has received in G1, which are
([1]1, [s]1, . . . , [s

q−1]1). On the other hand, the adversary can only win if z/t(s) = w, but the adversary can
only find a non-trivial solution generically if z is constructed as a (non-zero) multiple of t(X) =

∏
r∈R(X−r)

evaluated at s. But this is not possible because in G1 it only receives powers of s of degree at most q − 1
and T is of degree q.

Finally, we will be using the following knowledge assumption.

Assumption 3 (q(λ)-PKE) The q(λ)-power knowledge of exponent assumption holds for gk ← G(1λ) if
for all A there exists a non-uniform probabilistic polynomial-time extractor χA such that:

Pr

[
(([c]1, [ĉ]2); a0, . . . , aq)

← (A||χA)(gk, {[si]1,2}qi=0)

∣∣∣∣ e([c]1, [1]2) = e([1]1, [ĉ]2);
c 6=

∑q
i=0 ais

i;

]
= negl(λ).

The following is a special case of the monomial computational assumption of [24], which is introduced for
the proof of updatability.

Assumption 4 (q(λ)-MC,[24]) The q(λ)-univariate monomial computational assumption holds for gk ←
G(1λ) for a = {ai(X)}nai=1 and b = {bi(X)}nbi=1, two sets of n variate polynomials of degree at most m, with
m,n, na, nb ≤ q if for all PPT A:

Pr

[
([A]1,2, a(X))← A(gk, {[ai(s)]1}nai=1, {[bj(s)]2}

nb
i=1)

∣∣ A = a(s);
a(X) /∈ span({ai(X)}nai=1)

]
= negl(λ).

The following assumption is related to the monomial knowledge of exponent assumption of [24].

Assumption 5 (q(λ)-BPKE) The q(λ)-bivariate power knowledge of exponent assumption holds for gk ←
G(1λ) if for all A there exists a non-uniform probabilistic polynomial-time extractor χA such that:

Pr

 (([b]1, [b̂]2, [c]2, [ĉ]2);ab,0, . . . ,ab,q,ab,q+1,ac)
← (A||χA)(gk, {[si]1,2}qi=0, [ω]1,2)

∣∣∣∣
e([b]1, [1]2) = e([1]1, [b̂]2);
e([1]1, [c]2) = e([ω]1, [ĉ]2);
b 6=

∑q
i=0 ab,is

i + ab,q+1ω;
c 6= acω;

 = negl(λ).
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4 Arithmetic Circuits

Arithmetic circuits are acyclic directed graphs where the edges are called wires and the vertices are called
gates. Gates with in-degree 0 are labeled by variables Xi, i = 1, . . . , n or with a constant field element, the
rest of the gates are either labeled with × and are referred to as multiplication gates or with + and are
called addition gates. In this work we consider only fan-in 2 multiplication gates and the circuit is defined
over a field Zp, where p is the order of some cryptographically useful bilinear group. Each circuit computes

a function φ : Znp → Zn′p .
Let G be the set of multiplicative gates of the circuit excluding multiplication-by-constant gates. We

denote by m the cardinal of this set. For simplicity and without loss of generality, we may assume all outputs
of the circuit to be the output of some multiplication gate.

We encode circuit satisfiability as a set of equations in n + 3m variables, where variables are assigned
to the left, right and output wires of each multiplication gate at level i, i > 1 and to the input wires. This
encoding is standard and follows closely [7].

Lemma 1. Let φ : Znp → Zn′p be a circuit with m multiplicative gates (excluding multiplication by constant
gates). For i = n+ 1, . . . , n+m, j = 1, . . . , n+m, there exist

a) variables Ai, Bi, Cj and
b) constants fi, gi, fi,j , gi,j ∈ Zp

such that, for every (x1, . . . , xn) ∈ Znp , if we set Ck = xk, for all k = 1, . . . , n, then C(x1, . . . , xn) =
(y1, . . . , yn′) and Ai, Bi, Ci are evaluated respectively to the left, the right and the output wires of the ith
gate, if and only if the following equations are satisfied:

1. (Quadratic constraints) Ci = AiBi,
2. (Affine Constraints) Ai = fi +

∑n+m
j=1 fi,jCj and Bi = gi +

∑n+m
j=1 gi,jCj .

3. (Correct Output) Cn+m−n′+k = yk, for all k = 1, . . . , n′.

Given an arithmetic circuit φ : Znp → Zn′p , we define the witness for correct evaluation of C(x) = y as
a tuple (a, b, c) ∈ Zmp × Zmp × Zn+mp , which is an assignment to Ai, Bi and Cj that satisfies the equations
described in Lemma 1.

What is different of our encoding from writing circuit satisfiability as a “Quadratic Arithmetic Program”
or QAP [16] is that we separate the set of linear and quadratic constraints more clearly by adding auxiliary
variables which represent right and left wires. In particular, what is particularly interesting of this encoding is
that the set of quadratic constraints does not depend on the circuit but just on the number of multiplication
gates. By forcing some values to be 0, this will allow us to define a common reference string to prove correct
evaluation of m̂ multiplication gates, for any m̂ < m. To prove the quadratic constraints in a succint matter,
we resort to QAPs, which we view as a technique for aggregation of quadratic equations.

Lemma 2. (QAP for the Hadamard Product) Let (a, b, c) ∈ (Zmp )3, m ∈ N. Let R = {r1, . . . , rm} ⊂ Zp be

a set of elements of Zp and let λi(X) =
∏
j 6=i

X − rj
ri − rj

. Define

p(X) =

(
m∑
i=1

aiλi(X)

)(
m∑
i=1

biλi(X)

)
−

(
m∑
i=1

ciλi(X)

)
.

Then, c = a ◦ b if and only if p(X) = h(X)t(X), where t(X) =
∏
r∈R(X − r) and h(X) ∈ Zp[X] is a

polynomial of degree at most m− 2.

Proof. By definition, p(ri) = aibi − ci, so p(X) is divisible by t(X) if and only if aibi − ci = 0 for all
i = 1, . . . ,m.
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Lemma 3. (Polynomial characterization of affine constraints) Let a = (an+1, . . . , an+m), b = (bn+1, . . . , bn+m)
and c = (c1, . . . , cn+m) be three sets of vectors of Zp. Then,

ai = fi +

n+m∑
j=1

fi,jcj and bi = gi +

n+m∑
j=1

gi,jcj ,

for some constants fi, gi, fi,j , gi,j ∈ Zp if and only if there exist two sets of polynomials

V = {vi(X)}i=0,...,n+m,W = {wi(X)}i=0,...,n+m

of degree at most m− 1, such that

i=n+m∑
i=n+1

aiλi(X) = v0(X) +

n+m∑
i=1

civi(X) and

i=n+m∑
i=n+1

biλi(X) = w0(X) +

n+m∑
i=1

ciwi(X).

The proof is obvious and follows from evaluating at the points of R.

4.1 Circuit Slicing into Different Levels

In Sect. 6, we will need to partition the set G of multiplicative gates of the circuit into different levels. More
precisely, we define {Gi}d

′

i=1, where Gi, for i = 1, . . . , d′, is the set of gates G ∈ G such that the maximum
of gates in G evaluated in any path from the input of the circuit to an input of G is i − 1. The minimal
such d′ for which the partition exists is the multiplicative depth of the circuit, which we always denote by d.
Further, we define G0 to be the set of n0 variable inputs. If G ∈ Gi, we say that G has multiplicative depth
i. Let ni be the cardinal of Gi. With this notation, a circuit computes a function φ : Zn0

p → Zndp , i.e. n = n0,

n′ = nd and the number of multiplication gates is m =
∑d
i=1 ni (recall that we may assume all outputs to

be the output of some multiplication gate.)
We now consider an encoding circuit satisfiability where the variables are divided according to their

multiplicative depth. For each gate in Gi, i ∈ {1, . . . , d} the circuit is correctly evaluated if the output of the
gate is the product of two multivariate polynomials of degree 1 where the variables are outputs of gates of
less multiplicative depth, that is the output of gates in Gj , for some j, 0 ≥ j ≥ i−1. For clarity, we formalize
this in the following lemma.

Lemma 4. Let φ : Zn0
p → Zndp , be a circuit of multiplicative depth d and with m gates. For i ∈ {1, . . . , d},

define ni as the number multiplication gates at level i. There exist

a) variables Ci,j, i = 0, . . . , d, j = 1, . . . , ni,
b) variables Ai,j, Bi,j, i = 1, . . . , d, j = 1, . . . , ni,
b) constants fi,j , gi,j , fi,j,k,`, gi,j,k,` ∈ Zp, i = 1, . . . , d, k = 0, . . . , i− 1, j = 1, . . . , ni, ` = 1, . . . , nk

such that, for every (x1, . . . , xn0) ∈ Zn0
p , if we set C0,j = xj, for all j = 1, . . . , n0, then C(x1, . . . , xn0) =

(y1, . . . , ynd) and for each i ∈ {1, . . . , d}, Ai,j , Bi,j , Ci,j are evaluated respectively to the left, the right and
the output wires of the jth gate at level i, if and only if the following equations are satisfied:

1. (Quadratic Constraints). For each i = 1, . . . , d, if j = 1, . . . , ni: Ci,j = Ai,jBi,j .

2. (Affine Constraints) Ai,j = fi,j+
∑i−1
k=0

∑nk
`=1 fi,j,k,`Ck,` and Bi,j = gi,j+

∑i−1
k=0

∑nk
`=1 gi,j,k,`Ck,`.

3. (Correct Output) Cd,j = yj, j = 1, . . . , nd.

Given an arithmetic circuit φ : Zn0
p → Zndp , we can define the witness for correct evaluation of φ(x) = y

as a tuple (a, b, c), where a = (a1, . . . ,ad), b = (b1, . . . , bd), c = (c0, . . . , cd), si = (si1, . . . , sini) for any
s ∈ {a, b, c}. The tuple should be an an assignment to Ai,j , Bi,j and Ci,j which satisfies the equations
described in Lemma 4.
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Our approach will be to apply Lemma 2 and Lemma 3 separately to each of the circuits levels. That is,
for any fixed i we will aggregate all quadratic equations Cij = AijBij into a divisibility relation, while the
linear constraints will translate into two polynomial identities.

We observe that affine constraints can be written in terms of families of polynomials V = {vik`},
W = {wik`} such that

∑ni
j=1 aijλj(X) = vi0(X) +

∑i−1
k=0

∑nk
`=1 cklvik`(X) and

∑ni
j=1 bijλj(X) = wi0(X) +∑i−1

k=0

∑nk
`=1 cklwik`(X).

5 A New NIZK Argument in the Generic Group Model

This section describes a new SNARK for proving arithmetic circuit satisfiability. The resulting proof size is
(5, 1) elements. For a comparison, state-of-the art in asymmetric bilinear groups (Groth [23]) is (2, 1), and
Pinocchio [40,6] is (7, 1). This seems like a very acceptable tradeoff, as our scheme has several nice features:
it is fully updatable, it can be specialized to any circuit (of a maximum size), has a linear crs and the cost
of specializing the crs for every circuit or verifying its correctness is linear in the circuit size.

We omit some improvements which are described in Sect. 5.3. Among them, we think it is particularly
interesting to observe that in fact the structured part of the crs needs to be only proportional to the number
of multiplication gates plus secret inputs, and not to the total number of circuit wires.

Recall from Sect. 3 that RΦ is a family of relations which specifies some maximal bound N of inputs plus
multiplication gates and some bilinear group gk of order p.

The simulation trapdoor for our scheme are two values s,k, the first one is the secret associated to the
crs for proving the quadratic, universal constraints and k the secret associated to proving the affine and
circuit dependent constraints. The final secret after a sequence of hΦ updates for the quadratic part (resp. h
updates for the linear part) is simply the multiplication (resp. the addition) of all the updates. That is, each

update for the quadratic part contributes to the final trapdoor ξi ∈ Z∗p and the final secret is shΦ :=
∏hΦ
i=0 ξi.

Each update for the linear part contributes some γi ∈ Z4
p and kh =

∑h
i=0 γi. Multiplicative updates can be

handled as in [24]. However, for the linear update, where the updates are additive, we add to the proof of
correctness another element ψ which is updated multiplicatively in order to ensure that the contribution to
the final value kh can be extracted from any correct update. The party running the update algorithm must
compute certain values involving the product of kh and ψh, which generically it can only do when it has
knowledge of its contribution to γh. The element ψ is updated multiplicatively and for this element it holds
that ψh :=

∏h
i=0 αi for some αi which is the update trapdoor.

Whenever it is clear from the context that h is the index of the latest update, we simply write s,k, ψ for
sh,kh, ψh, respectively.

Setup(RΦ): This algorithm samples s← Z∗p and publishes

ΣΦ =
(
gk, {[λi(s)]1,2}Ni=1, {[si]1,2}Ni=1, [t(s)]1,2

)
,

where λi(X) are the Lagrangian polynomials associated to some set R = {r1, . . . , rN} ⊂ Zp. The
simulation trapdoor is τΣ = s. It also outputs a proof of correctness ρΦ,0 := {[ξ0]1,2 = [s]1,2, [s0]2 = [s]2}
with associated update trapdoor τupd,Φ = ξ0.

Setup.Upd(ΣΦ,h, {ρΦ,i}hi=0): On input ΣΦ,h =
(
gk, {[λi(sh)]1,2}Ni=1, {[sih]1,2}Ni=1, [t(sh)]1,2

)
and {ρΦ,i}hi=0 =

{[ξi]1, [si]2}hi=1, pick ξh+1 ← Z∗p and define sh+1 := ξh+1sh, ρΦ,h+1 := ([ξh+1]1,2, [sh+1]2). Define:

ΣΦ,h+1 =
(
gk, {[λi(sh+1)]1,2}Ni=1, {[sih+1]1,2}Ni=1, [t(sh+1)]1,2

)
,

which can be computed by writing all its terms as polynomials in sh (whose coefficients depend on R
and ξh+1) and by using the powers of sh included in ΣΦ,h. Output (ΣΦ,h+1, {ρΦ,i}h+1

i=0 ) and the update
trapdoor is τupd,Φ = ξh+1.

