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Abstract

A universal circuit (UC) can be programmed to simulate any circuit up to a given size n
by specifying its program inputs. It provides elegant solutions in various application scenarios,
e.g., for private function evaluation (PFE) and for improving the flexibility of attribute-based
encryption (ABE) schemes. The asymptotic lower bound for the size of a UC is Ω(n log n) and
Valiant (STOC’76) provided two theoretical constructions, the so-called 2-way and 4-way UCs
(i.e., recursive constructions with 2 and 4 substructures), with asymptotic sizes ∼5n log2 n and
∼4.75n log2 n, respectively.

In this article, we present and extend our results published in (Kiss and Schneider, EURO-
CRYPT’16) and (Günther et al., ASIACRYPT’17). We validate the practicality of Valiant’s
UCs by realizing the 2-way and 4-way UCs in our modular open-source implementation. We
also provide an example implementation for PFE using these size-optimized UCs. We propose
a 2/4-hybrid approach that combines the 2-way and the 4-way UCs in order to minimize the
size of the resulting UC. We realize that the bottleneck in universal circuit generation and pro-
gramming becomes the memory consumption of the program since the whole structure of size
O(n log n) is handled by the algorithms in memory.

In this work, we overcome this by designing novel scalable algorithms for the UC generation
and programming. Both algorithms use only O(n) memory at any point in time. We prove the
practicality of our scalable design with a scalable proof-of-concept implementation for generat-
ing Valiant’s 4-way UC. We note that this can be extended to work with optimized building
blocks analogously. Moreover, we substantially improve the size of our UCs by including and
implementing the recent optimization of Zhao et al. (ASIACRYPT’19) that reduces the asymp-
totic size of the 4-way UC to ∼4.5n log2 n. Furthermore, we include their optimization in the
implementation of our 2/4-hybrid UC which yields the smallest UC construction known so far.
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∗Please cite the journal version of this article accepted for publication in Journal of Cryptology (JoC). This article
is a combined and substantially extended version of [KS16] (EUROCRYPT’16) and [GKS17] (ASIACRYPT’17). We
summarize the additional contributions in §1.3.
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1 Introduction

Any computable Boolean function f(x) can be represented as a Boolean circuit Cgu,v(x) with u input
wires x = (in1, . . . , inu), v output wires out1, . . . , outv, and g gates for some u, v, g. The size of
such a Boolean circuit is n = u+ v + g. Universal circuits (UCs) are programmable circuits that
can simulate any Boolean function f(x) up to a given size n. To program a UC to compute f ,
programming or control bits are specified as further inputs cf = {c1, . . . , cm}. The UC then receives
these control bits as inputs along with the input x, and computes the result as UC(x, cf ) = f(x).
This means that the same UC can evaluate different Boolean circuits by specifying the respective
control bits. In analogy to a universal Turing machine, a universal circuit allows to turn any function
into data in the form of a program description.

Several efficient constructions considering both the size and the depth of UCs were proposed.
Valiant proposed in [Val76] an asymptotically size-optimal UC construction with size Θ(n log n)
and depth O(n) [Weg87]. He presents two constructions, called 2-way and 4-way UCs, based on
so-called edge-universal graphs (EUGs) that utilize either 2 or 4 subcircuits, respectively. The
asymptotic complexity of the 4-way UC is ∼4.75n log2 n which is smaller than that of the 2-way
UC of ∼5n log2 n [Val76]. The 4-way UC has been further improved in [ZYZL19], where its size
is reduced to ∼4.5n log2 n. An asymptotically depth-optimal construction with depth Θ(d) that
simulates circuits with depth d was proposed in [CH85], but it has a significantly larger size
of O(n3d/ log n). In our paper, due to the applications in cryptography that we revisit in §1.1,
we concentrate on the existing size-optimized UCs, especially that proposed by Valiant [Val76] with
asymptotic size Θ(n log n) with the optimization presented by Zhao et al. in [ZYZL19].

