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Abstract

We show that garbled circuits are a practical choice for secure evaluation of neural network
classifiers. At the protocol level, we start with the garbling scheme of Ball, Malkin & Rosulek
(ACM CCS 2016) for arithmetic circuits and introduce new optimizations for modern neural
network activation functions. We develop fancy-garbling1, the first implementation of the BMR16
garbling scheme along with our new optimizations, as part of heavily optimized garbled-circuits
tool that is driven by a TensorFlow classifier description.

We evaluate our constructions on a wide range of neural networks. We find that our ap-
proach is up to 100× more efficient than straight-forward boolean garbling (depending on the
neural network). Our approach is also roughly 40% more efficient than DeepSecure (Rouhani
et al., DAC 2018), the only previous garbled-circuit-based approach for secure neural network
evaluation, which incorporates significant optimization techniques for boolean circuits. Further-
more, our approach is competitive with other non-garbled-circuit approaches for secure neural
network evaluation.

1 Introduction

Consider Alice, who holds a neural network she has trained, and Bob, who holds an input he wants
to know the prediction of the neural network on. Both parties prefer to keep their inputs private,
revealing only the output of the evaluation. We refer to this problem as secure neural network
inference, or more generally secure classification.

Secure classification is an important ingredient in many interesting applications of secure multi-
party computation (MPC). For example, one might wish to securely identify “similar” items in two
private data sets of unstructured data (e.g., images), where the similarity can only be determined
by a neural network. With machine learning as a service, a cloud holds a store of private data, and
secure classification can be used to identify a subset of records that match a particular condition.
For example, one may compute statistics on the metadata (date & geolocation) of all images of a
particular subject.
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Existing Approaches. The question of secure classification has been studied in several recent
works for various types of classifiers, including neural networks, which are the focus of our paper.
Existing works, described in more detail below, are each based on one or more of the following
cryptographic techniques: homomorphic encryption, secret-sharing-based secure computation, and
Yao’s garbled circuits. They provide different features and tradeoffs in terms of number of parties,
number of rounds, computation, communication, different levels of privacy for the classifier, what
types and sizes of neural networks they can practically support, what accuracy, and whether they
require special re-training of these neural networks, or can start from any standard trained one.

The common wisdom underlying all these previous works is that garbled circuits (GCs) are too
cumbersome and impractical to be the main tool for secure neural network inference, due to their
boolean nature. Indeed, each layer of a neural network has a large linear component (over arithmetic
values), where homomorphic encryption or secret-sharing techniques are very fast (addition and
multiplication by a constant are extremely efficient and require no communication at all with these
methods). In contrast, conversion of these linear operations to a boolean circuit is expensive,
and entails creating and communicating a number of ciphertexts proportional to the number of
resulting conjunction gates. On the other hand, each layer also has a non-linear component (based
on comparison) such as sign or ReLU (Rectified Linear Unit), which would add to the multiplicative
degree of the computation, and result in a very high computational overhead for fully homomorphic
encryption (FHE), and add rounds of interaction for secret-sharing based secure computation. For
these types of non-linear operations, the thinking goes, garbled circuits would be more appropriate
and efficient. With this in mind, previous works choose one of the approaches, or combine several
of these approaches, towards a practical system.

Our Approach. We depart from the above narrative by showing that pure GC techniques are
in fact practical for neural networks. Our starting point is the garbling scheme of Ball, Malkin, and
Rosulek (BMR) [BMR16], which supports a certain class of arithmetic circuits, and turns out to be
extremely efficient for linear operations (over bounded integers), but not for non-linear ones such
as comparison. We improve the BMR scheme, develop new garbling techniques, and optimize them
in ways motivated by neural network (NN) applications, but which are more widely applicable.
We also develop the first implementation of BMR (including our new improvements) as part of a
neural-network garbling tool that is driven by standard TensorFlow model files.

Because our approach works entirely within the garbled circuits realm, it leads to secure clas-
sification of NNs with the same well-known benefits and drawbacks as garbled-circuit based MPC.
Specifically:

• Round complexity: GC-based and FHE-based protocols are constant-round, whereas other
approaches (like arithmetic MPC and hybrid approaches that switch paradigms) generally
require one or more rounds of synchronous interaction for each layer of the neural network.
As deep neural networks become more prevalant (e.g., ResNet NN architectures for image
classification can be as deep as 150+ layers [HZRS16]), round complexity can become a
significant bottleneck for secure classification.2

• While the focus of our work (and almost all work in this area) is security against semi-
honest adversaries, it is important to note that not all protocol paradigms have a clear path
towards supporting malicious security. Protocols based purely on garbled circuits or purely on
arithmetic generic MPC have well-known ways of being promoted to a malicious-secure MPC.

2We note that our implementation of garbling operates in a streaming fashion, so even very large networks /
circuits do not need to be resident in memory all at once.
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Protocols based on FHE or that switch protocol paradigms do not have such well-established
transformations to malicious security.

• Communication complexity: It is well-known that garbled circuits induce a O(κ) overhead
over the size of the circuits, where κ is the number of multiplication gates in the circuit.
Other paradigms like arithmetic MPC have only a constant overhead. However, for many of
the smaller neural networks considered in other similar works, we are able to obtain garbled
circuits whose size is quite small — measured in kilobytes.

• Support for functionality variants: garbled circuits can be used not only for NN evaluation
on private inputs, but also as a black box in other applications like zero-knowledge proofs
(e.g., [JKO13]).

Clearly a pure GC approach may not be suitable for all applications of secure classification.
However, the approach is practical and it contributes to the design space a combination of benefits
that is not enjoyed by any other approach. We offer this work as a challenge to the conventional
wisdom that GC is impractical for neural networks.

Discussion: Privacy of the Model. While the motivation to keep the privacy of the NN
(or any machine learning model) is clear, we note that it is often not a realistic expectation, since
models are inherently learnable, even via black box queries and no other information about the
model. Indeed, model extraction (or “model stealing”) attacks on popular ML services are well
known [TZJ+16, PMG+17].

Putting aside the feasibility of genuine privacy for the classifier, there are many reasonable
scenarios where the only privacy concern is hiding the input-to-be-classified. For example, consider
a client who is outsourcing a classification task (with respect to a public classifier) to the cloud,
because downloading and running the classifier locally is prohibitive. Or consider a public classifier
that needs to be applied on data that is secret-shared among several clients. Or, after committing
to an image and making a qualitative claim about its contents (e.g., this is an image of the Statue
of Liberty), being challenged to prove that a public classifier agrees with that claim.

For these reasons, in our experiments we consider the setting of public neural networks in
addition to the setting where we keep the weights secret.

1.1 Previous Work

We overview the works that are most relevant to our paper: those designing two-party protocols for
secure evaluation of neural networks (we design our experiments to compare against these works).
We note that there are numerous other works applying secure computation and homomorphic
encryption techniques to machine learning tasks in order to securely evaluate other classifiers such
as linear classifiers and decision trees (cf. [AEM08, OPJM10, NWI+13, BLN14, BPTG15]). There
are also some works that discuss secure training of ML model (see SecureML [MZ17a] and references
within), while here we focus on secure evaluation of an already-trained NN.

Early evaluation of neural networks often used mixed protocols, taking advantage of the cheap
linear operations in homomorphic encryption, while using garbled circuits only for nonlinear acti-
vation functions [CL05, BOP06, OPB07]. Recent works continue this theme of mixing protocols,
handling different kinds of neural networks often in a modified manner that sacrifices some ac-
curacy and functionality for more efficient secure versions. For instance, SecureML [MZ17a] in-
troduces activation functions optimized for MPC using garbled circuits, switching to FHE for the
linear operations. Another mixed protocol is MiniONN [LJLA17], which uses GMW [GMW87]
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(secret-sharing based) secure computation, together with additive homomorphic encryption in a
preprocessing stage. Chameleon [RWT+18] uses GMW mixed with garbled circuits for activation
functions, with an assumption of a third party dealing correlated randomness in a preprocessing
stage. Finally, Gazelle [JVC18] demonstrates novel techniques in the FHE part of their protocol.
They take advantage of the packed SIMD ciphertexts in certain FHE schemes, achieving a “best-
of-both-worlds” efficiency, with the best performance to date. Despite such promising performance,
all mixed protocols require a linear number of rounds in depth of the NN.