Setup.Vrfy(ΣΦ,h, {ρΦ,i}hi=0): On input ΣΦ,h =
(
gk, {[λi,1]1, [λi,2]2}Ni=1, {[sh,i,1]1, [sh,i,2]2}Ni=1, [t1]1, [t2]2

)
and

{ρΦ,i}hi=0 = {[ξi]1,2, [si]2}, do the following checks:
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1. e([ξi]1, [si−1]2) = e([1]1, [si]2) and e([ξi]1, [1]1) = e([1]1, [ξi]2) for all i = 1, . . . , h,
2. e([sh,i−1,1]1, [sh]2) = e([sh,i,1]1, [1]2) = e([1]1, [sh,i,2]2), for all i = 1, . . . , N and defining sh,0,1 = 1.

3. If t̂i are the coefficients of t(X), check a) [t1]1 =
∑N
i=0 t̂i[sh,i,1]1, b) [t2]2 =

∑N
i=0 t̂i[sh,i,2]2,

4. If λ̂i,j are the coefficients of λi(X), check a) [λi,1]1 =
∑N−1
j=0 λ̂i,j [sh,j,1]1 and b) [λi,2]2 =

∑N−1
j=0 λ̂i,j [sh,j,2]2.

Drv.Setup(φ, npub, ΣΦ, {ρΦ,i}hΦi=0): On input a circuit φ : Znp → Zn′p with m multiplication gates, npub ≤ n

public inputs and such that n+m ≤ N and ΣΦ, this algorithm computes ([Q]1, [q0]1) ∈ G4×n+m+3
1 ×G4

1,
defined as:

Q =


Λpub 0 Λopt 0 0 0

0 Λmid Λopt t(s) 0 0
Vpub Vmid 0 0 t(s) 0
Wpub Wmid 0 0 0 t(s)

 , q0 =


0
0

v0(s)
w0(s)

 , (2)

where Λpub = (λ1(s), . . . , λnpub(s)),Λmid = (0, . . . , 0, λn+1(s), . . . , λn+m−n′(s)),Λopt = (λn+m−n′+1(s), . . . , λn+m(s)),
Vpub = (v1(s), . . . , vnpub(s)),Vmid = (vnpub+1(s), . . . , vn+m−n′(s)),Wpub = (w1(s), . . . , wnpub(s)),Wmid =

(wnpub+1(s), . . . , wn+m−n′(s)), and the sets of polynomials V = {vi(X)}n+mi=0 ,W = {wi(X)}n+mi=0 are the
ones associated to the circuit as specified in Lemma 1 and Lemma 3.
It samples k← Z4

p and publishes σφ,lin = ([Q>k]1, [k]2). It outputs the final common reference string:

σφ = (ΣΦ, [Q]1, [q0]1, φ, npub, σφ,lin).

For the proof of correctness, it samples ψ0 ← Z∗p and outputs ρφ,0 = ({ρΦ,i}hΦi=0, [q
>
1 γ0]1, [γ0]2, [ψ−1γ0]2, [ψ0]1,2, [α0]1),

where q1 is the first column of Q, γ0 = k, ψ−1 = 1, α0 = ψ0. The simulation trapdoor is τφ = (s,k) and
the update trapdoor is τupd,φ = (γ0, α0).

Drv.Upd(φ, σφ, {ρφ,i}hi=0): On input σφ = (ΣΦ, [Q]1, [q0]1, φ, npub, σφ,lin), and {ρφ,i}hi=0 = ({ρΦ,i}hΦi=0, {[q>1 γi]1,
[γi]2, [ψi−1γi]2, [ψi]1,2, [αi]1}hi=0), for some h ∈ N, this algorithm samples γh+1 ← Z4

p, αh+1 ← Z∗p, sets
[kh+1]2 = [γh+1]2 + [kh]2 and [ψh+1]1 = αh+1[ψh]1, and updates the common reference string as:

σφ,lin ← ([Q>γh+1]1 + [Q>kh]1, [kh+1])

and the proof of correctness as:
{
{ρΦ,i}hΦi=0, {[q>1 γi]1, [γi]2, [ψi−1γi]2, [ψi]1,2, [αi]1}

h+1
i=0

}
. The update trap-

door is τupd,φ = (γi, αi).
Drv.Vrfy(φ, σφ, {ρφ,i}hi=0): This algorithm parses the input as:

σφ = (Σφ, [Q]1, [q0]1, φ, npub, [Qk,h]1, [kh]2) ,

and {ρφ,i}hi=0 = ({ρΦ,i}hΦi=0, {[qγ,i]1, [γi]2, [γψ,i]2, [ψi,1]1, [ψi,2]2, [αi]1}hi=0), and does the following checks:

1. Setup.Vrfy(ΣΦ, {ρΦ,i}hΦi=0) = 1.

2.
∑h
i=0[γi]2 = [kh]2.

3. e([qγ,i]1, [1]2) = e([q>1 ]1, [γi]2), for i = 0, . . . , h− 1.
4. e([ψi,1]1, [1]2) = e([1]1, [ψi,1]2) = e([αi]1, [ψi−1,2]2), for i = 0, . . . , h.
5. e([ψi−1,1]1, [γi]2) = e([1]1, [γψ,i]2) for i = 1, . . . , h.
6. e([Qk,h]1, [1]2) = e([Q>]1, [kh]2).

Prove(φ, σφ, (xpub,xsec,y)): From (xpub,xsec,y) the prover generates a (redundant) satisfiability witness
(a, b, c) which satisfies the constraints of Lemma 1.
1. The prover samples δ1, δ2, δ3 ← Zp and commits to the vector of output wires c starting from n+ 1

in G1, to the vector of left wires a in G1 and to the vector of right wires b in both groups G1,G2 as:

[O]1 =

n+m∑
i=n+1

ci[λi(s)]1 + δ1[t(s)]1 [L]1 =

n+m∑
i=n+1

ai[λi(s)]1 + δ2[t(s)]1

[R]1,2 =

n+m∑
i=n+1

bi[λi(s)]1,2 + δ3[t(s)]1,2.
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2. It defines

p(X) =

(
n+m∑
i=n+1

aiλi(X) + δ2t(X)

)(
n+m∑
i=n+1

biλi(X) + δ3t(X)

)
−

(
n+m∑
i=n+1

ciλi(X) + δ1t(X)

)
.

.

If h(X) is such that p(X) = h(X)t(X), compute [H]1 = [h(s)]1 with the powers {[si]1}Ni=0 given in
ΣΦ.

3. It defines [Opub]1 =
∑npub
i=1 ci[λi(s)]1 +

∑n+m
i=n+m−n′+1 ci[λi(s)]1 and sets z> =

(
Opub, O, L, R

)
− q>0 ,

and it computes a proof that [z]1 is in the column span of Q as [π]1 = (c>, δ>)[Q>k]1. The output
of the algorithm is

Π = ([L]1, [R]1, [R]2, [O]1, [H]1, [π]1).

Vrfy((φ,xpub,y), σφ, Π): On input the proofΠ = ([L]1, [R]1, [R̂]2, [O]1, [H]1, [π]1) for some instance (φ,xpub,y),
this algorithm outputs 1 if the following checks are successful and 0 otherwise:

1. e([L]1, [R]2)− e([O]1, [1]2) = e([H]1, [t(s)]2).

2. Compute [Opub]1 =
∑npub
i=1 ci[λi(s)]1 +

∑n+m
i=n+m−n′+1 ci[λi(s)]1, [z>]1 = [Opub, O, L,R]1 − [q>0 ]1 and

verify if e([π]1, [1]2) = e([z>]1, [k]2).

3. e([R]1, [1]2) = e([1]1, [R̂]2).

5.1 Proof of Updatability

The following lemmas are analogous to [24, Lemma 4, Lemma 5, Lemma 6], the only difference being that
our single update adversary (Lemma 6) makes a single honest setup query to its oracle and possibly many
non-honest updates, while [24, Lemma 5] makes a single honest setup and a single non-honest update. This
is more consistent with the security model we have described.

Lemma 5 says that from any adversary producing a valid quadratic and linear crs “from scratch” it is
possible to extract the corresponding simulation trapdoors, as well as the update trapdoor. This will be used
in the proof of subvertible zero-knowledge and it will also be used for arguing that it is enough to prove
soundness against single adversarial updates.

Lemma 5 (Trapdoor extraction for subvertible CRSs). . For any PPT adversary A that outputs
(ΣΦ, {ρΦ,i}hΦi=0) and (σφ, {ρφ,i}hi=1), under the BDH-KE Assumption and the KWKE Assumption of [2], there
exists an extractor χA which, on input RΦ and the random coins of A, outputs τΦ, τφ such that (ΣΦ, ρΦ,0) =
Setup(RΦ; τΦ) and (σφ, ρφ,0) = Drv.Setup(φ, npub, ΣΦ, {ρΦ,i}mi=0; τφ).

Proof. For trapdoor τΦ, note that the adversary outputs [s]1, [s
′]2 as part of ΣΦ. Since such crs is valid, it

must be that e([s]1, [1]1) = e([1]1, [s
′]2) and, by the BDH-KE assumption, there is an extractor which on

input A’s random coins outputs τΦ = s = s′.

For the trapdoor τφ, as noted by Abdolmaleki et al. ([2, Thm. 1]), if a generic adversary produces [k]2
and [Qk]1 such that it is accepted by Drv.Vrfy, that is, such that e([Qk]1, [1]2) = e([Q>]1, [k]2), one can
efficiently extract such k (this is what they call the KWKE assumption). A full proof can be found in [2,
Thm. 1], although our proof is actually simpler, as in our case k is unique (because Q has more columns
than rows and A = 1).

Further, the adversary outputs [ψh,1]1, [ψh,2]2 such that e([ψh,1]1, [1]2) = e([1]1, [ψh,2]2) from which we
can extract ψh = ψh,1 = ψh,2 by the BDH-KE Assumption. The rest of the checks of the crs imply that

ψh =
∏h
i=0 αi.

Lemma 6 says that the update trapdoor can also be extracted when the adversary (maliciously) updates
an honestly generated crs.

15



Lemma 6 (Trapdoor extraction for honest setup and single adversarial update). Consider a PPT
adversary A against U-KSND that calls its oracle Oupd with the following sequence: setup Σ, (final Σ,ΣΦ,1, {ρΦ,i}i=0,1)
and then (setup σ, φ1), . . . , (setup σ, φqc), (final σ, φj , σφj ,1, {ρφj ,i}i=0,1), where j ∈ {1, . . . , qc}, (ΣΦ,0, ρΦ,0)
and (σφj , ρφj ,0) are the output of the oracle to the first and the (2 + j)th call to Oupd.

If (σφj ,1, {ρφj ,i}i=0,1) is accepted by the Drv.Vrfy algorithm, under N -BPKE Assumption and the (N +
2)-MC Assumption, for any such adversary there exists an extractor χA which, on input A’s random coins,
outputs update trapdoors τupd,Φ = (ξ1) ∈ Zp, τupd,φj = (γ1, α1) ∈ Z4

p × Zp such that (ΣΦ,1, {ρΦ,i}i=0,1) =
Setup.Upd((ΣΦ,0, ρΦ,0); ξ1) and (σφj ,1, {ρφj ,i}i=0,1) = Drv.Setup((φj , σφj ,0, ρφj ,0); (γ1, α1)).

Proof. We first show that under the N -BPKE Assumption and the (N+2)-MC Assumption, we can extract
the contribution of adversary A to the quadratic part and the linear part.

Let
(
{[si]1,2}Ni=0, [ω]1,2

)
be a challenge for the N -BPKE assumption. From this challenge, it is possible

to compute (ΣΦ,0, ρΦ,0) as an answer to the first oracle query and give it as input to A. Adversary A
outputs as part of its query (final Σ,ΣΦ,1, {ρΦ,i}i=0,1) the elements [ξ1,1]1 and [ξ1,2]2, and from the fact that
(ΣΦ,1, {ρΦ,i}i=0,1) is accepted by the setup verification algorithm, it follows that

e([ξ1,1]1, [1]2) = e([1]1, [ξ1,2]2), (3)

which in particular implies that we can define ξ1 = ξ1,1 = ξ1,2.

When A makes the query (setup σ, φi), the challenger sets ψ0,i = ωψ̂0,i, for some ψ̂0,i ← Z∗p and sam-
ples ki ← Z4

p to generate the rest of the parameters for the linear crs for circuit φi. Finally, A outputs
(final σ, φj , σφj ,1, {ρφj ,i}i=0,1) for some j ∈ {1, . . . , qc}. Since this crs is accepted by the Drv.Vrfy algorithm,
it follows the adversary’s output includes among other things, values [ψ1,1]1, [ψ1,2]2 such that

e([ψ1,1]1, [1]2) = e([1]1, [ψ1,2]2), (4)

so ψ1 = ψ1,1 = ψ1,2 is correctly defined. Further, it holds that e([ψ1]1, [1]2) = e([α1]1, [ψ0,j ]2), therefore:

ψ1 = α1ψ0,j = α1ψ̂0,jω. (5)

It also holds that e([ψ0,j ]1, [γ1]2) = e([1]1, [γψ,1]1), which implies:

e([ω]1, [γ1]2) = e([1]1, [γψ,1/ψ̂0,j ]2). (6)

From equations (3), (4), (6) it hods that ψ1, ξ1 are polynomials in the span of {1, X, . . . ,XN , Y } evaluated
at (s, ω), γ1 is a degree 1 polynomial evaluated at ω in Zp[Y ] which can be extracted under the N -BPKE
assumption.

Further, equation (5), together with the Schwartz-Zippel Lemma implies that ψ1 is the result of evaluating

at ω the polynomial α1ψ̂0,jY , i.e. this polynomial is in fact independent ofX. In particular, from the extracted

coefficients it is possible to recover γ1, α1ψ̂0,j and recover γ1, α1.
On the other hand, for the quadratic part, the extracted coefficients are ζ0, . . . ζN , ζN+1, such that if

ζ(X,Y ) =
∑N
j=0 ζjX

j + ζN+1Y , ξ1,1 = ξ1,2 = ξ1 =
∑N
j=0 ζjs

j + ζN+1ω = ζ(s, ω). Let j∗ be the largest

index in the range {1, . . . , N} such that ζj∗ 6= 0. Since s1 = ξ1s it follows that sN1 = p(s, ω), where
p(X,Y ) = XN (ζ(X,Y ))N is a polynomial of degree N(1 + j∗) in X, degree at least N in Y . From the latter,
we conclude that if ζN+1 6= 0 or j∗ ≥ 1 it holds that p(X,Y ) /∈ Span({Xi}Ni=0, Y ), which would break the
(N + 2)-MC Assumption. Therefore, the polynomial p does not depend on Y and j∗ = 0. We conclude that
we can extract ξ1 = ζ0 ∈ Zp such that (ΣΦ,1, {ρΦ,0, ρΦ,1}) = Setup.Upd(ΣΦ,0, {ρΦ,0, ρΦ,1}; ξ1).