1.1 Applications of Universal Circuits

Size-optimized universal circuits have many applications, which we review here and refer to the
original publications for a more detailed description.

Private Function Evaluation (PFE)

The most prominent application of universal circuits is the secure evaluation of private functions
based on secure function evaluation (SFE) or secure computation. SFE enables two parties P1

and P2 to evaluate a publicly known function f(x, y) on their respective private inputs x and y,
ensuring that none of the participants learns anything about the other participant’s input apart
from the output of the computation. Many secure computation protocols, such as Yao’s garbled
circuit protocol [Yao82,Yao86,LP09a] and the GMW protocol [GMW87], use Boolean circuits for
representing the desired functionality. In some applications the function itself should be kept private.
This setting is called private function evaluation (PFE), where we assume that only one of the
parties P1 knows the function f(x), whereas the other party P2 provides the input to the private
function x. P2 should learn no information about f except for an upper bound on the size of the
circuit describing the function, and P1 should learn nothing about x beyond what can be inferred
from the result f(x).

PFE can be reduced to SFE [AF90, SYY99,Pin02,KS08b] by securely evaluating a UC that is
programmed by P1 to evaluate the function f on P2’s input x. For this, P1 provides the control
bits cf for the UC and P2 provides his private input x into an SFE protocol that computes UC(x, cf ).
Here, the UC is a public function and the control bits cf – and therefore the function f – and in-
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put x are kept private due to the properties of SFE. The first implementation of PFE was provided
in [KS08b,Sch08], which extends the Fairplay secure computation framework [MNPS04] with univer-
sal circuits. The underlying UC construction achieves a non-optimal asymptotic size of O(n log2 n)
and depth O(n log n). We have shown in [KS16] that it results in larger UCs than Valiant’s construc-
tions for all reasonable circuit sizes in practice. The complexity of PFE in this case is determined
mainly by the size and depth of the UC, while the security follows from that of the SFE protocol that
is used to evaluate the UC. If the SFE protocol is secure against semi-honest, covert or malicious
adversaries, then the PFE protocol is secure in the same adversarial setting. UC-based PFE can
be easily integrated into any SFE framework and can directly benefit from recent optimizations.
For instance, outsourcing UC-based PFE to two or multiple servers using XOR secret sharing is
directly possible with outsourced SFE [KR11]. The non-interactive secure computation protocol
of [AMPR14] can be generalized to obtain a non-interactive PFE protocol [LMS16]. Moreover,
with UC-based PFE, evaluating public and private parts of a functionality can easily be performed
together without modifying the underlying secure computation framework.

In [KM11], Katz and Malka presented an alternative approach for PFE that does not rely on
UCs. They use additively homomorphic public-key encryption as well as a symmetric-key encryption
scheme and achieve constant-round PFE with linear O(n) communication complexity. However, the
number of public-key operations is linear in the circuit size and due to the gap between the efficiency
of public-key and symmetric-key operations, this results in a less efficient protocol. Their protocol
is secure against semi-honest adversaries, uses Yao’s garbled circuits [Yao86], and has recently
been improved in [BBK18], where the authors modify the algorithm to perform one full execution
from which information can be reused in subsequent more efficient executions of the protocol.
Mohassel and Sadeghian consider PFE with semi-honest adversaries in [MS13] and propose a generic
PFE framework that can be instantiated with different secure computation protocols. Their first
protocol uses homomorphic encryption with which they achieve linear complexity O(n) in the circuit
size n and their second protocol relies solely on oblivious transfers (OT), that results in a method
with O(n log n) symmetric-key operations. The OT-based construction from [MS13] or PFE using
UCs are more desirable than the linear homomorphic encryption-based methods in practice, since
using OT extension, the number of expensive public-key operations can significantly be reduced,
such that it is independent of the number of OTs [IKNP03,ALSZ13]. Biçer et al. [BBKL19] improve
the communication of the OT-based PFE protocol of [MS13] by around 40%. The asymptotic
complexity of the OT-based construction of [MS13] and Valiant’s UCs for PFE is the same, and
therefore we compare these solutions for PFE in more detail in §8. Mohassel et al. extend the
framework from [MS13] to malicious adversaries in [MSS14] with linear complexity O(n), using
additively homomorphic encryption. Active security of UC-based PFE is achieved by using a secure
computation protocol with active security. Even though their claimed better efficiency, to the best of
our knowledge, these protocols have not yet been implemented, and are not as generally applicable
as PFE with UCs, e.g., they cannot be easily combined with secure evaluation of public functions.