DeepSecure [RRK18] is the first protocol based purely on (Yao) garbled circuits, thus requiring
only two rounds of communication. Our work follows in this line. DeepSecure has several opti-
mizations which are potentially applicable. First, they preprocess the neural network itself, which
requires special retraining. Next, they prune neurons from the network whose weights are below
a certain threshold. Finally, they write the neural network in Verilog and use hardware synthesis
tools to optimize (following TinyGarble [SHS+15]). The first two optimizations could also apply
also to our implementation, although we did not implement them in our experiments. Despite this,
we outperform DeepSecure by an order of magnitude (see Table 3 for details). The last DeepSe-
cure optimization does not apply to this work, as we use arithmetic rather than boolean garbled
circuits. We note that in addition to our comparisons to the results presented DeepSecure, we have
also implemented baseline boolean garbling with no optimizations.

Schemes based purely on FHE achieve a single round of communication. These include Cryp-
toNETS [GBDL+16] which uses leveled homomorphic encryption, and replaces the activation func-
tion with squaring. More recently, Bourse et. al. [BMMP18] provided an improved FHE-based
construction, using the sign activation function. These protocols are limited in the depth of the
neural network by the growth of noise in the FHE ciphertexts.

Concurrent to and independent of the present work, XONN also utilizes a garbled circuit ap-
proach for constant round evaluation [RSC+19]. However, their optimizations are for the particular
case that the inference model is a binary neural network (where multiplicative weights are restricted
to {±1} and activation is simply the sign function). In contrast, our techniques are for the more
general case of arbitrarily discretized neural networks.

1.2 Our Contributions

New garbled circuit techniques for neural networks. We extend the Ball, Malkin, & Ro-
sulek (BMR) garbling technique, which we review in Section 3. Very roughly speaking, the BMR
scheme supports free addition and multiplication-by-constant (over the integers), for bounded in-
tegers {−B, . . . , B}.

We present several new low-level improvements to the BMR garbling scheme that were moti-
vated by NN applications, but are generally applicable:

• Improved garbling of the sign function (e.g., sgn(x) = 0 if x < 0 and sgn(x) = 1 otherwise)
for integers in the representation used by BMR. For example, our sign computation is 15%
cheaper in ciphertext size than BMR for 24-bit values. As part of the sign function, we
introduce an improved technique for garbled addition of numbers represented in mixed-radix
number systems.

• We show how to garble an approximate sign function s̃gn which agrees with sgn only on,
say, 99.9% of inputs, but costs significantly less than the exact sgn function. The correctness
parameter is tunable and provides a tradeoff with communication cost. For example, allowing
0.01% error for sgn of 16-bit numbers leads to a 65% cost reduction.
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• The sign function itself is a common activation function in an NN. The more common ReLU
activation function can be written as relu(x) = sgn(x) · x, which is the product of a bit and
an integer. We give an improved technique for garbled multiplication of an integer
by a bit in the BMR representation. Our construction is roughly 50% cheaper than in
BMR. Convolutional NNs often include a max-pooling layer, and a max can also be written
as a combination of free additions/subtractions and our improved components: max(x, y) =
y + sgn(x− y) · (x− y).

Experiments show that our approximate ReLU and max-pooling lead to minimal effect on the
overall NN accuracy while also reducing the cost significantly. For example, in our experiments
(cf. Table 5), using a 99% correct ReLU only decreases the classifier accuracy by 2.7% but reduces
communication cost by 59%, relative to exact ReLU. We found that approximate sign had less of
an impact on overall classifier accuracy than approximate ReLU, but we mostly used ReLU so as
to match the experiments of related work as closely as possible.

Because our approach supports standard NN components like ReLU, sign, and max pooling, we
are able to support “off-the-shelf” use of classifiers after just a simple discretization step. This is in
contrast to other works which sometimes use ad-hoc, non-standard NN techniques in the interest
of cryptographic performance. In contrast, our NN implementation is directly configured by a
TensorFlow model.

Library for garbling neural networks. We developed a library for garbling neural networks,
containing the first implementation of the BMR garbling scheme that we are aware of (and our
new improvements).

Our implementation supports two different privacy modes. In both we assume that the topology
of the neural network is known to all parties. Assuming all activations are ReLU or sign, the only
potentially private aspect of the NN model is the weights and biases of its neurons.

• Private Weights. Here the weights are also private, known only to the garbler. The garbler
can “bake them into” the garbled circuit in a way that still hides them from the evaluator.

• Public Weights. Here we assume the weights are public and known to all parties. This
results in linear operations, something BMR is very good at, and is where we see our best
performance.

Our library implements many engineering-level optimizations for BMR-style garbling. It sup-
ports streaming, where all circuits (i.e., the NN model and garbled circuit) are processed as a
stream. That way, the large garbled circuits do not need to be resident in memory at one time, and
the resulting MPC protocol does not require the receiver to wait for receipt of the entire garbled
circuit. Finally, our implementation is driven by standard TensorFlow model formats. Details
about the implementation are given in Section 7.

Performance. We evaluate our system on a wide variety of neural network classifiers that have
been used as benchmarks in other works. As expected due to our pure garbled-circuit approach,
our communication costs are generally higher than other approaches, while our running time is
often significantly faster (especially for deeper neural networks). We provide a full comparison in
Section 8.
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2 Preliminaries

2.1 Mixed-radix Number Systems

We use MRS[d1, . . . , dn] to refer to the mixed-radix system, in which numbers are represented as
tuples from Zd1×· · ·×Zdn . These representations are associated with the integers {0, . . . , (

∏
i di)−1}

in lexicographic order.
Prominent examples include:

• MRS[2, . . . , 2], with k terms, are the k-bit binary numbers.

• MRS[10, . . . , 10], with k terms, are the k-digit decimal numbers.

• MRS[2, 3, 5, 7, 11, . . .], where the terms are the first k primes, corresponds to a primorial
mixed-radix (PMR) system that is used in BMR garbling [BMR16].

In this work we will consider mixed-radix systems with arbitrary digit bases.
Addition in a mixed-radix system is done using the grade-school algorithm: the rightmost digits

are added, with the overflow carrying into the penultimate digit, etc. We consider addition with
no final carry-out, corresponding to addition modulo

∏
i di.

3 BMR Garbling

The BMR garbling scheme supports the following class of circuits that they call mixed-modulus
circuits:

• Every wire has a designated modulus m, and values on that wire are elements of Zm. We call
such a wire a Zm-wire.

• Unary gates are allowed for any function g : Zm → Z` (note that the input/output wires may
have different moduli).

• Addition-mod-m gates gates are allowed if all input/output wires have the same modulus.

• Unary multiplication-mod-m-by-constant-c gates are allowed, if the input and output wires
are both Zm-wires and gcd(c,m) = 1. Note that c is a public constant (i.e., part of the circuit
description).

These kinds of circuits can be garbled at the following costs:

Theorem 1 ([BMR16]). Assuming the existence of a mixed-modulus circular correlation robust
hash function [BMR16][Definition 1] (alternatively the random oracle model), then there is a gar-
bling scheme (as defined in [BHR12]) for mixed-modulus circuits, whose costs in the number of
ciphertexts are as follows:

• Unary gates g : Zm → Z` cost m− 1 ciphertexts,

• Addition-mod-m gates, and multiplication-by-constant gates are free.

Note that “multiplication-by-zero” gates can also be garbled for free by including a global
“constant zero” wire in the circuit (one wire globally for each modulus). Then, whenever m
is prime, we can consider any multiplication-by-constant-mod-m gate to be free, even when the
constant is zero.

6



CRT Terminology. Starting from these basic building blocks, BMR applies the Chinese remain-
der theorem to construct gadgets for garbling higher-level operations. We use these concepts and
notation extensively in our results as well.

• Let p1, p2, . . . denote the primes, in ascending order. [x]p denotes the residue of x in Zp.

• Let Pk be the product of the first k primes (i.e., the kth primordial). Hence ZPk
∼= Zp1 ×

Zp2 × · · · × Zpk by the CRT. We will always use k to denote the number of primes.

