
Selfie: reflections on TLS 1.3 with PSK

Nir Drucker and Shay Gueron

University of Haifa, Israel,
and

Amazon, Seattle, USA

Abstract. TLS 1.3 allows two parties to establish a shared session key
from an out-of-band agreed Pre Shared Key (PSK). The PSK is used
to mutually authenticate the parties, under the assumption that it is
not shared with others. This allows the parties to skip the certificate
verification steps, saving bandwidth, communication rounds, and latency.
We identify a security vulnerability in this TLS 1.3 path, by showing a
new reflection attack that we call “Selfie”. The Selfie attack breaks the
mutual authentication. It leverages the fact that TLS does not mandate
explicit authentication of the server and the client in every message.
The paper explains the root cause of this TLS 1.3 vulnerability, demon-
strates the Selfie attack on the TLS implementation of OpenSSL and
proposes appropriate mitigation.
The attack is surprising because it breaks some assumptions and uncovers
an interesting gap in the existing TLS security proofs. We explain the gap
in the model assumptions and subsequently in the security proofs. We
also provide an enhanced Multi-Stage Key Exchange (MSKE) model that
captures the additional required assumptions of TLS 1.3 in its current
state. The resulting security claims in the case of external PSKs are
accordingly different.

Keywords: TLS 1.3 · Selfie Attack · Reflection attack · Network secu-
rity · Multi-Stage Key Exchange model

1 Introduction

TLS 1.3 (Hereafter TLS) [18] offers several options for secure key establishment.
Some options mutually authenticate the communicating parties to each other,
where a common handshake includes the verification of the server and the client
through certificates. Another option uses a Pre Shared Key (PSK) that was
agreed upon beforehand, either during a preceding handshake (i. e., a resump-
tion PSK) or distributed out-of-band (i. e., external PSK). When a PSK is used,
the underlying assumption is that a party receiving a message (that passes ver-
ification with the PSK) knows that the message was sent by a party that (also)
owns that PSK. TLS allows to use this implicit authentication instead of cer-
tificate verification in order to save bandwidth and latency and also to support
0-RTT mode. In particular, this mode can be used for a network of communi-
cating peers, where every node can act (in parallel) as server and as client (e. g.,
proxy servers and P2P communications).

2

We claim that this mode of TLS opens the door for a vulnerability: the
sender of an authentic message could also be, under an attack scenario, the
receiver itself. This situation lends itself to what is known as a reflection attack,
which we call a “Selfie” attack. We describe this attack in the following sections.

Remark 1. When TLS 1.3 uses external PSKs it has no control on how these
PSKs were generated and what entities have access to these keys. In this paper,
we assume that PSKs are: a) generated as uniform random strings, and their
lengths are appropriate for use in the cryptographic primitives (e.g., 256 bits);
b) the distribution of the PSKs assigned a unique key for every pair of peers
in the network (where every peer can act as both a client and a server). In
theory, the network owner (”Dealer”) can choose to share PSKs differently (e. g.,
share across a group of peers). The implications of such behavior are discussed
in Sections 7 and 9.

The paper is organized as follows. Section 2 describes our notation and il-
lustrates one basic TLS 1.3 flow with PSKs. The Selfie attack is described in
Section 3. Our demonstration is detailed in Section 4. Section 5 discusses other
scenarios for the Selfie attack. In Section 6 we explain why the Selfie attack was
not captured in previous security models. We describe several modes of distribut-
ing PSKs in Section 7. Some mitigation approaches are detailed in Section 8.
“Group authentication” protocols are discussed in Section 9. We provide some
details about our disclosure process in Section 10. Section 11 conclude this paper.
Finally, our modified MSKE security model for TLS 1.3 is provided in Appendix
A.

2 Preliminaries

2.1 Notation and Conventions

A string of bits of length l (bits) is denoted by s[l− 1 : 0]. The length is denoted
by |s| = l. Concatenation of the strings s1 and s2 is denoted by s1||s2. The
notation ⊥ is used hereafter for notating a protocol failure or an empty string.

Uniform random sampling from a set W is denoted by w
$←− W . Hexadecimal

values are denoted with a 0x prefix (e. g., 0x1F is 31 decimal). A string of 128
bits is called a block. Let H : {0, 1}∗ → {0, 1}`H be a hash function that is
agreed during the handshake protocol (default to SHA256). The HMAC function
is as defined in [11].

2.2 TLS 1.3

TLS (TLS 1.3) [18] supports various protocol flavors. For simplicity, we present
here only the external PSK mode (i. e., where the PSK is not obtained from a
previous handshake). We omit the asymmetric parts that are used for further
authentication and the ticketing mechanism used for session resumption and use

3

the terminology of [18]. The entities in TLS are clients and servers, where a
client initiates the handshake and the server is the responder. Denote by

TH(M1, . . . ,Mn) = H(M1||M2|| . . . ||Mn)

the transcript hash, where H is the negotiated hash function, and M1, . . . ,Mn

are handshake messages.

The protocol. A client initiates the communication by sending a ClientHello
(CH) message with: a) a list of supported ciphersuites (AEAD and HKDF); b)
supported groups and signature algorithms (ignored here); c) a list of identities
of the PSKs and a Key Exchange (KE) mode (either psk ke or psk dhe ke). In
addition, the client can send a key share extension that includes a DH/ECDH
ephemeral key. In psk dhe ke mode, the client must send this extension in order
to achieve Forward Secrecy (FS). In psk ke mode, the client can choose to send
the key share extension in order to allow the server to fallback into a normal
(without PSKs) handshake. If the server accepts the KE mode, a specific PSK
from the list, and a specific ciphersuite, it sends a ServerHello (SH) message with
a pre shared key extension that identifies the selected PSK. If it selects to
use the psk dhe ke mode, it must add a key share extension with the server
ephemeral key share. In addition, the server sends a Server Finished (SF) message
(HMAC(finished key,TH(·)).

