
Lightweight Authenticated Encryption Mode of
Operation for Tweakable Block Ciphers

Yusuke Naito and Takeshi Sugawara

Mitsubishi Electric Corporation, Japan
The University of Electro-Communications, Japan

Abstract. Using a small block length is a common strategy in designing lightweight
block cipher. So far, many 64-bit primitives have been proposed. However, if we use such
a 64-bit primitive for an authenticated encryption with birthday-bound security, it has
only 32-bit plaintext complexity which is subject to a practical attack. To take advan-
tage of a short block length without losing security, we propose a lightweight AEAD
mode FBAE that achieves beyond-birthday-bound security. For the purpose, we extend
the idea of iCOFB, originally defined with a tweakable random function, with tweakable
block cipher. More specifically, we fix the tweak length which was variable in iCOFB,
and further generalize the feedback function. Moreover, we improve its security bound.
We evaluate the concrete hardware performances of FBAE. FBAE benefits from the small
block length and shows the particularly good performances in threshold implementation.

Keywords:Authenticated encryption, beyond-birthday-bound security, tweakable block-
cipher, lightweight, threshold implementation.

1 Introduction

Driven by a demand for secure connectivity in resource-constrained embedded devices, lightweight
cryptography has been actively studied in the last decade. Consequently, a number of lightweight
block ciphers have been proposed [2, 5, 6, 9, 12, 34] including PRESENT [8, 36] and CLEFIA [35]
standardized in ISO/IEC 29192-2.

A common strategy for designing a lightweight block cipher is to use a small block length. For
example, PRESENT [8] and PRINCE [9] support 64-bit block length only. Many more algorithms
such as GIFT [4] and SKINNY [6] provide 64-bit options. The small block length contributes
to a smaller memory footprint and a shorter round number that is crucial for a lightweight
implementation.

Resource-constrained devices are frequently used in a hostile environment in which side-
channel attack (SCA) [18] should be considered. Designers face an even more challenging task
of realizing an SCA-resistant implementation with a limited resource. Researchers have tackled
this problem and proposed many lightweight and SCA resistant implementations [28, 32, 24,
6, 13] including the ones protected by threshold implementation (TI) [29]. The advantage of a
block cipher with a small block length (i.e., a small state size) becomes even larger with TI in
which a shared representation of the state multiplies the memory requirement.

In order to leverage the benefit of lightweight block cipher for realizing both confidentiality
and integrity, lightweight modes of operation for authenticated encryption with associated data
(AEAD) have been actively studied in the last few years promoted by the CAESAR competition
and the NIST’s move toward standardizing lightweight cryptography [30]. So far, lightweight
AEAD modes such as COFB [10] and SAEB [25] have been proposed. However, the short block
length of lightweight cryptography can be a problem for security. The lightweight AEAD modes

Table 1. The lightweight criteria [25] and AEAD modes. The “No extra state” column shows the
number of extra bits if the criterion is not satisfied.

Lightweight criteria

AEAD Primitive Security No extra Inv. XOR Online Ref.

state free only

COFB Block cipher O(2b/2) b/2 ✓ — ✓ [10]

SAEB Block cipher O(2b/2) ✓ ✓ ✓ ✓ [25]

ΘCB3 TBC O(2b) 2b — — ✓ [19]

FBAE TBC O(2b) ✓ ✓ ✓ ✓ Ours

have security up to the so-called birthday bound. More specifically, the security is ensured up
to O(2b/2) block-cipher calls when instantiated with a b-bit block cipher. With a 64-bit block
cipher, the security is ensured up to 232 block-cipher calls only. It is subject to a practical
attack as demonstrated by the Sweet32 attack [7].

The use of an AEAD mode with beyond-birthday-bound (BBB) security is a solution for
avoiding the birthday problem. There are block-cipher-based AEAD modes with BBB security
including CHM [14], CIP [15], and AEAD modes with CLRW2 [21] or r-CLRW [20]. However,
they are costly compared with the lightweight AEAD modes, since two or more independent
universal hash functions are required. Another solution is to construct a (dedicated) TBC-
based AEAD mode. The TBC-based AEAD modes, including ΘCB3 [19], OTR [22], SCT [31]
and ZAE [16], realize better efficiency and security. Especially, ΘCB3 has the smallest state in
the category of the BBB-secure AEAD modes.

1.1 Motivation, Approach, and Problems

Our motivation is to design a lightweight BBB-secure AEAD mode thereby taking advantage
of a short block length without losing security. For being lightweight, we use the four criteria
for lightweight AEAD [25] which is used in designing the block-cipher-based lightweight AEAD
mode SAEB as shown in Table 1:

– No extra state: The AEAD mode uses no additional memory in addition to the ones used
within the (tweakable) block cipher.

– Inverse free: The AEAD mode uses no decryption call of the (tweakable) block cipher.
– XOR only: The AEAD mode needs XOR only in addition to the (tweakable) block cipher.
– Online: The AEAD mode scans the incoming message only once.

Using a (dedicated) TBC is a promising approach for designing a lightweight and BBB-
secure AEAD mode; however, none of the previous TBC-based AEAD modes, including ΘCB3,
satisfy all the lightweight criteria (see Table 1).

Our approach is to design a (dedicated) TBC-based AEAD mode by extending the idea
of iCOFB [10]. iCOFB shown in Figure 1 is a generalization of COFB by tweakable random
function (TRF) having b-bit outputs, denoted by R. In iCOFB, a TRF is called for each mes-
sage/ciphertext block. Feedback functions ρ/ρ′ are used to map a pair of a TRF output Yi and
a plaintext/ciphertext block Mi/Ci to the next TRF input Xi+1 and a ciphertext/plaintext
block Ci/Mi. More specifically, the following linear functions are considered, which is expressed

2

0b

�

R

N,A,(0,0)

ρM1

C1

�

R

N,A,(1,0)

ρM2

C2

�

R

N,A,(2,0)

ρM3

C3

�

R

N,A,(3,1)

T

Y1

X2

Y2

X3

Y3

X4

��������	�

0b

�

R

N,A,(0,0)

ρ'C1

M1

�

R

N,A,(1,0)

ρ'C2

M2

�

R

N,A,(2,0)

ρ'C3

M3

�

R

N,A,(3,1)

T

Y1

X2

Y2

X3

Y3

X4

�������	�

Fig. 1. iCOFB. M1,M2,M3 are b-bit plaintext blocks, C1, C2, C3 are b-bit ciphertext blocks, and T is
a b-bit tag.

by a 2b× 2b binary matrix.

ρ(Yi,Mi) =

(
Xi+1

Ci

)
=

(
E1,1 E1,2

E2,1 E2,2

)(
Yi

Mi

)
,

ρ′(Yi, Ci) =

(
Xi+1

Mi

)
=

(
D1,1 D1,2

D2,1 D2,2

)(
Yi

Ci

)
.

After consuming all the message blocks, a TRF is called once again to generate a tag T .
It was proven that iCOFB has O(2b) security with (ρ, ρ′) satisfying a certain criterion (see
Subsection 3.1).

As shown in Figure 1, iCOFB needs no extra state in addition to the ones within the
underlying TRF. Besides, iCOFB takes message/ciphertext blocks online and does not need
an inverse of TRF. Moreover, the linear functions ρ and ρ′ can be realized with XOR only.
Therefore, iCOFB satisfies all the requirements regarding TRF-based AEAD.

There are two problems in designing a TBC-based AEADmode from the iCOFB’s idea. First,
since associated data (AD) is a part of a tweak, the underlying TRF should accept an arbitrary-
length tweak. On the contrary, lightweight TBCs such as SKINNY accepts a fixed-length tweak
only. Using the XT tweak extension [23] is a possible solution, but it requires a universal hash
function accepting an arbitrary-length input that can be costly in implementation. Second, the
security bound of iCOFB is O(ℓmaxq/2

b) which depends on the maximum message block length
ℓmax and the number of queries q (the sum of the numbers of encryption queries and forgery
attempts). It is degraded compared with that of ΘCB3, O(qD/2

b), wherein qD is the number
of forgery attempts. Large ℓmax and/or q cause a short key life: an additional cost for rekeying
or a shorter product lifetime.

1.2 Contribution

We design a (fixed tweak-length) TBC-based AEAD mode called FBAE that solves the above
two problems and satisfies all the lightweight criteria as shown in Table 1. Moreover, we general-

3

ize the feedback functions that cover a broader class of feedback functions including non-linear
ones.

We address the first problem by designing a new AD processing part. We introduce a
(possibly non-linear) feedback function δ(a) that maps an AD block Ai and an TBC output
block Wi to the next TBC input Vi+1. A given AD is processed block by block by using a
fixed-tweak TBC and the feedback function δ(a).