• When k is understood, we write [[x]]crt to denote the CRT residue representation of x,
that is: [[x]]crt = (x1, . . . , xk) where xi = [x]pi .

The high-level idea of BMR is to compute arithmetic in ZPk
by representing each logical value

in the circuit as its CRT residue representation. That is, the circuit contains a “bundle” of wires
with moduli p1, . . . , pk, where the ith wire in the bundle carries [x]pi . Addition and multiplication
mod Pk reduce to the corresponding operations mod pi, by the CRT.

4 New Garbling Technique: Cross-Modulus Multiplication

Our improvements to the BMR garbling scheme can be split into two categories: improved garbling
techniques (i.e., new cryptographic constructions) for mixed-modulus circuit gates, and improved
methods of expressing high-level operations (e.g., neural network activation functions) as mixed-
modulus circuits.

In this section, we focus on the former category of improvements. We show how to efficiently
garble a multiplication x · y where x and y are wires with different moduli (for example, x is a bit).
Later, in Sections 5 and 6 we show improved ways to express mixed-radix addition and approximate
sign as mixed-modulus circuits.

4.1 Half-Gate Generalization

Zahur et al. [ZRE15] show how to garble a Z2-multiplication gate while supporting free-XOR (free
addition in Z2) at a cost of two ciphertexts. In unpublished work of Malkin et al. [MPs16], this
was generalized to the Zp case. Their construction supports addition for free, and multiplication
for a cost of 2p− 2 ciphertexts. We summarize the construction here.

First, wire labels in the scheme are elements of Znp . On any wire, the wire label encoding
a ∈ Zp has the form A + a∆, where A and ∆ are vectors, and ∆ is common to all wires in the
circuit. Free addition mod p is done by simply adding wire labels (component-wise mod p), so
(A+ a∆) + (B + b∆) = (A+B) + (a+ b)∆.

The last component of the wire labels is used as a special “color digit.” Suppose the zero-label
A for some wire has value r ∈ Zp. If we ensure that the last component of ∆ is one, then the wire
label corresponding to value a ∈ Zp has least significant digit a + r (mod p). We call this least
significant digit the “color digit” of the label, and the evaluator’s behavior can depend on it.

The main idea of the half-gates construction is to write a multiplication gate as:

x · y = x · (y + r − r) = x · (y + r)− x · r.

If we take r to be the color-digit of the zero-label (on the y-wire), then the garbler knows r at
garbling time, and the evaluator will know y + r at evaluation time. In fact, we can think of the
y-wire label also as a label encoding the value y + r that is known to the garbler. With that
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interpretation, the first term x · (y + r) is a multiplication between an unknown value x and a
value known to the evaluator in the clear; and the second term x · r is a multiplication between
an unknown value and a value known to the garbler at garbling time. The construction works by
garbling each individual term using p− 1 ciphertexts; then the subtraction (mod p) is free.

Renaming the variables, consider the multiplication a · b, when a is known to the garbler. The
garbler simply constructs a unary gate v 7→ a · v and garbles it in the standard way using the BMR
construction.

Now consider the multiplication a ·b, when a is known to the evaluator. For every ã, the garbler
uses A+ã∆ to encrypt the value C−ãB, where C is the zero-label of the output wire. At evaluation
time, the evaluator will hold wire labels A+ a∆ and B+ b∆ (where a is known but b is unknown),
so he can open the appropriate ciphertext to learn C − aB, and then compute

(C − aB) + a(B + b∆) = C + ab∆,

This is the wire label encoding ab on the output wire. Note that the evaluator must know a in
the clear to perform a(B + b∆). This approach costs p ciphertexts, but can be reduced to p − 1
ciphertexts with a standard row-reduction trick (choosing C = H(A)).

4.2 New Mixed-Modulus Half-Gate

We show how this approach can be generalized in the following way. Suppose x ∈ Zp and y ∈ Zq,
where p > q, and we wish to compute xy (mod p) in the circuit. For example, one way of computing
a ReLU activation function is via relu(x) = x · sgn(x). Since the output of sgn(x) is a bit, we must
multiply a Z2 value by a Zp value.

Naively, this can be done first with a unary gate that “casts” y ∈ Zq to Zp, and then a Zp
multiplication. Overall the cost to garble such operations is (q−1)+(2p−2) ciphertexts. We show
how the same operation can be done for roughly q + p− 1 ciphertexts.

Suppose the wire labels for x have the form X + x∆p, and wire labels for y have the form
Y + y∆q. We apply a unary gate to the y-value, and its outputs have wire labels of the form

Ỹ + y∆p (note the change to ∆p). Now suppose we do a Zp multiplication using the generalized
half-gates construction.

Where will the Ỹ -labels be used? The half-gates trick treats the two wires in fundamentally
different ways, and we can arrange for the Ỹ -labels to be used only in the “evaluator-half-gate.”
Here the evaluator uses Ỹ + y∆p to decrypt some value (which it will add to the X-label) and also
uses the color bit of this wire label to do a scalar multiplication of the X-label. Instead of encrypting
the relevant value from the half gate with the Ỹ -label, we encrypt it with the corresponding Y -
label. Intuitively, the evaluator learns one if and only if he learns the other. This allows us to do
away with the unary gate that converts Y -labels to Ỹ -labels. Furthermore, since we know there
are only q values that the evaluator can have, we can encrypt this half gate with q − 1 instead of
p − 1 ciphertexts. However, we still need to convey the Zp color digit of the Ỹ -label; the Zq color
digit of the Y -label won’t do.

To solve this, we replace one of the half gates (p − 1 ciphertexts) with a truncated one that
uses the Zq-labels as keys (q − 1 ciphertexts), and we replace the unary gate (q − 1 ciphertexts
that encrypt entire wire labels) with q − 1 encryptions of very short color digits. In the regimes
considered in this paper, all of these color-digit ciphertexts can be packed into 128 bits, so they
are equivalent in size to one “usual” ciphertext. Hence the total cost is that of only p + q − 1
ciphertexts. In the next section, we show full detail and give proofs of our new construction.
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4.3 Details & Security

Because we make only a small modification to the BMR garbling scheme (adding support for a new
kind of gate), we present only the major differences. The bulk of the scheme and the security proof
remain unchanged.

Notation. The notation used in the BMR garbling algorithm is as follows. Each wire i has an
associated output wire label W 0

i which represents the logical value zero on that wire. Each wire i has
an associated modulus m = i.domain, meaning that the wire carries logical values from Zm. Value
v ∈ Zm on the wire will be encoded by wire label W 0

i +v∆m, where the operation is componentwise
addition modulo m and ∆m is a global value common to all wires of this modulus. The wire labels
on wire i will be interpreted as a vector of Zm elements. The rightmost component of a wire-label
(vector) W , which we write as τ(W ), is used as a “point-and-permute digit” (which is visible to
the evaluator). We assume τ(∆m) = 1 so that τ(W 0

i + v∆m) = τ(W 0
i ) + v (all operations mod m).

Every gate g is identified with its output wire, but also has a set of inputs. Our focus is on
fan-in-2 multiplication gates, where we write (a, b) = g.inputs to denote that wires a and b are the
input wires of gate g.

Generalized half-gates. Before showing the construction for mixed-modulus half-gates, we first
describe the generalized half-gates multiplication for two wires with the same modulus.

Garbling a multiplication gate g:

(a, b) = g.inputs
p = g.domain (must also be a.domain and b.domain)
τa = τ(W 0

a )
τb = τ(W 0

b )

. garbler’s half-gate
U ← random wire label
for i = 0 to p− 1:
G1,i+τa = H(g;W 0

a + i∆p) + U + iτb∆p

. evaluator’s half-gate
V ← random wire label
for j = 0 to p− 1:
G2,τb+j = H(g;W 0

b + j∆p) + V − (τb + j)W 0
a

W 0
g = −U + V

the garbled gate is G0,1, . . . , G1,p−1, G2,0, . . . , G2,p−1
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When evaluating, the evaulator has a wire label W ∗i for every wire i, which encodes an unknown
value x as W ∗i = W 0

i + x∆m.