If the server cannot complete the handshake with the requested parameters
it chooses one of: a) abort; b) fall back to a full handshake; c) reply with a
HelloRetryRequest (HRR) message. Cases (b) and (c) require asymmetric keys
and are thus ignored here. The handshake ends after the client verifies the data
received from the server. In this case, it may send a Client Finished (CF) message
(HMAC(finished key,TH(·)) back to R.

Remark 2. When the client sends the server a list of PSKs every PSK is asso-
ciated with a binder. The binder is computed by (HMAC(binder key,TH(·)). In
the external PSK mode the hash function is either predefined (together with
the PSK) or defaults to SHA256.

3 The Selfie attack

Consider a network of communicating peers, where each node acts as a TLS
server and as a TLS client. Assume that PSKs are pre-distributed and that the
chosen TLS mode uses these PSKs without certificates.

Figure 1 illustrates the Selfie attack on such network, launched by an active
eavesdropper (Eve) that traps the communication between two legitimate parties
(Alice and Bob). The attack leverages two properties of TLS in this setting:

1. Alice can open parallel independent connections.
2. Alice as client does not explicitly check the identity of the server. She only

verifies that the server is a legitimate owner of the relevant PSK. However,
she cannot rule out the possibility that the parties that run the server and

4

the client are the same identities (i. e., that it receives an echo of her own
messages).

Fig. 1. The Selfie Attack. Eve tricks Alice to believe she is talking to Bob while she is
actually talking with herself. See description in the text.

The attack

1. Alice sends Bob the CH message with a pre shared key extension.
2. Eve captures the message and echoes it back to Alice, pretending (implicitly)

to be Bob.
3. Alice in-fact receives a Selfie image of what she had sent to Bob. After Alice

authenticates this message, she is tricked to believe that it was sent from
Bob (because “only Bob” has the PSK that allows him to send a correctly
authenticated CH message).

4. Alice replies (to Bob) with SH+SF messages.
5. Eve captures these messages and echoes them back to Alice.
6. At this point Alice has opened a Selfie session with herself.
7. After the session established, Alice sends data (presumably to Bob) and

receives the same data back (presumably coming from Bob).

This sequence constitutes a Man in the Middle (MITM) attack on Alice, that
breaks the TLS claimed properties of [18][Appendix E]:

“Peer authentication: The client’s view of the peer identity should
reflect the server’s identity. If the client is authenticated, the server’s
view of the peer identity should match the client’s identity.”

Implications. To illustrate the threat that this Selfie attack poses, consider
the following scenario.

5

Alice opened a session, presumably with Bob, but in reality with herself. Subse-
quently, Alice sends a message to (fake) Bob:

"If you have the file data.txt you can delete it. I hold a copy."

However, this message is echoed back to Alice (instead of reaching Bob) as if
coming from Bob. At this point, Alice is led to believe that Bob sent her the
message of the instructions

"If you have the file data.txt you can delete it. I hold a copy."

Alice checks that she has a copy of data.txt (which, of course, she has) and
deletes the file. If there is no other copy of data.txt, the file is lost.

4 Demonstrating the Selfie attack

This section describes a demonstration of the Selfie attack in a way that it can be
repeated by the reader. For completeness we also describe the system that we use
for the experiments: a Linux (Ubuntu 16.04.3 LTS) OS running on a platform
equipped with the latest 7th Generation Intel R© CoreY TM processor (”Kaby
Lake”) - Intel R© Xeon R© Platinum 8124M CPU at 3.00 GHz Core R© i5− 750.

The smallest network configuration for the Selfie attack requires at least one
node that acts as a server and as a client (Alice) and a switch that acts as the
Selfie mirror (Eve). Our experiment was executed on a single desktop machine
as follows. We emulated a virtual network using Mininet [15]. To run its virtual
machine image we used VirtualBox [17]. Inside the virtual machine we installed
the latest version of OpenSSL [16] configured to enable TLS 1.3.

(a) (b)

Fig. 2. Network configuration. (a) normal configuration; both hosts communicate with
each other (as intended); (b) the Selfie attack configuration: all packets sent to port
P1 are reflected back to the sender, where the MAC and IP addresses are swapped.

We started the virtual network inside the virtual machine by executing

sudo mn −−topo s i n g l e , 2 −−mac −−switch ovsk

6

This generates a network with two nodes (Host 1 is Alice and Host 2 is Bob) and
an ovsk switch (Eve) as illustrated in Figure 2. We used two configurations for
the switch in order to simulate the normal intended operation (Figure 2 panel
a) and the Selfie attack scenario (panel b). The associated command lines for
the normal configuration, where packets from port 1 (P1) are forwarded to port
2 (P2) and vice versa are

sudo ovs−o f c t l add−f l ow s1 i n p o r t =1, a c t i o n s=output : 2
sudo ovs−o f c t l add−f l ow s1 i n p o r t =2, a c t i o n s=output : 1

For the Selfie attack configuration. We use the commands

sudo ovs−o f c t l add−f l ow s1 p r i o r i t y =100 , i n p o r t =1,
a c t i o n s=mod dl s rc : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 ,
mod dl dst : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ,
mod nw src : 1 0 . 0 . 0 . 2 ,
mod nw dst : 1 0 . 0 . 0 . 1 , output : i n p o r t

and

sudo ovs−o f c t l add−f l ow s1
p r i o r i t y =1000 , d l type=0x806 ,
nw proto =1, a c t i o n s=f l o o d

The first command reflects every packet that arrives to P1 back to its origin
(which is Host 1). However, note that the source and destination (IP and MAC
address) are flipped. The second command tells the switch how to handle Address
Resolution Protocol (ARP) requests. It is important (for this experiment) to set
the priority of the second command to be higher than the priority of the first
command. This allows ARP replies (otherwise, the second host is unidentified
and will not receive any ARP messages).

