
Optimizations of Side-Channel Attack on AES
MixColumns Using Chosen Input

Aurelien Vasselle and Antoine Wurcker

eshard, France, surname.name@eshard.com

Abstract. Considering AES sub-steps that can be attacked with a small guess space,
the most practicable is to target SubBytes of extremal rounds. For its contrast
between candidates (non-linearity) and that the search space is reduced to 28-sized
blocks. But when such point of interests are not available, MixColumns may be
considered but involve search spaces of 232-sized blocks. This number of attacks to
run being often considered as unrealistic to reach, published papers propose to attack
using chosen inputs in order to reduce back search space to 28-sized blocks. Several
sets of chosen inputs acquisition will then be required to succeed an attack.
Our contribution consists in an optimization of usage of gained information that
allows to drastically reduce the number of set needed to realize such an attack, even
to only one set in some configurations.
Keywords: AES · Advanced Encryption Standard · Side-channel · SCA · MixColumns

1 Introduction
Side-channels research field concerns the malicious usage of an involuntary leaked infor-
mation during the execution of an algorithm, with the objective to retrieve a secret such
as a cryptographic key. This was first introduced in [Koc96], where the processing time
of operations, that was secret-dependent, was revealing the secret information. Once
the side-channels potential discovered, numerous channels where used to extract secret
information, such as: power consumption [KJJ98], electromagnetic emissions [GMO01],
acoustic emissions [GST14] (extension of preliminary work of 2004), light emission [FH08].
The subject is wide, as in 2014 was shown a new leak source can be used: the ground of a
laptop could leak sensitive information along cables (USB, Ethernet, . . . ) in [GPT14].

Side-channels might not leak directly the secret itself but be an information related
to the secret, e.g. leakage model linear with the Hamming weight1 of the processed data
or with the Hamming distance2 between two successive states are commonly considered.
In order to exploit those kind of leakages, statistical methods where developed that can
reveal the secret information from the leakage, such as: Differential Power Analysis (DPA)
[KJJ99], Correlation Power Analysis (CPA) [BCO04], Mutual Information Analysis (MIA)
[GBTP08], SCATTER [TGWC18]. All consist in using the variations of a known data (e.g.
plaintext, ciphertext) to recover a constant secret data (e.g. key). The guesses of candidates
for all, or a part of, the key are ranked from the most fitting to the leakages to the least
one. These attacks needs to target an intermediate value of a computation that implies a
know value varying and a constant secret value that will be be guessed. In order to keep
this guessing phase complexity at a realistic level, the number of point of interest in an
algorithm are limited as intermediate value of algorithm are melt with a raising number of

1Number of bits to "1" in a binary word.
2Number of bits that differ between two binary words.
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secret bits during algorithm process.

AES, for Advanced Encryption Standard [Nat01], is the NIST3 symmetric cipher
standard. Established in 2001 after a contest to find a successor to the DES (Data
Encryption Standard), being the previous standard established in 1977 [Nat77].

In this paper we extend work of [MS16] where authors where focusing on MixColumns
operation leakage that is not an usual considered point of interest in AES algorithm due
to its initial cost of 232 guesses. Authors proposes a solution using chosen plaintexts in
order to reduce the guess number back to 28. As a counterpart it will require 16 (4 with
an optimization) sets of chosen input traces to be acquired, applying this factor to the
number of traces necessary to perform an attack.

This paper show how unused information acquired during this attack can be exploited
to reduce by a factor of 4 the number of set needed (thus the number of traces) to only 4
sets (1 set with optimization).

This paper is organized as follows. The Section 2 introduces the previous publications
on the subject of attacking MixColumns. The Section 3 describes our contribution on how
some information, unexploited during attacks on MixColumns, can be used to reduce the
attack complexity, considering any AES sizes. The Section 4 gives a conclusion to this
paper and further work perspectives.

2 State-of-the-Art
First Round AES bytes are given in first line of Figure 1, their color depict their dependency
to key bytes (expressed here in bits):

• Output of AddRoundKey can be targeted but it is a xor selection function, the
distinguishability is not the best one.

• Output of SubBytes can be targeted and it is a non linear selection function so the
distinguishability is good.

• Output of MixColumns is a not a common choice as selection function because 4
key bytes are implied in each output byte computation and it then would require to
explore 232 guesses that is often not considered as a viable option.