To address the second problem, we generalize the feedback functions ρ and ρ′ to the pairs
of functions (γ(e), δ(e)) and (γ(d), δ(d)) given by

δ(e) : (Yi,Mi) 7→ Xi+1, γ(e) : (Yi,Mi) 7→ Ci,

δ(d) : (Yi, Ci) 7→ Xi+1, γ(d) : (Yi, Ci) 7→Mi.

We show conditions on the generalized feedback functions (given in Subsections 3.2 and 3.3)
under which FBAE satisfy the security bound of O(qD/2

b) — the same level of security as
ΘCB3. The set of generalized feedback function satisfying the condition is a superset of (ρ, ρ′)
in iCOFB, and thus involves a broader class of functions.

The benefit of the proposed TBC-based AEADmode is evaluated through concrete hardware
implementations. In the implementation, we use a particularly efficient set of feedback functions:

δ(a)(Wi, Ai) = Wi ⊕Ai,

δ(e)(Yi,Mi) = Mi, γ(e)(Yi,Mi) = Yi ⊕Mi,

δ(d)(Yi, Ci) = Yi ⊕ Ci = Mi, γ(d)(Yi, Ci) = Yi ⊕ Ci.

We refer the specialization as the plaintext feedback mode (PFB) because the TBC input is al-
ways Mi. We remark that the encryption of PFB is parallelizable, unlike the existing lightweight
AEAD modes COFB and SAEB1. The feature is desirable for communication between entities
with asymmetric resources, e.g., a central server sends encrypted commands to many resource-
constrained nodes.

In the implementations, PFB is instantiated with the lightweight TBC SKINNY-64-192. Its
performance is compared with the state-of-the-art block-cipher-based alternative with the same
level of security: SAEB instantiated with GIFT-128-128. For each of the AEADs, we evaluate the
performances with and without TI. We show that PFB benefit from the small block length and
shows the particularly good performance in implementations with the SCA countermeasure: it
has the smallest circuit area compared with the SAEB implementation and the conventional
implementations of Ascon [11]) and Ketje [1].

1.3 Organization

This paper is organized as follows. In Section 2, we briefly review TBC and AEAD. Then,
we describe the design principle and definition of FBAE in Section 3, followed by its security
result is Section 4. We show hardware implementations and their performance comparison in
Section 5.

1 The decryption of PFB is not parallelizable, whereas both the encryption and decryption of ΘCB3 is
parallelizable. However, as shown in Table 1, ΘCB3 does not satisfy three out of the four conditions.
Regarding ρ and ρ′, COFB uses the other feedback functions called combined feedback, which does
not offer the parallelizability. SAEB has the iterated structure of a block cipher, thus does not has
the parallelizability.

4

2 Preliminaries

Notation. Let λ be an empty string and {0, 1}∗ the set of all bit strings. For an integer i ≥ 0,
let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {λ},

(
{0, 1}i

)∗
the set of all bit strings

whose lengths are multiples of i, and {0, 1}≤i := {0, 1}1 ∪ {0, 1}2 ∪ · · · ∪ {0, 1}i the set of all
bit strings of length at most i. Let 0i resp. 1i be the bit string of i-bit zeros resp. ones. For an
integer i ≥ 1, let [i] := {1, 2, . . . , i} be the set of positive integers equal to or less than i, and

(i) := {0} ∪ [i]. For a non-empty set T , T $←− T means that an element is chosen uniformly at
random from T and is assigned to T . The concatenation of two bit strings X and Y is written
as X∥Y or XY when no confusion is possible. For integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let
msbi(X) resp. lsbi(X) be the most resp. least significant i bits of X. For integers i and j with
0 ≤ i < 2j , let strj(i) be the j-bit binary representation of i. For an integer b ≥ 0 and a bit

string X, we denote the parsing into fixed-length b-bit strings as (X1, X2, . . . , Xℓ)
b←− X, where

X = X1∥X2∥ · · · ∥Xℓ, |Xi| = b for i ∈ [ℓ − 1], and 0 < |Xℓ| ≤ b. For an integer b > 0, let
ozpb :

(
{λ} ∪ {0, 1}≤b

)
→ {0, 1}b be a one-zero padding function: for a bit string X ∈ {0, 1}≤b,

ozpb(X) = X if |X| = b; ozpb(X) = X∥10b−1−|X| if |X| < b.

Tweakable Block Cipher. A tweakable block cipher (TBC) is a set of permutations indexed
by a key and a public input called tweak. Let K be the key spece, T W the tweak space, and b
the input/output-block size. A TBC (encryption) is denoted by Ẽ : K×T W×{0, 1}b → {0, 1}b.
A TBC having a key K ∈ K is denoted by ẼK , and ẼK having a tweak TW ∈ T W is denoted
by ẼTW

K .
In this paper, a keyed TBC is assumed to be a secure tweakable-pseudo-random permu-

tation, or TPRP for short, which is indistinguishable from a tweakable random permutation
(TRP). A tweakable permutation (TP) P̃ : T W × {0, 1}b → {0, 1}b is a set of b-bit permuta-

tions indexed by a tweak in T W. A TP having a tweak TW ∈ T W is denoted by P̃TW . Let

P̃erm(T W, {0, 1}b) be the set of all TPs of block size b and tweak space T W. A TRP is defined

as P̃
$←− P̃erm(T W, {0, 1}b). In the TPRP-security game, an adversary A has access to either

the target keyed TBC ẼK for K
$←− K or a TRP P̃

$←− P̃erm(T W, {0, 1}b). After the interaction,
A returns a decision bit y ∈ {0, 1}. The output of A with access to O is denoted by AO. For

a TBC Ẽ, the TPRP-security advantage function of an adversary A is defined as

Advtprp

ẼK
(A) := Pr

[
K

$←− K;AẼK = 1
]
− Pr

[
P̃

$←− P̃erm(T W, {0, 1}b);AP̃ = 1
]
,

where the probabilities are taken over K, P̃ and A.
The maximum over all adversaries, running in time at most t and making at most σ queries,

is denoted by
Advtprp

ẼK
(σ, t) := max

A
Advtprp

ẼK
(A) .

Nonce-Based Authenticated Encryption with Associated Data. A nonce-based authen-
ticated encryption with associated data (nAEAD) scheme based on a keyed TBC ẼK is denoted

by Π[ẼK] and is a pair of encryption and decryption algorithms (Π.Enc[ẼK],Π.Dec[ẼK]).
K,N ,M, C,A and T are the sets of keys, nonces, plaintexts, ciphertexts, associated data (AD)
and tags of the nAEAD scheme, respectively. In this paper, the key space of an nAEAD scheme
is equal to that of the underlying TBC. The encryption algorithm takes a nonce N ∈ N , AD
A ∈ A, and a plaintext M ∈ M, and returns, deterministically, a pair of a ciphertext C ∈ C

5

and a tag T ∈ T . The decryption algorithm takes a tuple (N,A,C, T) ∈ N × A× C × T , and
returns, deterministically, either the distinguished invalid (reject) symbol ⊥̸∈ M or a plaintext

M ∈ M. We require |Π.Enc[ẼK](N,A,M)| = |Π.Enc[ẼK](N,A,M ′)| when these outputs are
strings and |M | = |M ′|.

We follow the security definition of an nAEAD scheme in [26, 33] that is the indistinguisha-

bility between Π[ẼK] = (Π.Enc[ẼK],Π.Dec[ẼK]) and ($,⊥), where $ is a random-bits oracle

that has the same interface as Π.Enc[ẼK] and for a query (N,A,M) returns a random bit string

of length |Π.Enc[ẼK](N,A,M)|; ⊥ is an oracle that returns the reject symbol ⊥ for any query.

In the nAEAD-security game, first an adversary A interacts with either Π[ẼK] or ($,⊥), and
then returns a decision bit y ∈ {0, 1}. For an nAEAD scheme Π[ẼK], the nAEAD-security
advantage function of an adversary A is defined as

Advnaead
Π[ẼK]

(A) = Pr[K
$←− K;AΠ[ẼK] = 1]− Pr[A$,⊥ = 1] ,

where the probabilities are taken over K, $ and A. We demand that A is nonce-respecting
(all nonces in encryption queries are distinct), that A never asks a trivial decryption query

(N,A,C, T), i.e., there is a prior encryption query (N,A,M) with (C, T) = Π.Enc[ẼK](N,A,M),

and that A never repeats a query. Through this paper, the world with Π[ẼK] is called “real

world,” and the world with ($,⊥) is called “ ideal world. ” Queries to Π.Enc[ẼK]/$ are called

“encryption queries,” and queries to Π.Dec[ẼK]/ ⊥ are called “decryption queries.”
The maximum over all adversaries, running in time at most t and making at most qE

encryption queries and qD decryption queries of σ the total number of TBC calls invoked by
all queries, is denoted by

Advnaead
Π[ẼK]

((qE , qD, σ), t) := max
A

Advnaead
Π[ẼK]

(A) .

When an adversary is a computationally unbounded algorithm, the time t is disregarded.

3 FBAE: TBC-based Feedback Mode

We design a TBC-based nAEAD scheme, basing on the iCOFB design approach.