In both hosts we set the PSK to have the (arbitrary) value

export PSK=11111111111111112222222222222222
33333333333333334444444444444444

Now we opened a TLS 1.3 server (with OpenSSL) on both hosts that are
configured to listen to port 1443 as follows

apps/ opens s l s s e r v e r −accept 1443
−t l s 1 3 −4
−c i p h e r s u i t e s TLS AES 128 GCM SHA256
−psk $PSK
−nocer t
−num tickets 0

Subsequently, we opened a client on Host 1 with the command

7

apps/ opens s l s c l i e n t −connect 1 0 . 0 . 0 . 2 : 1 4 4 3
−t l s 1 3 −4
−psk $PSK
−c i p h e r s u i t e s TLS AES 128 GCM SHA256

Remark 3. We comment about the specific TLS 1.3 implementation of OpenSSL.
Here, the client always offers the psk dhe ke KE mode to the server. The server
prefers the psk dhe ke mode over the psk ke mode (because it provides FS).
Therefore, our demonstration shows an attack on TLS 1.3 with external PSK in
the psk dhe ke KE mode. Clearly, the Selfie attack is also possible in the psk ke
mode (see details in Section 5).

The results

In the normal mode, the operation was as intended: Host 1 is communicating
with Host 2 and the TLS 1.3 with PSK session was established correctly. By
contrast, under the Selfie attack, Host 1 ended up communicating with itself
consuming exactly the same messages that it delivered. The implications were
discussed above.

Remark 4. It is interesting to note that this experiment cannot be repeated with
BoringSSL (and not OpenSSL) as the underlying cryptographic library. While
BoringSSL enables TLS 1.3 by default, in the client and server, it does not
support (implement) the option of using PSK without certificates.

5 Other selfish scenarios that are prone to the Selfie attack

The Selfie attack also applies to the following TLS cases:

– TLS 1.2. This can also be demonstrated using the above experiment. We
believe that situations where TLS 1.2 is used with PSKs are not common.
Therefore, our focus is on TLS 1.3.

– TLS 1.3 with PSKs in psk ke mode (without FS). The Selfie attack ap-
plies also to the same flow without ephemeral keys. To demonstrate the
Selfie attack, we first prepared a patched version of OpenSSL that disable
the psk dhe ke mode for the TLS client. We rerun the demonstration with
the patched OpenSSL while we added the -allow no dhe kex flag to the
client and the server commands.

Remark 5. We provide some details on the OpenSSL implementation of TLS.
The TLS 1.3 server application (s server) of OpenSSL provides two flags
-no dhe and -allow no dhe kex with the following documented description
“Disable ephemeral DH” and “In TLS v1.3 allow non-(ec)dhe based key ex-
change on resumption”, respectively. Therefore, we expect that using these flags
will cause the server to operate only in the psk ke mode. However, this did not

8

give the expected results because the client always offers the psk dhe ke mode.
We could not find a (intuitive) way to run the client in psk ke mode. Therefore,
we patched the client code to disable the psk dhe ke mode. This allows us to
demonstrate that the Selfie attack is valid also in the psk ke mode and not only
in the psk dhe ke mode as above. Note that the attack relies on a property of
TLS and not on a specific implementation of OpenSSL.

Some possible scenarios where the external PSKs may be used, and the
Selfie attack could be relevant are:

– Content Delivery Network (CDN) nodes that act as proxies are considered
a target for the Selfie attack. Here, an attacker can reflect a request from a
CDN node to itself, poison its caches with errors which can lead to Denial
of Service (DoS) attack.

– P2P networks.

– WiFi networks that rely on one PSK for the entire network.

– Leader-election and consensus protocols.

6 Where did the security proofs miss?

The Selfie attack comes as a surprise, since TLS 1.3 is the first TLS version that
was designed alongside with security proofs, e. g., the studies in [3, 5–9, 12–14].
This is even more surprising since the Selfie attack is actually a manifestation
of a reflection attack that is already known in other contexts. Here, we try to
understand how this slipped through.

Consider the papers [8,9] that focus on draft-ietf-tls-tls13-14 (here-
after, draft-14). They show the security of 0-RTT and PSK flows under the
MSKE model [7], augmented for the replayable 0-RTT keys case. This model
follows the game-based paradigm [2], and assumes that the adversary controls
the network and communications. However, the proof provided in [8,9] considers
the use of PSKs only for session resumptions. The gap is that the proof ignores
the case of external PSKs, which is also a valid TLS scenario. Note that ex-
ternal PSKs were introduced at least as early as draft-7 (“TLS provides a
pre-shared key (PSK) mode ... e.g., a key established out of band”). We can now
follow the proof itself. To prove the Match game, property number 4 on TLS
(i. e., “Sessions are partnered with the intended (authenticated) participant and
(for mutual authentication) share the same key index.”) [8, 9] claim

“As honest sessions only used their own pre-shared secret identifier
psk id, this value included (via ClientHello) in all session identifiers
ensures agreement of both the intended partner and key index.”

9

This argument fails exactly in the case of external PSKs. The reason is that
a PSK belongs to at most two parties, but the protocol cannot tell which one of
the two parties is sending a message. This leads to the Selfie attack.