It is also important to note that in Lemma 6, to extract the contribution of the adversary to the final
trapdoor it suffices to use the proof of correctness and not the common reference string. In particular, if
an adversary does an honest setup for the quadratic part, and then hΦ updates to the quadratic part, an
honest update for the linear part and then h updates for the linear part, we can extract its (aggregated)
contribution to the global crs by applying several times Lemma 6. In other words, for extraction we do not
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need to have all the intermediate common reference strings but the contribution of the adversary can be
extracted from the proofs of correctness.

Similarly as in [24], updates can be combined, that is Setup.Upd(Setup.Upd(Setup(RΦ; ξ0); ξ1); ξ2) =
Setup(RΦ; ξ0ξ1ξ2) and Drv.Upd(φ, (Drv.Upd(φ, (Drv.Setup(φ, npub, ΣΦ, {ρi}hΦi=1;γ0, α0);γ1, α1);γ2, α2) = Drv.Setup(φ,

npub, ΣΦ, {ρΦ,i}hΦi=1;γ0 + γ1 + γ2;α0α1α2).
As noted by Groth et al. in [24], this enables the following simulations:

– Given the trapdoor s0 of ΣΦ,0 and the elements [s1]1, [s1]2 of ΣΦ,1, we can simulate the update proof
ρΦ,1 = ([s1]1,2/s0, [s1]2) of ΣΦ,1 being an update of ΣΦ,0. We denote this simulated update proof by
ρsimΣΦ,1←ΣΦ,0(ΣΦ,1, ΣΦ,0, τΦ,0).

– Given the update trapdoor ξ1 for ΣΦ,1 being an update of ΣΦ,0, and the update proof ρΦ = ([ξ]1,2, [s]2)
for ΣΦ being an update of ΣΦ,0, we can simulate the update proof ρ′Φ = ([ξ]1,2/ξ1, [s]2) for ΣΦ being an
update ofΣΦ,1. We denote this simulated update proof by ρsimΣΦ←ΣΦ,1(ΣΦ,1, ΣΦ, τupd,ΣΦ,1←ΣΦ,0 , ρΣΦ←ΣΦ,0).

– Given k0, ψ0 for σφ,0 and the elements [Q]1, [Q
>k1]1, [k1]2 of the crs and [ψ1]1,2 of the proof ρφ,1 of correct

setup of σφ,1, we can simulate the update proof ρ′φ,1 = ([q>1 k1]1 − [q>1 k0]1, [k1]2 − [k0]2, ψ0([k1]2 −
[k0]2), [ψ1]1,2, [ψ1]1/ψ0) of σφ,1 being an update of σφ,0. We denote this simulated update proof by
ρsimσφ,1←σφ,0(σφ,1, σφ,0, ρφ,1, (k0, ψ0)).

– Given the update trapdoor (γ1, α1) for σφ,1 being an update of σφ,0, and the update proof ρφ =
([q>1 γ]1, [γ]2, [ψ]1,2, [α]1) for σφ being an update of σφ,0, we can simulate the update proof ρφ = ([q>1 γ]−
[q>1 γ1]1, [γ]2 − [γ1]2, [ψ]1,2/α, [α1]1/α) for σφ being an update of σφ,1. We denote this simulated update
proof of σφ being an update of σφ,1 by ρsimσφ←σφ,1(σφ, σφ,1, ρφ, (γ1, α1)).

Putting all these ingredients together, we next prove Lemma 7, which says that one can consider, without
loss of generality, adversaries against U-KSND of the type considered in Lemma 6, that is, adversaries who
make an honest setup and a single adversarial update.

The following lemma is just an adaptation of [24] to our two-stage crs generation.

Lemma 7 (Single adversarial updates imply full updatable knowledge soundness). For any adver-
sary A against U-KSND there exists another “single update” adversary B, as the one considered in Lemma 6,
such that |Pr[U-KSNDA, χA(RΦ)]− Pr[U-KSNDB,χB(RΦ)]| is negligible in λ.

Proof. We split A into three stages A1,A2,A3. The first stage ends with a successful query with intent =
final Σ, and the second stage ends with a successful query with intent = final σ.

We construct an adversary B which first queries its oracle Oupd on setup Σ, and receives (ΣΦ,0, ρΦ,0) as
answer. It initializes an empty database Dρ,Φ of updates and corresponding randomness. It runs A1(RΦ; r),
for r ← {0, 1}A1.rl(λ), and answers its queries to the Oupd oracle as follows:

setup Σ: Add (ρΦ,0, 1) to Dρ,Φ and return (ΣΦ,0, ρΦ,0)
update Σ, (ΣΦ,h, {ρΦ,i}hi=0): If {ρΦ,i}hi=0 does not contain any honest update, use the extractor of Lemma

5 to extract sh such that (ΣΦ,h, ρ
′
Φ,h) = Setup(RΦ; sh), for some ρ′Φ,h. If {ρΦ,i}hi=0 does contain honest

updates, A1 can be perfectly simulated by an adversary C which on input (ΣΦ,0, ρΦ,0) runs A1 and
answers oracle queries itself using the corresponding random coins from Dρ,Φ. Then B can extract ξ such
that (ΣΦ,h, {ρΦ,0, ρ′′Φ,h}) = Setup.Upd((ΣΦ,0, ρΦ,0); ξ) using the extractor from Lemma 6 repeatedly.

Adversary B chooses a valid update of ΣΦ,0, (Σ̂Φ, {ρΦ,0, ρ̂Φ})
ξ̂← Setup.Upd(ΣΦ,0, ρΦ,0) and explains it as

an update of ΣΦ,h by defining ρΦ,h+1 = ρsim
Σ̂Φ←ΣΦ,h

(Σ̂Φ, ΣΦ,h, sh) or ρΦ,h+1 = ρsim
Σ̂Φ←ΣΦ,h

(Σ̂Φ, ΣΦ,h, ξ, ρ̂Φ),

depending on whether the query includes or not an honest update, and defines ΣΦ,h+1 = Σ̂Φ.

Finally, B adds the entry (ρ̂Φ, ξ̂) to Dρ,Φ and returns (ΣΦ,h+1, {ρΦ,i}h+1
i=0 ).

final Σ, (ΣΦ,hΦ , {ρΦ,i}
hΦ
i=0): This query is honestly answered, that is, reject if the crs does not verify or the

updates do not include any honest update or setup.

Adversary B uses the extractor from Lemma 6 repeatedly to construct proof ρ′′′Φ,hΦ such that (ΣΦ,hΦ , {ρΦ,0, ρ′′′Φ,hΦ}) =
Setup.Upd((ΣΦ,0, ρΦ,0); ξ) for some ξ. B sends (final Σ,ΣΦ,hΦ , {ρΦ,0, ρ′′′Φ,hΦ}) to its oracle Oupd and sets
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ΣΦ = ΣΦ,hΦ and SΦ = {ρΦ,0, ρ′′′Φ,hΦ}. Then, it initializes an empty database Dρ,φ of circuits, updates and

corresponding randomness. It runs A2(Rφ; r2), for r2 ← {0, 1}A2.rl(λ), and answers its queries to the Oupd

oracle as follows:

setup σ, φ: If (φ, ∗, ∗) is already in Dρ,φ it returns ⊥. Otherwise, B forwards the query to its own oracle Oupd

obtaining (σφ,0, ρφ,0) as answer. It adds (φ, ρφ,0, 1) to Dρ,φ and returns (σφ,0, ρφ,0).
update σ, (σφ,h, {ρφ,i}hi=0): If {ρφ,i}hi=0 does not contain any honest update, use the extractor of Lemma 5 to

extract (kh, ψh) such that (σφ,h, ρ
′
φ,h) = Drv.Setup((φ, npub, ΣΦ, SΦ); (kh, ψh)), for some ρ′φ,h. If {ρφ,i}hi=0

does contain honest updates, A can be perfectly simulated by an adversary C which on input (σφ,0, ρφ,0)
runs A and answers oracle queries itself using the corresponding random coins from Dρ,φ. Then B can
extract (γ, α) and construct ρ′′φ,h using the extractor from Lemma 6 such that (σφ,h, {ρφ,0, ρ′′φ,h}) =
Drv.Upd((φ, σφ,0, ρφ,0); (γ, α)).

B picks an update of σφ,0, (σ̂φ, {ρφ,0, ρ̂φ})
(γ̂,α̂)← Drv.Upd(σφ,0, ρφ,0) and explains it as an update of σφ,h

computing ρφ,h+1 = ρsimσ̂φ←σφ,h(σ̂φ, σφ,h, ρ̂φ, (kh, ψh)) or ρφ,h+1 = ρsimσ̂φ←σφ,h(σ̂φ, σφ,h, ρ̂φ, (γ, α)), depend-
ing of whether or not the query includes an honest update, and defines σφ,h+1 = σ̂φ.
Finally, B adds the entry (φ, ρ̂φ, (γ̂, α̂)) to Dρ,φ and returns (σφ,h+1, {ρφ,i}h+1

i=0 ).
final σ, (σφ,h, {ρφ,i}hi=0): This query is honestly answered, that is, reject if the crs doesn’t verify or the

updates do not include any honest update or setup.

By the same argument as for update queries, B can extract (γ, α) and construct ρ′′φ,h using the ex-
tractor from Lemma 6 such that (σφ,h, {ρφ,0, ρ′′φ,h}) = Drv.Upd((φ, σφ,0, ρφ,0); (γ, α)). Adversary B sends
(final σ, (σφ,h, {ρφ,0, ρ′′φ,h}) to its oracle Oupd and sets σφ = σφ,h. Finally, B runs A3 and outputs whatever
A3 outputs.

Simulation is perfect and an extractor for A using the extractor of B as described in [24].

5.2 Security Proof

Lemma 8. The argument is perfectly complete.

Proof. If aibi = ci, then p(X) is divisible by t(X). This is because p(ri) = aibi − ci for i = n+ 1, . . . , n+m
and p(ri) = 0 for i = 1, . . . , n, because λj(ri) = 0 if i 6= j. Therefore, there exists a polynomial h(X) of
degree at most N such that p(X) = h(X)t(X) and p(s) = h(s)t(s), i.e. the first verification equation is
verified. On the other hand, the second verification equation holds because by construction, [π]1 = [z>k]
(i.e. the perfect completeness of the QANIZK argument of membership in linear spaces). Finally, the last
equation holds because in an honestly constructed proof, [R]1 and [R̂]2 have the same discrete logarithm.

Before we prove soundness, we observe that without loss of generality, if Q(X) is the matrix of polynomials
such that Q = Q(s), for s ← Z∗p, we can assume that the columns of Q(X), {qi(X)}n+mi=1 are a set of

linearly independent polynomials. To see this, first observe that {qi(X)}n+mi=n+1 is a set of linearly independent
polynomials and independent of the rest of the columns. This is because the second row of Q(X) consists of
n zeros and the polynomials (λn+1(X), . . . , λn+m(X)), which are linearly independent polynomials (to see
this, observe that when evaluated at ri, i = n + 1, . . . , n + m, only λi(X) is non-zero). On the other hand,

the last two rows of qi(X) for i = 1, . . . , n are

{(
vi(X)
wi(X)

)}n
i=1

. So, to argue that the columns of Q(X) can

be assumed to be linearly independent polynomials, it suffices to see that without loss of generality, these
polynomials are linearly independent.

Indeed, if they are not linearly independent, there exists another circuit φ̂ : Zn̂p → Zn′p with n̂ < n such

that if φ(x) = y, then from x it is possible to efficiently compute x̂ such that φ̂(x̂) = y and such that

the associated matrix Q̂ has linearly independent columns. More specifically, the circuit φ̂ can be built by
successively applying the following rule: for any linear relation

qj(X) =

n∑
i=1,i6=j

`iqi(X),
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define n̂ = n−1, eliminate the jth column from Q and replace the input (x1, . . . , xn) by (x1+`1xj , . . . , xj−1+
`j−1xj , xj+1 + `1xj , . . . , xn + `nxj).

Lemma 9. The argument has updatable computational knowledge soundness in the generic bilinear asym-
metric group model.

Proof. The checks of Drv.Vrfy imply that the crs has the right structure, that is, σlin = ([Q>k]1, [k]2) for
some k ∈ Z4

p and the same holds for ΣΦ. Further, as we have argued in Lemma 7, it suffices to prove security
against an adversary who makes an honest setup and a single adversarial updates. In particular, in this case,
the associated trapdoors to σlin, ΣΦ are s = s0s1, k = k0 + k1, for s1, k1 chosen by the soundness adversary
and s0 ← Zp, k0 ← Z4

p.
We first show that a generic adversary that outputs a valid [π]1 must know a witness which satisfies

the linear constraints. That is, we show implicitly that for this particular distribution of Q, the QANIZK
argument has knowledge soundness, similarly as it was proven in [13] for another subspace distribution. Then
we show that, if the extracted witness does not satisfy the set of quadratic constraints contradicts the fact
that the proof is accepted by the verifier.

From our previous discussion, it follows that the crs is the result of evaluating polynomials, k(X) =
(XK,1 + k1,1, XK,2 + k1,2, XK,3 + k1,3, XK,4 + k1,4), sj(X) = Xj

Ss
j
1 and {qj(X)}m+n

j=1 , {qj(X)>k(X)}m+n
j=1 at

a random point x0 = (k0,1, . . . , k0,4, s0) (plus some other polynomials to define the Lagrangian polynomials
and the target polynomial t evaluated at s).

Since the proof produced by the adversary satisfies the verification equation, it follows that π(x) =
z(x)>k(x). By the Schwartz-Zippel lemma, the last equation implies that the correspondent polynomial
equation holds with overwhelming probability, which we write

π(X) =

4∑
i=1

zi(X)(XK,i + k1,i) (7)

The only way to generically construct such a proof is to compute linear combinations of {qj(X)>k(X)}m+n
j=1

(which are the only terms with variables XK,i in the same group of definition as π). Therefore, the proof
must satisfy

π(X) =

m+n∑
j=1

wj

4∑
i=1

qj(X)>k(X) =

4∑
i=1

 n∑
j=1

qj(X)wj

 (XK,i + k1,i).