3.1 Brief Overview of iCOFB Design and Security

iCOFB given in [10] is a tweakable random-function (TRF)-based nAEAD scheme and is de-
signed so that an extra state beyond the TRF size is not required. Let ℓmax be the maxi-
mum length of ciphertext blocks, and R : (N × A × [ℓmax + 1] × (1)) × {0, 1}b → {0, 1}b
be a TRF, where tweak elements are a nonce, AD, a counter and a domain separation. Let
ρ : {0, 1}b × {0, 1}b → {0, 1}b × {0, 1}b be a feedback function that takes a b-bit TRF output
and a b-bit plaintext block, and outputs a b-bit TRF input and a b-bit ciphertext block. Fig-
ure 1 shows the encryption and decryption procedures of iCOFB with three plaintext/ciphertext
blocks.

In order for iCOFB to become lightweight, the feedback function ρ should be lightweight.
[10] considers a linear function, thus ρ is expressed by a 2b× 2b binary matrix:

ρ(Yi,Mi) =

(
Xi+1

Ci

)
=

(
E1,1 E1,2

E2,1 E2,2

)(
Yi

Mi

)

6

��������	�
������	�

~
EK

Mi

Ci

Xi

Yi

~
EK

Mi+1

Ci+1

Yi+1

Xi+1

~
EK

Ci

Mi

Xi

Yi

~
EK

Ci+1

Mi+1

Yi+1

Xi+1

���

~
EK

Ai

Vi-1

Wi-1

~
EK

Ai+1

Wi

Vi

δ (a) δ (a) δ (e)

b
γ (e)

b
γ (d)

b
γ (e)

b
γ (d)

δ (e) δ (d) δ (d)

Fig. 2. Core Procedures of AD Processing (Hash), Encryption and Decryption. Ai is an i-th AD block.
Mi is an i-th plaintext block. Ci is an i-th ciphertext block. Tweaks are omitted.

where Ei,j ’s are b× b binary matrices. For the decryption of iCOFB, the feedback function ρ′ is
also expressed by a 2b× 2b binary matrix:

ρ′(Yi, Ci) =

(
Xi+1

Mi

)
=

(
D1,1 D1,2

D2,1 D2,2

)(
Yi

Ci

)
where Di,j ’s are b× b binary matrices. For the correctness of iCOFB, [10] chooses the feedback
function ρ′ with the following conditions: E2,2 is invertible; D1,1 = E1,1 +E1,2E

−1
2,2E2,1; D1,2 =

E1,2; D2,1 = E−1
2,2E2,1; D2,2 = E−1

2,2 .
Regarding the security of iCOFB, they show the following theorem.

Theorem 1. If the feedback function ρ satisfies the conditions (A1) E2,1 is invertible; (A2)
D1,2 is invertible; (A3) D1,1 is invertible, then for any adversary A making at most qD de-
cryption queries of plaintext length at most ℓmax blocks,

Advnaead
iCOFB[R](A) ≤ qD(ℓmax + 1)

2b
.

3.2 FBAE: Design Principle and Specification

We design FBAE, a TBC-based lightweight AEAD mode, by extending the idea of iCOFB to
the TBC setting.

Encryption/Decryption Procedures In FBAE, a plaintext/ciphertext is partitioned into
b-bit blocks, and as iCOFB, each block is processed by a TBC and feedback function ρ/ρ′. But
more general functions than the linear feedback functions are considered.

– The feedback function in the encryption is composed of the following two functions: for an
integer 0 < l ≤ b,

• γ
(e)
l : {0, 1}l × {0, 1}l → {0, 1}l defines a ciphertext block Ci ∈ {0, 1}l from a TBC

output Yi ∈ {0, 1}l and a plaintext block Mi ∈ {0, 1}l (thus Ci = γ
(e)
l (Yi,Mi)), and

• δ(e) : {0, 1}b × {0, 1}≤b → {0, 1}b defines a TBC input Xi+1 ∈ {0, 1}b from a TBC
output Yi ∈ {0, 1}b and a plaintext block Mi ∈ {0, 1}≤b (thus Xi+1 = δ(e)(Yi,Mi)).

The core procedure of the encryption of FBAE that uses these functions is given in Figure 2
(Center). Note that plaintext blocks except for the last block are of l = b, and the last block
is of l ≤ b.

7

– The feedback function in the decryption is composed of the following two functions: for an
integer 0 < l ≤ b,

• γ
(d)
l : {0, 1}l × {0, 1}l → {0, 1}l defines a plaintext block Mi ∈ {0, 1}l from a TBC

output Yi ∈ {0, 1}l and a ciphertext block Ci ∈ {0, 1}l (thus Mi = γ
(d)
l (Yi, Ci)), and

• δ(d) : {0, 1}b × {0, 1}≤b → {0, 1}b defines a TBC input Xi+1 ∈ {0, 1}b from a TBC
output Yi ∈ {0, 1}b and a ciphertext block Ci ∈ {0, 1}≤b (thus Xi+1 = δ(d)(Yi,Mi)).

The core procedure of the decryption of FBAE that uses these functions is given in Figure 2
(Right). Note that ciphertext blocks except for the last block are of l = b, and the last
block is of l ≤ b.

Hash Procedure (AD Processing) In order to design a lightweight AEAD scheme, FBAE
uses a fixed-tweak-length TBC, whereas iCOFB uses a variable-tweak-length TRF to take
variable-length AD. Hence, we define additional procedure of processing variable-length AD.
Similar to the encryption/decryption procedures, AD is partitioned into b-bit blocks and then
AD blocks are processed by iterating a combination of a TBC and the following feedback
function.

– δ(a) : {0, 1}b ×
(
{λ} ∪ {0, 1}≤b

)
→ {0, 1}b defines a TBC input Vi ∈ {0, 1}b from a TBC

output Wi−1 ∈ {0, 1}b and an AD block Ai ∈ {λ} ∪ {0, 1}≤b (thus Vi = δ(a)(Wi−1, Ai)).

Note that an empty AD block is appeared when AD is an empty string. The core procedure of
processing an AD block is given in Figure 2 (Left).

Tweak Function Let ℓmax be the maximum block size of AD, plaintext and ciphertext. Re-
garding a tweak of the underlying TBC, we use the following tweak function:

– f : [7]×N × (ℓmax)→ TW,

with the following condition:

– B1: for any (i,N, j), (i′, N ′, j′) ∈ [7]×N × (ℓmax) such that (i,N, j) ̸= (i′, N ′, j′),

f(i,N, j) ̸= f(i′, N ′, j′).

The first element is used for distinguishing AD, plaintext/ciphertext and whether the last block
is a full-bit one or not, which offers a distinct permutation between the hash procedure and the
encryption/decryption, and which avoids additional TBC call when the last block is a full-bit
one. The second element is a nonce, which offers a distinct permutation for each nonce thereby
removing the birthday term regarding the number of queries. The third element is the current
block number, which offers a distinct permutation for each block thereby removing the birthday
term regarding the query length.

Specification of FBAE The specification of FBAE is given in Algorithm 1 and is shown in
Figure 3. FBAE.Hash is the hash procedure, FBAE.Enc is the encryption, and FBAE.Dec is the
decryption.

For the correctness of FBAE, the following conditions are required. Let l be an integer such
that 0 < l ≤ b.

– B2: for any Y ∈ {0, 1}l, γ(e)
l (Y, ·) is bijective and γ

(d)
l (Y, ·) is the inverse of γ

(e)
l (Y, ·), i.e.,

M = γ
(d)
l (Y, γ

(e)
l (Y,M)) for any M ∈ {0, 1}l.

– B3: for any M ∈ {0, 1}l, Y ∈ {0, 1}b, δ(e)(Y,M) = δ(d)(Y, γ
(e)
l (msbl(Y),M)).