Semi-private function evaluation (semi-PFE) has been proposed in [PSS09], and allows for PFE
where the function f is in a set of functions F known by both parties. This relaxes the necessary
topology hiding requirement of generic PFE. Yao’s garbled circuit can be used for evaluating circuits
of the same topology as shown in [PKV+14]. Recently, an automated approach for semi-PFE has
been proposed in [KKW17], where the circuits representing f ∈ F have varying topologies, for
which a container topology is found that can be programmed to compute any of the available
topologies. This has therefore been defined as a set-universal circuit, i.e., a circuit that can be
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programmed to compute any circuit from a pre-defined set of circuits. This approach has been
further improved in [Kol18], where a modified garbled circuit protocol allows for efficient semi-PFE
with linear communication in the size of the largest circuit in F . However, semi-PFE does not
suffice for generic PFE where we have an exponential number of possible circuit topologies.

Applications of PFE

PFE can be applied in scenarios where one of the parties wants to keep the evaluated function
private. One of the first applications for PFE was privacy-preserving checking for credit worthi-
ness [FAZ05], where not only the loanee’s data, but also the loaner’s function that computes if the
loanee is eligible for a credit needs to be kept private. The original scheme, using garbled circuits,
can represent simple policies, but by evaluating a UC their scheme can be extended to more com-
plicated credit checking policies. [CCKM00] shows an application for secure computation, where
evaluating UCs or other PFE protocols would ensure privacy: when autonomous mobile agents
migrate between several distrusting hosts, the privacy of the inputs of the hosts is achieved using
SFE, while privacy of the mobile agent’s code can be guaranteed with PFE. [OS05] shows a method
to filter remote streaming data obliviously, using secret keywords and their combinations. Their
scheme can additionally preserve data privacy by using PFE to search the matching data with
a private search function. PFE allows for running proprietary software on private data, such as
privacy-preserving evaluation of diagnostic programs that was considered in [BPSW07], where the
owner of the program does not want to reveal the diagnostic method and the user does not want
to reveal his data. Example applications for such programs include medical diagnostics [BFK+09]
and remote software fault diagnosis, where the function and the user’s input are desired to be han-
dled privately. In the protocol presented in [BPSW07], the diagnostic programs are represented as
binary decision trees or branching programs which can easily be converted into a Boolean circuit
representation and evaluated using PFE based on universal circuits. Moreover, PFE can be applied
to create blinded policy evaluation protocols [FAL06, FLA06]. [FAL06] utilizes UCs for so-called
oblivious circuit policies and [DDKZ13] for hiding the circuit topology in order to create one-time
programs. In [PKV+14,FVK+15], universal circuits are used for hiding queries in private database
management systems (DBMSs). The Blind Seer DBMS [FVK+15] was improved in [PKV+14] by
making use of a simpler UC for evaluating queries, which does not hide the circuit topology. The
authors mention that in case the topology of the SQL formula and the circuit have to be kept pri-
vate, a generic UC should be utilized. Further applications of PFE given in [MS13] are evaluation of
branching programs on encrypted data [IP07] and privacy-preserving intrusion detection [NSMS14].