As we have seen, we can assume without loss of generality that {qj(X)>k(X)}m+n
j=1 is a set of linearly

independent polynomials. Then because of last equation, we can conclude that we can extract w such that

z = Qw =
(∑n

j=1 qjwj

)
.

Now we show that, if the extracted witness does not satisfy the set of quadratic constraints, the first
verification equation is satisfied with only negligible probability, following a standard argument. If w is
the witness extracted, define (c>, δ>) = w>. It follows from the soundness property of this argument that
O =

∑n+m
i=n+1 ciλi(s) + δ1t(s), L = v0(s) +

∑n+m
i=n+1 civi(s) + δ2t(s), and R = w0(s) +

∑n+m
i=n+1 ciwi(s) + δ3t(s).

On the other hand from c, the reduction can compute L̂(XS) = v0(s1XS)+
∑n+m
i=n+1 civi(s1XS), R̂(XS) =

w0(s1XS) +
∑n+m
i=n+1 ciwi(s1XS) and Ô(XS) =

∑n+m
i=n+1 ciλi(s1XS), such that [L̂(s)]1 = [L]1, [R̂(s)]1 = [R]1,

[Ô(s)]1 = [O]1. If the adversary breaks soundness, there exists some j such that (L̂R̂−Ô)(rj) = µ 6= 0, which

implies that L̂(XS)R̂(XS)−Ô(XS) is not divisible by (XS−rj) and in particular, by t̂(XS) =
∏
r∈R(s1XS−r).

Therefore, the first verification equation, e([L]1, [R]2)− e([O]1, [1]2) = e([H]1, [t(s)]2), can only hold with
negligible probability.

Lemma 10. The argument has perfect subvertible zero-knowledge in the generic asymmetric bilinear group
model.
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Proof. To prove this lemma, we need to show both the existence of an extractor which outputs the simulation
trapdoor from any adversary which outputs valid parameters and an efficient simulator which outputs proofs
with the same distribution as real proofs. The existence of such an extractor is a direct consequence of
Lemma 5.

On the other hand, a proof with the same distribution as the honest setting can be computed by sampling
O,L,R ← Zp and setting: [H]1 = [(LR − O)/t(s)]1, which can be efficiently computed given s, and [π]1 =
k1[Opub]1 + k2[O]1 + k3[L]1 + k4[R]1. Both real and simulated O,L,R are uniformly distributed over Zp
while H is the unique solution to the verification equation. On the other hand, the linear proof is uniquely
determined by k, so [π]1 follows exactly the same distribution as its honest counterpart.

5.3 Simplifications and Improvements

For simplicity, we have omitted some improvements of our argument which reduce significantly the size of
the structured crs.

1. In the quadratic crs, the terms {[si]2}Ni=1 are never used by the prover (in fact, they are redundant and
can be derived from the other terms) and are just included to simplify the exposition of the update
algorithm.

2. A closer examination of our proof reveals that the only point where we need a structured common
reference string is for proving the quadratic equations. For the linear proof, what we need is that the
columns of Q are independent generically. Therefore, the Lagrangians λi(s), for i = 1, . . . , n can be
replaced by uniform random elements in Z∗p. The interpolation set R can be chosen to be of cardinal M ,
the Lagrangians of degree M−1 and the target polynomial of degree M , for some M which is a bound on
the number of multiplication gates. This seems like a really useful simplification, as the non-structured
elements of the crs can be chosen in some public way without a trusted procedure and do not need to
be updated.

3. Finally, the specialized crs for a circuit φ does not need to include all the quadratic crs ΣΦ, but the
terms which of degree larger than m, the number of multiplication gates of φ, can be eliminated.

Putting all these improvements together, the quadratic universal crs is

ΣΦ = (gk, {[λi(s)]1,2}Mi=1, {[si]1}M−1i=1 , [t(s)]1,2, {[ui]1}
Npub
i=1 ),

where M is a bound on the number of multiplication gates, N is a bound on the public input length and
{[ui]1}Ni=1 are uniformly random elements of Z∗p,

The matrix Q associated to a certain circuit φ is:

Q =


Upub 0 Λopt 0 0 0

0 Λmid Λopt t(s) 0 0
Vpub Vmid 0 0 t(s) 0
Wpub Wmid 0 0 0 t(s)

 , q0 =


0
0

v0(s)
w0(s)

 , (8)

where Upub = (u1, . . . , unpub), Λmid = (0, . . . , 0, λ1(s), . . . , λm−n′(s)), Λopt = (λm−n′+1(s), . . . , λm(s)),
Vpub = (v1(s), . . . , vnpub(s)), Vmid = (vnpub+1(s), . . . , vn+m−n′(s)),Wpub = (w1(s), . . . , wnpub(s)), Wmid =

(wnpub+1(s), . . . , wn+m−n′(s)), and the sets of polynomials V = {vi(X)}n+mi=0 ,W = {wi(X)}n+mi=0 are the ones
associated to the circuit as specified in Lemma 1 and Lemma 3.

The crs for the specialized circuit is

ΣΦ = (gk, {[λi(s)]1,2}mi=1, {[si]1}m−1i=1 , [t(s)]1,2, {[ui]1}
npub
i=1 , [Q]1, [q0]1, φ, npub, σφ,lin),

where σφ,lin is defined as before.
The update of the linear crs is defined as before. For the quadratic part, since now [si]2 is not included

in the crs, we have to show how to compute [λi(ss1)]2 for any s1 ∈ Zp and [λi(s)]2.
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For any polynomial z(X) of degree at most M − 1, z(X) =
∑m
j=1 λj(X)z(rj). Therefore, if we define

λ̂i(X) as the unique polynomial of degree m− 1 such that λ̂i(X) = λi(Xs1),

λi(s · s1) = λ̂i(s) =

m∑
j=1

λj(s)λ̂i(rj) =

m∑
j=1

λj(s)

 m∏
k=1,k 6=i

rjs1 − rk
ri − rk

 .

Therefore, [λi(ss1)]2 can be computed from [λj(s)]2, j = 1, . . . ,m, s1 and R.
On the other hand, to verify the correctness of the update algorithm, it suffices to observe that [sj ]2 =∑n+m
i=n+1 r

j
i [λi(s)]2. The checks of the update algorithm can be done using this expression for the checks which

involve [sj ]2.

6 An New Argument under Weaker Assumptions

In this section we describe our construction for proving correct evaluation of an arithmetic circuit. As
explained in the introduction, it makes use of two subarguments: a quadratic and a linear “knowledge
transfer” subarguments. The reason why we use the term “knowledge transfer” is because these arguments
will ensure that, if the prover knows a witness for the circuit evaluation up to level i which is also a valid
opening up to level i of a set of shrinking commitments to the corresponding wires, it also knows a valid
opening to the commitments of the wires at level i+ 1.

Since the input of the circuit is public, the idea is that these arguments allow to “transfer” the knowledge
of the witness for correct evaluation (a consistent assignment to all wires) to lower levels of the circuit.
Any adversary against soundness needs to break the “chain” of consistent evaluations at some point and
thus, break the soundness of one of the two subarguments. This technique allows us to avoid using binding
commitments to the wires at each level, while still being able to define what it means to break soundness.
Intuitively, the difficulty we have to circumvent is to reason about wether the openings of shrinking commit-
ments satisfy a certain equation without assuming that the adversary is generic, as there are many possible
such openings.

Such intuitive notion of knowledge transfer argument can be formalized as a promise problem defined
by a language of good instances LY ES and of bad instances LNO. Completeness guarantees that proofs
are accepted for all instances of LY ES , while soundness guarantees that no argument will be accepted for
instances of LNO. Nothing is claimed when x /∈ (LY ES ∪LNO). In our case, membership in LY ES and LNO
can be efficiently decided with a number of operations which is proportional to the size of the statement, but
the reason why our subarguments are interesting (and not trivial) is that the verifier does only a constant
number of public key operations (ignoring the need to read the full statement).

We note that the two subarguments are not zero-knowledge and in fact their soundness proof heavily
relies on the fact that the commitments given by the prover are deterministic.

This section is organized as follows: we first present the description of our argument in terms of the two
subarguments, then we present in detail each of the subarguments, give the proof of security and finally we
discuss its efficiency.

6.1 Argument Description

In this section we describe our construction for proving correct evaluation of an arithmetic circuit. We use
a simplified syntax and consider simply 3 algorithms (Setup,Prove,Verify) and we assume that Setup takes
as input a relation Rφ = {(x,y) : φ(x) = y} for some circuit φ : Zn0

p → Zndp as described in Sect. 4.1. Let
nmax = maxi∈[d] ni. This is only for simplicity and our scheme could be trivially written using the syntax of
Sect. 3 and be fully updatable and have a partially universal crs.

Setup(RΦ): Generate the CRS for the quadratic knowledge transfer argument, defined in section 6.2, crsΦ
which includes {[λi(s)]1,2}nmaxi=1 . Generate also a crs for the linear knowledge transfer argument, defined
in fig. 3, crsφ for proving membership in the space ([M>]1, [N

>]1, [P
>]2), where matrices M,N,P are

matrices which define the affine constraints as defined in equations (11),(12),(13), respectively.
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K(gk, {[si]1, [sj ]2}i∈[m−1],j∈[m]):
Output crs =(
gk, {

[
λ1(s)]γ , . . . , [λm(s)]γ

}
γ∈{1,2},{

[si]1
}
i∈{1,...,m−2}, [t(s)]2

)
.

P(crs,a, b):
`(X) =

∑m
i=1 aiλi(X);

r(X) =
∑m
i=1 biλi(X);

o(X) =
∑m
i=1 ciλi(X);

h(X) = (`(X)r(X)− o(X))/t(X);
[L]1 = [`(s)]1; [R]2 = [r(s)]2;
[O]1 = [o(s)]1; [H]1 = [h(s)]1;
Output [H]1.

V(crs,a, b, [L]1, [R]2, [O]1, [H]1):
Check if:
e([L]1, [R]2)− e([O]1, [1]2) = e([H]1, [t(s)]2);
output 1 in this case and 0 otherwise.

Fig. 2. Our argument for componentwise product. λi(X) is the ith Lagrange polynomial associated to R, t(X) is the
polynomial which has as roots all the elements of R. Both a and b are m-dimensional vectors in Zp.

Prove(crs, (x,y,a, b, c) ∈ Rφ): Given the input x, the output y, and (a, b, c) a valid assignment to left, right
and output wires as described in Lemma 4, the prover proceeds as follows:
1. For each i ∈ {1, . . . , d}, commit to ai, ci in G1 and to bi in G2 as: [Li]1 =

∑ni
j=1 ai,j [λi]1 = [Λi]1ai,

[Ri]2 =
∑ni
j=1 bi,j [λi]2 = [Λi]2bi, [Oi]1 =

∑ni
j=1 ci,j [λi]1 = [Λi]1ci.

2. (Quadratic Constraints) For each i ∈ {1, . . . , d}, compute a proof ΠQ that the vector ai ◦ bi, which
is the componentwise product of the openings of [Li]1, [Ri]2, is an opening of [Oi]1.

3. (Linear Constraints) For all i ∈ {1, . . . , d}, compute a proof ΠL that [Li]1 and [Ri]2 are commitments
to the correct evaluation of all the left and right wires at level i, that is, that they satisfy the affine
linear constraints which relate them to the outputs of gates at levels j = 0, . . . , i− 1.

4. Output (C = {[L]1, [R]2, [O]1}di=1, ΠQ, ΠL) as the proof.
Verify(crs, (x, c), (C, ΠQ, ΠL)): Output 1 if the following two checks are successful and 0 otherwise:

1. Verify ΠQ, ΠL.

2. Check that [Od]1 =
∑n′

i=1[λi]1yi.

The proof of security is deferred to Sect. 6.4.

6.2 Aggregated Argument for Quadratic Constraints

Let m ∈ N. We give an argument for the promise problems defined by languages Lquad
Y ES ,L

quad
NO , which are

parameterized by m ∈ N and a multiPedersen commitment key ck := ([Λ]1, [Λ]2) and are defined as

Lquad
Y ES :=

{
(a, b, [L]1, [R]2, [O]1) : c = a ◦ b
and [L]1 = [Λ]1a, [R]2 = [Λ]2b, [O]1 = [Λ]1c

}
,

Lquad
NO :=

 (a, b, [L]1, [R]2, [O]1) : c = a ◦ b,
[L]1 = [Λ]1a and [R]2 = [Λ]2b,
but [O]1 6= [Λ]1c

 .

Perfect completeness. The argument described in Fig. 2 has perfect completeness as the values [L]1, [O]1
can be computed from {[λi(s)]1 . . . , [λm(s)]1}, and [R]1 from {[λi(s)]2 . . . , [λm(s)]2}. Further, by definition,
the polynomial L(X)R(X)−O(X) takes the value aibi−ci = 0 at point ri ∈ R. Therefore, L(X)R(X)−O(X)
is divisible by t(X), so H(X) is well defined. Further, the degree of H is at most m − 2 (since L(X)R(X)
has degree 2m− 2 and t(X) has degree m) and thus [H]1 can be computed from

{
[s]1, . . . , [s

m−2]1
}

.
Computational Soundness. We argue that if A produces an accepting proof for (a, b, c, [L]1, [R]2, [O]1) ∈
Lquad
NO then we can construct an adversary B against the (R,m)-Rational Strong Diffie-Hellman Assumption.

Given a challenge gk,
{

[si]1
}m−1
i=1

,
{

[si]2
}m
i=1

, adversary B can simulate the common reference string perfectly
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because λi(X) is a polynomial whose coefficients in Zp depend only on R of degree at most m−1. Therefore,
[λi(s)]1, [λi(s)]2 can be computed from {si}m−1i=1 in both the source groups. On the other hand, t(X) is a
polynomial with coefficients in Zp which depend only on R of degree at most m. So [t(s)]2 can be computed
in G2 given {[si]2}mi=1.