8

Algorithm 1 FBAE

Encryption FBAE.Enc[ẼK](N,A,M)

1: X1 ← FBAE.Hash[ẼK](A)
2: if A ̸= λ ∧ |A| mod b = 0 then x← 2; else x← 3
3: if M = λ then ℓ← 0; goto step 8

4: M1, . . . ,Mℓ
b←−M

5: for i = 1, . . . , ℓ do
6: Yi ← Ẽ

f(x,N,i)
K (Xi); Ci ← γ

(e)

|Mi|
(msb|Mi|(Yi),Mi); Xi+1 ← δ(e)(Yi,Mi)

7: end for
8: if M ̸= λ ∧ |M | mod b = 0 then y ← x+ 2; else y ← x+ 4

9: S ← Xℓ+1; T ← msbτ
(
Ẽ

f(y,N,ℓ)
K (S)

)
; C ← C1∥ · · · ∥Cℓ

10: return (C, T)

Decryption FBAE.Dec[ẼK](N,A,C, T)

1: X1 ← FBAE.Hash[ẼK](A)
2: if A ̸= λ ∧ |A| mod b = 0 then x← 2; else x← 3
3: if C = λ then ℓ← 0; goto step 8

4: C1, . . . , Cℓ
b←− C

5: for i = 1, . . . , ℓ do
6: Yi ← Ẽ

f(x,N,i)
K (Xi); Mi ← γ

(d)

|Ci|
(msb|Ci|(Yi), Ci); Xi+1 ← δ(d)(Yi, Ci)

7: end for
8: if C ̸= λ ∧ |C| mod b = 0 then y ← x+ 2; else y ← x+ 4

9: S ← Xℓ+1; T̂ ← msbτ
(
Ẽ

f(y,N,ℓ)
K (S)

)
; M ←M1∥ · · · ∥Mℓ

10: if T = T̂ then return M ; else return ⊥

Hash FBAE.Hash[ẼK](A)

1: A1, . . . , Aa
b←− A; W0 ← 0b

2: for i = 1, . . . , a− 1 do Vi ← δ(d)(Wi−1, Ai); Wi ← Ẽ
f(1,R,i)
K (Vi)

3: Va ← δ(d)(Wa−1, Aa); H ← Va

4: return H

3.3 Conditions on γ
(e)
l , γ

(d)
l , δ(a), δ(e), δ(d) for Achieving nAE-Security

In order to prove the nAE-security of FBAE, we introduce the following five conditions on

γ
(e)
l , γ

(d)
l , δ(a), δ(e), δ(d).

– B4: for any M ∈ {0, 1}l, γ(e)
l (·,M) is bijective.

– B5: for any C ∈ {0, 1}≤b, δ(d)(·, C) is bijective.

– B6: for any C,C ′ ∈ {0, 1}≤b and Y, Y ′ ∈ {0, 1}b,

δ(e)(Y, γ
(d)
|C|(msb|C|(Y), C)) = δ(d)(Y ′, C ′)⇒(C = C ′ ∧ Y = Y ′)∨

(C ̸= C ′ ∧ Y ̸= Y ′)∨
(C ̸= C ′ ∧ |C| = b ∧ |C ′| < b ∧ Y = Y ′)∨
(C ̸= C ′ ∧ |C| < b ∧ |C ′| = b ∧ Y = Y ′).

– B7: for any A ∈ {0, 1}≤b, δ(a)(·, A) is bijective.

9

���A�λ�|A| mod b�0
x � 2

���A�λ�|A| mod b�0
x � 3

���M�λ�|M| mod b�0
y � x + 2

���M�λ�|M| mod b�0
y � x + 4

A1

f(x,N,1)
~
EK

M1

C1

H�X1

����

���

γ (e)

δ (e)Y1

f(x,N,2)
~
EK

M2

C2

γ (e)

δ (e)Y2

X2

f(x,N,l-1)
~
EK

M
l-1

C
l-1

γ (e)

δ (e)Y
l-1

X
l-1

f(x,N,l)
~
EK

M
l

C
l

γ (e)

δ (e)Y
l

X
l

~
EK

S
f(y,N,l)

T

f(1,0n,2)
~
EK

A3

δ (a)W2

V2

f(1,0n,1)
~
EK

A2

δ (a)W1

V1

δ (a)

f(1,0n,a-1)
~
EK

Wa-1

Va-1

f(x,N,1)
~
EK

M1

C1

H�X1

�	�

Y1

f(x,N,2)
~
EK

M2

C2

Y2

X2

f(x,N,l-1)
~
EK

M
l-1

C
l-1

Y
l-1

X
l-1

f(x,N,l)
~
EK

C
l

M
l

γ (d)

Y
l

X
l

~
EK

S
f(y,N,l)

T = T
?

δ (a)

Aa

H

���|M
l

|

���|C
l

|

b b b

|M
l

|

|C
l

|
^

���τ

���τγ (d)
b

γ (d)
b

γ (d)
b

δ (d) δ (d) δ (d) δ (d)

0b

W0

(M�λ) (M�λ)

~
EK

H�S
f(y,N,0)

T

���τ

(C�λ) (C�λ)

~
EK

H�S
f(y,N,0)

T = T
?^

���τ

Va

Fig. 3. FBAE. A1, . . . , Aa
b←− A. M1, . . . ,Mℓ

b←− M (in the encryption algorithm) and C1, . . . , Cℓ
b←− C

(in the decryption algorithm).

– B8: for any A,A′ ∈ {λ} ∪ {0, 1}≤b,W,W ′ ∈ {0, 1}b,

δ(a)(W,A) = δ(a)(W,A′)⇒(A = A′ ∧W = W ′)∨
(A ̸= A′ ∧W ̸= W ′)∨
(A ̸= A′ ∧ |A| = b ∧ |A′| < b ∧W = W ′).

The condition B4 ensures that for a plaintext block Mi and a TBC output Yi, if Yi is uniformly

distributed over {0, 1}b, then so is the ciphertext block Ci = γ
(e)
l (Yi,Mi). The condition B5

ensures that the internal state collision δ(e)(Yi,Mi) = δ(d)(Y ′
i , C

′
i) (between the encryption and

decryption) depends on the randomness of the TBC output Y ′
i . Thus, if the output is distributed

over a set X , then the collision probability can be at most 1/|X |. Similar to the condition B5,
the condition B7 ensures that in the procedure of processing AD blocks, the internal state
collision δ(a)(Wi, Ai) = δ(a)(W ′

i , A
′
i) depends on the randomness of the TBC output W ′

i . The
conditions B5, B7 are used to upper bound the probability of forging a tag. The condition B6
ensures that in the encryption and decryption procedures, no trivial collision occurs on the
internal state values. Note that the condition B6 tolerates an internal state collision from the

10

~
EK

Mi

Ci

Xi

Yi

δ (e)

b
γ (e)

δ (a)

~
EK

���b(Ai)

Vi-1

Wi-1 �

δ (a)

δ (e),γ (e)

�

|Mi| = b

~
EK

Mi

Ci

Xi

Yi

δ (e)

γ (e)
�

|Mi| < b

��� |Mi|

�

�

�

b-|M
i |

||

0|Mi|

���b

�

|Mi|

δ (d),γ (d)

~
EK

Ci

Mi

Xi

Yi

δ (d)

b
γ (d) �

|Ci| = b

�

~
EK

Ci

Mi

Xi

Yi

δ (d)

γ (e)
�

|Ci| < b

��� |Mi| ���b

�

|Mi|

Fig. 4. Lightweight Instantiations of δ(a), δ(e), δ(d), γ(e), γ(d).

conditions (C ̸= C ′ ∧ |C| = b ∧ |C ′| < b ∧ Y = Y ′) and (C ̸= C ′ ∧ |C| < b ∧ |C ′| = b ∧ Y = Y ′)
but the first element of f gets rid of the influence of the trivial collision. The condition B6 is
defined similarly.

It is easy to see that the classes of the functions γ
(e)
l , γ

(d)
l , δ(e), δ(d) with the condi-

tions B4, B5, B6 include the linear feedback function ρ, ρ′ with the conditions A1, A2, A3.

3.4 Lightweight Instantiations of γ
(e)
l , γ

(d)
l , δ(a), δ(e), δ(d), f

In the section 5, we show that FBAE offers a lightweight AEAD scheme, combining with a
lightweight TBC. In the implementation, the following lightweight functions are used.

γ
(e)
l (Yi,Mi) = Yi ⊕Mi, where 0 < l ≤ b, and Yi,Mi ∈ {0, 1}l

γ
(d)
l (Yi, Ci) = Yi ⊕ Ci, where 0 < l ≤ b, and Yi, Ci ∈ {0, 1}l

δ(e)(Yi,Mi) = ozpb(Mi)⊕
(
0|Mi|∥lsbb−|Mi|(Yi)

)
, where Yi ∈ {0, 1}b,Mi ∈ {0, 1}≤b.

δ(d)(Yi, Ci) = Yi ⊕ ozpb(Ci), where Yi ∈ {0, 1}b, Ci ∈ {0, 1}≤b.

δ(a)(Wi, Ai) = Wi ⊕ ozpb(Ai), where Yi ∈ {0, 1}b, Ai ∈ {λ} ∪ {0, 1}≤b.

These functions are shown in Figure 4. FBAE with the above functions is called PFB (Plaintext
FeedBack). PFB is shown in Figure 7 in Appendix. It is easy to see that the above functions
satisfy the conditions B2-B8.

The tweak function f , when T W := {0, 1}t and N := {0, 1}n such that n + 3 + 1 ≤ t, is
defined as

f(i,N, j) = (str3(i)∥N∥strt−3−n(j)),

which satisfies the condition B1.

4 nAEAD-Security of FBAE

The nAEAD-security bound of FBAE is given in the following theorem.

Theorem 2. For FBAE with the conditions B1-B8, we have

Advnaead
FBAE[ẼK]

((qE , qD, σ), t) ≤
qD

2τ − 1/2b−τ
+

qD
2b − 1

+Advtprp

ẼK
(σ, t+O(σ)) .