The second line of Figure 1 illustrates a generalization of the attack proposed in [MS16].
Authors suggest to choose as fixed three bytes of the four involved in a MixColumns matrix
multiplication. This induces the fact that output of MixColumns are now dependent to
only 8 bits of key and an unknown 8-bit constant. Finally the constant is ignored thanks
to a mono-bit attack as described in details in Section 2.1. As described in Section 2.2, an
optimization is also proposed, authors suggest to use the same set of chosen plaintext to
target the four MixColumns matrix multiplication simultaneously, reducing the number of
set to build.

One may remarks that the methods described below are a generalization we do from the
method found in [MS16] that focused onto a specific case to solve: decryption of AES-256
with a particular leakage model.

2.1 Attack MixColumns Outputs
As depicted in second line of Figure 1, keeping all bytes constant except one in the plaintext
would induce that 4 over the 16 MixColumns output bytes are then related to only one
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Figure 1: Illustration of attack path differences between two plaintext shape

key byte (same for all 4 bytes) and an unknown constant (different for each one of the 4
bytes). This phenomenon come from the linearity of MixColumns operation that consists
in the matrix multiplication:


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .

f1
v
f2
f3

 =


2 • f1 ⊕ 3 • v ⊕ 1 • f2 ⊕ 1 • f3
1 • f1 ⊕ 2 • v ⊕ 3 • f2 ⊕ 1 • f3
1 • f1 ⊕ 1 • v ⊕ 2 • f2 ⊕ 3 • f3
3 • f1 ⊕ 1 • v ⊕ 1 • f2 ⊕ 2 • f3

 =


3 • v ⊕F1
2 • v ⊕F2
1 • v ⊕F3
1 • v ⊕F4

 (1)

v being the variable output byte of SubBytes operation, we know it under a guess over
one key byte. So the four blue boxes of Figure 1 are expressed here, each one being a
linear combination of the same predictable variable byte v and an unknown constant Fi.
Attacking such an intermediate value by a classical way would require to guess the key
byte and the constant implied resulting in a 216 guesses, instead of original 232. As it still
remain a lot of guesses, [MS16] proposes a methodology to reduce again the number of
guesses to 28.

The method consists in avoiding the guess of the constant by attacking one single bit
of v value4. The corresponding bit of constant Fi being, by definition, constant it will only
have an impact on the sign of the correlation results. Considering absolute value of results
will then remove its influence. Attacker can then recover one key byte on MixColumns
leakage under a guess over only 28 candidates.

Attacker may play this attack 16 times (requiring 16 sets) to recover a full AES-128
key. In case of AES-192 (resp. AES-256) the first half of (resp. the whole) second round
key have to be recovered too: The knowledge of first round key allows to build second
round key chosen input and do the same attack process, requiring 8 (resp. 16) more sets.

2.2 Optimization: Parallelization
Attack described in 2.1 require to acquire 16 chosen plaintext set, but an optimization
described in [MS16] consists in parallelizing 4 bytes recovery and then reduce the number
of set needed to 4.

As MixColumns is composed of 4 independent matrix multiplication, each of them
implying only 4 of input byte, we can build plaintext in order to attack the 4 instance
independently and simultaneously.

The best factor of gain is 4, but some limitations could reduce this gain/thwart this
optimization in case of mutual perturbation of the 4 matrix multiplication in MixColumns.
In case of such perturbations the number of traces per set will raise in order to allow the
correlation to distinguish candidates. If the growth of the trace set size is lower than a
factor of 4, we still gain to parallelize, otherwise parallelization is worthless.

4To be understand as v, 2 • v or 3 • v as needed.
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Figure 2: Illustration of key bytes and constants dependency for first rounds of AES
decryption.

2.3 Attack on Decryption
[MS16] authors originally focused only on decryption of an AES-256. Even if InvMixColumns
operation could be theoretically targeted the by the same way than MixColumns in encryp-
tion (by a chosen ciphertext attack), the attack of Section 2.1 cannot be applied as is, due
to the first round of decryption that do not contain InvMixColumns.

We propose here a generalization of attack found in [MS16] that can be done by
targeting the second round InvMixColumns. Without loss of generality we use here the
numbering corresponding to the first (left most) InvMixColumns matrix multiplication but
equations can be transposed to the other 3 matrix multiplications for the same effects.
The Figure 2 shows how data is propagating.