UC Applications Beyond PFE

Apart from being used for PFE, UCs can be applied in various other scenarios. Efficient verifiable
computation on encrypted data was studied in [FGP14]. A verifiable computation scheme was
proposed for arbitrary computations and a UC is required to hide the function. [GGPR13] make
use of UCs for reducing the verifier’s preprocessing step. In [GHV10], a DDH-based multi-hop
homomorphic encryption scheme is proposed that uses re-randomizable garbled circuits, for which
UCs are used to achieve function privacy. When the common reference string is dependent on a
function that the verifier is interested in outsourcing, then the function description can be provided
as input to a UC of appropriate size. As described in [Att14], the Attribute-Based Encryption (ABE)
schemes [GGH+13b,GVW13] for any polynomial-size circuits can be turned into ciphertext-policy
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ABE by using UCs. The ABE scheme of [GGHZ14] also uses UCs. Universal circuits can be
applied for program obfuscation. Candidates for indistinguishability obfuscation are constructed
using a UC as a building block in [GGH+13a, BV15]. The algorithm of [GGH+13a] has been
implemented in [BOKP15], which can be improved using Valiant’s UC implementation [KS16].
Direct program obfuscation was proposed in [Zim15], where the circuit is a secret key to a UC.
[LMS16] mentions that UCs can be applied for secure two-party computation in the batch execution
setting, where the cost of evaluating Yao’s garbled circuits is amortized if the same circuit – a UC
– is evaluated [HKK+14,LR15]. This protocol has been made round-optimal in [MR17].

Implied Theoretical Results

We mention two theoretical results relying on UCs. Both the depth-optimized UC from [CH85] and
Valiant’s size-optimized UCs were adapted in [BFGH10] to construct universal quantum circuits.
The design of universal parallel computers was inspired by Valiant’s UCs as well [GP81,Mey83].

1.2 Our Contributions and Outline

In §2, we recapitulate the necessary preliminaries for our work. We revisit the asymptotically
size-optimal UCs of [Val76] in §3. This complex construction makes use of an internal graph rep-
resentation and programs a so-called edge-universal graph (§3.1). Thereafter, we describe how an
edge-universal graph can be translated into a universal circuit (§3.2). Finally, we revisit Valiant’s
2-way (§3.3) and 4-way UCs (§3.4) and the improved building block proposed by Zhao et al. [ZYZL19]
for the latter.

Our modular programming algorithm (§4). We detail our modular algorithm for programming
a universal circuit that provides the description of the input function f as program bits cf to
the UC, both for Valiant’s 2-way and 4-way UCs. Our method consists of two steps, the block
edge-embedding (§4.1) and the recursion point edge-embedding (§4.2).

New universal circuit constructions and extensions (§5). We describe Lipmaa et al.’s general-
ization [LMS16] of Valiant’s universal circuit to any k-way UC (§5.1), and detail how our modular
programming algorithm from §4 can be directly generalized for this extension. We continue with
presenting a new 3-way UC (§5.2) that is predicted to be more efficient than the existing UCs.
However, after providing modular building blocks for this UC, we show that it is asymptotically
larger than Valiant’s UCs, due to an optimization that cannot be applied for one of its building
blocks. Then, we propose a hybrid UC construction (§5.3) that can efficiently combine k-way UCs
for multiple values of k. With this, we combine Valiant’s 2-way and 4-way UCs to achieve the
smallest universal circuit known so far. Lastly, we provide our scalable algorithms (§5.4) that allow
for generating and programming UCs with only linear O(n) memory instead of handling the whole
structure of size O(n log n) in memory at once.