11

The proof is given in the following subsections.

4.1 Replacing the Keyed TBC EK with a TRP P̃

The keyed TBC ẼK for K
$←− K is replaced with a TRP P̃

$←− P̃erm
(
T W, {0, 1}b

)
. By the

replacement, we have

Advnaead
FBAE[ẼK]

((qE , qD, σ), t) ≤ Advnaead
FBAE[P̃]

(qE , qD, σ) +Advtprp

ẼK
(σ, t+O(σ)) . (1)

Hereafter, Advnaead
FBAE[P̃]

(qE , qD, σ), the nAEAD-advantage of FBAE[P̃] is upper bounded,

where an adversary is a computationally unbounded algorithm and the complexity is solely
measured by the numbers of queries. Without loss of generality, an adversary is deterministic.

4.2 Upper Bounding Advnaead
FBAE[P̃]

(qE , qD, σ)

Firstly, a forgery event in the real world is defined.

forge⇔ ∃i ∈ [qD] s.t. at the i-th decryption query, ⊥ is returned.

Then, for any adversary A,

Advnaead
FBAE[P̃]

(A) = Pr
[
P̃

$←− P̃erm
(
T W, {0, 1}b

)
;AFBAE[P̃] = 1

]
− Pr

[
A$,⊥ = 1

]
≤ Pr[forge] + Pr

[
P̃

$←− P̃erm
(
T W, {0, 1}b

)
;AFBAE[P̃] = 1|¬forge

]
− Pr

[
A$,⊥ = 1

]
. (2)

In Subsection 4.3, Pr
[
P̃

$←− P̃erm
(
T W, {0, 1}b

)
;AFBAE[P̃] = 1|¬forge

]
−Pr

[
A$,⊥ = 1

]
is an-

alyzed. In Subsection 4.4, Pr[forge] is analyzed. Putting the upper bounds (4), (5) into (2) gives

Advnaead
FBAE[P̃]

(qE , qD, σ) ≤
qD

2τ − 1/2b−τ
+

qD
2b − 1

, (3)

and putting the above upper bound into (1) gives that in Theorem 2.

4.3 Analysis of Pr
[
P̃

$←− P̃erm
(
TW, {0, 1}b

)
; AFBAE[P̃] = 1|¬forge

]
−Pr

[
A$,⊥ = 1

]
In the real world, the condition B1 of the tweak function f ensures that all tweaks of P̃ defined
by encryption queries are distinct. Hence, the output blocks of P̃ are chosen independently and
uniformly at random from {0, 1}b. By the condition B4, all ciphertext blocks Ci defined by
encryption queries are independently and uniformly distributed over {0, 1}|Ci|, and thus are

indistinguishable from those defined by $. By ¬forge, all outputs of FBAE.Dec[P̃] are ⊥. Hence,
we have

Pr
[
P̃

$←− P̃erm
(
T W, {0, 1}b

)
;AΠ[P̃] = 1|¬forge

]
− Pr

[
A$,⊥ = 1

]
= 0 . (4)

12

4.4 Analysis of Pr[forge]

In the following analysis, without loss of generality, an adversary A aborts after forge occurs.
Let forgei be an event that at the i-th decryption query forge occurs (thus forgei occurs as long
as forge1 ∨ forge2 ∨ · · · ∨ forgei−1 does not occur). Thus,

Pr[forge] ≤
qD∑
i=1

Pr[forgei] .

Next, Pr[forgei] is upper bounded, wherein i ∈ [qD]. A value/variable V defined at the i-
th decryption query, except for the lengths a and ℓ, is denoted by V (d). The lengths a and ℓ
are denoted by ad and ℓd, respectively. Similarly, for an encryption query (N (e), A(e),M (e)), a
value/variable V corresponding with the encryption query, except for the lengths a and ℓ, is
denoted by V (e). The lengths a and ℓ are denoted by ae and ℓe, respectively. In this analysis,
we consider the following types of decryption query.

– Type-1: For any previous encryption query (N (e), A(e),M (e)),

N (e) ̸= N (d) ∨ y(e) ̸= y(d) ∨ ℓe ̸= ℓd.

– Type-2: For some previous encryption query (N (e), A(e),M (e)),

N (e) = N (d) ∧ y(e) = y(d) ∧ ℓe = ℓd.

Then,

Pr[forgei] = Pr[forgei ∧ Type-1] + Pr[forgei ∧ Type-2]

= Pr [forgei|Type-1] · Pr [Type-1] + Pr [forgei|Type-2] · Pr [Type-2]
≤ max {Pr [forgei|Type-1] ,Pr [forgei|Type-2]} .

In the subsection 4.5, Pr [forgei|Type-1] is analyzed, and in the subsection 4.6, Pr [forgei|Type-2]
is analyzed. The upper bounds (6), (7) give

Pr[forgei] ≤
1

2τ − 1/2b−τ
+

1

2b − 1
.

Thus we have

Pr[forge] ≤ qD ·
(

1

2τ − 1/2b−τ
+

1

2b − 1

)
=

qD
2τ − 1/2b−τ

+
qD

2b − 1
. (5)

4.5 Analysis of Pr [forgei|Type-1]

Under the Type-1 decryption query and by the condition B1, the tweak f(y(d), N (d), ℓd), with
which the TRP defines the tag T̂ (d), is distinct from all tweaks defined by the previous encryp-
tion queries, and is distinct from other tweaks defined by the decryption query. Hence, T̂ (d) is
uniformly distributed over {0, 1}τ and independent of the TRP outputs defined by the previous
encryption queries and of other TRP outputs defied by the decryption query. Thus, we have

Pr [forgei|Type-1] ≤
1

2τ
. (6)

13

4.6 Analysis of Pr[forgei|Type-2]

Pr
[
T̂ (d) = T (d)

∣∣∣S(d) ̸= S(e) ∧ Type-2
]
and Pr

[
S(d) = S(e)

∣∣Type-2] are upper bounded, since

Pr [forgei|Type-2] = Pr
[
T̂ (d) = T (d) ∧ S(d) ̸= S(e)

∣∣∣Type-2]
+ Pr

[
T̂ (d) = T (d) ∧ S(d) = S(e)

∣∣∣Type-2]
= Pr

[
T̂ (d) = T (d)

∣∣∣Type-2 ∧ S(d) ̸= S(e)
]
· Pr

[
S(d) ̸= S(e)

∣∣∣Type-2]
+ Pr

[
T̂ (d) = T (d)

∣∣∣Type-2 ∧ S(d) = S(e)
]
· Pr

[
S(d) = S(e)

∣∣∣Type-2]
≤ Pr

[
T̂ (d) = T (d)

∣∣∣Type-2 ∧ S(d) ̸= S(e)
]
+ Pr

[
S(d) = S(e)

∣∣∣Type-2] .

The upper bounds (8), (11) give

Pr [forgei|Type-2] ≤
1

2τ − 1/2b−τ
+

1

2b − 1
. (7)

Upper Bounding Pr
[
T̂ (d) = T (d)

∣∣∣Type-2 ∧ S(d) ̸= S(e)
]
For the Type-2 decryption query,

by S(d) ̸= S(e) and f(y(e), N (e), ℓe) = f(y(d), N (d), ℓd) (the tweaks are the same), the output of

the last TRP call by the decryption query is chosen uniformly at random from {0, 1}b\{P̃ f(y(e),N(e),ℓe)(S(e))}.
We thus have

Pr
[
T̂ (d) = T (d)

∣∣∣Type-2 ∧ S(d) ̸= S(e)
]
≤ 2b−τ

2b − 1
=

1

2τ − 1/2b−τ
. (8)

Upper Bounding Pr
[
S(d) = S(e)

∣∣Type-2] The condition of the Type-2 decryption query,

y(e) = y(d), is satisfied if and only if

(∣∣∣A(d)
ad

∣∣∣ = ∣∣∣A(e)
ae

∣∣∣ = b
)
∨
(∣∣∣A(d)

ad

∣∣∣ < b ∧
∣∣∣A(e)

ae

∣∣∣ < b
)
and (9)(∣∣∣M (d)

ℓd

∣∣∣ = ∣∣∣M (e)
ℓe

∣∣∣ = b
)
∨
(∣∣∣M (e)

ℓe

∣∣∣ < b ∧
∣∣∣M (d)

ℓd

∣∣∣ < b
)
. (10)

Under the Type-2 decryption query, ℓe = ℓd is satisfied. Let

I(A(d), A(e)) =
{
i ∈ [ad]

∣∣∣A(d)
i ̸= A

(e)
i

}
and I(C(d), C(e)) =

{
i ∈ [ℓd]

∣∣∣C(d)
i ̸= C

(e)
i

}
be sets of distinct blocks obtained from (A(d), A(e)) and (M (d),M (e)), respectively, where for

ad < i, A
(e)
i := λ.