We can see that, this time, two AddRoundKey operations are met before going through
InvMixColumns of second round, inducing a dependency to 2 key bytes (one from K10 and
one from K9) and a constant byte. We can express equations related to the configuration
depicted in Figure 2 after InvMixColumns:


14 11 13 09
09 14 11 13
13 09 14 11
11 13 09 14

 .

f ′1
v
f ′2
f ′3

 =


14 • f ′1 ⊕ 11 • v ⊕ 13 • f ′2 ⊕ 09 • f ′3
09 • f ′1 ⊕ 14 • v ⊕ 11 • f ′2 ⊕ 13 • f ′3
13 • f ′1 ⊕ 09 • v ⊕ 14 • f ′2 ⊕ 11 • f ′3
11 • f ′1 ⊕ 13 • v ⊕ 09 • f ′2 ⊕ 14 • f ′3

 =


11 • v ⊕F ′1
14 • v ⊕F ′2
09 • v ⊕F ′3
13 • v ⊕F ′4

 (2)

So variable value v is now depending on 2 key bytes. The trick consists in moving K9
byte into constant as it is a constant and is linearly is added by xor and then consider
attacking variable v′ instead of v:

v = v′ ⊕K9,1
v′ = Sbox−1(C13 ⊕K10,13)

}
⇒


11 • v′ ⊕F ′′1
14 • v′ ⊕F ′′2
09 • v′ ⊕F ′′3
13 • v′ ⊕F ′′4

with


F ′′1 = 11 •K9,1 ⊕F ′1
F ′′2 = 14 •K9,1 ⊕F ′2
F ′′3 = 09 •K9,1 ⊕F ′3
F ′′4 = 13 •K9,1 ⊕F ′4

v′ can now be targeted under an 8-bit guess over K10,13, classical monobit attack
process would remove the influence of the constants F ′′i and recover K10,13.

The process can be repeated on each of the 16 bytes of K10 and then reveal the last
key, requiring to acquire 16 sets of chosen ciphertext.[MS16] applied the same method
onto previous round in order to recover penultimate round key and thus obtain the full
AES-256 main key, requiring 32 sets in total.
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3 Our contribution
3.1 Attack Optimization: Recovering Constants
Our contribution consists in using an information that was dropped in state of the art
attacks: the bit value of the constants Fi change the sign of the correlation peak, so it can
be recovered.

Then an attacker could do the attack as explained in 2.1 but not limited to only one
bit of v and do it on the 8 available bits, revealing the value of Fi thanks to sign of
correlations. Doing this for v, 2 • v and 3 • v, the attacker should be able to recover the
whole set {F1,F2,F3,F4} additively to key byte related to v recovered during the attack.
This is realized using only one chosen plaintext acquisition set.

Once the attacker knows {F1,F2,F3,F4}, the following equations system can be derived
from Equation (1) :

F1 = 2 • f1 ⊕ 1 • f2 ⊕ 1 • f3

F2 = 1 • f1 ⊕ 3 • f2 ⊕ 1 • f3

F3 = 1 • f1 ⊕ 2 • f2 ⊕ 3 • f3

F4 = 3 • f1 ⊕ 1 • f2 ⊕ 2 • f3

This is a 4 linear equation system with 3 unknown values so it can be solved (with
redundancy) and gives back the set of values {f1, f2, f3}. Each of them being the output
of one SBox, we know that:

∀i ∈ {1, 2, 3},∃!j ∈ [0, 15], fi = SBox(Pj ⊕K0,j)⇒ K0,j = Pj ⊕ SBox−1(fi),

Recovering the set {f1, f2, f3} is then equivalent to recover the 3 key bytes implied with
the one recovered thanks to v in the targeted MixColumns matrix multiplication.

This optimization reduce attack of Section 2.1 cost by a factor of 4 (only 4 sets are
needed instead of 16). If conditions are met, it can also be combined with optimization of
Section 2.2 reducing the cost by a factor 16, only 1 set is needed instead of 16.