The analysis in [4, 14] uses an automatic tool to prove the security of TLS
(draft-10 and draft-21) namely, Tamarin [1]. It considers the option of us-
ing “out-of-band” PSKs, but leaves some options for future work [19] as follows:

“In future work, it would be interesting to write precise authentica-
tion properties to understand the nature of implicit authentication
for out-of-band PSK authentication”

The gap in the model that was introduced to Tamarin is the assumption that
a PSK cannot be shared by more than two parties (one client and one server).
Clearly, this is not the case in our attack scenario, where we assume that a PSK
is unique per host (node) that can run a client and a server (that share the PSK).
Consequently, the PSK is shared among more than two (sub)-entities (e. g., two
servers and a client as in the demonstration in Section 4).

Apparently, theoretical proofs and automatic-tools’ proofs did not account
for this (somehow hidden, but still allowable) case of TLS 1.3. Fortunately, the
mitigation is simple, and we also see that some cryptographic libraries as Bor-
ingSSL did not even implemented this TLS option.

7 Dealing with the Dealer

The common (informal) definition of TLS with PSKs is “TLS is a KE protocol
between two parties that hold a PSK pss”. However, this is not the case when
external PSKs are used. Therefore, a better (informal) definition is: “TLS is a
KE protocol between two parties that hold a PSK pss that is shared by a set
Gpss of parties, with at least two members.” Hereafter, every pss is associated
with some group Gpss.

The PSKs can be negotiated by the parties or be distributed by some trusted
authority called a Dealer. The Dealer’s policy for distributing the keys among the
parties is beyond the scope of the TLS protocol. We assume that the Dealer is
trusted and that it keeps the PSKs secret, according to the following policies.

1. The Dealer distributes a unique key for every session between a client-server
pair. An example for this scenario is the resumption mode (with tickets).

2. The Dealer distributes the keys in a way that for every client-server pair
it hands a unique key (that can be used in multiple sessions). In this case,
replay attacks may be possible.

3. The Dealer divides the network entities (clients and servers in all nodes) into
groups (not necessarily disjoint) and distributes the same PSK to all mem-
bers of the same group. Different groups are given different keys. This policy

10

reduces to case 1 (or case 2) if all the groups have exactly two members (the
groups are not necessarily disjoint). Therefore, hereafter we discuss case 3
when at least one group contains three members. An example for this sce-
nario is the current TLS 1.3 definition. We label it as a group authentication
protocol.

In our attack scenario the Dealer distributes the same PSK to two nodes,
where each node is a client and a server. Overall, four entities (two clients and
two servers) end up with the same PSK.

Case 1 is captured in previous security models and is defined as a mutual
authenticated protocol. Case 2 is not captured in the MSKE model [8]. But we

believe that TLS with this type of a Dealer is secure (perhaps without replay
protection). Case 3 can lead to the Selfie attack and other problems.

8 Mitigating the Selfie attack

One mitigation is to modify the TLS protocol [18] to include the following re-
striction:

External PSKs MUST be used together with server certificates.

This prevents the Selfie attack. However, the problem is that PSKs are intro-
duced to the protocol in order to avoid certificates1. Therefore a better option,
is to limit the use of external PSKs in TLS by adding the following statement
to its definition.

A PSK MUST NOT be shared between more than one client and
one server.

This prevents the Selfie attack, without the need for certificates. We recom-
mend this solution.

9 Group authenticated protocol

This section discusses the third policy of the Dealer (group authentication pro-
tocols). This policy is the current state of TLS 1.3 and we recommend to remove

1 We point out that server certificates may be spared here: even adding a client cer-
tificate would prevent the Selfie attack (note that a recent IETF draft [10] further
suggests to include also the client certificate in the handshake but with a different
motivation).

11

it (see above). To show why, we study the security properties and security models
that apply to this case, even if the Selfie attack is prevented.

A group authentication protocol, has a new set of security properties, that
require a different assumption on the trustworthiness of the entities (i. e., the
adversary capabilities): one must accept the fact that in every group with three
(or more) members, every member can impersonate the other members in the
group (and of course, decrypt and modify messages if the session keys are derived
without ephemeral DH keys).

Another property (similar to mutual authentication protocols) is that there
is no protection against an adversary that controls a node (this is captured in
the Corrupt query of the MSKE model as explained in Appendix A). This implies
that the protocol is secure only if all the nodes in the network are secure (and
trusted), and the adversary can only control the network.

However, unlike mutual authentication protocols, a network adversary A
against group authentication protocols has additional attack vectors for gath-
ering confidential information leaked during the protocol execution. For example,
A can intercept a CH message sent from a node n1 to a node n2 together with
some early (0-RTT) data. It can then forward this traffic to both n2 and n3 (both
in the same group of n1) and measure their response time. If the execution of
the protocol (or the processing of the early data) is not done in a side channel
protected way, A may learn something about the state (caches and memory) of
n2 and n3. In addition, if the early data is not idempotent it may be executed
twice (on different nodes). To prevent this attack the CH message must include
an authenticated n2 identity that will prevent A from forwarding the message
to n3.

Preventing the Selfie attack. Preventing the Selfie attack in group authentic-
ation protocols can be done in at least three ways, but we only consider the third
option to be practical.

1. Preventing parallel sessions (on the same node).

2. Every party (client or server) caches all the nonces that it generated, and
rejects a connection from other parties if they use a cached nonce.

3. Every participating party gets (during the setup of the network) a unique
identity that is known to all the other parties in the network. Then, the iden-
tities of the sender and the intended receiver are included in every handshake
message and also authenticated. The client and the server must verify the
validity of the claimed identities.

Mitigating the Selfie attack by using option one is obviously undesired. Op-
tion 2 involves the overhead of maintaining a cache and the overhead of sharing
the cache between several processes on the same node. In addition, both op-
tions do not solve the leaking information attack described above. Therefore, we
recommend the third option, adding identities, which in TLS can be done by
enforcing the use of the Server Name Identification (SNI) extension.