14

Then,

Pr
[
S(d) = S(e)

∣∣∣Type-2] = Pr
[
S(d) = S(e) ∧ |I(C(d), C(e))| = 0

∣∣∣Type-2]
+ Pr

[
S(d) = S(e) ∧ |I(C(d), C(e))| ≥ 1

∣∣∣Type-2]
≤ Pr

[
S(d) = S(e) ∧ |I(C(d), C(e))| = 0

∣∣∣Type-2]︸ ︷︷ ︸
=:p1

+ Pr
[
S(d) = S(e)

∣∣∣Type-2 ∧ |I(C(d), C(e))| ≥ 1
]

︸ ︷︷ ︸
=:p2

· Pr
[
|I(C(d), C(e))| ≥ 1

∣∣∣Type-2] .

Regarding p1, by the condition B6, for Y, Y ′ ∈ {0, 1}b and C ∈ {0, 1}l, δ(e)(Y, γ(d)(Y,C)) =
δ(d)(Y ′, C)⇒ Y = Y ′, and thus by |I(C(d), C(e))| = 0,

S(d) = S(e) ⇒ H(d) = H(e) .

Hence, we have

p1 = Pr
[
H(d) = H(e) ∧ |I(C(d), C(e))| = 0

∣∣∣Type-2]
= Pr

[
H(d) = H(e) ∧ ae = ad ∧ |I(C(d), C(e))| = 0

∣∣∣Type-2]
+ Pr

[
H(d) = H(e) ∧ ae ̸= ad ∧ |I(C(d), C(e))| = 0

∣∣∣Type-2]
= Pr

[
H(d) = H(e)

∣∣∣Type-2 ∧ ae = ad ∧ |I(C(d), C(e))| = 0
]

︸ ︷︷ ︸
=:p1,1

· Pr
[
ae = ad

∣∣∣Type-2 ∧ |I(C(d), C(e))| = 0
]
· Pr

[
|I(C(d), C(e))| = 0

∣∣∣Type-2]
+ Pr

[
H(d) = H(e)

∣∣∣Type-2 ∧ ae ̸= ad ∧ |I(C(d), C(e))| = 0
]

︸ ︷︷ ︸
=:p1,2

· Pr
[
ae ̸= ad

∣∣∣Type-2 ∧ |I(C(d), C(e))| = 0
]
· Pr

[
|I(C(d), C(e))| = 0

∣∣∣Type-2]
≤ max

{
p1,1, p1,2

}
· Pr

[
|I(C(d), C(e))| = 0

∣∣∣Type-2] .

Using these upper bounds, we have

Pr
[
S(d) = S(e)

∣∣∣Type-2] ≤ max
{
p1,1, p1,2

}
· Pr

[
|I(C(d), C(e))| = 0

∣∣∣Type-2]
+ p2 · Pr

[
|I(C(d), C(e))| ≥ 1

∣∣∣Type-2]
≤ max

{
p1,1, p1,2, p2

}
.

p1,1, p1,2, p2 are upper bounded below.

– p1,1 = Pr
[
H(d) = H(e)

∣∣Type-2 ∧ ae = ad ∧ |I(C(d), C(e))| = 0
]
is upper bounded. Let i =

max I(A(d), A(e)). Then, by the condition B8,

H(e) = H(d) ⇒ V
(e)
i = V

(d)
i .

15

If i = 1, then

H(e) = δ(a)(0b, A
(e)
1) and H(d) = δ(a)(0b, A

(d)
1) .

On the other hand, as A
(e)
1 ̸= A

(d)
1 , by the condition B8 with the conditions in (9) (thus

the last condition in B8, (A ̸= A′ ∧ |A| = b ∧ |A′| < b ∧W = W ′), can be removed), we
have

H(e) = δ(a)(0b, A
(e)
1) ̸= δ(a)(0b, A

(d)
1) = H(d).

Hence, we consider the case where i ≥ 2. Then,

V
(e)
i = δ(a)

(
W

(e)
i−1, A

(e)
i

)
= δ(a)

(
W

(d)
i−1, A

(d)
i

)
= V

(d)
i .

By A
(d)
i ̸= A

(e)
i and the condition B8 with the conditions in (9), in order to satisfy the

above equation, W
(d)
i−1 ̸= W

(e)
i−1 should be satisfied. As W

(d)
i−1 is chosen uniformly at random

from {0, 1}b\
{
W

(e)
i−1

}
and δ(d)

(
·, A(d)

i

)
is bijective from the condition B7, we have

p1,1 ≤
1

2b − 1
.

– p1,2 = Pr
[
H(d) = H(e)

∣∣Type-2 ∧ ae ̸= ad ∧ |I(C(d), C(e))| = 0
]
is upper bounded. Thus, the

following equation is considered.

H(d) = δ(a)
(
W

(d)
ad−1, A

(d)
ad

)
= δ(a)

(
W

(e)
ae−1, A

(e)
ae

)
= H(e) .

By ae ̸= ad, the tweaks corresponding with the TRP outputs W
(d)
ad−1 and W

(e)
ae−1 are dis-

tinct. Thus, W
(d)
ad−1 and W

(e)
ae−1 are independently chosen, and at least one of them is cho-

sen uniformly at random from {0, 1}b. (Note that for x ∈ {a, e} if ax = 1 then H(x) =

δ(a)
(
0b, A

(x)
1

)
which is a constant.) By the condition B7, at least one of δ(a)

(
W

(d)
ad−1, A

(d)
ad

)
and δ(a)

(
W

(e)
ae−1, A

(e)
ae

)
are uniformly distributed over {0, 1}b. Hence, we have

p1,2 ≤
1

2b
.

– p2 = Pr
[
S(d) = S(e)

∣∣Type-2 ∧ |I(C(d), C(e))| ≥ 1
]
is upper bounded. Let i = max I(C(d), C(e)).

Note that under the Type-2 decryption query, ℓe = ℓd is satisfied. Then by the condition
B6,

S
(d)
1 = S

(e)
1 ⇔ X

(d)
i+1 = X

(e)
i+1

⇔ δ(d)
(
Y

(d)
i , C

(d)
i

)
= δ(e)

(
Y

(e)
i ,M

(e)
i

)
,

where M
(e)
i = γ(d)(msb|C(e)

i |(Y
(e)
i), C

(e)
i). By the condition B6 with (10) and C

(d)
i ̸= C

(e)
i ,

Y
(d)
i ̸= Y

(e)
i is satisfied, thus X

(d)
i ̸= X

(e)
i . Hence,

p2 ≤ Pr
[
δ(e)

(
Y

(e)
i ,M

(e)
i

)
= δ(d)

(
Y

(d)
i , C

(d)
i

)∣∣∣Type-2 ∧X
(d)
i ̸= X

(e)
i ∧ |I(C(d), C(e))| ≥ 1

]
.

By X
(d)
i ̸= X

(e)
i , Y

(d)
i is chosen uniformly at random from {0, 1}b\{Y (e)

i }. By the condition

B5, δ(d)
(
C

(d)
i , Y

(d)
i

)
is uniformly distributed over {0, 1}b\{δ(e)

(
C

(e)
i , Y

(e)
i

)
}, and we thus

have

p2 ≤
1

2b − 1
.

16

The above upper bounds give

Pr
[
S(d) = S(e)

∣∣∣Type-2] ≤ 1

2b − 1
. (11)

5 Implementation

The performance of PFB is evaluated through concrete hardware implementations. For the
lightweight TBC, we use a variant of SKINNY having the 64-bit block length and 192-bit
tweakey, i.e., SKINNY-64-192 [6]. Its performance is compared with the state-of-the-art alterna-
tive having the same level of security: SAEB [25] instantiated with the lightweight block cipher
GIFT-128-128 [4]. In the following, SKINNY-64-192 and GIFT-128-128 are simply referred to
as SKINNY and GIFT. In addition, a mode of operation M instantiated with a primitive P is
described as M[P].

Design Policy For a fair comparison, PFB[SKINNY] and SAEB[GIFT] are implemented under the
same design policy. They are designed as co-processors aiming at accelerating the main time-
consuming part of AD processing, encryption, and decryption. Meanwhile, the co-processors
expect an external controller for handling special cases such as padding and the final-block
processing. In order to avoid a hidden cost, the designs hold a key, nonce, and tweak during
their lifetimes. In other words, there is no need for storing them in external registers and
feeding them multiple times. This policy affect the implementation of on-the-fly key scheduling
as we will see in the next section. The circuit area has the highest priority in optimization. The
designs are described by a hardware description language (HDL) in register-transfer level (RTL).
We do not make netlist-level optimization except scan flip-flops commonly used for compact
implementations [24]; the standard cells for scan flip-flops are explicitly instantiated in HDL.
For SCA-protected implementations, we consider TI secure up to the first-order attacks.