Optimized size and depth of UCs (§6). We compare the asymptotic (§6.1) and concrete (§6.2)
sizes of Valiant’s (2-way and 4-way) UCs and that of different k-way UCs. We show that of all k-
way UCs of Lipmaa et al. [LMS16], Valiant’s 4-way UC provides the smallest size for large circuits,
whereas Valiant’s 2-way UC provides the smallest depth. We include size optimizations, achieving
a linear concrete improvement for all UCs. Moreover, we show that our 2/4 hybrid method for
generating UCs improves over the 4-way UCs, i.e., both over Valiant’s 4-way UC and over the
optimized 4-way UC of [ZYZL19].
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Implementation of Valiant’s UCs and experiments (§7). We detail the steps of our algorithm
for a practical realization of Valiant’s UC construction, and implement the 2-way and recently
optimized 4-way UCs as well as our 2/4 hybrid UC construction. We note that our implementation
is the first implementation that includes the optimization of Zhao et al. [ZYZL19], which achieves
the best size ∼4.5n log2 n to date. We describe the architecture of our UC compiler (§7.1). We
experimentally evaluate the performance of our UC generation and programming algorithms with
a set of example circuits (§7.2). We provide the evaluation of our scalable 4-way UC as well, and
compare it with our memory-based implementation of Valiant’s 4-way UC.

Toolchain for private function evaluation using universal circuits (§8). We provide the implemen-
tation of an example application for universal circuits, namely of private function evaluation (PFE)
by extending the ABY secure function evaluation framework [DSZ15] to evaluate our universal cir-
cuits (§8.1). We provide the first implementation for PFE with O(n log n) complexity and show
experimental results for performing PFE (§8.2). We theoretically compare PFE with UCs with
other state-of-the-art approaches for PFE (§8.3).

1.3 Additions to Conference Versions

This journal article is a significantly extended and improved version of the conference publica-
tions [KS16] and [GKS17]. Our added contributions are as follows.

1. Optimizations. We included the optimized building block of [ZYZL19] in our 4-way and hybrid
implementations as well as in the size and depth comparisons. This allows us to compare all
state-of-the-art methods for UCs. This is the first implementation of their construction, which
has the lowest asymptotic and concrete sizes known so far.

2. Scalability. We extend our design and implementation with a scalable 4-way UC construction
based on Valiant’s 4-way UC, which reduces the memory complexity from O(n log n) to O(n)
when generating and programming the universal circuit. This construction involves a novel
layer-by-layer approach for generating and topologically ordering the universal circuit and
programs the structure according to the recursion steps, i.e., subcircuit by subcircuit.

3. Universal circuit depths. We examine the depth of the universal circuits in addition to their
sizes, since though being optimized for the latter, some applications also require to minimize
the former. For instance, the number of communication rounds in PFE via secure function
evaluation with the GMW protocol [GMW87] – which in contrast to Yao’s garbled circuits
allows to precompute all symmetric cryptographic operations [SZ13] – depends on the depth
of the universal circuit.

4. Comparison and implementation. In our previous works, we have compared the 2-way and
4-way UCs with each other and with the only other existing UC of [KS08b]. In this work,
we implement the hybrid method that uses both 2-way and 4-way UCs and achieves the
best concrete size for all simulated circuit sizes. We also implement our new scalable 4-way
UC construction, which utilizes very different algorithms than those applied before for UC
generation. We compare these methods with respect to runtime, communication and memory
consumption.
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2 Preliminaries

As preliminaries for our paper we introduce the graph and circuit theoretic background in §2.1
and §2.2, respectively. We provide a summary of all our notations and abbreviations in Appendix A.

2.1 Graph Theory

In this section, we describe the graph theoretic preliminaries necessary for our work.

Definition 1. The number of incoming [outgoing] edges of a node is called its indegree [outdegree].
A graph has fanin [fanout] ρ if the indegree [outdegree] of all its nodes is at most ρ.

We denote by Γρ(n) the set of all directed acyclic graphs with n nodes and fanin and fanout ρ.

Definition 2. Let G = (V,E) be a directed graph with set of nodes V = {1, . . . , n} and edges
E ⊆ V × V . A mapping ηG : V → {1, . . . , n} is called topological order if (i, j) ∈ E implies
that ηG(i) < ηG(j) and ∀i, j ∈ V : ηG(i) = ηG(j) means that i = j. In short, i > j implies that
there is no edge or directed path from i to j.