AdversaryA outputs (a, b, c, [L]1, [R]2, [O
†]1, [H

†]1) which is accepted by the verifier and (a, b, c, [L]1, [R]2, [O
†]1) ∈

Lquad
NO , which in particular means that, for L = L(s), R = R(s), the equation

e([L]1, [R]2)− e([O†]1, [1]2) = e([H†]1, [t(s)]2) (9)

holds but O† 6= O(s).
Since adversary B received a, b as part of A’s output, it can run the honest prover algorithm and obtain

O, H which satisfy that
e([L]1, [R]2)− e([O]1, [1]2) = e([H]1, [t(s)]2) (10)

and O = O(s).
Subtracting equations (9) and (10), we get e([O† − O]1, [1]2) = e([H† − H]1, [t(s)]2). Therefore, ([O† −

O]1, [H
† −H]1) is a solution to the (R,m)-Rational Strong Diffie-Hellman Assumption.

We note that the verification algorithm never uses (a, b) which are part of the statement. When using
the scheme as a building block, we omit (a, b) from the input of the verifier of the quadratic relations.

6.3 Aggregated Argument for Affine Constraints

In this section we show how to prove that the linear constraints which express correct circuit evaluation
We show that if we have some commitments Oi to known values ci, until a certain depth j, then we can
guarantee that Oj+1 opens to a fixed linear combination of c1, . . . , cj . This can be used to prove that if all
the commitment to the output gates are correct up to level j, then certain commitments Lj+1, (respectively
Rj+1) open to left wires (resp. right wires) at level j + 1.

Encoding Affine Constraints as Membership in Linear Spaces.

x
O1

O2

O3

...
Od−1


=



I 0 0 0 . . . 0
0 Λ1 0 0 . . . 0
0 0 Λ2 0 . . . 0
0 0 0 Λ3 0
...

...
...

. . .

0 0 0 0 . . . Λd−1





c0
c1
c2
c3
...

cd−1


(11)


L1

L2

L3

...
Ld

 =


F1,0 0 0 . . . 0
F2,0 F2,1 0 . . . 0
F3,0 F3,1 F3,2 . . . 0

...
...

...
. . .

...
Fd−1,0 Fd−1,1 Fd−1,2 . . . Fd−1,d−2




c0
c1
c2
...

cd−1

+


L̂1

L̂2

L̂3

...

L̂d

 , (12)


R1

R2

R3

...
Rd−1

 =


G1,0 0 0 . . . 0
G2,0 G2,1 0 . . . 0
G3,0 G3,1 G3,2 . . . 0

...
...

...
. . .

...
Gd−1,0 Gd−1,1 Gd−1,2 . . . Gd−1,d−2




c0
c1
c2
...

cd−1

+


R̂1

R̂2

R̂3

...

R̂d

 , (13)

Before we give details of our argument we write in matrix form the expression of (x, [O]1, [L]1, [R]2) in
terms of the internal wires of the circuit, following section 4.1. The commitments to the output values [O]1
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K(gk, [M]1, [N]1, [P]2, φ, {[si]1, [sj ]2}i∈[m−1],j∈[m]):
K0 ← Zn0+d−1×2

p ; K1 ← Zd×2p ,K2 ← Zd×2p ;

Sample A← D2;
Sample Γ← Zn×2p ;

Output crs =
(
gk, [M>K0 + N>K1 + Γ]1,

[P>K2 − Γ]2,

[(
K0A
K1A

)]
2

,
[
K2A

]
1

)
.

P(crs,x,a, b, c):

[u]1 =

(
[M]1
[N]1

)
c ;

[v]2 = [P]2c ;
ρ← Z2

p;
[π]1 = c>[M>K0 + N>K1 + Γ]1 + [ρ]1;
[θ]2 = c>[P>K2 − Γ]2 − [ρ]2;
output

([u]1, [v]2, [π]1, [θ]2);

V(crs,x,a, b, c, [u]1, [v]2, [π]1, [θ]2):
Check if:

e([π]1, [A]2)− e([u]1,

[(
K0A
K1A

)]
2

)

= e([θ]2, [A]1)− e([v]2, [K2A]1);

output 1 in this case and 0 otherwise.

Fig. 3. The Lin argument for proving that the vector is well formed. The argument is just a rewriting of the argument
of membership in linear spaces of [20], but we will be proving a stronger notion of soundness. The matrix A is sampled
from a distribution D2 such that the D2-SKerMDH Assumption holds, and eliminating the last row. In particular, we
can choose A to be a random diagonal matrix.

should be such that [Oi]1 = [Λi]1ci, where Λi = (λ1(s), . . . , λni(s)), and the input x = c0 is public. These
constraints can be expressed in matrix form in equation (11) We denote the matrix on the right hand side of
(11) as M, so this equation reads ( xO ) = Mc. On the other hand, the constraints satisfied by the left wires
in terms of the output wires of previous levels can be written in matrix form as shown in equation (12): that

is, for each i, Li =
∑i−1
k=1 Fi,kck + L̂i, where

Fi,k =
(∑nk

j=1 fi,j,k,1λj(s),
∑nk
j=1 fi,j,k,2λ`(s), . . .

∑nk
j=1 fi,j,k,nkλj(s)

)
(14)

and L̂i =
∑ni
j=1 fi,jλj(s), for the constants which are defined in Lemma 4. We denote the matrix on the right

hand side of equation (12) as N, so this equation reads L = Nc+ L̂. The constraints satisfied by the right
wires in terms of the output wires of previous levels can be written in a similar form as shown in equation
(13) that is, for each i, Ri =

∑i−1
k=1 Gi,kck + R̂i, where

Gi,k =
(∑nk

j=1 gi,j,k,1λj(s),
∑nk
j=1 gi,j,k,2λ`(s), . . .

∑nk
j=1 gi,j,k,nkλj(s)

)
, (15)

and R̂i =
∑ni
j=1 gi,jλj(s). We denote the matrix on the right hand side of equation (13) as P, so this equation

reads R = Pz + R̂.

With the notation defined, satisfaction of the affine constraints can be written as

(
[O′]1

[L]1−[L̂]1

[R]2−[R̂]2

)
∈ Im

(
[M]1
[N]1
[P]2

)
,

where [O′>]1 = ([x>]1, [O
>]1). That is, the linear constraints are satisfied if a certain vector is in a subspace

generated by some matrix which depends on the circuit. This can be proven with a QANIZK argument for
bilateral spaces (linear spaces with components in different source groups) due to [20]. Note that the matri-
ces [M]1, [N]1, [P]2 which define the language are witness samplable (they can be sampled along with their
discrete logarithm), so we can use the most efficient of the two arguments described in [20]. The proof size
depends on the choice of a secure Dk-Split Kernel Diffie-Hellman Assumption (Assumption 1). The minimal
proof size is 2|G1|+ 2|G2| (choosing k = 2, since the assumption is insecure when k = 1).

The full argument adapted to our setting is described in Figure (3). Perfect completeness, perfect zero-
knowledge and computational soundness under the Split Kernel Assumption, is proven in [20]. The argument
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is very close to the argument of membership in (unilateral) linear spaces of [34] for witness samplable
matrices, but where the information is divided in different groups G1,G2. Since part of the argument of [34]
is information theoretic, the key step in the proof of [20] is to make sure that this splitting in two groups
does not leak additional information.

We note that the verification algorithm never uses (a, b, c) which are part of the statement. When using
the scheme as a building block, we omit (a, b, c) from the input of the verifier of the linear relations.

Intuition: Standard soundness is not enough. At first sight, it might look that the soundness property
of the argument of membership in linear spaces is sufficient to show that the affine constraints are satisfied.
However, it only guarantees that there is a witness which satisfies all the linear constraints. Since the
commitments are perfectly hiding there might be several possible openings and the adversary could do an
opening “switch”, starting with the opening determined by the input and switch to another possible input
in some step.

More in detail, for some input x, let the witness for correct evaluation be (a†, b†, c†). If an adversary
A is capable of finding another vector c such that

( x
[O]1

)
c† =

( x
[O]1

)
c, then the adversary can construct

the values Li, Ri using c, and prove that

 [x]1
[O]1

[L]1−[L̂]1

[R]2−[R̂]2

 =

(
[M]1
[N]1
[P]2

)
c. This will convince the verifier that the

output of evaluation of the circuit is cd instead of the right value c†d, although the adversary did not break
the soundness of the proof of membership in bilateral spaces.

Now the attack we just described seems easy to rule out, because the Lagrangian Pedersen commitments
are computationally binding and such a pair (c, c†) cannot be found efficiently. However, there is no easy
reduction of the attack to breaking the binding property of the commitments. Since x is public, c† can be
computed from x but the output of the adversary is too short to extract c, so we do not know how to prove
that it broke the binding property.

Formal Analysis. We now define the security properties satisfied by the argument in figure 3 and analyze
its security. The argument satisfies completeness and soundness for the promise problem will show that the
QANIZK argument of membership in linear spaces as described is an argument for the promise problem
defined by the languages

Llin
Y ES = {(c, [O′]1, [L]1, [R]2) : [O]1 = [M]1c, [L]1 = [N]1c, [R]1 = [P]c}

Llin
NO =

{
(c, [O′]1, [L]1, [R]2) : ∃i∗ ≤ d s.t. [Oi∗ ]1 = [Mi∗ ]1c but

[Li∗+1]1 6= [Fi∗+1]1c or [Ri∗+1]2 6= [Gi∗+1]2c

}
,

where Xi denotes the first i rows of matrix X.

To do so we assume that the membership proof given in Figure (3) satisfies an additional property
when the matrices [M]1, [N]1, [P]2 are sampled from the distribution specified above (which depends on the
constants of the circuit and the choice of s).

Given an adversary that produces a valid proof for a statement in Llin
NO, successful attacks can be divided

in two categories.

Type I: In this attack
(

[u]1
[v]2

)
is not in the image of Q =

(
[M]1
[N]1
[P]2

)
.

Type II: In this type of attack, the vector is in the right subspace.

The subargument is sound under the Dk-SKerMDH Assumption, which rules out Type I attacks, and
the “tautological” assumption that Type II attacks are infeasible. We note that it is falsifiable, as one can
sample Q,K with the right distribution and decide whether the adversary has been successful with Type II
attack.
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Definition 5. (Hardness of Type II attacks) Let Rφ ∈ RΦ. For the matrices ([M]1, [N]1, [P]2) chosen ac-
cording to the distribution specified above, every polynomial time prover of the Lin argument has negligible
probability of outputting a tuple (c, [O′]1, [L]1, [R]2, [π]1, [θ]2) such that:

– [O′]1, [L]1, [R]2, [π]1, [θ]2 is accepted by the verifier,
– ([O′]1, [L]1, [R]2) ∈ Im(Q).
– (c, [O′]1, [L]1, [R]2) ∈ LLin

NO.

An equivalent formulation of the assumption says that it is not possible to prove membership in the image
of D of vectors of a certain form, namely, any vector which has i∗ 0’s in the first d rows and but has less
than i∗ zeros in the rows from d+ 1, . . . , 2d or in the in the rows from 2d+ 1, . . . , 3d. In the supplementary
material we prove that the assumption is generically equivalent to breaking the soundness property of the
Pedersen commitment.

Generic Hardness of Type II Attacks The proof can be generalized to any matrix A associated to a
kernel assumption, but for simplicity in the analysis we will choose A to be a random diagonal matrix in
Z2×2
p .

Theorem 1. An adversary A successful against type II attacks can be used to construct an adversary B which
receives (gk, {[si]1}nmax−1i=1 , {[sj ]2}nmaxj=1 and outputs ŵ such that Λŵ = 0, for Λ = (λ1(s), . . . , λnmax(s)) in
the asymmetric generic bilinear group model.

Proof. AdversaryA receives (gk, {[si]1}nmax−1i=1 , {[sj ]2}nmaxj=1 , and generates the common reference string crsLin,

which is given to A. Eventually, A outputs a successful Type II attack (c, [u]1, [v]2, [π]1, [θ]2), where u> =
(x>,O>,L>) and v = R.

For simplicity, we introduce the following notation:

Ku =

(
K0

K1

)
,Kv =

(
K2

)
,Q1 =

(
M
N

)
,Q2 =

(
P
)

.
We show that if A is generic, we can extract from the adversary some vector w such that u = Q1w,u =

Q1w. Together with the vector of consistent evaluations c which can be computed from c, this allows to
compute an element in the kernel of Λ.

The crs includes the result of evaluating matrices of polynomials (of the appropriate dimensions) A(Z) :=(
ZA,1,1 0

0 ZA,2,2

)
, Ku(Z) := (ZKu,j,k), Kv(Z) := (ZKv,j,k), Γ(Z) = (ZΓ,i,j), M(ZS),N(ZS),P(ZS), QK,1(Z) =

(Q1(XS))>Ku(Z)+Γ(Z) and QK,2(Z) = (Q2(XS))>Kv(Z)−Γ(Z) at a random point z = (a1,1, a2,2, ku,1,1,
. . . , γn,2, s).

The adversary outputs [u]1, [v]2, [π]1, [θ]2 which are the result of evaluation polynomials u(Z),v(Z),π(Z),θ(Z)
in z, and the coefficients can be efficiently extracted in the generic group model. We now argue that these
coefficients are in fact some vector w ∈ Znp such that u = Q1w,v = Q2w.

Since the proof produced by the adversary satisfies the verification equation, it follows that

π(z)>A(z)− u(z)>Ku(z) = θ(z)>A(z)− v(z)>Kv(z)

⇐⇒ (π(z) + θ(z))>A(z) = u(z)>Ku(z) + v(z)>Kv(z),

By the Schwartz-Zippel lemma, A(z) is invertible and the last equation implies that the following polynomial
equation holds with overwhelming probability, which we write as:

πj(Z) + θj(Z) =

n0+2d∑
i=1

ui(Z)ZKu,i,j +

d∑
i=1

vi(Z)ZKv,i,j for j = 1, 2 (16)

We now use that we are in the asymmetric generic group model and that πj , ui (resp. θj , vi) must be
constructed as linear combinations of the polynomials which are evaluated in G1 (resp. in G2). In particular,
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– From equation (16), it follows that πj must be computed as a linear combination of the polynomials
KvA, {q>1,iKu,j + Γi,j}, i = 1, . . . , n, j = 1, 2 which are the polynomials in the first source group which
have K terms.

– Similarly, it follows that θj must be computed as a linear combination of the polynomials KuA, {q>2,iKv,j−
Γi,j}, i = 1, . . . , n, j = 1, 2 which are the polynomials given in the first subgroup which have K terms.