5.1 PFB[SKINNY]

SKINNY uses three distinct 64-bit states namely TK1, TK2, and TK3 for tweakey schedule.
In this particular design, TK3 stores a 64-bit tweak. The remaining TK1 and TK2 store a
128-bit secret key.

Fig. 5 shows the hardware architecture of PFB[SKINNY]. As shown in Fig. 5, PFB[SKINNY]
is realized as a thin wrapper of the SKINNY implementation; the additional components are
4-bit XOR, selector, and AND gate only.

The SKINNY implementation follows the conventional nibble-serial architecture [6], but the
tweakey-schedule implementation is designed from scratch. The implementations called the
TK1, TK2, and TK3 arrays are based on a common architecture comprising an array of
scan flip-flops and integrated on-the-fly key scheduling [24] as shown in Fig. 5. However, the
changes made by the on-the-fly key scheduling should be reverted to begin the next TBC
call without feeding the same key again. Since SKINNY schedules TK1, TK2, and TK3 by
a nibble permutation and a nibble-wise linear transformation for each round, we can obtain
efficient inverse maps that revert the final tweakey state to the initial one. Such inverse maps are
integrated to the TK1, TK2, and TK3 arrays along with the forward on-the-fly scheduling.

Based on (3.4), the 64-bit tweak is given by id∥N∥ctr: a 3-bit number distinguishing the
operations id = str3(i), 45-bit nonce N , and a current block number realized by a 16-bit counter
ctr = str16(j). id and ctr are updated for each TBC call. For an efficient computation, the TK3

17

g

RC gen.

State
array

TK3 array

TK2 array

TK1 arrayTK1 input

TK2 input

Tweak input

id

f

M
ix

C
o

lu
m

n
s

State array

4

4

3

4

4

4

4

4

Tweakey array

byte perm. / revert

4

TK1 array

byte perm. / revert

4

TK2 array linear/
revert

byte perm. / revert / tweak update

4

TK3 array

3

linear/
revert

A/M/C

SKINNY

C/M/T

3-share TI
in P2 and P3

2-share TI
in P3 only

4

Fig. 5. PFB[SKINNY] hardware architecture.

array integrates the circuit for (i) changing id and (ii) incrementing and clearing the counter
ctr. Using the above functionality, a user needs to feed id∥N∥ctr only once for a given nonce N .

Single SKINNY round uses 16 cycles, and thus SKINNY comprising 40 rounds finishes in
16 × 40 = 640 cycles. We need an additional 1 cycle for updating a tweak stored in the TK3
array for the next TBC call. As a result, a 64-bit message or ciphertext block is consumed in
641 cycles.

5.2 SAEB[GIFT]

Fig. 6 shows the hardware architecture of SAEB[GIFT]. The overall architecture is based on the
conventional design [25], but the shift registers for synchronization are removed considering the
design policy. It is also realized as a thin wrapper of the underlying GIFT implementation.

The GIFT implementation is based on the nibble-serial architecture [4], but the key array
is redesigned to efficiently reverting the changes made by on-the-fly key scheduling. Similar to
SKINNY, GIFT has a linear key scheduling algorithm, and thus we can obtain an efficient inverse
map that revert the final key state to the initial one. The key array is designed with a 32-bit
datapath to efficiently integrate the inverse key-schedule map (the function block labeled with
“revert”) as shown in Fig. 6.

The S-box is split into two stages namely g and f for TI following the conventional work [13].
Consequently, a single GIFT round uses 33 cycles for 32 S-box look-ups and one pipeline latency.
As a result, The 40-round operation of GIFT requires 33× 40 = 1, 320 cycles.

18

4

RC gen.

32

6

g

f

GIFT

4

const_in

C/M/T

Bit permutation

revert

Key array

State array

Nibble selector

Bit permutation

State
array

Key
array

A/N/C

K

4

4

4 4

6

2-share TI
in P3 only

3-share TI
in P2 and P3

32

Fig. 6. SAEB[GIFT] hardware architecture.

5.3 Threshold Implementation

There is an option between protected and unprotected key/tweakey schedule. Conventional at-
tacks such as differential power analysis (DPA) [18] cannot be used to attack key schedule that is
independent of an attacker-controllable input e.g., plaintext or ciphertext. That is not generally
true for TBCs, but SKINNY has the same property as far as the attacker-controllable tweak is
placed in TK3, which is scheduled independently of TK1 and TK2. Consequently, some previ-
ous works prioritize circuit area and use unprotected key-schedule implementations [6, 32, 37].
Meanwhile, if we consider a profiling attack on key/tweakey schedule, it is also reasonable to
choose a protected key-schedule implementation. Considering the cost-security trade-off, we
implement PFB[SKINNY] and SAEB[GIFT] with three different profiles: (P1) the unprotected
implementation, (P2) TI with the unprotected key schedule and (P3) TI with the protected
key schedule.

Table 2 summarizes the number of registers needed for the SKINNY and GIFT implementa-
tions for the different profiles. In (P1), both SKINNY and GIFT use 256 bits in total. In (P2), on
the other hand, SKINNY use the smaller number of registers, 384 bits compared with 512 bits,
because of the smaller block length. SKINNY still has a better performance in (P3) because
key/tweakey schedule can be shared more efficiently. Since both GIFT and SKINNY have linear
key/tweakey schedules, they can be realized with only two shares. Moreover, there is no need
for protecting TK3 of SKINNY that stores a public tweak. As a result, SKINNY and GIFT use
512 and 684 bits in (P3), respectively.

We use the formulae for the 3-share uniform S-boxes for SKINNY and GIFT from the conven-
tional works [6] and [13], respectively. TI is implemented by duplicating the state/key/tweakey
arrays and replacing the decomposed S-boxes (f and g) with their shared maps. Fig. 5 and 6
show the boundaries of sharing for each profile.

19

Table 2. The number of registers for implementing SKINNY and GIFT in different profiles.

Target Profile TI/State TI/Key State Tweak/key Total

SKINNY (P1) — — 64 192 256

GIFT (P1) — — 128 128 256

SKINNY (P2) ✓ — 192 192 384

GIFT (P2) ✓ — 384 128 512

SKINNY (P3) ✓ ✓ 192 320 512

GIFT (P3) ✓ ✓ 384 256 640

Table 3. Breakdown of the post-synthesis circuit area of PFB[SKINNY] and SAEB[GIFT].

Target Component Circuit area [GE]

(P1) (P2) (P3)

PFB[SKINNY] Total 3,111 4,492 5,858

Total/SKINNY 2,956 4,284 5,649

Total/SKINNY/State array 532 1,757 1,757

Total/SKINNY/Tweakey array 2,062 2,062 3,419

SAEB[GIFT] Total 2,761 5,037 6,229

Total/GIFT 2,541 4,756 5,947

Total/GIFT/State array 975 2,925 2,925

Total/GIFT/Key array 1201 1,226 2,410

5.4 Performance Evaluation and Comparison

The designs are synthesized with the NanGate 45-nm standard cell library [27] using Synopsys
Design Compiler while preserving the module hierarchy. Table 3 shows the breakdown of the
post-synthesis performances.

We first discuss the unprotected implementations (P1). The circuit area of PFB[SKINNY]
and SAEB[GIFT] are 3, 111 and 2, 761 [GE], respectively. SKINNY and GIFT dominate the
circuit area of PFB[SKINNY] and SAEB[GIFT], The additional costs for the mode of operations
are limited. The sizes of the state and key arrays are almost proportional to their register sizes,
e.g., the 64-bit SKINNY state array (532 [GE]) is almost a half the size of the 128-bit GIFT
state array (975 [GE]).

Although the PFB[SKINNY] implementation is larger than that of SAEB[GIFT] by 350 [GE],
this is a positive result because (i) GIFT is known to have a better performance compared with
SKINNY [6] and (ii) lightweight TBC is an emerging technology compared with lightweight block
cipher. It is also note that PFB[SKINNY] is twice as fast as that of SAEB[GIFT]: PFB[SKINNY]
and SAEB[GIFT] consume a 64-bit message/ciphertext block using 640 and 1, 320 cycles, re-
spectively. Moreover, PFB has parallelizable encryption as discussed in Sect. 3.

Table 4 shows performance comparison with previous implementations. The unprotected im-
plementations of SAEB[GIFT] and PFB[SKINNY] are smaller than previous implementations of
AES-based AEs (SAEB[AES128] [25], CLOC[AES128], SILC[AES128], OTR[AES128] [3]). The bit-
serial Ascon implementation without an interface has a smaller circuit area of 2, 570 [GE] [11];

20

however, the implementation needs an additional 128-bit key register to run another encryp-
tion/decryption with the same key. If we add the size of the key register (640 [GE] for 5
[GE/bit]) to 2, 570 [GE], the Ascon implementation has the similar circuit size compared with
that of PFB[SKINNY]. We also note that the Ascon implementation with an interface including
a 128-bit key register has 3, 750 [GE].

Table 4. Performance comparison; latency is that of a single call of a primitive (block cipher, tweakable
block cipher, or permutation).