A topological order of G ∈ Γρ(n) can be found with computational complexity O(ρn). Further on,
we require a labelling of the nodes in a topological order.

Definition 3. Edge-embedding is a mapping from graph G = (V,E) into G′ = (V ′, E′) that maps V
into V ′ one-to-one, with possible additional nodes in V ′, i.e., V ⊆ V ′ and E into directed paths in E′,
such that all paths are pairwise edge-disjoint, i.e., an edge can be used only in one path.

Theorem 1 (Kőnig-Hall theorem). Given a directed acyclic graph (DAG) G ∈ Γ2(n), the set of
edges E can be separated into two disjoint sets E1 and E2, such that graphs G1 = (V,E1) and
G2 = (V,E2) are instances of Γ1(n), having fanin and fanout 1 for each node [Kő31,Val76,LP09b].

Proof of Theorem 1. Given the set of nodes in topological order V = {1, . . . , n}, we can
construct a bipartite graph G = (V ,E) with nodes V = {m1, . . . ,mn,m

′
1, . . . ,m

′
n} and edges E

such that (mi,m
′
j) ∈ E if and only if (i, j) ∈ E. It is easy to see that the fanin and fanout of the

resulting bipartite graph is also 2. The edges of G and thus the corresponding edges of G can be
colored in a way that the result is a valid two-coloring. Having fanin and fanout of at most 2, such
coloring can be found directly with the following method:
1: while there are uncolored edges in G do
2: Choose an uncolored edge e = (mi,m

′
j) randomly and color the path or cycle that contains

it in an alternating manner: the neighbouring edge(s) of an edge of the first color will be colored
with the second color and vice versa.

3: end while
This edge-coloring can be performed in O(n) steps and it defines the edges in E1 and E2, such
that E1 contains the edges colored with color one and E2 the ones with color two and G1 = (V,E1)
and G2 = (V,E2). �

The Kőnig-Hall theorem was used in [KS16,LMS16] to provide a 2-coloring algorithm for the edges
of a graph with fanin and fanout 2. In its originally proposed form, however, Kőnig’s theorem [Kő31,
LP09b] applies also for k-coloring the edges of any graph with at most k incoming and outgoing
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edges for each of its nodes. This transformation can be easily generalized to graphs in Γk(n), in
which case the resulting bipartite graph will have fanin and fanout k. We review this theorem and
the corresponding algorithm here.

Theorem 2 (Kőnig’s theorem). If G is bipartite and its nodes have at most k incoming and outgoing
edges, then the number of colors sufficient to color all edges of G is k.

Proof of Theorem 2 [Kő31, LP09b]. Take colors {1, . . . , k}, and greedily color edges. Let
us assume that at some point the coloring stops because we cannot color more edges. In this
step, (wi, zj) is an uncolored edge. If we look at the colors of the edges adjacent to wi and zj , we
can define the set of available colors for both nodes. There is at least one color both for wi and zj
due to the fanin and fanout restriction, but there is no color which is available for both nodes,
otherwise we could color (wi, zj).

There is a color that is used in an edge adjacent to wi, e.g., color a, but not on an edge adjacent
to zj . In the same way, we can find another color b, that is used in an edge adjacent to zj , but not
to wi. Take the longest unique path P from wi that uses colors a and b alternatingly.

Indirectly, assume that this path also contains zj . It then terminates in zj due to the fact that zj
is not adjacent with an edge colored with a. Then, P ∪ (wi, zj) is an odd cycle, which is impossible
since G is bipartite. Therefore, p does not contain zj , and we can exchange colors a and b on path P
and color (wi, zj) with color a.

This process is continued until there are no uncolored edges in G. �

2.2 Circuit Theory

Definition 4. The fanin [fanout] of a circuit can be defined analogously to the fanin [fanout] of
a graph (cf. Definition 1), i.e., the maximum number of incoming [outgoing] wires of all its gates,
inputs and outputs.