Evaluating a multiplication gate g:

(a, b) = g.inputs
p = g.domain (must also be a.domain and b.domain)
τ∗a = τ(W ∗a )
τ∗b = τ(W ∗b )

. garbler’s half-gate
U∗ = G1,τ∗a −H(g;W ∗a )

. evaluator’s half-gate
V ∗ = τ∗b ·W ∗a +G2,τ∗b

−H(g;W ∗b )

output wire label is −U∗ + V ∗

Correctness follows by the following observations. Suppose the values on the input wires are x, y,
so W ∗a = W 0

a + x∆p and W ∗b = W 0
b + y∆p. Then τ(W ∗a ) = τa + x and τ(W ∗b ) = τb + y. So:

−U∗ + V ∗ = −
(
G1,τ∗a −H(g;W ∗a )

)
+
(
τ∗b ·W ∗a +G2,τ∗b

−H(g;W ∗b )
)

= −
(
G1,τa+x −H(g;W 0

a + x∆p)
)

+
(
τ∗b ·W ∗a +G2,τb+y −H(g;W 0

b + y∆p)
)

= −(U + xτb∆p) + τ∗b (W 0
a + x∆p) + (V − (τb + y)︸ ︷︷ ︸

τ∗b

W 0
a )

= −(U + xτb∆p) + τ∗b x∆p + V

= −U + V + (−xτb + x(τb + y))∆p

= −U + V + xy∆p

= W 0
g + xy∆p

This is a multiplication gate with 2p ciphertexts. This can be further reduced by choosing U
and V so that garbled gate ciphertexts G1,0 and G2,0 are all zeroes, rather than choosing U and
V randomly. That way, those two ciphertexts do not need to be sent. This is a standard trick in
garbled circuits that we omit, since it clutters the notation.

Garbling a cross-modulus multiplication gate. Now suppose the input wire a has modulus
a.domain = p while input wire b has b.domain = q < p. Following the discussion in Section 4, we
imagine a “virtual wire” in which the value on the b-wire has been “promoted” to Zp from Zq. We
do not need wire labels on this wire, but only Zp color digits.
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Garbling a multiplication gate g:

(a, b) = g.inputs
p = a.domain
q = b.domain (q < p)
τa = τ(W 0

a )
τb = τ(W 0

b )

. garbler’s half-gate
U ← random wire label
for i = 0 to p− 1:
G1,i+τa = H(g;W 0

a + i∆p) + U + iτb∆p

. evaluator’s half-gate

τ̃ ← Zp (color digit of “virtual wire”)

V ← random wire label
for j = 0 to q − 1:

G2,τb+j = H(g;W 0
b + j∆p) + V − ( τ̃ + j)W 0

a

G3,τb+j = H ′(g;W 0
b + j∆p) + τ̃ + j

W 0
g = −U + V

the garbled gate is G0,1, . . . , G1,p−1, G2,0, . . . , G2,p−1

Note that each G3,· is an encryption of a short Zp value. Hence we use H ′ to denote a hash function
with output domain Zp.

To evaluate, we decrypt the appropriate G3,· value to get the “virtual color digit” and then
proceed as in the standard half-gate evaluation:

Evaluating a multiplication gate g:

(a, b) = g.inputs
p = a.domain
q = b.domain (q < p)
τ∗a = τ(W ∗a )
τ∗b = τ(W ∗b )

. garbler’s half-gate
U∗ = G1,τ∗a −H(g;W ∗a )

. evaluator’s half-gate

τ̃∗ = G3,τ∗b
−H ′(g;W ∗b )

V ∗ = τ̃∗ ·W ∗a +G2,τ∗ −H(g;W ∗b )

output wire label is −U∗ + V ∗

Correctness follows from a similar reasoning as before.

Security. Security also follows a similar reasoning as in BMR. The hardness assumption used in
that proof is that H is a kind of circular correlation-robust hash function. In short, this means
that expressions of the form

H(g;W + α∆p) + β∆q
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are pseudorandom, when W,α, β, p, q are chosen by the adversary (with a 6= 0), and ∆p and ∆q are
secret. The additions are with respect to the appropriate moduli.

Making the same assumption about H ′ allows the new security proof to proceed. At a high
level, the proof proceeds by performing a “perspective shift” in the garbling algorithm, from the
garbler’s point of view (in terms of W 0 and τ values) to the evaluator’s view (in terms of W ∗ and
τ∗ values).

After rewriting the garbling algorithm in these terms, we see that the G·,· values that are not
accessed by the evaluation algorithm are written in the form G·,· = H(g;W +α∆)+β∆′+Z, where
α 6= 0 and W,Z, α, β are known. Hence, these terms are pseudorandom. In short, the garbled gate
ciphertexts can be replaced by random values in the security proof. In doing so, the simulation
no longer uses the truth values on the wires (they were only used in choosing the α, β values in
the expression above). Hence, the simulation generates a garbled circuit without knowledge of the
circuit input.

5 Improved Mixed-Radix Addition

Consider the problem of adding k terms, which are expressed in a mixed radix number system
(Section 2.1). More specifically, each of the k values is represented in MRS[d1, d2, . . . , dn] in the
circuit by a collection of n wires with corresponding moduli d1, d2, etc. We wish to efficiently
compute the sum (also in the same mixed-radix representation) of k such values.

5.1 Background: Binary Addition

To add binary numbers (and to deal with any Z2-digits in a mixed-radix system), we are not aware
of a more efficient approach than the straight-forward use of fan-in-2 full adders. A full adder takes
in inputs x, y, cin and gives output s, cout, where s is the sum in this digit and cout is the carry out.
Using free-XOR [KS08] (to which BMR garbling collapses for Z2-wires), computing s is free. Using
a folklore construction, the carry-out computation requires only one AND gate — 2 ciphertexts
using the half-gates technique [ZRE15]:

cout =
[
(x⊕ y) ∧ (x⊕ cin)

]
⊕ x

5.2 Improved Base-m Addition

Now consider a full-adder for Zm digits. The sum s = x+ y + cin is free to garble if all inputs are
given on Zm-wires. To compute the carry-out, we propose the following. Let us first assume that
cin ∈ {0, 1}, which would be the case in a normal addition of two numbers.

1. With three unary gates, transfer x, y, cin from Zm-wires into Z2m wires. The cost to garble 3
such unary gates is 3(m− 1) ciphertexts.

2. With x, y, cin now represented in Z2m, add them (for free) over Z2m. Note that the largest
possible sum is (m− 1) + (m− 1) + 1 = 2m− 1, which does not wrap around.

3. Compute the carry-out with a unary gate, via (x + y + cin) 7→ bx+y+cin
m c. The cost of this

unary gate is 2m− 1 since the input wire is a Z2m-wire.

The total cost of the full adder is 3(m− 1) + (2m− 1) = 5m− 4.
However, if we are adding more than two terms, we can do better. Consider adding up three

numbers in the mixed-radix system. The näıve approach is to use two copies of a fan-in-two adder.
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The total cost for a Zm digit will be 2(5m − 4) = 10m − 8. We can do better by adding all three
values in one step, as a fan-in-three adder.

1. Let x, y, z and cin be the inputs, given on Zm-wires. We compute the sum s = x+ y+ z+ cin
for free, as usual.

2. Let cmax be the largest possible value of cin.3 With four unary gates, transfer each Zm to
Z3m+cmax−1. Total garbling cost is 4(m− 1).

3. Add all input values mod 3m+ cmax − 1 for free. Again, this sum does not overflow.

4. With one unary gate, compute the carry-out as bx+y+z+cin
m c. Total garbling cost is 3m +

cmax − 2.

Now the total cost is only 4(m− 1) + (3m+ cmax− 2) = 7m− 6 + cmax, a significant improvement.

5.3 Generalization

In general, we need to add k values represented in mixed-radix. Rather than adding numbers
two-at-a-time, we add digit-by-digit, processing all k values in each digit at once. Each digit has
a native modulus, but also a modulus that it uses to compute the carry-out (e.g., in the above
example, this auxiliary modulus was 3m+ cmax− 2). Each digit provides carry-out to its neighbor
in both moduli. A few edge cases are worth pointing out:

• The most-significant digit does not compute a carry-out, so the preceding digit does not need
to provide its carry in the carry-computation modulus.