3.2 Optimizations of Attack on Decryption
Recovering two round keys instead of one:

The resolution of equations described in Section 3.1 can also be applied with higher results,
leading to the recovery of the two last round keys of simultaneously. Indeed, the 4 equations
system generated by the gained knowledge of F ′′i , i ∈ [1, 4] concerns 4 unknown constants
(instead of 3 as seen in encrypt mode):


F ′′1 = 11 •K9,1 ⊕ 14 • f ′1 ⊕ 13 • f ′2 ⊕ 09 • f ′3
F ′′2 = 14 •K9,1 ⊕ 09 • f ′1 ⊕ 11 • f ′2 ⊕ 13 • f ′3
F ′′3 = 09 •K9,1 ⊕ 13 • f ′1 ⊕ 14 • f ′2 ⊕ 11 • f ′3
F ′′4 = 13 •K9,1 ⊕ 11 • f ′1 ⊕ 09 • f ′2 ⊕ 14 • f ′3

(3)

The resolution of the system (without redundancy this time) allows to recover K9,1
additively to K10,13. So, without taking care of f ′i knowledge, the 16 attack evoked in
previous section would lead to full recovery of K10 and K9 simultaneously. This allows to
target AES-192 (resp. AES-256) without need to do a second 8 (resp. 16) sets attack onto
next round as requested for encrypt.
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Key Schedule Equations: AES-128

Furthermore, we can reduce the number of sets required by exploiting the gained f ′i
knowledge. AES-128 key schedule uses 16 known equations to compute one round key
from the previous one. Each equations relating three bytes from two consecutive round
keys. We can then combine these 16 known equations to our gained knowledge of f ′i values
that relates one byte of K9 and one byte of K10:

∀i ∈ {1, 2, 3},∃!(j, σ()), f ′i = K9,σ(j) ⊕ SBox(Pj ⊕K10,j) (4)

Each acquisition set realized is then giving us knowledge of one byte of K9, one byte of
K10 and three f ′i equations, additively to the 16 equations known from key schedule. We
then explored all starting byte choices and find what is the minimal number of attacked
byte needed to solve the whole system of equation and find the AES-128 main key. The

answer is 4 bytes, and 63 over the
(

16
4

)
= 1820 combinations lead to enough information

to solve the equation system5. Any choice in the 63 valid 4-byte combination allows to
gain a factor of 4 reducing the number of sets from 16 to 4.

Moreover, for 7 over the 63 choice, the 4 bytes can be parallelized (see optimization of
Section 2.2) onto only 1 set to recover the whole key.

Key Schedule Equations: AES-192

AES-192 key schedule equations are different from AES-128 ones, and this time we gain 24
equations, each relating three bytes from three last round keys. Testing all combinations,
we obtain that 25 occurences of 7-byte combinations are individually sufficent to solve the
equation system6 and recover the AES-192 key.

For 2 over the 25 choice, the 7 bytes can be parallelized onto only two sets to recover
the key instead of 24 originally needed.

Key Schedule Equations: AES-256

AES-256 key schedule equations are different from AES-128 and AES-192 ones, and this
time we gain 32 equations, each relating three bytes from three last round keys. Testing
all combinations reveal that no further optimisation can be done by this mean and then
16 attack sets are required (4 in case of parallelization).

Nevertheless, the gathered equations f ′i may offer a last optimization for AES-256.
When we target a first byte in a MixColumns matrix multiplication we obtain one byte of
K10, one byte of K9 and three f ′i equations, each relating one of the three other bytes of
K10 involved, one associated byte of K9 and a constant byte of ciphertext (see Equation 5).
Even if, as stated above, we can’t obtain direct byte recovery from thoses equations, we
can still select different input constants when targeting the second byte leading to a second
occurrence of equations with different constants but same key byte involved:

C1 = K9,σ′(j) ⊕ SBox−1(C1
j ⊕K10,j)

C2 = K9,σ′(j) ⊕ SBox−1(C2
j ⊕K10,j)

(5)

This system is not linear so it cannot be solved directly but, having tested all possible
combinations, we state that in 98.4% of such equation system lead to only 2 solutions
for the involved (K9,σ′(j),K10,j) byte pair, the others lead always to 4 solutions. So after
8 attacks (2 in case of parallelization), it remains a number of AES-256 key candidate

5 All these 63 possible solutions are listed in Table 2 in Appendix A.
6 All these 25 possible solutions are listed in Table 3 in Appendix B.
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between a minimum of 28 (∼ 88% of occurrence) and a maximum of 48 = 216 candidates
(∼ 10−16% of occurrence). The AES-256 key candidates obatined can then be checked
against a plaintext/ciphertext pair.

If such an exploration is not possible (e.g. no access to a plaintext/ciphertext pair), an
attack onto a third byte gives a third equation for the last remaining byte and lead the
equation system to be solved in more than 99.99% of configurations. So 12 sets (3 in case
of parallelization) are (almost) always enough to reveal the key without need of further
exploration.