Theorem 3. A circuit C ĝu,v with u inputs, ĝ gates and v outputs and fanin and fanout ρ > 2 can
be transformed to a circuit Cgu,v with fanin and fanout 2.

Proof of Theorem 3. Shannon’s expansion theorem [Sha49, Sch08] describes how gates with
larger fanin can be reduced to gates with two inputs by adding additional gates, which results in a
circuit C g̃u,v with g̃ fanin 2 gates. It was proven in [Val76] that the general case, where the fanout
of the circuit can be any integer ρ ≥ 2, can be transformed to the special case when ρ ≤ 2 by
introducing copy gates, each of which eliminates one from the extra fanout of the original gate. We
place a binary tree in place of each gate with fanout larger than 2, following Valiant’s proposition:
„Any gate with fanout x+ 2 can be replaced by a binary fanout tree with x+ 1 gates” [Val76, Corol-
lary 3.1]. Thus, the class of Boolean functions with u inputs and v outputs that can be realized
by acyclic circuits with g̃ gates and arbitrary fanout, can also be realized with an acyclic fanout-2
circuit with g̃ ≤ g ≤ 2g̃ + v gates. �

Definition 5. We can regard Cgu,v with u inputs, v outputs and g gates as a Γ2(n) graph G – which
we commonly refer to as the graph of circuit Cgu,v – with n = u+ v + g by creating a node for each
input, gate and output, and an edge for each wire in Cgu,v.
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3 Valiant’s Universal Circuit Constructions

In any circuit C ĝu,v, the inputs of each of the ĝ gates are either connected to one of the u inputs,
to the output of a previous gate, or are assigned a fixed constant. Due to the nature of Valiant’s
edge-universal graph (EUG) construction, the input circuit must have fanin and fanout 2, which can
be achieved with the transformations described in §2.2 and implemented in [KS08b,KS16]. From
here on, and without loss of generality, we assume that our input circuit Cgu,v has u inputs, g gates
and v outputs and fanin and fanout 2.

The size of a function f represented by a circuit Cgu,v with fanin and fanout 2 is n = u+ v + g,
which can be represented as a graph G ∈ Γ2(n). In this section, we describe Valiant’s UC construc-
tions [Val76,Weg87] that can be programmed to evaluate any function of size n. We explain the
general idea behind Valiant’s UC construction [Val76] in §3.1 and §3.2, and the 2-way and 4-way
UCs along with improvements of [KS16,LMS16,GKS17,ZYZL19] in §3.3 and §3.4, respectively.

3.1 Valiant’s Edge-Universal Graph Construction

Valiant’s UC construction relies on the notion of so-called edge-universal graphs that are then
translated to universal circuits [Val76].

Definition 6. A graph Un(Γρ) = (VU , EU ) is an edge-universal graph (EUG) for Γρ(n) if every
graph G = (V,E) in Γρ(n) can be edge-embedded (cf. Def. 3) into Un(Γρ).

An EUG Un(Γρ) has distinguished nodes called poles P = {p1, . . . , pn} ⊆ VU where each node
a ∈ V = {1, . . . , n} is mapped to exactly one pole with an injective mapping ϕV : V → VU . This
mapping is defined by a concrete topological order ηG of the original graph G with ϕV (a) = pηG(a),
i.e., every node in G has a corresponding pole in Un(Γρ). Apart from the poles, Un(Γρ) might
have additional nodes that enable the edge-embedding (cf. §2.1). For each edge (ai, aj) ∈ E, we
then define a path of variable length z between the corresponding poles ϕV (ai) = pηG(ai) = b1 and
ϕV (aj) = pηG(aj) = bz as (b1, . . . , bz), where b1, . . . , bz ∈ VU . All these paths are edge-disjoint, i.e.,
they do not use any edge in Un(Γρ) in more than one path (cf. §2.1).