– The latter two points imply that ui(Z), vi(Z) cannot depend on the K-variables, because the left
hand side of the equation depends only linearly in these variables. So ui(Z) is a linear combination of
Q1(ZS), ZjS and vi(Z) is a linear combination of Q2(ZS), ZjS .

– We conclude that θj must be computed as a linear combination of the polynomials {q>2,iKv,j −Γi,j} and

πj must be computed as a linear combination of the polynomials {q>1,iKu,j + Γi,j}. This is because the

right hand side does not include terms with A. Because of the variables Γi,j must cancel, the coefficients
must be equal.

– Finally, we argue that there is a unique set of possible coefficients. This follows because the columns of

Q =

(
Q1

Q2

)
are linearly independent polynomials, this is argued as in Lemma 9.

If the coefficients of the linear combination are calledw, it follows from the definition that (π(z)+θ(z)) =
Qw and they can be extracted from the adversary. Since the adversary breaks soundness w 6= c, and there
exists some i∗ such that wi∗ 6= ci∗ but Λi∗wi∗ = Λi∗ci∗ and ci∗ can be computed from x. This concludes
the proof.

6.4 Security Proof

We now prove the security of the argument given in Sect. ??.
Perfect completeness is obvious, because if (x,y,a, b, c) is a valid witness for satisfiability, then it satisfies

both linear and quadratic constraints.
We sketch the proof of computational soundness. Let A be an adversary against the soundness of the

scheme. We construct adversaries B1 and B2 against the quadratic or the linear knowledge transfer arguments,
respectively.

Adversary B1 receives the common reference string of the quadratic subargument (gk,
{

[si]1
}nmax−1
i=1

,{
[si]2

}nmax
i=1

) and creates the common reference string of the full argument. When it receives an accepting

proof (C = {[L]1, [R]2, [O]1}di=1, ΠQ, ΠL) from adversaryA for some statement (x,y), adversary B1 computes
the full witness for correct evaluation (a, b, c). It then searches for an index i such that [Li]1 and [Ri]2 are
commitments to ai and bi but [Oi]1 is not a valid commitment to ai◦bi. If such an i does not exist, it aborts.
Else, it returns (ai, bi, [Li]1, [Ri]2, [Oi]1) as an instance of LNO together with an accepting proof [Hi]1.

Adversary B2 receives the common reference string of the linear subargument associated to some cir-
cuit φ, plus the necessary powers of [s]1,2 to create the common reference string of the full argument

(gk,
{

[si]1
}m−1
i=1

,
{

[si]2
}m
i=1

). When it receives an accepting proof (C = {[L]1, [R]2, [O]1}di=1, ΠQ, ΠL) from
adversary A for some statement (x, c), the adversary B2 computes the full witness (a, b, c). It then searches
for an index i such that [O1]1, . . . , [Oi−1]1 are commitments to c1, . . . , ci−1 but either [Li]1 or [Ri]2 are not
valid commitments to ai or bi. If such i does not exist, it aborts, else (c,x, [O]1, [L]1 − [L̂], [R]2 − [R̂]2) is a
successful attack against the soundness of the argument for affine constraints.

For every successful adversary A at least one of the adversaries B1,B2 does not abort. This is because if
the statement is false there must be some point in the “chain” where either [Li]1, [Ri]2 are honestly computed
but [Oi]1 not, or [Oi]1 is honestly computed but [Li+1] or [Ri+1] not.

6.5 Efficiency

The proof size is (3d + 2)|G1| + (d + 2)|G2| and naive verification requires to compute 3d pairings for the
quadratic relations and 2(n0 + 3d+ 4) for the linear part. Using the “bilinear batching” techniques of Herold
et al. [28] the number of pairings can be reduced to n0 + 3d + 4 for the linear part. Since the input is
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known in Zp, n0 pairings in this part can be replaced by n0 exponentiations in GT . Finally, using standard
batching techniques [14], the number of pairings for the quadratic part can be reduced to d+ 2. As a result
the total number of pairings required for verification is 4d+ 6, plus n0 exponentiations in GT and O(n0 + d)
exponentiations in the source group.

6.6 Adding Zero-Knowledge

In this section we argue how to add zero-knowledge to the argument for correct arithmetic circuit evaluation
of Sect. 6. The same discussion applies for the argument for boolean circuit satisfiability discussed in App. C.5
for boolean circuits.

We have to distinguish two different situations. In the first one the input is public, and we can easily
modify our proof so that it reveals nothing about the internal evaluation steps.

In most applications however, the input or part of the input must be secret. To deal with this second
situation, the circuit input cannot be part of the verifier’s input, at least not in the clear. A natural idea
is to let the prover commit to it. The problem is that our “knowledge transfer” idea requires the reduction
in the soundness proof to know this secret input, which means that the commitment to the input must be
extractable so that we can efficiently extend it a vector of correct evaluations (a, b, c). Even in a QANIZK
setting where we can efficiently open the commitments, they are only F -extractable [12] (under falsifiable
assumptions), which means that we can only extract in the source groups but not in Zp. This leaves us only
with a couple of solutions, all of them unsatisfactory.

One of them is to commit to inputs bitwise and prove that this is done correctly. This is not acceptable
in terms of concrete efficiency for arithmetic circuits, but it is a practical approach for boolean circuits.

The second one is to use a commitment to the input which is extractable under knowledge assumptions.
Of course, then our construction is no longer secure under falsifiable assumptions. It is interesting in the
sense that it indicates a tradeoff in SNARK construction: longer proof size and verification costs (Θ(d) group
elements/ pairings, respectively) but shorter common reference string (Θ(maxi=0,...,d ni)).

∑
ni ≤ n.

The last option is to use a proof of knowledge of the input in the random oracle model. This again
deviates from our original purpose of constructing proofs under falsifiable assumptions. Using the recent
results of [7,9], we can get such a proof of size Θ(

√
n0) with a constant number of rounds or Θ(log n0) with

a logarithmic number of rounds. In this case, it still interesting because this might improve (although it
depends on the circuit) the size of the total proof, from log n to log n0 + d, athough at the price of moving
to a pairing group.

In any case, we leave for future work to explore the possibilities of this mixed approaches. We now give the
technical details on how to add zero-knowledge to our argument for correct circuit evaluation, distinguishing
the two aforementioned situations.

Adding Zero-knowledge to Correct Evaluation of Middle Wires. This step is straightforward.
The argument is changed so that [L]1, [R]2, [O]1 are not given in the clear, but instead the prover gives
GS commitments [27] to each of its components. For the quadratic argument, it gives a GS Proof that the
verification equation is satisfied, that is, for each i it proves in zk that the pairing product equation:

e([Li]1, [Ri]2)− e([Oi]1, [1]2) = e([Hi]1, [T ]2)

is satisfied, where [Li]1, [Ri]2, [Oi]1, [Hi]1 are hidden committed values.
For the linear argument, it suffices to give a GS proof of satisfiability of the the verification equation

in Fig. 3. In its most efficient instantiation, the verification equation in Fig. 3 consists of 2 pairing product
equations and hence the GS proof consists of 8 elements of each group.

An alternative, more efficient approach (which requires only 2|G1|+ 2|G2| group elements) for the linear
argument proves that the vectors of committed elements are in a certain linear (bilateral) space. The idea is
quite simple but a little cumbersome, so we explain in Sect. 6.7.

Adding this zero-knowledge layer in the intermediate wires is not too costly. The total size of the proof is
4d|G1|+ 2d|G2| for the commitments to the wires, 4d|G1|+ 4d|G2| for the GS proofs of quadratic equation,
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2|G1|+2|G2| for the linear constraints part. Verification requires 26 pairings for each GS verification equation
and 2(n0 + 3d + 4) for the linear proof. First, one can observe that in fact since the input is known in Zp,
the n0 pairings can be replaced by exponentiations in GT . Second, using the “bilinear batching” techniques
of [28] this is reduced to 7d+ 3d+ 4. Finally, using traditional batching techniques [14], the cost of verifying
all the to GS equations can be reduced to d+ 6, resulting in a total cost of 4d+ 10 pairings (and O(n0 + d)
exponentiations).

Hiding the input and output. Finally, we discuss how to use our results in a scenario where not only
the middle values of the wires should be hidden but also the input and the output. In this case the prover
commits to the input x using an extractable commitment (using one of the options described above). For
instance, cx can be just the concatenation of GS commitments to the inputs provided the prover submits
also a proof of knowledge of their opening (giving additional bitwise commitments and a proof that cx is
of the right form, a proof of knowledge in the ROM) or a commitment of knowledge under extractable
assumptions). In all these cases, cx can be written as [cx]1 = [E]1x + [V]1s (or, if it has components in
both source groups in G1,G2 in a similar way except that the matrices E and V will also have component
in different groups).

The only difference in this case is that in the first n0 rows of M we replace the identity matrix by the
matrix E and we add columns of the form

(
E, 0

)
.

The output is never given in the clear but the commitment to [Od]1 is a perfectly binding commitment
to it.

6.7 Zero Knowledge Argument of Linear Knowledge Transfer

Given [M]1, [N]1, [P]2 it is straightforward to find matrices [M̃]1, [Ñ]1, [P̃]2 such that
x

[O]1
[L]1 − [L̂]1
[R]2 − [R̂]2

 ∈ Im

 [M]1
[N]1
[P]2

⇐⇒


x
[cO]1

[cL]1 − [cL̂]1
[cR]2 − [cR̂]2

 ∈ Im


 [M̃]1

[Ñ]1
[P̃]2


 , (17)

where [c>
L̂

]1 = [(L̂1, 0, L̂2, 0, ..., L̂d, 0)]1 and [c>
R̂

]2 = [(R̂1, 0, R̂2, 0, ..., R̂d, 0)]2 are commitments (with 0 ran-

domness) to the public constants and cW , for W ∈ {L,R,O}, is the vector of commitments to W .

For instance,

M̃ =


I 0 0 . . . 0 0 0 0 . . . 0
0 Λ1 0 . . . 0 0 U 0 . . . 0
0 0 Λ2 . . . 0 0 0 U . . . 0
...

...
... . . .

...
0 0 0 0 . . . Λd−1 0 0 . . . U


where U =

(
u1, u2

)
is the matrix whose columns are the commitment keys to elements of G1 in the SXDH

instantiation of GS proofs. If si ∈ Z2
p is the randomness of the GS commitment to Oi, obviously,

[cO]1 = [M̃]1


z
s1
...
sd

 .

Similar matrices Ñ, P̃ can be derived from N,P and the commitment key so that equation (17) holds.
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A Security Definitions

A.1 Dual-mode commitments and Groth-Sahai proofs [26].

Groth-Sahai proofs allow to prove satisfiability of quadratic equations in bilinear groups in the non-interactive
setting. More precisely, Groth-Sahai proofs deal with equations of the form

my∑
j=1

ajyj +

mx∑
i=1

bixi +

mx,my∑
i,j=1

γi,jxiyj = t,

in which the set of variables is divided into two disjoint subsets X = {x1, . . . , xmx} and Y = {y1, . . . , ymy},
and depending on the type of equation X,Y ⊂ Zp (quadratic equations in Zp), X ⊂ Zp,Y ⊂ Gγ (multi-
exponentiation equations in Gγ) for γ ∈ {1, 2} or X ⊂ G1 and Y ⊂ G2 (pairing product equations).

The scheme can be seen as a commit-and-prove scheme [12], where in the first step the prover gives
commitments to the solutions, and in the second provides a proof that these commitments verify the corre-
sponding equation. In particular, the commitments used are dual-mode commitments, that is, commitments
that can be either perfectly binding or perfectly hiding, and we can move from one to the other with an
indistinguishable change of security game. More precisely, Groth-Sahai commitments to field elements z ∈ Zp
and group elements [z]s ∈ G are, respectively:

Com(z;w) = z [u]s + w[u1]s, Com([z]s;w1, w2) =

[
0
z

]
s

+ w1[u1]s + w2[u2]s,

where [u]s, [u1]s, [u2]s are vectors in G2 given in the commitment key, and their definitions depend on
whether we want the commitments to be perfectly binding or perfectly hiding.

Groth-Sahai proofs are sound, witness-indistinguishable and, in many cases, zero-knowledge. More pre-
cisely, the proof is always zero-knowledge for quadratic equations in Zp and multi-exponentiation equations,
and also for pairing product equations provided that t = 1.

A.2 Quasi-Adaptive NIZK proofs

QANIZK proofs consider a language defined by a relation Rρ, which in turn is completely determined by
some parameter ρ sampled from a distribution Dgk . We say that Dgk is witness samplable if there exists an
efficient algorithm that samples (ρ, ω) from a distribution Dpar

gk such that ρ is distributed according to Dgk ,
and membership of ρ in the parameter language Lpar can be efficiently verified with ω. While the Common
Reference String can be set based on ρ, the zero-knowledge simulator is required to be a single probabilistic
polynomial time algorithm that works for the whole collection of relations Rgk .

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations Rgk =
{Rρ}ρ∈sup(Dgk ) with parameters sampled from a distribution Dgk over associated parameter language Lpar, if
there exists a probabilistic polynomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;ψ ← K1(gk , ρ); (x,w)← A1(gk , ψ);
π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;ψ ← K1(gk , ρ);
(x, π)← A2(gk , ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0.
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Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← K0(1λ); ρ← Dgk ;ψ ← K1(gk , ρ) : AP(ψ,·,·)
3 (gk , ψ) = 1] =

Pr[gk ← K0(1λ); ρ← Dgk ; (ψ, τ)← S1(gk , ρ) : AS(ψ,τ,·,·)
3 (gk , ψ) = 1]

where

– P(ψ, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof π if (x,w) ∈ Rρ.
Otherwise, it outputs ⊥.

– S(ψ, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated proof S2(ψ, τ, x) if (x,w) ∈ Rρ
and ⊥ if (x,w) /∈ Rρ.

Note that ψ is the CRS in the above definitions. We assume that ψ contains an encoding of ρ, which is thus
available to V.

In this work algorithm K0 always samples the group key for an asymmetric bilinear group. For this reason
we will always omit K0.

B An Example

We illustrate how our encoding for circuit satisfiability which divides the linear constraints into different
levels works.