3.3 Attacks Results Summary
Our unit of measure of attack complexity is the number of set of chosen plaintext needed to
retrieve the key. In Table 1, we summarize how many set are needed in each configuration
considered in this paper.

Table 1: Number of set needed to perform AES-128/192/256 key recovery (Bold values
can be considered if a small exhaust is possible)

Parallelization
Yes No

Target Yes 1/2/2 4/8/8
Constant No 4/6/8 16/24/32

Encryption

Parallelization
Yes No

Target Yes 1/2/3(2) 4/7/12(8)
Constant No 4/6/8 16/24/32

Decryption

3.4 Additive Tricks
Reduce Uncertainty Thanks to Redundancy

One can remark that, in Section 3.1, we target twice the value v in order to recover
constant F3 and F4 and then the role of each of these constant may remain unclear for
attacker. Moreover, we can object that 5 over 8 bits remains equals between any byte
value X and 2 •X, implying a potential confusion of constant bit recovered:

X = (x7, x6, x5, x4, x3, x2, x1, x0)⇒ 2 •X = (x6, x5, x4, x3 ⊕ x7, x2 ⊕ x7, x1, x0 ⊕ x7, x7)

underlined bits being the ones common to X and 2 •X.
First, the temporal positionning may be clear enough to differentiate constant bit/byte

role, and, if not, we propose to use the redundancy induced by the "3 unknown constants
and 4 equations" system. This redundancy could indicates the proper role of each bit/byte.

For decryption mode, the probelm does not even exists as we target 09•X, 11•X, 13•X
and 14 •X

Intermediate Result in Unproperly Masked MixColumns Computation

Classical 8-bit masking scheme for AES is using the same mask on every SBox output
(Mo). The MixColumns being linear, the mask at output of this operation is:

3 •Mo ⊕ 2 •Mo ⊕Mo ⊕Mo = Mo

So one can consider that the masking is scheme is secure and implement the multiplication
as described in official AES specificiation. Doing so, an error is done as, during intermediate
computation of some of the output bytes, the mask is removed and may then allow an
intermediate computation result to leak, e.g. {2, 3, 1, 1} is not a proper order of execution
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when {3, 1, 1, 2} is a good one:
2 •Mo ⊕ 3 •Mo︸ ︷︷ ︸

Mo

⊕Mo

︸ ︷︷ ︸
∅

⊕Mo

︸ ︷︷ ︸
Mo

3 •Mo ⊕Mo︸ ︷︷ ︸
2•Mo

⊕Mo

︸ ︷︷ ︸
3•Mo

⊕2 •Mo

︸ ︷︷ ︸
Mo

Taking assumption that the intermediate bytes of computation are leaking and that
the MixColumns operations computing order is not properly coded, we could obtain some
unmasked intermediate data:


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .

f1
v
f2
f3

 =


2 • f1 ⊕ 3 • v ⊕ 1 • f2
1 • f1 ⊕ 2 • v ⊕ 3 • f2

1 • f1 ⊕ 1 • v
∅

 =


3 • v ⊕F1
2 • v ⊕F2
1 • v ⊕F3

∅

 (6)

v can still be targeted (and the associated key byte recovered by CPA) but we can see that,
contrarilly to Equation (1), the constants Fi do not contain each one the three elements
f1, f2, f3. Moreover constant F4 cannot be recovered anymore.

By the same methodology as in Section 3.1 we can solve this 3 equations system with
2 unknown values and then obtain f1 and f2 leading to the recovery of two more key
bytes. A total of 3 of the 4 key bytes involved in a MixColumns matrix multiplication are
recovered, the last byte remaining unreachable as it never appears in uncorreclty masked
intermediate values.

Reproducing this on the 4 MixColumns matrix multiplications (parallelization could
help reduce the cost once again), 12 bytes over 16 are then recovered, allowing to brute
force a negligible remaining 232 candidates for an AES-128 key.

4 Conclusion
In this paper we show an extension of a chosen input attack on AES MixColumns, using
previously ignored information. This information allowing to find other key bytes by
equations resolution, reducing the number of traces set to build (thus trace number
required). We show that the factor of gain is around 4 times less trace set needed, in most
of configurations for AES encryption. The methodology was first shown as less effective
on AES decryption but we introduces some tricks allowing to reach same reduction factor.

We also show how an easy-made error in masking schemes would unmask some states
only inside MixColumns operation, allowing an attacker to realize an first order chosen
plaintext attack, that can be sped up with our methodology.