12

10 Responsible disclosure

Our demonstrated attack was performed on the most updated versions of the
cryptographic libraries evaluated, as published at the time of discovery.

We are not aware of any usage of PSK’s in a way that opens the door to
a vulnerability, but out of an abundance of caution, we followed the practice
of responsible disclosure. We disclosed our findings in March 2019 to Akamai,
Apple, Citrix, CloudFlare, Google, Microsoft, OpenSSL, Oracle, and also to Eric
Rescorla of Mozilla (handling TLS 1.3 definitions).

11 Discussion

It is interesting to recall that TLS 1.3 is the first TLS version that was developed
alongside with security proofs, both manual proofs and also proofs that leverage
automatic tools. The protocol was therefore considered (under the appropriate
assumptions) to be provably secure. Nevertheless, we see here that there is a
gap in the proofs, because one (allowable) usage option in TLS 1.3 is susceptible
to the Selfie attack. Although the attack scenario does not fall in the main
intended usage of TLS, it is not an inconceivable scenario. Indeed, in a network
of nodes that send and receive messages (i. e., can play the role of a server and
a client) under the same PSK (e. g., CDN proxies, P2P networks, and WiFi
communications), there is no reason a priori to use different keys for sending
and for receiving packets.

In general, a security protocol should capture, warn, or at least mention all
the assumptions it relies on, in order to protect implementers from misunder-
standings or mistaken usages. For example, we note the TLS 1.3 specification
explicitly uses different keywords (e. g., MUST, MAY, SHOULD) to specify re-
quirements and restrictions.

While some constraints such as “keys MUST be kept confidential” are con-
sidered trivial and thus omitted, it is important that other assumptions are
made explicit. Specifically, the Selfie attack is the result of an undocumented
assumption in TLS 1.3 (as explained above).

The security of a cryptographic protocol can be proved under different mod-
els (e. g., MSKE) that may make different assumptions and conclude different
properties. Of course, all of the protocol assumptions must be stated and also
be included in the model if one wishes to obtain correct results (see Section 6).
Proofs that are produced by automatic tools may be incorrect or incomplete if
the underlying model does not capture all the assumptions or if its details are
not fed correctly. In our case, we identify two independent problems: a) TLS
1.3 does not explicitly forbid the group authentication mode, which allows the
Selfie attack; b) the models that were used in the proofs did not account for
this scenario, and therefore mistakenly concluded that the protocol is secure in
all of its variants. To illustrate the necessary modifications to the MSKE model
that cover the relevant assumptions, we outline the enhanced model in Appendix
A. We point out that the proof that TLS is secure under this model and the

13

properties of a group authentication protocol, is similar to the proof in [8]. Of
course, the resulting security statement is different.

The Selfie attack is possible simply because TLS 1.3 allows the group authent-
ication mode. However, we note that a problem still remains in practice even
if the protocol is changed to forbid this use case. The reason is that users of
cryptographic libraries such as OpenSSL typically believe/assume that all of
the options supported by the library are secure. On the other hand, the library
itself cannot enforce this restriction and prevent it from being used. One way
to avoid this problem is to not support the use of external PSKs in TLS. Note
that BoringSSL does exactly that. For libraries that want to support all of the
TLS options (e. g., OpenSSL), this approach may not be acceptable. We there-
fore propose to disable the external PSK mode by default, and enable it only
through a compilation flag, with an explicit warning and documentation.

Acknowledgments

We thank Matt Campagna, Adam Langley, Colm MacCarthaigh, Kenny Pater-
son, and Eric Rescorla, for useful discussions and suggestions. We thank Gilad
Ram for recommending Mininet for the demonstration.

This research was supported by: The Israel Science Foundation (grant No.
1018/ 16); The BIU Center for Research in Applied Cryptography and Cyber
Security, in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office; the Center for Cyber Law & Policy at the University of Haifa,
in conjunction with the Israel National Cyber Directorate in the Prime Minister’s
Office.

References

1. Tamarin prover. https://tamarin-prover.github.io/#
2. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,

D.R. (ed.) Advances in Cryptology — CRYPTO’ 93. pp. 232–249. Springer Berlin
Heidelberg, Berlin, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 21

3. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified Models and Refer-
ence Implementations for the TLS 1.3 Standard Candidate. In: 2017 IEEE
Symposium on Security and Privacy (SP). pp. 483–502. IEEE (2017).
https://doi.org/10.1109/SP.2017.26

4. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A Compre-
hensive Symbolic Analysis of TLS 1.3. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1773–1788. CCS ’17,
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134063

5. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A Cryptographic Analysis of
the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol. Tech. rep.
(2017)

6. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B., Gunther, F., Schmidt, B.,
Warinschi, B.: Key Confirmation in Key Exchange: A Formal Treatment and Im-
plications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy (SP).
pp. 452–469 (2016). https://doi.org/10.1109/SP.2016.34

https://tamarin-prover.github.io/#
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1109/SP.2016.34

14

7. Fischlin, M., Günther, F.: Multi-Stage Key Exchange and the Case of Google’s
QUIC Protocol. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1193–1204. CCS ’14, ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2660267.2660308

8. Fischlin, M., Günther, F.: Replay Attacks on Zero Round-Trip Time: The Case of
the TLS 1.3 Handshake Candidates. Tech. rep. (2017)

9. Fischlin, M., Günther, F.: Replay Attacks on Zero Round-Trip Time:
The Case of the TLS 1.3 Handshake Candidates. In: 2017 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp. 60–75 (2017).
https://doi.org/10.1109/EuroSP.2017.18