Target TI Area Latency Standard-cell Ref.

[GE] [cycles] library

PFB[SKINNY] (P1) — 3,111 641 NanGate 45-nm Ours

SAEB[GIFT] (P1) — 2,761 1,320 NanGate 45-nm Ours

SAEB[AES128] — 3,502 231 NanGate 45-nm [25]

CLOC[AES128] — 4,310 210 STMicro. 90-nm [3]

SILC[AES128] — 4,220 210 STMicro. 90-nm [3]

OTR[AES128] — 6,770 210 STMicro. 90-nm [3]

Ascon w/o IF — 2,570 3,072 UMC 90-nm [11]

Ascon w/ IF — 3,750 3,072 UMC 90-nm [11]

Deoxys (Round*) — 11,936 14 UMC 180-nm [17]

Ketje-JR — 5,447 16 NanGate 45-nm [1]

PFB[SKINNY] (P2) ✓ 4,492 641 NanGate 45-nm Ours

PFB[SKINNY] (P3) ✓ 5,858 641 NanGate 45-nm Ours

SAEB[GIFT] (P2) ✓ 5,037 1,320 NanGate 45-nm Ours

SAEB[GIFT] (P3) ✓ 6,229 1,320 NanGate 45-nm Ours

Ascon w/o IF ✓ 7,970 3,072 UMC 90-nm [11]

Ascon w/ IF ✓ 9,190 3,072 UMC 90-nm [11]

Ketje-JR ✓ 18,335 16 NanGate 45-nm [1]

We then discuss the protected implementations. With (P2), the PFB[SKINNY] implementa-
tion uses 4, 492 [GE] which is smaller than that of SAEB[GIFT] (5, 037 [GE]). That is explained
by the smaller number of registers summarized in Table 2. PFB[SKINNY] is still advantageous
with (P3): the circuit areas of PFB[SKINNY] and SAEB[GIFT] are 5, 858 and 6, 229 [GE], respec-
tively. The protected PFB implementations are smaller than that of Ascon [11]) and Ketje [1] in
conventional works as shown in Table 4. That is also explained by the number of registers. The
sponge-based AEs have a relatively large state (384 bits for Ascon and 200 bits for Ketje-JR)
that should be protected with three shares.

In summary, the unprotected PFB[SKINNY] implementation is competitive against the un-
protected SAEB[GIFT] implementations and other conventional implementations. The benefit of
a small block length, enable by PFB, becomes even larger with TI in which the number of regis-
ters are multiplied as shown in Table 2. As a result, the protected PFB[SKINNY] implementation
outperforms that of SAEB[GIFT], Ascon [11], and Ketje [1].

21

References

[1] Arribas, V., Nikova, S., Rijmen, V.: Guards in Action: First-Order SCA Secure Implementations
of Ketje Without Additional Randomness. In: DSD 2018. pp. 492–499. IEEE Computer Society
(2018)

[2] Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.:
Midori: A Block Cipher for Low Energy. In: ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436.
Springer (2015)

[3] Banik, S., Bogdanov, A., Minematsu, K.: Low-area hardware implementations of CLOC, SILC
and AES-OTR. In: HOST 2016. pp. 71–74. IEEE Computer Society (2016)

[4] Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A Small Present -
Towards Reaching the Limit of Lightweight Encryption. In: CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer (2017)

[5] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and
SPECK Families of Lightweight Block Ciphers. IACR Cryptology ePrint Archive 2013, 404 (2013),
http://eprint.iacr.org/2013/404

[6] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In: CRYPTO
2016. LNCS, vol. 9815, pp. 123–153. Springer (2016)

[7] Bhargavan, K., Leurent, G.: On the Practical (In-)Security of 64-bit Block Ciphers: Collision
Attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. pp. 456–467. ACM (2016)

[8] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: CHES 2007. LNCS, vol.
4727, pp. 450–466. Springer (2007)

[9] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander,
G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract. In:
ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer (2012)

[10] Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-Based Authenticated Encryp-
tion: How Small Can We Go? In: CHES 2017. LNCS, vol. 10529, pp. 277–298. Springer (2017)

[11] Groß, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Suit up! - Made-to-Measure Hardware
Implementations of ASCON. In: DSD 2015. pp. 645–652. IEEE Computer Society (2015)

[12] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In: CHES 2011.
LNCS, vol. 6917, pp. 326–341. Springer (2011)

[13] Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold Implemen-
tations of GIFT: A Trade-off Analysis. IACR Cryptology ePrint Archive 2017, 1040 (2017),
http://eprint.iacr.org/2017/1040

[14] Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound Security. In:
FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer (2006)

[15] Iwata, T.: Authenticated Encryption Mode for Beyond the Birthday Bound Security. In:
AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142. Springer (2008)

[16] Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A Fast Tweakable Block Cipher Mode
for Highly Secure Message Authentication. In: CRYPTO 2017. LNCS, vol. 10403, pp. 34–65.
Springer (2017)

[17] Jean, J., Nikolic, I., Peyrin, T., Seurin., Y.: Deoxys v1.41. Submitted to the CAESAR competition
(2016)

[18] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: CRYPTO ’99. LNCS, vol. 1666,
pp. 388–397. Springer (1999)

[19] Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In:
FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer (2011)

[20] Lampe, R., Seurin, Y.: Tweakable Blockciphers with Asymptotically Optimal Security. In: FSE
2013. LNCS, vol. 8424, pp. 133–151. Springer (2013)

22

[21] Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable Blockciphers with Beyond Birthday-
Bound Security. In: CRYPTO 2012. LNCS, vol. 7417, pp. 14–30. Springer (2012)

[22] Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions.
In: EUROCRYPT 2014. LNCS, vol. 8441, pp. 275–292. Springer (2014)

[23] Minematsu, K., Iwata, T.: Tweak-Length Extension for Tweakable Blockciphers. In: IMACC 2015.
LNCS, vol. 9496, pp. 77–93. Springer (2015)

[24] Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact
and a threshold implementation of AES. In: Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings. pp. 69–88 (2011), https://doi.org/10.1007/978-
3-642-20465-4 6

[25] Naito, Y., Matsui, M., Sugawara, T., Suzuki, D.: SAEB: A Lightweight Blockcipher-Based AEAD
Mode of Operation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 192–217 (2018)

[26] Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Composition. In: EURO-
CRYPT. LNCS, vol. 8441, pp. 257–274. Springer (2014)

[27] NanGate: NanGate FreePDK45 open cell library. http://www.nangate.com
[28] Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-Channel Attacks

and Glitches. In: ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer (2006)
[29] Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlinear Functions in

the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)
[30] NIST: Submission requirements and evaluation criteria for thelightweight cryptography standard-

ization process
[31] Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for Tweakable Block

Ciphers. In: CRYPTO 2016. LNCS, vol. 9814, pp. 33–63. Springer (2016)
[32] Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-Channel Resistant Crypto

for Less than 2, 300 GE. J. Cryptology 24(2), 322–345 (2011)
[33] Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: EU-

ROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer (2006)
[34] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An Ultra-

Lightweight Blockcipher. In: CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer (2011)
[35] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher CLEFIA

(Extended Abstract). In: FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer (2007)
[36] Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight Block Cipher for

Multiple Platforms. In: SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer (2013)
[37] Ueno, R., Homma, N., Aoki, T.: Toward More Efficient DPA-Resistant AES Hardware Archi-

tecture Based on Threshold Implementation. In: COSADE 2017. LNCS, vol. 10348, pp. 50–64.
Springer (2017)

23

Appendix

A1

0b

f(x,N,1)
~
EK

M1

C1

H�X1

����

���

Y1

f(x,N,l-1)
~
EK

M
l-1

C
l-1

Y
l-1

X
l-1

f(x,N,l)
~
EK

M
l

C
l

Y
l

X
l

T

f(1,0n,1)
~
EK

A2

W1

V1
f(1,0n,a-1)

~
EK

Wa-1

Va-1

f(x,N,1)
~
EK

M1

C1

H�X1

�	�

Y1

f(x,N,l-1)
~
EK

M
l-1

C
l-1

Y
l-1

X
l-1

f(x,N,l)
~
EK

M
l

C
l

Y
l

X
l

���b�Aa�

H

� � �

� �

�

� � �

���b

���|M
l

|

��� |C
l

|

���b

�

W0

~
EK

S
f(y,N,l)

���τ

~
EK

S
f(y,N,l)

���τ

���A�λ�|A| mod b�0 	
���x � 2
���A�λ�|A| mod b�0 	
���x � 3
���M�λ�|M| mod b�0 	
���y � x + 2
���M�λ�|M| mod b�0 	
���y � x + 4

(M�λ)

~
EK

H�S
f(y,N,0)

(M�λ)

(C�λ)(C�λ)

~
EK

H�S
f(y,N,0)

T = T
?^

���τ

T = T
?^

T

���τ

Va

Fig. 7. PFB.

24