• We handle Z2-digits using the half-gates fan-in-two adder. When a Z2-digit gives carry-out
to a non-Z2-digit, we must collect all k − 1 individual carry-outs with some extra logic.

• Suppose some Zm digit computes its own carry-out under modulus 3m. It must give this
carry-out to the neighboring digit in two different moduli. This can be done with two unary
gates, each with garbling cost 3m− 1. But suppose the neighboring digit is Z` and the carry-
out is guaranteed to not overflow mod `. Then we can compute carry-out with a unary gate
Zm → Z` as before, but then “copy” this value (with another unary gate) from Z` to the
neighboring digit’s carry-modulus. The total cost is (3m− 1) + (`− 1) which is nearly always
less than 2(3m− 1).

Finally, our neural-network applications do not require the full result of the addition. Rather,
they only require the most-significant digit of the result. When this is the case, we can save
even further by computing only the carry-out for all but the most-significant digits.

Now, every digit computes just a single sum. For most digits this is a sum over a modulus
chosen so that the addition doesn’t overflow (so we can compute the carry with a unary gate). For
the most significant digit d1, this is the sum mod d1 that actually computes the most significant
digit of the final answer. Then every digit except the most-significant one computes its carry-out
via a single unary gate, whose output modulus is the appropriate modulus for the next digit’s sum
computation.

Overall, the cost of computing the most significant digit of MRS addition is as follows. In all
but the most significant digit, we use k unary gates to convert the digits of the k summands to
the correct modulus. For a Zd-digit, the cost is k(d − 1) ciphertexts. These values are added for

3When adding three numbers, the neighboring digit could have provided a carry larger than one.
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free over the appropriate modulus. Then the carry-out is computed with a single unary gate over
the “carry-modulus” for that digit. The carry modulus is k(d− 1) + m where m is the maximum
carry-in value. The overall cost for MRS[d1, d2, · · · , dn] is

2k

n∑
i=2

(di − 1) + [sum of maximum carry values]

An upper bound on each maximum carry value is k − 1, so an upper bound on the total cost is
2k
∑

(di − 1) + (k − 1)2.

6 (Approximate) Garbled Sign

In this section we discuss new approaches for garbling the function sgn : ZPk
→ {0, 1} where

sgn(x) =

{
0 if x < Pk/2

1 if x ≥ Pk/2

This corresponds to the natural concept of sign, when we interpret ZPk
as {−Pk/2 + 1, . . . , Pk/2}

rather than {0, . . . , Pk − 1}.
The sgn function can be used in its own right as an activation function in neural networks, or as

a component in other activation functions. For example, the ReLU (rectified linear unit) activation
function is defined as relu(x) = max{0, x}, and computed as relu(x) = sgn(x) · x.

How sgn is handled in BMR. The approach for sgn in BMR is to first convert from residue
representation [[x]]crt to another representation called primorial mixed-radix (PMR). In the notation
of Section 2.1, this is the MRS[2, 3, 5, 7, 11, . . .] representation. BMR show a technique to convert
from residue representation to PMR representation. Once in PMR, the sign can be computed for
free by checking whether the most significant digit is 1 — i.e., items 0 through Pk/2− 1 have most
significant digit 0 and items Pk/2 through Pk − 1 have most significant digit 1.

6.1 Conceptual Overview

We start with a common technique for residue number systems (e.g., [HP94, BEPP99]). It is well-
known that the reconstruction of a value x ∈ ZPk

from its residue representation [[x]]crt is a linear
operation. That is, there exist integers α1, . . . , αk (which depend only on p1, . . . , pk) such that

x ≡
∑

i αixi (mod Pk)

Over the integers, the sum becomes:

x = q · Pk +
∑

i αixi

for some integer q. Divide both sides by Pk and we get:

x

Pk
= q +

∑
i

αixi
Pk

=⇒
[
fractional part of

x

Pk

]
=

[
fractional part of

∑
i

αixi
Pk

]
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And therefore:

sgn(x) = 1 ⇐⇒ x ≥ Pk/2

⇐⇒ x

Pk
≥ 1/2

⇐⇒
[
fractional part of

∑
i

αixi
Pk

]
≥ 1/2

These observations lead to the following algorithm for computing sgn(x). Later we will discuss how
to carry out this algorithm efficiently within a mixed-modulus circuit.

1. First convert each xi to αixi/Pk, represented as fixed-point approximation. In more
detail, for some discretization level M (whose selection is discussed below), round the rational
number αixi/Pk to the nearest fraction with denominator M . This approximation d/M will
be represented simply as d ∈ ZM . The overall conversion of xi to d can be computed as a
simple lookup table, as the range of values for each xi is small.

2. Add these fractional approximations, ignoring the integral part. This corresponds to adding
their representations (numerators) mod M . This gives an approximation of the fractional
part of

∑
i αixi/Pk.

3. Finally, compare the resulting sum to M/2.

Correctness, error, precision. Each term αixi/Pk is approximated by a fixed-point value d/M
to within error 1/2M . The sum has k terms, so the total error is at most k/2M . If this error is
less than 1/Pk then the result is correct. Hence M > kPk/2 will guarantee a correct computation.
Smaller values of M can also lead to correct results for all of ZPk

, which we discuss below. As we
will also see, choosing a smaller M may lead to a significantly less expensive computation, which
is correct on most inputs (e.g., 99.9% of inputs).

6.2 Garbling Costs for the Sign Function

As mentioned above, this general approach appears in other works dealing with residue number
systems (e.g., [HP94]). In this work we explore more of the design space, informed by how the
approach translates to a mixed-modulus circuit suitable for garbling. Specifically: What M should
be chosen, and how do we represent ZM in a way that admits efficient addition (Step 2) and also
comparison (Step 3)?

A simple choice is to represent these fixed-point values via a single ZM -wire in the circuit.
This causes addition-mod-M to be free, but the comparison against M/2 is expensive — a unary
gate that costs M − 1 ciphertexts to garble. Using a recursive construction to let M be a smaller
primordial allows us to use residue representation for ZM (hence free addition), but overall the
approach is expensive.

A better choice is to give up on free addition mod M . Suppose we choose M = 2t and represent
values ZM as t boolean wires in the circuit. This choice has the following effect on the costs of
garbling:

• In Step 1 (converting each xi to an approximation d ∈ ZM ), we now have t unary gates for
each xi — one for each binary digit (wire) of d. Overall, garbling this step requires t

∑
i(pi−1)

ciphertexts.
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• In Step 2, we add values mod M . This is no longer free, but requires binary addition circuits
(ignoring the carry-out). Using the free-XOR method (which BMR collapses to in the case
of Z2-wires), the cost of adding two t-digit binary numbers is 2(t− 1) ciphertexts. There are
k − 1 such additions, to sum k values, for a total garbling cost of 2(k − 1)(t− 1) ciphertexts.

• In Step 3, we need to compare the sum against M/2. Since the sum is represented in binary,
the result of this comparison already exists as the most-significant-bit of the sum. So this
step is free!

Generalizing even further. There is nothing particularly special about representing ZM -values
in binary. We could use almost any mixed-radix system (see Section 2.1). Suppose we choose
M = m1 · · ·m2 · · ·mt, and we represent numbers in MRS[m1, . . . ,mt]. Numbers in this base system
can be added by adding the least significant digits mod mt, then taking carry-over into the next
digit (Zmt−1), and so on.

Then the cost of garbling the sgn function is:

• In Step 1 (converting each xi to its approximation d ∈ ZM ) consists of t unary gates per
prime pi, one for each digit of the MRS[m1, . . . ,mt]-representation. Total cost = t

∑
i(pi− 1)

• In Step 2, the cost is that of adding k values represented in MRS[m1, . . . ,mt]. We use the
mixed-radix addition ideas described in Section 5. The total cost of this step is at most
2k
∑t

i=2(mi − 1) + (k − 1)2.

• In Step 3, we compare the sum against M/2. Provided that the most significant digit m1

is even, this can be done by simply inspecting the most-significant digit. We simply check
whether the most significant digit is greater than or equal to m1/2, using a unary gate of cost
m1−1 ciphertexts. Note that this implies we only need to compute the most-significant digit
of the summation in step 2.