10. Housley, R.: TLS 1.3 Extension for Certificate-based Authentication with an Ex-
ternal Pre-Shared Key. Internet-Draft draft-ietf-tls-tls13-cert-with-extern-psk-00,
Internet Engineering Task Force (Feb 2019), https://datatracker.ietf.org/doc/
html/draft-ietf-tls-tls13-cert-with-extern-psk-00, work in Progress

11. Hugo, K., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Authenti-
cation. https://tools.ietf.org/html/rfc2104 (February 1997)

12. Krawczyk, H., Wee, H.: The OPTLS Protocol and TLS 1.3. pp. 81–96. IEEE (2016).
https://doi.org/10.1109/EuroSP.2016.18

13. Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple Handshakes Security of TLS
1.3 Candidates. In: 2016 IEEE Symposium on Security and Privacy (SP). pp. 486–
505 (2016). https://doi.org/10.1109/SP.2016.36

14. van der Merwe, T.: An Analysis of the Transport Layer Security Protocol Thyla
van der Merwe. Ph.D. thesis, Royal Holloway, University of London (2018), http:
//www.isg.rhul.ac.uk/{~}kp/theses/TvdMthesis.pdf

15. Mininet: Mininet - An Instant Virtual Network on your Laptop (or other PC) ver-
sion mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64.zip. http://mininet.org/
(2019)

16. OpenSSL: OpenSSL commit 38023b87f037f4b832c236dfce2a76272be08763
(February 2019), https://github.com/openssl/openssl/commit/
38023b87f037f4b832c236dfce2a76272be08763

17. Oracle: VirtualBox 5.1 (2018), https://www.virtualbox.org/
18. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446 (aug 2018). https://doi.org/10.17487/RFC8446, https://rfc-editor.org/
rfc/rfc8446.txt

19. Scott, S.: TLS 1.3 modelled in Tamarin. https://samscott89.github.io/
TLS13 Tamarin/ (2018)

A A modified Multi-Stage Key Exchange (MSKE) model

Our modification of the MSKE model [7] augmented for the replayable 0-RTT
keys case [8,9] in order to support group authentication protocols (third policy
in Section 7) is described below. This model follows the game-based paradigm [2],
and assumes that the adversary controls the network and communications (and
thus has the power to read and modify the protocol messages).

Remark 6. As mentioned above in a group authentication protocol, with a PSK
pss and entities e1, e2, e3 ∈ Gpss, e3 can impersonate e2 to e1 or it can read-
/write/modify all the traffic transferred between e1 and e2. In case ephemeral
keys are supported then e3 can still impersonate e2 to e1 but it cannot read-
/write/modify the traffic after the ephemeral keys were exchanged.

https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1109/EuroSP.2017.18
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-cert-with-extern-psk-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-cert-with-extern-psk-00
https://tools.ietf.org/html/rfc2104
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/SP.2016.36
http://www.isg.rhul.ac.uk/{~}kp/theses/TvdMthesis.pdf
http://www.isg.rhul.ac.uk/{~}kp/theses/TvdMthesis.pdf
http://mininet.org/
https://github.com/openssl/openssl/commit/38023b87f037f4b832c236dfce2a76272be08763
https://github.com/openssl/openssl/commit/38023b87f037f4b832c236dfce2a76272be08763
https://www.virtualbox.org/
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://samscott89.github.io/TLS13_Tamarin/
https://samscott89.github.io/TLS13_Tamarin/

15

Remark 7. Our recommendation is to forbid the group authentication mode from
the TLS protocol. Nevertheless, for completeness we outline the modified model
below. The proof that TLS is secure under this model is almost identical to the
proof in [8] and thus omitted.

The modification we propose addresses the current TLS state where group
authentication is allowed. The main changes in our modified Multi-Stage Key
Exchange (MSKE) model is that we add the group authentication authentica-
tion property and the DupSecret and SpreadSecret queries. The DupSecret query
allows to use a PSK in more than one session. The SpreadSecret query allow
to share a PSK pss with a new party. This query can be called only if all the
sessions that use pss are group authentication sessions.

A.1 The model

The modified MSKE model is described below, where for brevity, only the parts
that are relevant to Section 2.2 are mentioned (see [8] for the full model2). The
model [9] uses 4 parameters M, AUTH, USE, and REPLAY to describe a protocol.

– M ∈ N: the number of stages (equals the number of keys). Hereafter, for
every vector X, its per-stage value is denoted by Xi, i ∈ {1, . . . ,M} .

– AUTH ∈ {unauth, unilateral,mutual,group authenticated}M: a set of
supported authentication properties per-stage. The values indicate that a) I
and R are unauthenticated; b) only R is authenticated (to I); c) I and R are
mutually authenticated (to each other); d) I and R are mutually authenti-
cated to be in the same group G (where I,R ∈ G).

– USE ∈ {internal, external}M: USEi indicates whether the i-th stage key is
used internally (during the handshake) or not. External keys cannot be used
internally, but internal keys can be used externally.

– REPLAY ∈ {replayable, nonreplayable}M: REPLAYi indicates whether the
i-th stage is replayable so a party can easily force identical communication
and thus identical session identifiers and keys.

Let Chal be the game challenger and U the set of participants. Uniquely
identify every session in the game with a label (U, V, k) ∈ LABELS = U × U ×N
that indicates the k-th local session of U (the session owner) and V . Every
session is associated with a (not necessarily unique) PSK pss associated with

a unique PSK identifier psid. Chal maintains the vectors # »pssU,V and
»

psidU,V

of PSKs generated by A, where the k-th entry refers to the k-th pss and the
corresponding psid, respectively, shared by U and V . The main difference from
the model of [8] is that a pair (pss, psid) may be repeated for different labels

(U, V, k). To this end, Chal maintains two new maps
»

psidG and
»

psidpss, where
»

psidG[psid] = Gpss and
»

psidpss[psid] = pss. Note that for protocols with
PSKs, # »pssU,V = # »pssV,U . However, this is not the case when a protocol involves

2 Modifying the model when ephemeral keys are involved is done in the same way and
therefore omitted.

16

asymmetric keys. At the beginning of the game, Chal chooses btest
$←− {0, 1}. In

addition, a list List holds per-session tuples with the following information (for
brevity, default values are written in boldface).