As a further work, we suggest to consider different leakage models in order to check
which equations are underlying, and if resolutions can be performed to fasten the key
recovery.
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A 63 Ciphertext Byte Choices to Optimize AES-128 Deci-
pher Key Recovery

The table 2 shows the exhaustive list of 63 possible choices (over
(

16
4

)
= 1820) of 4 bytes

of ciphertext to target in order to reach full recovery of AES-128 key by the mean of key
schedule equations and equations obtained during attacks.

Table 2: All the 63 existing combinations of 4 ciphertext bytes to target in order to fully
recover an AES-128 key

0, 5, 10, 12 2, 3, 4, 14 2, 5, 10, 12 2, 6, 11, 14 2, 7, 11, 12 3, 5, 10, 14 3, 7, 10, 13
0, 6, 10, 12 2, 4, 5, 12 2, 5, 11, 12 2, 6, 11, 15 2, 7, 11, 13 3, 5, 10, 15 3, 7, 10, 14
0, 6, 11, 14 2, 4, 6, 12 2, 5, 11, 13 2, 7, 8, 14 2, 7, 11, 14 3, 6, 8, 14 3, 7, 10, 15
0, 7, 10, 14 2, 4, 7, 14 2, 5, 11, 14 2, 7, 8, 15 2, 7, 11, 15 3, 6, 9, 14
0, 7, 10, 15 2, 4, 10, 12 2, 5, 11, 15 2, 7, 9, 14 3, 4, 6, 14 3, 6, 10, 12

1, 5, 10, 12 2, 4, 11, 14 2, 6, 8, 12 2, 7, 9, 15 3, 4, 10, 12 3, 6, 10, 13
1, 6, 10, 12 2, 4, 11, 15 2, 6, 9, 12 2, 7, 10, 12 3, 4, 10, 14 3, 6, 10, 14
1, 6, 11, 14 2, 4, 12, 14 2, 6, 10, 12 2, 7, 10, 13 3, 4, 10, 15 3, 6, 10, 15
1, 7, 10, 15 2, 5, 8, 12 2, 6, 11, 12 2, 7, 10, 14 3, 5, 10, 12 3, 6, 11, 14
1, 7, 10, 15 2, 5, 9, 12 2, 6, 11, 13 2, 7, 10, 15 3, 5, 10, 13 3, 7, 10, 12
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The 7 bold combinations are the only ones that can be fully parallelized, others are
not because using at least two bytes in a set of 4 bytes that are related.

B 25 Ciphertext Byte Choices to Optimize AES-192 Deci-
pher Key Recovery

The table 3 shows the exhaustive list of 25 possible choices of 7 bytes of ciphertext to
target in order to reach full recovery of AES-192 key by the mean of key schedule equations
and equations obtained during attacks.

Table 3: All the 25 existing combinations of 7 ciphertext bytes to target in order to fully
recover an AES-192 key

0, 1, 3, 4, 5, 6, 10, 15 0, 3, 4, 6, 9, 10, 13, 15 1, 3, 4, 6, 8, 10, 13, 15 3, 4, 5, 6, 8, 10, 13, 15
0, 1, 3, 4, 6, 9, 10, 15 0, 3, 5, 6, 8, 10, 13, 15 1, 3, 4, 6, 9, 10, 12, 15 3, 4, 5, 6, 10, 12, 13, 15
0, 1, 3, 4, 6, 10, 13, 15 0, 3, 6, 8, 9, 10, 13, 15 1, 3, 4, 6, 10, 12, 13, 15 3, 4, 6, 8, 9, 10, 13, 15
0, 1, 3, 5, 6, 8, 10, 15 1, 3, 4, 5, 6, 8, 10, 15 1, 3, 5, 6, 8, 10, 12, 15 3, 4, 6, 9, 10, 12, 13, 15
0, 1, 3, 6, 8, 9, 10, 15 1, 3, 4, 5, 6, 10, 12, 15 1, 3, 6, 8, 9, 10, 12, 15 3, 5, 6, 8, 10, 12, 13, 15
0, 1, 3, 6, 8, 10, 13, 15 1, 3, 4, 6, 8, 9, 10, 15 1, 3, 6, 8, 10, 12, 13, 15 3, 6, 8, 9, 10, 12, 13, 15
0, 3, 4, 5, 6, 10, 13, 15

The 2 bold combinations are the only ones that can be parallelized into 2 attack sets
(instead of 7), others requiring 3 or 4 attack sets if parallelized.
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