This flexibility gives us a wide design space to choose different values for M (and their factoriza-
tions) in an effort to evenly balance cost across these three contributors. Usually, the best choices
of M = m1 · · ·mt are when m1 is somewhat large (larger than 50), and m2, . . . ,mt are relatively
small (less than 10).

6.3 Concrete Costs

The correctness of the sgn computation depends only on the choice of M and not its mixed-radix
representation. Step 2 is done in ZM no matter how ZM is represented in mixed-radix.

Interestingly, increasing M does not always decrease the overall number of errors. For example,
with k = 5 primes, our sgn construction has perfect correctness only forM ∈ {538, 648, 678, 688, . . .}.
We do not understand these patterns. Instead, we empirically test a candidate M for its correct-
ness. Recall that our sgn gadget can be incorrect only on numbers within Pkk/2M of one of the
discontinuities of the sgn function (which are at 0 and Pk/2). Hence, to check the correctness of a
candidate M , it suffices to check the behavior of the gadget on numbers in this range.

For k ≤ 11 primes, checking the entire relevant range of M -candidates (and their mixed-radix
representations) is feasible for an exhaustive search. We now report on such an exhaustive search.

Exact sign computation. In Figure 1, we show the cost of garbling an exact sgn function, under
different approaches for choosing M and its mixed-radix representation. We show (1) representing
ZM as a single wire, with the smallest M that yields perfect correctness; (2) choosing M as the
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garbling cost (ctxts)
k log2(Pk) M = mixed-radix 1 2 3 total

3 4.9
BMR - - - - 55

us 14 = 14 7 0 13 20
us 32 = 25 35 16 0 51

4 7.7

BMR - - - - 130
us 68 = 68 13 0 67 80
us 128 = 27 91 36 0 127
us 78 = 26 · 3 26 16 25 67

5 11.2

BMR - - - - 269
us 538 = 538 23 0 537 560
us 2048 = 212 276 88 0 364
us 648 = 54 · 4 · 3 69 53 53 175

6 14.9

BMR - - - - 476
us 6070 = 6070 35 0 6069 6104
us 16384 = 214 490 130 0 620
us 7500 = 60 · 53 140 153 49 352

7 19.0
BMR - - - - 787

us 524288 = 219 969 216 0 1185
us 108360 = 86 · 7 · 62 · 5 255 297 85 637

8 23.2
BMR - - - - 1198

us 16777216 = 224 1656 322 0 1978
us 1932000 = 92 · 7 · 6 · 53 · 4 483 450 91 1024

9 27.7
BMR - - - - 1753

us 268435456 = 228 2548 432 0 2980
us 31933300 = 76 · 75 · 52 728 731 75 1534

10 32.6
BMR - - - - 2512

us 8589934592 = 233 3927 576 0 4503
us 791920800 = 202 · 112 · 64 · 52 1071 1022 201 2294

11 37.5
BMR - - - - 3431

us 137438953472 = 237 5513 720 0 6233
us 39690000000 = 150 · 8 · 72 · 63 · 55 1788 1286 149 3223

Figure 1: Garbling cost of exact sign computation. This table illustrates our approach of choosing
M to balance the costs of steps 1,2,3 in the overall sgn algorithm described in Section 6.1. k is the
number of primes in the CRT representation. Pk is the corresponding primorial modulus (product
of first k primes), so log2(Pk) is the equivalent number of bits to represent numbers in ZPk

.

smallest power of two that yields perfect correctness; and (3) the best possible M considering all
mixed-radix representations.

We also compare to the exact sgn function described in BMR garbling. Interestingly, ours is
cheaper for k ≤ 11. We are not sure whether ours continues to be cheaper for k ≥ 12, as that is
the limit of our present exhaustive search capabilities.

Approximate sign computation. Our approach shines when we are willing to trade a tiny frac-
tion of correctness errors for a significant decrease in garbling costs. In Figure 2 we show the garbling
cost for various choices of M leading to correctness ≥ τ for τ ∈ {0.99, 0.999, 0.9999, 0.9999, 1}.
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k log2(Pk) M = mixed-base correct cost

4 7.7
78 = 26 · 3 = 100% 67
54 = 18 · 3 ≥ 99% 59

5 11.2
648 = 54 · 4 · 3 = 100% 175
450 = 30 · 5 · 3 ≥ 99.9% 161
108 = 36 · 3 ≥ 99% 101

6 14.9

7500 = 60 · 53 = 100% 352
5250 = 42 · 53 ≥ 99.99% 334
960 = 48 · 5 · 4 ≥ 99.9% 240
120 = 40 · 3 ≥ 99% 133

7 19.0

108360 = 86 · 7 · 62 · 5 = 100% 637
10560 = 88 · 6 · 5 · 4 ≥ 99.99% 470
1200 = 60 · 5 · 4 ≥ 99.9% 315
120 = 40 · 3 ≥ 99% 169

8 23.2

1975680 = 98 · 9 · 82 · 7 · 5 = 100% 1078
107100 = 102 · 7 · 6 · 52 ≥ 99.999% 770
10920 = 78 · 7 · 5 · 4 ≥ 99.99% 574
1170 = 78 · 5 · 3 ≥ 99.9% 385
126 = 126 ≥ 99% 194

9 27.7

31933300 = 76 · 75 · 52 = 100% 1534
119700 = 114 · 7 · 6 · 52 ≥ 99.999% 933
12600 = 84 · 6 · 52 ≥ 99.99% 696
1260 = 140 · 9 ≥ 99.9% 465
138 = 138 ≥ 99% 228

10 32.6

791920800 = 202 · 112 · 64 · 52 = 100% 2294
128520 = 102 · 7 · 62 · 5 ≥ 99.999% 1122
13440 = 112 · 6 · 5 · 4 ≥ 99.99% 843
1330 = 190 · 7 ≥ 99.9% 547
140 = 140 ≥ 99% 258

11 37.5
39690000000 = 150 · 8 · 72 · 63 · 55 = 100% 3223

136500 = 130 · 7 · 6 · 52 ≥ 99.999% 1320
13398 = 174 · 11 · 7 ≥ 99.99% 981

Figure 2: Garbling cost of approximate sign computation, measured in ciphertexts. k is the
number of primes in the CRT representation. Pk is the corresponding primorial modulus (product
of first k primes), so log2(Pk) is the equivalent number of bits to represent numbers in ZPk

.

As is clear from the table, even a small degradation in correctness can result in a significant
reduction of cost.

6.4 Other Activation/Pooling Functions

As mentioned previously, ReLU activation can be written as relu(x) = sgn(x) ·x. If x is encoded in
CRT as [[x]]crt = (x1, . . . , xk), we compute [[relu(x)]]crt as (sgn(x) ·x1, . . . , sgn(x) ·xk). Each term here
is the product of between a Z2 value and Zpi value, and we use the optimization from Section 4.

Similarly, we can compute a max (for max pooling layers) as max(x, y) = x+ relu(y − x). This
is a combination of free addition/subtraction (for CRT-encoded values) and efficient components
we have already described.
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7 Implementation & Optimizations

We implemented BMR garbling in Rust. Our library, fancy-garbling, is available as open source on
Github4. Our library consists of tools for producing a garbling scheme only. If the user wishes to
implement MPC, they must provide their own oblivious transfer implementation and so on. Finally,
our implementation is optimized to reduce the cost of the main trade-off of BMR: converting wire-
labels back and forth from bitstrings to lists of digits modulo a small prime. In this section, we
highlight the main optimizations of our implementation.

7.1 Major Implementation-Level Optimizations

Unpacking: conversion from bitstring to mod-q digits. In BMR garbling, a wire-label is
a list of digits modulo some small prime q (see Section 3). In order to encrypt a garbled gate,
these wire-labels must be converted into a string of 128 bits in order to send to fixed-key AES
(used as a hash function). We call this operation “packing.” Packing is cheap. Packing takes
about 20 nanoseconds, using Horner’s method (adding each digit and multiplying by q, one by
one). Unfortunately the other direction — “unpacking” a list of mod-q digits from a bitstring — is
much more expensive. Unfortunately, it takes about 4 microseconds to naively unpack a bitstring
by dividing off each mod-q digit.