• label ∈ LABELS: a unique label.
• U ∈ U : the session owner.
• V ∈

(
U ∪ {∗}

)
: U ’s partner. The protocol may use the “unknown identity”

symbol “*” to indicate that the partner identity will be set (only once) in a
later stage of the protocol.

• role ∈ {initiator, responder}: the role of the session owner.
• auth ∈ AUTH: the (per stage) intended authentication type.
• stexec ∈ (RUNNING ∪ACCEPTED ∪REJECTED): the state of ex-

ecution, where RUNNING = {runningi | i ∈ N0}, ACCEPTED =
{acceptedi | i ∈ N}, REJECTED = {rejectedi | i ∈ N}.

• stage ∈ {0, . . . ,M}: the current protocol stage, it is incremented to i when
stexec reaches acceptedi or rejectedi.

• sid ∈
(
{0, 1} ∪ {⊥}

)M
: a vector of session identifiers.

• cid ∈
(
{0, 1} ∪ {⊥}

)M
: a vector of contributive identifiers.

• K ∈
(
{0, 1} ∪ {⊥}

)M
: a vector of session keys.

• stkey ∈ {fresh, revealed}M: the session keys’ state.
• tested ∈ {true, false}M: indicates whether Ki has been tested or not.
• k ∈ N: the PSK index, for U and V .
• pss ∈

(
{0, 1}∗ ∪ {⊥}

)
: the PSK.

• psid ∈
(
{0, 1}∗ ∪ {⊥}

)
: the PSK identifier.

key dependence. The term key dependence means that if Ki, i < M is dis-
closed before the key Ki+1 was generated and Ki+1 depends on Ki, then Ki+1

is compromised. This property is captured in the Reveal query. Note that the
model assumes that Ki+1 is not trivially dependent on Ki (e. g., Ki+1 = H(Ki)).
Rather, it is still indistinguishable from random given the revealed Ki.

Let A be a Probabilistic Polynomial-Time (PPT) adversary that controls the
network. It can intercept, inject, and drop messages. A protocol provides stage-k
FS if keys from the k-th stage on are forward secrets. The model includes a lost
flag (initialized to false) indicating that A trivially lost (e. g., if it corrupts a
tested instance). A interacts with the protocol by using the following queries:

NewSecret(U , V , k, psid): Generate a fresh pss with identifier psid. If psid
has been already registered to another pss or that # »pssU,V [k] 6=⊥, return ⊥. Oth-

erwise, set # »pssU,V [k] = # »pssV,U [k] = pss and
»

psidU,V [k] =
»

psidV,U [k] = psid.

These values form the k-th secret between parties U and V . Set
»

psidG[psid] =

{U, V } and
»

psidpss[psid] = pss

SpreadSecret(U , psid, {(V, kV)}V ∈psidG[psid]): If
»

psidG[psid] =⊥ or if U ∈
»

psidG[psid], return ⊥. If there exists 1 ≤ i ≤ M and a session s with s.psid =
psid and s.authi 6= group authentication return⊥. For every V if # »pssU,V [kV] 6=⊥,

17

return⊥. Otherwise set # »pssU,V [kV] = # »pssV,U [kV] =
»

psidpss[psid] and
»

psidU,V [kV] =
»

psidV,U [kV] = psid. Finally, add U to
»

psidG[psid].

DupSecret(U , V , k, k̄): If # »pssU,V [k] =⊥ or # »pssU,V [k̄] 6=⊥, return ⊥. Other-

wise, set # »pssU,V [k̄] = # »pssV,U [k̄] = # »pssU,V [k] and
»

psidU,V [k̄] =
»

psidV,U [k̄] =
»

psidU,V [k].

NewSession(U , V , role, auth, k): If # »pssU,V [k] =⊥ or (| # »

psidG[psid]| ≥ 2 and
auth 6= group authentication) return ⊥. Otherwise, create a new session with a
(unique) new label label = (U, V, k), U with role role, V , auth, pss = # »pssU,V [k],

psid =
»

psidU,V [k], and auth. Add (label, U , V , role, auth, k, pss, psid) to
List and return label.

Send(label,m): Find a session s that is identified by label. If it does not exist
return ⊥. Otherwise, run the protocol on behalf of U or V on the message m.
Return the response and the updated execution state s.stexec. Specifically, when
s.role = initiator use m = “init” to initiate the protocol. If during the protocol
execution, s.stexec is changed to acceptedi for some i, then

– immediately suspend the execution and return acceptedi to A.
– if there exits a partnered session s′ ∈ List (s.sidi = s′.sidi) with s′.stkeyi =
revealed, for key-independent protocols set s.stkeyi = revealed. For key-
dependent protocols set s.stkeyi′ = revealed, i′ ≥ i.

– if there exits a partnered session s′ ∈ List with s′.testedi = true, set
s.testedi = true and (only if USEi = internal) set s.Ki = s′.Ki.

– if the intended communication partner V 6= ∗ is corrupted, set s.stkeyi =
revealed.

Subsequently, A can call a Send(label, “continue”) query to ask Chal to resume
executing the protocol. The returned answer is the expected answer from the
protocol execution.