Example 1. φ : Z4
p → Zp, φ(x1, x2, x3, x4) = (((x1+2x2)(x3+x4))(3+4x2))((x2+x4)x1). If we set C0,j = xj ,

j = 1, 2, 3, 4, then C(x1, x2, x3, x4) = c and Ci,j is a valid assignment of the jth multiplication gate at level
i if and only if the following equations are satisfied:

– Level 1: • C1,1 = A1,1B1,1 A1,1 = (C0,1 + 2C0,2), B1,1 = (C0,3 + C0,4) • C1,2 = A1,2B1,2, A1,2 =
(C0,2 + C0,4), B1,1 = C0,1.

– Level 2: • C2,1 = A2,1B2,1, A2,1 = C1,1 B2,1 = (3 + 4C0,2).

– Level 3: • C3,1 = A3,1B3,1, A3,1 = C2,1, B3,1 = C1,2.

– Correct output: C3,1 = y.

The Lagrangian Pedersen commitments for each level and each side are defined as:

– Level 1: • L1 = (C0,1 + 2C0,2)λ1 + (C0,2 + C0,4)λ2 • R1 = (C0,3 + C0,4)λ1 + C0,1λ2.

– Level 2: • L2 = C1,1λ1 • R2 = 4C0,2λ1.

– Level 3: •L3 = C2,1λ1 • R3 = C1,2λ1,

and the affine term (L̂1, R̂1, L̂2, R̂2, L̂3, R̂3) = (0, 0, 0, 3λ1, 0, 0). In matrix form,

c0,1
c0,2
c0,3
c0,4
L1

R1

L2

R2

L3

R3


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
λ1 2λ1 0 λ2 0 0 0
λ2 0 λ1 λ1 0 0 0
0 0 0 0 λ1 0 0
0 4λ1 0 0 0 0 0
0 0 0 0 0 λ1 0
0 0 0 0 0 0 λ1





c0,1
c0,2
c0,3
c0,4
c1,1
c1,2
c2,1


+



0
0
0
0
0

3λ1
0
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C Boolean Circuits

For boolean circuits, we let R be a relation generator which on input 1λ outputs a family of polynomial time
decidable relations RΦ = {Rφ : φ ∈ Φ}, where,

– for some N , Φ is the set of all boolean circuits such that the total number of inputs plus gates is at most
N ,

– Rφ = {(φ, (xpub,xsec),y) : φ(xpub,xsec) = y}.

Further, the associated language is Lφ = {(φ,xpub,y) : ∃xsec, (xpub,xsec,y) ∈ Rφ}. The circuit φ computes

a function {0, 1}n → {0, 1}n′ for some n, n′ ∈ N. The gates of φ are arbitrary fan-in two gates. Again, the
statement is u = (φ,xpub,y) and the witness is w = (xsec) or any information which can be efficiently
computed from (u,w).

C.1 Preliminaries on Boolean Circuits

We extend our results to any boolean circuit φ : {0, 1}n → {0, 1}n′ with m multiplication gates and where
all the gates have fan-in two. The gates of φ can be of any type (excluding non-interesting or trivial gate
types).

We give two constructions which have different performance. The first one characterizes boolean gates as
quadratic operations on the input. The second one uses the gate linearization approach of [10], which observe
that if the left, right and output wire a, b, c of a certain gate are boolean, then correct gate evaluation can be
reduced to proving that a linear combination of the three wires is in {0, 2}. Note that despite of the name,
“gate linearization” is still a quadratic condition, as x ∈ {0, 2} is equivalent to saying that x is the solution
to a quadratic equation. The first characterization is closer to a a Quadratic Span Program, while the second
one is closer to Square Span programs.

We list below the 10 gate types allowed for the circuit φ, along with both characterizations. The list of
gates is taken from [10], which observe that the last remaining 6 gate types depend mostly on one input and
are not used often.

– AND(a, b, c): 1) ab = c, 2) a+ b− 2c ∈ {0, 1}.
– NAND(a, b, c): 1) 1− ab = c, 2) a+ b− 2(1− c) ∈ {0, 1}.
– OR(a, b, c): 1) 1− (1− a)(1− b) = c, 2) (1− a) + (1− b)− 2(1− c) ∈ {0, 1}.
– NOR(a, b, c): 1) (1− a)(1− b) = c, 2) (1− a) + (1− b)− 2c ∈ {0, 1}.
– XOR(a, b, c): 1) b(1− a) + a(1− b) = c, 2) a+ b+ c ∈ {0, 2}.
– XNOR(a, b, c): 1) 1− a(1− b)− b(1− a) = c, 2) a+ b+ (1− c) ∈ {0, 2}.
– G1(a, b, c) = (c = a ∧ b): 1) (1− a)b = c, 2) (1− a) + b− 2c ∈ {0, 1}.
– G2(a, b, c) = (c = a ∧ b): 1) 1− (1− a)b = c, 2) (1− a) + b− 2(1− c) ∈ {0, 1}.
– G3(a, b, c) = (c = a ∧ b): 1) a(1− b) = c, 2) a+ (1− b)− 2c ∈ {0, 1}.
– G4(a, b, c) = (c = a ∧ b): 1)1− a(1− b) = c, 2) a+ (1− b)− 2(1− c) ∈ {0, 1}.

From each one of the two characterizations, we derive a lemma which expresses boolean circuit satisfi-
ability in terms of different sets of equations. The first one uses the expression of boolean gates in terms
of quadratic equations. The constants fi,j , gi,j establish consistency of the wires and the constants αi, βi, γi
depend on the type of gate and make sure that the right gate is evaluated.

Lemma 11. Let φ : {0, 1}n → {0, 1}n′ , be a circuit with m boolean gates. There exist

a) variables Ai, Bi, Ci, i = 1, . . . , n+m,
b) constants fi,j , gi,j ∈ {0, 1}, i = 1, . . . , n+m, j = 1, . . . , n+m,
c) constants βi, γi, εi ∈ {0, 1}, i = n+ 1, . . . , n+m,

such that, for every (x1, . . . , xn) ∈ Znp , if we set Cj = xj, for all j = 1, . . . , n, then φ(x) = y and An+i, Bn+i
and Cn+i are evaluated to the left, right and output of the ith gate if and only if the following equations are
satisfied:
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1. (Boolean input) For each i = 1, . . . , n,

AiBi − Ci = 0. (18)

2. (Correct Gate Evaluation) For each i = n+ 1, . . . , n+m,

Ci = AiBi + βiAi + γiBi + εi. (19)

3. (Affine constraints) For each i = 1, . . . , n+m,

Ai =

n+m∑
j=1

fi,jCj Bi =

n+m∑
j=1

gi,jCj .

4. (Correct Output) For all j = 1, . . . , n′, Cn+m−n′+j = yj.

Proof. For i = 1, . . . , n, the constraints fi,j , gi,j should be defined as 0 if i 6= j and 1 otherwise. Then, for
any a, b, c satisfying the constraints, ai = ci and bi = ci, and the equation expresses the fact that the input
is boolean, as aibi − ci = c2i − ci is satisfied if and only if ci ∈ {0, 1}.

On the other hand, the circuit φ specifies, for the ith circuit gate, a pair of indexes jL, jR which indicate
the left and right wire, and also a type of gate. That is, from the quadratic expression for boolean circuit
satisfiability, correct evaluation of this gate is expressed as:

Cn+i = CjLCjRαi + CjLβi + CjR γ̂i + εi,

for some constants α, βi, γ̂i, εi which depend on the gate type and such that αi ∈ {±1}. This can be rewritten
as:

Cn+i = CjL(CjRαi) + CjLβi + (CjRαi)(αiγ̂i) + εi, (20)

where we use the fact that α2
i = αi. For i = n + 1, . . . , n + m, we define the constant fi,j and gi,j to be 0

everywhere except for fi,jL = 1 and gi,jR = αi. Therefore, Ai =
∑n+m
j=1 fi,jCj = CjL , Bi =

∑n+m
j=1 gi,jCj =

CjRαi and equation 21 can be rewritten as:

Ci = AiBi +Aiβi +Biγi + εi, (21)

where γi = αiγ̂i. Obviously, this implies that if Cj = xj , and the linear constraints are satisfied, then the rest
of the output wires are also consistent with this definition. Together with the conditions which guarantee
that the input is boolean, we conclude that, for j = n+m−n′+1, . . . , n+m, Cj is the output corresponding
to this input. Therefore, if these values are consistent with y, we can conclude that φ(x) = y.

For succintness, we will express all the quadratic equations (boolean input and correct gate evaluation)
as a divisibility relation with the usual polynomial aggregation technique.

Lemma 12. Let R ⊂ Zp be a set of cardinal n+m and let λi(X) be the associated Lagrangian polynomials

and t(X) the polynomial whose roots are the elements of R. Let φ : {0, 1}n → {0, 1}n′ , be any circuit with m
boolean gates. There exist some unique polynomials uL(X), uR(X), u0(X) of degree at most n+m− 1 which
are efficiently computable from the circuit description and such that for any tuple (a, b, c) ∈ (Zn+mp )3, if

`(X) =

n+m∑
i=1

aiλi(X), r(X) =

m∑
i=1

biλi(X), o(X) =

n+m∑
i=1

ciλi(X),

it holds that (a, b, c) satisfy equations (18) and (19) if and only if t(X) divides p(X), where

p(X) = `(X)r(X) + `(X)uL(X) + r(X)uR(X) + u0(X)− o(X).
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Proof. The proof is a direct consequence of Lemma 11. Indeed, for i = 1, . . . , n, it suffices to define uL(ri) = 0,
uR(ri) = 0 and u0(ri) = 0. Therefore,

p(ri) = `(ri)r(ri)− o(ri) = aibi − ci.

On the other hand, for i = n + 1, . . . , n + m, it suffices to define uL(X), uR(X), u0(X) to take the values
uL(ri) = βi, uR(ri) = γi and u0(ri) = εi. Therefore, p(ri) = aibi + aiβi + biγi + εi − ci.

These two facts together prove that if equations (18) and (19) are satisfied then p(X) is divisible by t(X),
since it is 0 in all of its roots.

Finally, the polynomials uL(X), uR(X), u0(X) can be efficiently computed from the circuit description,
as they depend only on n,m and the type of each gate.

We now state a similar lemma which uses the other characterization of correct gate evaluation.

Lemma 13. Let φ : {0, 1}n → {0, 1}n′ , be a boolean circuit with m gates. There exist

a) variables Ci, i = 1, . . . , n+m
b) variables Di, i = 1, . . . ,m,
c) constants fi, fi,j ∈ Zp, i = 1, . . . ,m, j = 1, 1, . . . , n+m

such that, for every (x1, . . . , xn) ∈ Znp , if we set Cj = 2xj, for all j = 1, . . . , n, then φ(x) = y and Cn+i is
evaluated to the two times the output of the ith gate if and only if the following equations are satisfied:

1. (Boolean wires) For each i = 1, . . . , n+m,

(Ci − 1)2 = 1.

2. (Correct evaluation of gates) For each i = 1, . . . ,m,

(Di − 1)2 − 1 = 0.

3. (Affine constraints)

Di = fi +

n+m∑
j=1

fi,jCj .

4. (Correct Output) For all j = 1, . . . , n′, Cn+m−n′+j = 2yj.

Proof. The lemma is a direct characterization of gate linearization. Multiplying by two when necessary, write
all gate linearization constraints as proving that a linear combination of a, b, c is in {0, 2}. The constants
fi, fi,j should be defined as encoding the gate linearization constraint. For instance, if the ith gate is a NAND
gate which takes as left and right input the wires CjL , CjR and outputs CjO , Di = 2CjL + 2CjR + 2CjO − 4,
i.e. fi = −4, fi,jL = fi,jR = fi,jO = 2.

C.2 Circuit Slicing for Boolean Circuits

We partition the set of gates G of a given circuit φ into d different subsets G1, . . . ,Gd. The subset Gi consists
of all the gates at level i, that is, each gate in Gi, takes as input a left wire wL and a right wire wR and both
wires have been obtained from the input wires by evaluating at most i − 1 gates and at least one of wL or
wR is the result of evaluating exactly i − 1 gates. Let ni be the cardinal of the gates at level i. We assume
gates at each level are ordered in some way and they are denoted as Gi,1, . . . , Gi,ni .

We encode boolean circuit satisfiability as d sets of equations in a very similar way as we did for the
arithmetic case. For each level i, define variables Ci,j , j = 1, . . . , ni. The equations will be defined so that
each of these variables encodes the output of gate j at level i. The gate Gi,j will be correctly evaluated if

Ci,j = Gi,j(Ai,j , Bi,j),
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where Ai,j = CkL,`L and Bi,j = CkR,`R for some indexes 0 ≤ kL, kR < i, `L ∈ {1, . . . , nkL} and `R ∈
{1, . . . , nkR}, which depend on i, j and which are specified by the circuit description. That is, the left wire
of Gi,j should be evaluated to the output of the `L gate at level kL and the right wire to the output of the
`R gate at level kR. The following lemma is obvious from this discussion and the expression of boolean gates
as a quadratic equation.

Lemma 14. Let φ : {0, 1}n0 → {0, 1}nd , be a circuit of multiplicative depth d with ni gates at level i. There
exist

a) variables Ci,j, i = 0, . . . , d, j = 1, . . . , ni,
b) variables Ai,j , Bi,j, i = 1, . . . , d, j = 1, . . . , ni,
c) constants fi,j,k,`, gi,j,k,` ∈ {0, 1}, i = 1, . . . , d, k = 0, . . . , i− 1, j = 1, . . . , ni, ` = 1, . . . , nk,
d) constants βi,j , γi,j , εi,j , δi,j ∈ {0, 1}, i = 1, . . . , d, j = 1, . . . , ni, which depend on the gate type:

such that, for every (x1, . . . , xn0
) ∈ Zn0

p , if we set C0,j = xj, for all j = 1, . . . , n0, then x ∈ {0, 1}n0 ,
φ(x) = y, and Ai,j, Bi,j and Ci,j are evaluated to the output of the jth gate at level i if and only if the
following equations are satisfied:

1. (Quadratic constraints). For each i = 1, . . . , d, for all j = 1, . . . , ni,

Ci,j = Ai,jBi,j +Ai,jβi,j +Bi,jγi,j + εi,j , (22)

where

Ai,j =

i−1∑
k=0

nk∑
`=1

fi,j,k,`Ck,` and (23)

Bi,j =

i−1∑
k=0

nk∑
`=1

gi,j,k,`Ck,`. (24)

2. (Correct Output) For all j = 1, . . . , nd, Cd,j = yj.