We improve the efficiency of unpacking base-q digits by using lookup tables. The idea is as
follows: we first first break up the 128 bit string into 16 bit chunks. Then, precompute a lookup
table of the 216 shifted base-q numbers it could correspond to. For instance the first chunk is not
shifted at all, the second chunk gets shifted by 16 bits before converted into base-q, the third chunk
gets shifted by 32 bits before converted into base-q, and so on. This shifting allows us to avoid
multiplication in base-q, instead precomputing it in binary. Then to unpack a bitstring into base-q
digits, look up each 16-bit chunk in the table, using base-q addition to add the results together.
This technique reduces the cost of unpacking to about 400 nanoseconds, a 10× improvement.

Streaming garbler & evaluator. The circuits for convolutional neural networks are very large,
easily using more than 16GB of memory. To get around this issue, we implemented the existing
technique of streaming. Instead of generating a circuit first and then garbling or evaluating it,
the garbler and evaluator directly execute BMR instructions – adding, multiplying, and projecting
wire-labels – and sending garbled gates to the evaluator as they are generated. Our streaming
method is implemented as a Rust trait, a generic interface that various classes can implement. We
call our trait Fancy. It contains the basic BMR operations such as add, mul, and project. In
addition, the activation gadgets described in Section 6 are implemented in terms of Fancy, allowing
them to be used by the garbler or evaluator directly, with no special coding required.5 See Figure 3
for more details on the architecture of fancy-garbling.

Parallelizable garbling & evaluation. Parallelization occurs at the Fancy level. In order to
support parallel garbling and evaluation, we designed a method to ensure potentially out-of-order
garbled gates were delivered to the right thread of the evaluator. This works through a special
sync mode, where all Fancy operations take an additional index argument, which often corresponds
to the thread number. The garbler produces garbled gate which have an associated index. The

4https://github.com/spaceships/fancy-garbling
5fancy-garbling provides a number of other objects which implement Fancy besides Garbler and Evaluator. Dummy

evaluates the computation in the clear for debugging. Informer is used to calculate ciphertext size and performance
characteristics. Finally, CircuitBuilder is used to build a static circuit, which can be saved.
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evaluator uses a special “postman” thread which coordinates delivering garbled gates to the threads
that need them. The overhead for this coordination is expensive enough that it makes sense only
for very large computations like convolutional neural networks.

Fancy
core trait

low-level mixed-modulus concepts:
add, scalar-mul, mul, project

BundleGadgets
extension trait to Fancy

large-integer (CRT/MRS) abstractions
original operations from this work

NeuralNetwork
implemented using BundleGadgets

Garbler
implements Fancy

produces garbled gates

Evaluator
implements Fancy

consumes garbled gates

Figure 3: Architecture of fancy-garbling for neural networks. The core of fancy-garbling is the
Fancy trait, which contains the basic low-level mixed-modulus circuit operations of BMR addition,
multiplication, and projection gates. The Garbler and Evaluator both provide implementations of
Fancy. This allows us to use the exact same code for both the Garbler and Evaluator, increasing
confidence in our implementation and reducing the surface area of hard-to-understand bugs inherent
in building circuits for MPC. It also means that we only have to implement the neural network in
terms of Fancy, and we get a Garbler and Evaluator for neural networks for free. Other implementors
of Fancy such as Dummy allow us to check its correctness by evaluating it in the clear. This design
also allows us to forgo using a circuit at all, simply evaluating the neural network directly, streaming
garbled gates from the Garbler to the Evaluator.

7.2 Fancy Implementation of Neural Networks

We implemented convolutional neural networks for fancy-garbling. Our implementation works by
reading a TensorFlow model exported directly from Keras [C+15a] as JSON, along with weights,
biases, test data, and test labels. The neural network itself is divided into a series of layers, as
in TensorFlow. Each layer may be Convolutional, Dense, Flatten, or MaxPooling. Each layer has
an “as-fancy-computation” method, which computes the given layer using an arbitrary object that
implements Fancy. This allows us to both test the correctness of the layer using the Dummy object,
but also evaluate the layer as a streaming garbled circuit using a Garbler and Evaluator.

Inputs and weights to the neural network are encoded in CRT, with the minimum number
of prime residues necessary to fit the intermediate values and preserve the accuracy of the neural
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network. Our activation functions are direct implementations of the methods described in Section 6.
Finally, we parallelize at this level, splitting the computation of a layer into eight threads.

By default, a neural network layer evaluates its input using public weights and biases. Since the
weights are public, we can use scalar multiplication to multiply them with the input, which is free
in BMR. This is the cause of our low communication costs with public weights in Section 8.

We also support secret weights and biases. To do this, we use projection gates. Projection
gates can be programmed by the garbler using truth tables that are oblivious to the evaluator, in
the style of classic Yao garbling. Then, in order to multiply the input by a secret weight w, we
simply compute the truth table consisting of x · w for every x ∈ [q], and use the result as a BMR
projection gate. This technique results in higher communication costs than public weights, since
projection gates are not free (the ciphertext cost of a single projection gate in BMR is q − 1 per
CRT residue). Note that this method is cheaper than treating the weight as a garbler input and
using a multiplication gate, a method which has a base cost of 2q − 2 per residue.

Our neural network implementation also supports Boolean garbling. We strove to provide as
optimal an implementation as possible, despite not including the techniques described in DeepSe-
cure [RRK17], due to implementation effort. We implement public weights using bit-shift (free) and
binary addition (cheap), shifting the value to implement cheap multiplication, e.g. 7x = 4x+2x+x.
We implement secret weights by treating the weights as garbler inputs and using binary multipli-
cation to multiply them with the input. This is quite expensive, unfortunately. Finally, activations
are straightforward and cheap/free in Boolean: we simply output the most significant bit to obtain
sgn, and use same bit as a mask to implement relu.

8 Experimental Results

All experiments are executed on a machine using an eight-core 3.7Ghz AMD CPU with 32GB
RAM. Neural network classifiers are trained using the Keras library [C+15b] in Python running on
top of TensorFlow. These models are trained to classify two datasets: MNIST and CIFAR-10.

The MNIST dataset is a collection of 70,000 labeled images of handwritten digits [LC98]. Each
grayscale image is a 28×28 matrix of integers in the range [0, 255] with a corresponding label in the
range [0, 9]. The standard training set consists of 60,000 images with a test set of 10,000 images.

The CIFAR-10 dataset consists of 60,000 color images in 10 classes (airplanes, cars, birds, cats,
deer, dogs, frogs, horses, ships, and trucks) [KH09]. Each image is represented as a 32 × 32 × 3
matrix of integers in the range [0, 255]. There are 50,000 images in the training set and 10,000 in
the test set.

After training, each model is discretized in a similar manner as the FHE-DiNN work [BMMP17].
Specifically, the weights and biases are rounded to the nearest integer after being scaled by a factor
that does not significantly reduce accuracy. In some cases, we find the best accuracy by training with
a tanh activation function for models which, after being discretized, use the sign activation function.
In the following section, we describe the neural network models we used for our experiments.

8.1 Neural Network Experimental Models

MNIST Model A. This model consists of three fully connected layers with 128 neurons in the
first two layers and ten in the last. We use the ReLU activation function in the first two layers for
training as was done originally in [MZ17b]. Evaluation results are in Table 1; fancy-garbling uses
the more common ReLU activations for testing where the other frameworks use a square activation
function. This results in significantly higher accuracy and matches standard practice in neural
networks (square is not commonly used).
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Runtime (s) Comms (MB) Accuracy
Offline Total Offline Total %

SecureML 4.7 4.88 - - 93.1
MiniONN 0.9 1.04 3.8 47.6 97.6
GAZELLE - 0.03 - 0.5 -

Garbling Total Offline Total %

boolean garbling 8.8 53 - 618 96.8
boolean garbling (sw) 45 - - 3407 96.8
fancy-garbling 0.06 0.12 - 4.43 96.8
fancy-garbling (sw) 0.54 1.98 - 128 96.8
fancy-garbling (99.99%) 1.11 1.49 - 2.77 95.7
fancy-garbling (99.99%)(sw) 13.33 17.22 - 127 95.7

Table 1: MNIST Model A. For our results, both fancy-garbling and boolean garbling, the notation
“(sw)” means the weights are kept secret. Otherwise, weights are public. The notation “(x%)”
means the activation functions have x% approximate correctness, otherwise they are exact. We
divide our runtime into garbling only (“Garbling”) and streaming garbler to an evaluator (“Total”).
We note that garbled circuits have no offline mode, so we report no offline communication. Our
neural network requires 22 bits (or the first 8 primes in CRT-mode) to evaluate. We include
standard Boolean garbling as a baseline. Note that DeepSecure is also based on Boolean garbling
but contains optimizations we did not include, hence it has better performance than our baseline.
A dash (-) indicates that either results were not reported, not applicable (such as offline mode in
fancy-garbling), or the runtime was too large to run to completion.