Reveal(label, i): for the i-th stage of session s, identified by label, reveal s.Ki.
If no such s exists or s.stage < i, or s.testedi = true, return ⊥. Otherwise, set
s.stkeyi = revealed and return s.Ki. For every partnered session s′ ∈ List with
s′.stage ≥ i, set s′.stkeyi = revealed. In the case of keys-dependent protocols,
future keys might be depend on the revealed key, if s.stage = i, set s.stkeyi′ =
s′.stkeyi′ = revealed for all i′ > i and s′ such that s′.stage = i. Note that
if s′.stage > i then the keys s′.Ki′ , derived in the partnered session, are not
considered to be revealed by this query.

Corrupt(psid): Provide A with
»

psidpss[psid]. No further queries are allowed
to any session s with s.psid = psid. For consistency, for every session s with
s.psid = psid and i ∈ {1, . . . ,M} (in the non-FS case) or i < j or i > s.stage
(in the case of stage-j FS), call Reveal(s.label, i). The latter refers to session
keys before enabling FS or that have not yet been established. The calls to the
Reveal queries are internal. Their responses and their fact that they return ⊥ in
case of a call with i > s.stage are ignored.

18

Test(label, i): for the i-th stage of the session s identified with label, perform
a test on s.stkeyi.

– If no such s exists or s.stexec 6= acceptedi or s.testedi = true, return ⊥.
– If there is a partnered session s′ ∈ List with s′.stexec 6= acceptedi, set lost =
true.

– If s.authi = unauth or if s.authi = unilateral and s.role = responder, but
there is no session s′ 6= s ∈ List with s.cidi = s′.cidi, then set lost = true.

In any other case, set s.testedi = true. Set K1 = s.Ki and K0
$←− D, where D

is the session key distribution. If USEi = internal, set s.Ki = Kbtest (because it is
also used for consistent future deployments within the key exchange protocol).
For every partnered session s′ ∈ List, s.stexec = s′.stexec = acceptedi) set
s′.testedi to true and only if USEi = internal set s′.Ki = s.Ki for consistency.
Return Kbtest to A.

A.2 General security properties of the MSKE model

The MSKE model captures the leak of PSKs or the leak of session keys in the
Corrupt or the Reveal queries, respectively. However, it does not model the leak of
internal values or session’s state. This is because the adversary is only a network
adversary and not a node adversary.

The MSKE model includes two security games: a) the Match security game -
ensuring that both parties in a session have the same session identifiers (sid); b)
the Multi-Stage security game that ensures key secrecy (as defined by Bellare-
Rogaway). In our enhanced MSKE mdoel, the Match security game GMatch

KE,A is
defined as follows.

Definition 1 (Match security). Let KE be a MSKE protocol with properties
(M, AUTH, USE, REPLAY). Let A be a PPT adversary interacting with KE via
the above queries in the following GMatch

KE,A game:
A accesses the NewSecret, DupSecret, SpreadSecret, NewSession, Send, Re-

veal, and Corrupt oracles and at some point stops without any output. A wins the
game (GMatch

KE,A = 1) if for two partnered sessions s, s′, where s.sidi = s′.sidi 6=⊥
and i ≤ M one of the following ocurres

1. s.stagei 6= rejected but s.Ki 6= s′.Ki.
2. s.authi 6= s′.authi.
3. s.cidi 6= s′.cidi or s.cidi = s′.cidi =⊥.
4. s.role = initiator, s′.role = responder, and

– s.authi = s′.authi = unilateral, but s.V 6= s′.U
– s.authi = s′.authi = mutual authentication, but s.V 6= s′.U or s.U 6=
s.V

– s.authi = s′.authi = group authentication, but one of s.U, s.V, s′.U, s′.V 6∈
»

psidG[s.psid].

or s.psid 6= s′.psid.

19

In addition, A wins the game if 5) there exist two sessions s, s′ and i 6= j
such that s.sidi = s′.sidj 6=⊥; 6) there exist sessions s1 6= s2 6= s3, i ≤ M,
REPLAYi = nonreplayable such that s1.sidi = s2.sidi = s3.sidi 6=⊥.

A KE is Match-secure (with a security parameter λ) if for all PPT adver-
saries A:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
≤ negl(λ)

Note that the difference between our enhanced Match definition (that sup-
ports group authentication protocols) and the original MSKE Match definition
is in item 4.

The Multi-Stage security game GMulti−Stage
KE,A is defined as follows and is the

same in the enhanced and the original MSKE model.

Definition 2 (Multi-Stage security). Let KE be a MSKE protocol with prop-
erties (M, AUTH, USE, REPLAY) and a PPT adversary A interacting with KE

via the above queries in the following GMulti−Stage
KE,A game:

Chal chooses btest
$←− {0, 1} and sets lost = false. Subsequently, A ac-

cesses the NewSecret, DupSecret, SpreadSecret, NewSession, Send, Reveal, Test,
and Corrupt oracles and at some point stops and outputs a guess b. Chal sets
the lost = true if there exist two sessions s, s′ and i ≤ M such that s.sidi =
s′.sidi, s.stkeyi = revealed, and s′.testedi = true. (A has tested and revealed
the key in a single session or in two partnered sessions.) A wins the game

(GMulti−Stage,D
KE,A = 1), if b = btest and lost = false.
KE is Multi-Stage-secure in a key-dependent resp. key-independent and non-

FS resp. stage-j FS manner with concurrent authentication types AUTH, key
usage USE, and replayability property REPLAY if KE is Match-secure and for
every PPT adversary A:

AdvMulti−Stage,D
KE,A := Pr

[
GMulti−Stage,D

KE,A = 1
]
− 1

2
< negl(λ)

	Selfie: reflections on TLS 1.3 with PSK