We note that for each i, j the constants fi,j,k,` are zero everywhere except for fi,j,kL,`L = 1 and gi,j,k,` also
except for gi,j,kR,`R ∈ {±1}.

C.3 First NIZK Argument in the Generic Group Model

From the first characterization of boolean circuits, given in Lemma 11 and Lemma 12, we can construct
a SNARK with the same universal and updatability properties discussed before. This characterization also
separates quadratic and linear constraints in such a way that the quadratic constraints are universal.

To ease readability, we omit the algorithms of the scheme which only refer to updates and verification of
the common reference string, as well as the description of the proofs of correctness and update trapdoors,
which are the same as in the argument for arithmetic circuit satisfiability of Sect. 5.

More formally, we let R be a relation generator which on input 1λ outputs a family of polynomial time
decidable relations RΦ = {Rφ : φ ∈ Φ}, where,

– for some N , Φ is the set of all boolean circuits such that if the number of inputs is n, the number of
gates is m, then m+ n ≤ N ,

– Rφ = {(φ, (xpub,xsec),y) : φ(xpub,xsec) = y}.

Further, the associated language is Lφ = {(φ,xpub,y) : ∃xsec, (xpub,xsec,y) ∈ Rφ}. The circuit φ computes

a function {0, 1}n → {0, 1}n′ for some n, n′ ∈ N. The gates of φ are arbitrary (non-trivial) fan-in two gates.

Setup(RΦ): This algorithm samples s← Z∗p and publishes

ΣΦ =
(
gk, {[λi(s)]1,2}Ni=1, {[si]1,2}Ni=1, [t(s)]1,2

)
,

where λi(X) are the Lagrangian polynomials associated to some set R = {r1, . . . , rN} ⊂ Zp. The
simulation trapdoor is τΣ = s.
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Drv.Setup(φ, npub, ΣΦ): On input a circuit φ : Znp → Zn′p with m multiplication gates, npub ≤ n public inputs

and such that n+m ≤ N and ΣΦ, this algorithm computes ([Q]1, [q0]1) ∈ G4×n+m+3
1 ×G4

1, defined as:

Q =


Λpub 0 Λopt 0 0 0
Λpub Λmid Λopt t(s) 0 0
Vpub Vmid 0 0 t(s) 0
Wpub Wmid 0 0 0 t(s)

 , (25)

where Λpub = (λ1(s), . . . , λnpub(s)),Λmid = (λnpub+1(s), . . . , λn+m−n′(s)),Λopt = (λn+m−n′+1(s), . . . , λn+m(s)),
Vpub = (v1(s), . . . , vnpub(s)),Vmid = (vnpub+1(s), . . . , vn+m−n′(s)),Wpub = (w1(s), . . . , wnpub(s)),Wmid =

(wnpub+1(s), . . . , wn+m−n′(s)), and the sets of polynomials V = {vi(X)}n+mi=1 ,W = {wi(X)}n+mi=1 are
the ones associated to the circuit, which satisfy that vj(ri) = fi,j , wj(ri) = gi,j for the constants of
Lemma 11. It samples k ← Z4

p and publishes σφ,lin = ([Q>k]1, [k]2). It outputs the final common
reference string:

σφ = (ΣΦ, [Q]1, [uL(s)]2, [uR(s)]1, [u0(s)]T , φ, npub, σφ,lin).

Prove(φ, σφ, (xpub,xsec,y)): From (xpub,xsec,y) the prover generates a (redundant) satisfiability witness
(a, b, c) which satisfies the constraints of Lemma 12.
1. Sample δ1, δ2, δ3 ← Zp and commit to a, b, c a witness for satisfiability as:

[O]1 =

n+m∑
i=1

ci[λi(s)]1 + δ1[t(s)]1 [L]1 =

n+m∑
i=1

ai[λi(s)]1 + δ2[t(s)]1

[R]γ =

n+m∑
i=1

bi[λi(s)]γ + δ3[t(s)]γ , γ ∈ {1, 2}.

2. Let

`(X) =

(
n+m∑
i=n+1

aiλi(X) + δ2t(X)

)
r(X) =

(
n+m∑
i=n+1

biλi(X) + δ3t(X)

)
,

o(X) =

(
n+m∑
i=n+1

ciλi(X) + δ1t(X)

)
.

Let uL(X), uR(X), u0(X) be the polynomials associated to φ as described in Lemma 12 of degree at
most n+m− 1. Define

p(X) = `(X)r(X) + `(X)uL(X) + r(X)uR(X) + u0(X)− o(X).

Compute the polynomial h(X) such that p(X) = h(X)t(X). Compute [H]1 = [h(s)]1 with the powers
{[si]1}N−2i=0 given in ΣΦ.

3. Let [Opub]1 =
∑npub
i=1 ci[λi(s)]1 +

∑n+m
i=n+m−n′+1 ci[λi(s)]1. Define z> =

(
Opub, O, L, R

)
, and compute

a proof that [z]1 is in the column span of Q as [π]1 = (c>, δ>)[Q>k]1. The output of the algorithm
is

Π = ([L]1, [R]1, [R]2, [O]1, [H]1, [π]1).

Vrfy((φ,xpub,y), σφ, Π): On input the proofΠ = ([L]1, [R]1, [R̂]2, [O]1, [H]1, [π]1) for some instance (φ,xpub,y),
output 1 if the following checks are successful and 0 otherwise:
1. e([L]1, [R]2) + e([L]1, [uL(s)]2) + e([uR(s)]1, [R]2) + [u0(s)]T − e([O]1, [1]2) = e([H]1, [t(s)]2).
2. Compute [Opub]1 =

∑npub
i=1 ci[λi(s)]1 +

∑n+m
i=n+m−n′+1 ci[λi(s)]1, [z>]1 = [Opub, O, L,R]1 and verify if

e([π]1, [1]2) = e([z>]1, [k]2).
3. e([R]1, [1]2) = e([1]1, [R̂]2).
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For zero-knowledge, the simulator works analogously as in the argument for arithmetic circuit satisfiability
of Sect. 5. The proof of soundness is also analogous the same as in The proof of knowledge soundness is
the same as the matrix Q is the same except for the definition of the two last rows (which depend on the
polynomials defined by the affine constraint). The only point where the definition of Q comes into play is
the point in which one argues that qj(X)>k(X) are linearly independent polynomials. In this case, this is
obvious as the second row Q are the Lagrangian polynomials evaluated at s. Lagrangian polynomials are
linearly independent, as one can see by the fact that there exists a set of evaluation points (the set R) such
that for each point in this set only one of the polynomials is non-zero. We conclude that for this matrix
Q, the QANIZK argument is also an argument of knowledge and it is possible to extract the coefficients
of p(X) from any generic adversary. On the other hand, if the adversary breaks soundness, t(X) does not
divide p(X) and the adversary has negligible probability of computing [H]1 = [p(s)/t(s)]1.

Efficiency. The cost of the proof is (5, 1) as in the arithmetic case. Naive verification of the equations requires
to compute 11 pairings, but with batching the cost reduces to 6 pairings.

C.4 Second NIZK Argument in the Generic Group Model

We now give an alternative construction base on the second characterization of boolean circuits, inspired
on the “Square Span Program” construction of [10]. In this subsection, we construct a SNARK for proving
satisfiability of any circuit on n inputs and m boolean gates such that n+ 2m ≤ N .

That is, in this case we let R be a relation generator which on input 1λ outputs a family of polynomial
time decidable relations RΦ = {Rφ : φ ∈ Φ}, where,

– for some N , Φ is the set of all boolean circuits such that if the number of inputs is n, the number of
gates is m, then m+ 2n ≤ N ,

– Rφ = {(φ, (xpub,xsec),y) : φ(xpub,xsec) = y}.

Further, the associated language is Lφ = {(φ,xpub,y) : ∃xsec, (xpub,xsec,y) ∈ Rφ}. The circuit φ computes

a function {0, 1}n → {0, 1}n′ for some n, n′ ∈ N. The gates of φ are arbitrary (non-trivial) fan-in two gates.

Setup(RΦ): This algorithm samples s← Z∗p and publishes

ΣΦ =
(
gk, {[λi(s)]1,2}Ni=1, {[si]1,2}Ni=1, [t(s)]1,2

)
,

where λi(X) are the Lagrangian polynomials associated to some set R = {r1, . . . , rN} ⊂ Zp. The
simulation trapdoor is τΣ = s.

Drv.Setup(φ, npub, ΣΦ): On input a circuit φ : Znp → Zn′p with m multiplication gates, npub ≤ n public inputs

and such that n+m ≤ N and ΣΦ, this algorithm computes ([Q]1, [q0]1) ∈ G3×n+2m+2
1 ×G3

1, defined as:

Q =

Λpub 0 Λopt 0 0
Λpub Λmid Λopt t(s) 0
Vpub Vmid 0 0 t(s)

 , q0 =

 0
0

v0(s)

 , (26)

where Λpub = (λ1(s), . . . , λnpub(s)),Λmid = (λnpub+1(s), . . . , λn+m−n′(s)),Λopt = (λn+m−n′+1(s), . . . , λn+m(s)),
Vpub = (v1(s), . . . , vnpub(s)), Vmid = (vnpub+1(s), . . . , vn+m−n′(s)), and the set of polynomials V =

{vi(X)}n+mi=0 is the one which satisfies v0(ri) = fi, vj(ri) = fi,j , for the constants of Lemma 13. It
samples k← Z3

p and publishes σφ,lin = ([Q>k]1, [k]2). It outputs the final common reference string:

σφ = (ΣΦ, [Q]1, [q0]1, φ, npub, σφ,lin).

Prove(φ, σφ, (xpub,xsec,y)): From (xpub,xsec,y) the prover generates a satisfiability witness (c,d) which
satisfies the constraints of Lemma 13.
1. Commit to (c,d) in G1 and G2 as [O]1,2 =

∑n+m
i=1 ci[λi(s)]1+

∑m
i=1 di[λn+m+i(s)]1+δ[t(s)]1, δ ← Zp.
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2. Define

p(X) =

(
n+m∑
i=1

ciλi(X) +

m∑
i=1

diλn+m+i(X) + δt(X)− 1

)2

− 1.

Compute the polynomial h(X) such that p(X) = h(X)t(X) and [H]1 = [h(s)]1 with the powers
{[si]1}Ni=0 given in ΣΦ.

3. Let [Opub]1 =
∑npub
i=1 ci[λi(s)]1 +

∑n+m
i=n+m−n′+1 ci[λi(s)]1.

Define z> =
(
Opub, O, O

)
, and compute a proof that [z]1 is in the column span of Q as [π]1 =

(c>,d>, δ>)[Q>k]1. The output of the algorithm is

Π = ([O]1, [O]2, [H]1, [π]1).

Vrfy((φ,xpub,y), σφ, Π): On input the proofΠ = ([O]1, [Ô]2, [H]1, [π]1) for some instance (φ,xpub,y), output
1 if the following checks are successful and 0 otherwise:
1. e([O]1 − [1]2, [O]2 − [1]2)− [1]T = e([H]1, [t(s)]2).
2. Compute [Opub]1 =

∑npub
i=1 ci[λi(s)]1 +

∑n+m
i=n+m−n′+1 ci[λi(s)]1, [z>]1 = [Opub, O,O]1 and verify if

e([π]1, [1]2) = e([z>]1, [k]2).
3. e([O]1, [1]2) = e([1]1, [Ô]2).

Efficiency. The cost of the proof is (3, 1) as in the square span program construction of [10], but our scheme
has the updatable and universal properties discussed before. Naive verification of the equations requires to
compute 8 pairings, but with batching the cost reduces to 4 pairings, by grouping together all terms of the
form e([O]1, ·) and all terms of the form e([1]1, ·).

C.5 A New Argument based on Weaker Assumptions

From Lemma 14, we can design an argument for boolean circuit satisfiability based on weaker assumptions,
similar as in Sect. 6. The argument is based on a quadratic and a linear “knowledge transfer” subarguments.
The linear argument is identical to the arithmetic case.

For the quadratic argument, now the prover needs to show (aggregating the proof at each level i for
j = 1, . . . , ni) that the quadratic equations Ci,j = Ai,jBi,j + Ai,jβi,j + Bi,jγi,j + εi,j are satisfied, whereas
before the equations were Cij = AijBij . The technique to aggregate them, inspired by the quadratic span
programs of [16] as well as the proof, follows exactly the same steps. Security also reduces to the (R,m)-
Rational Strong Diffie-Hellman Assumption, where m = maxi=0,...,d ni.

Indeed, the verification equation of the quadratic argument is adapted to the new equation type. For
each level i = 1, . . . , d, given commitments [Li]1, [Ri]2, [Oi]1, and some value [Hi]1 the quadratic argument
checks if

e([Li]1, [Ri]2) + e([Li]1, [uL,i(s)]2) + e([uR,i(s)]1, [Ri]2) + e([u0,i(s)]1, [1]2)− e([Oi]1, [1]2) = e([H]1, [T ]2),

where uL,i(X), uR,i(X), u0,i(X) are the polynomials associated to the gate constants at level i. To prove
soundness, given an opening of [Li]1 and [Ri]2 which is not consistent with [Oi], it suffices to compute
[O′]1, [H

′]1 consistent with these openings and subtract the two verification equations to find a solution to
the (R,m)-Rational Strong Diffie-Hellman Assumption.

Zero-Knowledge . The argument can be made zero-knowledge for the middle wires by proving with the GS
proof system that the argument for correct circuit evaluation is satisfied, as discussed in Sect. 6.6 for the
arithmetic case. The input can also be hidden provided it is encrypted with an extractable commitment. In
the boolean case this can be done in a relatively efficient way under falsifiable assumptions. In particular,
a GS commitment to a boolean value is extractable. The cost of giving the committed inputs and a proof
that they open to {0, 1} using the GS proof system is (6n0, 6n0) group elements and can be reduced to
(2n0 +10, 10) group elements under standard assumptions using the results of [20], but at the price of having
a common reference string quadratic in n0 and to (2n0+4, 6) under a non-standard (falsifiable) q-assumption
using the results of [11].
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