MNIST Model B. A convolutional neural network with 6 layers originally described by the
CryptoNets work [GBDL+16]. The results in Table 2 are based on optimizations of the following
model:

1. Convolutional layer with 5 kernels and square activation,
2. Mean pooling layer,
3. Convolutional layer with 10 kernels and square activation,
4. Mean pooling layer,
5. Fully connected layer with 100 neurons and a square activation,
6. Fully connected layer with 10 neurons and a sigmoid activation.

Our implementation of this model uses the more common ReLU activation function (rather than
square activation) and max pooling (rather than mean pooling).

MNIST Model C. A convolutional neural network with three layers described in DeepSe-
cure [RRK18]. The results in Table 3 are based on this model. This model consists of the following
layers:

1. Convolutional layer with 5 kernels and ReLU activation,
2. Fully connected layer with 100 neurons and a ReLU activation,
3. Fully connected layer with 10 neurons and a softmax activation.

MNIST Model D. A convolutional neural network with six layers described in MiniONN [LJLA17].
The results in Table 4 are based this model. This model consists of:
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Runtime (s) Comms (MB) Accuracy
Offline Total Offline Total %

CryptoNets - 297.5 - 372.2 98.95
MiniONN 0.88 1.28 3.6 15.8 98.95
GAZELLE 0 0.03 0 0.5 -

Garbling Total Offline Total %

boolean garbling 9.6 74 - 877 86.72
boolean garbling (sw) 49 - - 4717 86.72
fancy-garbling 0.67 2.19 - 160 86.72
fancy-garbling (sw) 1.17 3.87 - 290 86.72

Table 2: MNIST Model B. See Table 1 for label descriptions. We were not able to get high
accuracy using approximate activations on this network. Our neural network requires 26 bits (or
the first 9 primes in CRT-mode) to evaluate.

Runtime (s) Comms (MB) Accuracy
Offline Total Offline Total %

DeepSecure - 9.67 - 791 99.0
GAZELLE 0.15 0.20 5.9 8.0 -

Garbling Total Offline Total %

boolean garbling 6.25 44 - 453 97.21
boolean garbling (sw) 37 - - 3410 97.21
fancy-garbling 0.17 0.38 - 23 97.21
fancy-garbling (sw) 0.63 2.27 - 161 97.21

Table 3: MNIST Model C. See Table 1 for label descriptions. We were not able to get high
accuracy using approximate activations on this network. Our neural network requires 24 bits (or
the first 9 primes in CRT-mode) to evaluate.

1. Convolutional layer with 16 kernels and ReLU activation,
2. Max pooling layer,
3. Convolutional layer with 16 kernels and ReLU activation,
4. Max pooling layer,
5. Fully connected layer with 100 neurons and a ReLU activation,
6. Fully connected layer with 10 neurons.

MNIST Model E. Two fully connected layers with 30 neurons in the first layer and 10 in the
last (we also test a model with 100 neurons in the first layer). We use the tanh activation function
in the first layer for training and the sign activation function for testing, as was done originally in
[BMMP17]. Evaluation results are in Table 5.

CIFAR-10 Model. A convolutional neural network model similar to the one originally described
in MiniONN [LJLA17]. We use the tanh activation function in some layers for training and sign
for testing. Model details follow.

1. Convolutional layer with 32 kernels and ReLU activation,
2. Convolutional layer with 32 kernels and tanh activation,
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Runtime (s) Comms (MB) Accuracy
Offline Total Offline Total %

MiniONN 3.58 9.32 20.9 657.5 99.0
ExPC - 5.1 - 501 99.0
GAZELLE 0.481 0.81 47.5 70.0 -

Garbling Total Offline Total %

fancy-garbling 1.3 4.64 - 321 96.44
fancy-garbling (sw) 3.8 17 - 1023 96.44
fancy-garbling (99.99%) 1.01 3.13 - 190 87
fancy-garbling (99.99%)(sw) 3.66 15.58 - 892 87

Table 4: MNIST Model D. See Table 1 for label descriptions. Our neural network requires 20 bits
(or the first 8 primes in CRT-mode) to evaluate.

3. Mean pooling layer,
4. Convolutional layer with 64 kernels and ReLU activation,
5. Convolutional layer with 64 kernels and tanh activation,
6. Mean pooling layer,
7. Convolutional layer with 128 kernels and ReLU activation,
8. Convolutional layer with 128 kernels and tanh activation,
9. Fully connected layer with 10 neurons and a softmax activation.

Our implementation of this model uses max pooling in layers 3 and 6. Results are found in Table 6.

8.2 Experimental Observations

Our models are based on the descriptions reported in other works. If we could obtain the exact
trained model weights from those other papers, we could discretize them and apply our methods.
If we did this, we could better compare the effects of the discretization process on model accuracy.
As it stands, accuracy is a haphazard metric to compare our work with others. For instance, it is
possible to increase the accuracy of some of our models by putting more effort into the training
process. In addition, loss of accuracy when weights are discretized depends on the values of the
weights. That is, two models with the same accuracy but different weights may have different
accuracy after discretization.

Instead of focusing on accuracy, our experiments highlight the difference in runtime and com-
munication cost. Our models match previous work as closely as possible in number of neurons,
layers, activations, etc. This means the cost difference will be as accurate as possible, even if the
model accuracy is not a reliable metric to compare cryptographic protocols by.

We note that, in principle, our methods can be applied to ResNet architecture of neural networks
and others. To date, our implementation supports convolutional neural networks using ReLU and
sign activation functions.

Finally, we note that our discretization process is simple (scale and round-to-nearest-integer)
and negatively affects the accuracy of a trained model. However, it has the trade-off in that it can
be applied to a pre-trained model. Training a model directly over the integers rather than the real
numbers would significantly improve accuracy.
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30 Neurons
Runtime (s) Comms (MB) Accuracy

Enc Eval Total %

FHE-DiNN30 0.000168 0.49 8.2 kB 93.71
Garbling Total Total %

fancy-garbling 0.004 0.007 0.08 93.42
fancy-garbling (sw) 0.026 0.09 2.88 93.42
fancy-garbling (99%) 0.004 0.007 0.05 88.84
fancy-garbling (99%)(sw) 0.024 0.09 2.85 88.84

100 Neurons
Runtime (s) Comms (MB) Accuracy

Enc Eval Total %

FHE-DiNN100 0.000168 1.65 8.2 kB 96.35
Garbling Total Total %

fancy-garbling 0.009 0.016 0.27 95.6
fancy-garbling (sw) 0.074 0.286 9.61 95.6
fancy-garbling (99%) 0.009 0.013 0.16 92.8
fancy-garbling (99%)(sw) 0.075 0.278 9.5 92.8

Table 5: MNIST Model E. See Table 1 for label descriptions. Our neural networks require 9 bits
(or the first 5 primes in CRT-mode) to evaluate.

Runtime (s) Comms (MB) Accuracy
Offline Total Offline Total %

MiniONN 472 544 3046 9272 81.61
GAZELLE 9.34 12.9 940 1236 -

Garbling Total Offline Total %

fancy-garbling 64 161 - 2718 73.74
fancy-garbling (sw) 286 1162 - 43429 73.73

Table 6: CIFAR-10. See Table 1 for label descriptions. Our neural network requires 23 bits for
the first two layers, then 12 for all remaining layers. In CRT-mode, this requires the first 8 primes
for the first two layers, then the first 6 for all remaining layers.
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