Let Un(Γ1) be an EUG for graphs in Γ1(n) with n poles P = {p1, . . . , pn} (we will show concrete
constructions for such EUGs in §3.3 and in §3.4). The nodes of any topologically ordered Γ1(n)
graph can be mapped to these poles. The poles have fanin and fanout 1, while all other nodes have
fanin and fanout 2.

An EUG Un(Γρ) for ρ ≥ 2 is created by taking ρ instances of Un(Γ1) EUGs with poles
P1 = {p1,1, . . . , p1,n}, . . . , Pρ = {pρ,1, . . . , pρ,n}, and merging each pole with its multiple instances,
i.e., the set of merged poles P = {p1, . . . , pn} is formed by merging p1,1, . . . , pρ,i to obtain pi for
i = 1, . . . , n. All edges are preserved, thus the poles have fanin and fanout ρ, i.e., Un(Γρ) = (V ′U , E

′
U )

is an EUG with fanin and fanout ρ, constructed with Un(Γ1)1 = (V1, E1), . . . , Un(Γ1)ρ = (Vρ, Eρ).
P contains the merged poles and V ′U = P ∪ρi=1 Vi\Pi and E′U = ∪ρi=1Ei. Thus, the poles in Un(Γρ)
have at most ρ inputs and outputs, and all other nodes have at most two inputs and outputs.

Example: Let C be the circuit shown in Fig. 1a, and G = (V,E) be the graph of circuit C
with 5 nodes shown in Fig. 1b. Our aim is to edge-embed G into EUG U5(Γ2). Therefore, we use
two instances of U5(Γ1): U5(Γ1)1 in Fig. 1c and U5(Γ1)2 in Fig. 1d. The edges (a1, a4), (a2, a3)
and (a4, a5) are embedded in U5(Γ1)1, and the edges (a1, a3) and (a3, a4) in U5(Γ1)2. Merging the
poles of U5(Γ1)1 and U5(Γ1)2 produces U5(Γ2) shown in Fig. 1e. In §3.2, we describe how to retrieve
the resulting universal circuit depicted in Fig. 1f.
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(f) Universal circuit

Figure 1: Fig. 1a shows an example circuit and Fig. 1b the corresponding Γ2(5) graph G. Figs. 1c-1d
show the edge-embedding of G into two U5(Γ1) instances with poles (p1, . . . , p5). Fig. 1e shows the
edge-embedding of G into the U5(Γ2) graph of the universal circuit shown in Fig. 1f

.

Recursion Base. Valiant’s construction is recursive, and the recursion base graphs for up to 6
nodes are shown in [Val76, Fig. 3] and [KS16, Fig. 1]. U1(Γ1) is a single pole, U2(Γ1) and U3(Γ1)
are two and three connected poles, respectively. Valiant provides hand-optimized EUGs for U4(Γ1),
U5(Γ1) and U6(Γ1), with 3, 7 and 9 additional nodes, respectively (cf. [Val76, Fig. 3]).

3.2 Translating Edge-Universal Graphs into Universal Circuits

In this section, we define universal circuits (UCs) and describe how an edge-universal graph is
translated into a universal circuit.

Definition 7. A universal circuit UC is a Boolean circuit that can be programmed to compute any
circuit Cgu,v up to a given size n by defining a set of programming bits cf such that UC(x, cf ) = Cgu,v(x).

In Valiant’s UC constructions, every node w ∈ VU fulfills a task when Un(Γ2) is translated to
a UC. Programming the UC means specifying its control bits along the paths defined by the edge-
embedding and by the gates of circuit Cgu,v. Depending on the number of incoming and outgoing
edges and its type, a node w is translated as described below and shown on the example in Fig. 1f.

G1 If w is a pole and corresponds to an input (one of the first u poles) or an output (one of the
last v poles) in G, then w is an input or output in Cgu,v as well.

G2 If w is not a pole and has indegree 1 and outdegree 2, this node has been placed to copy
its input to its two outputs. Therefore, when translated to a UC, w is replaced by multiple
outgoing wires in the parent node (as described in [KS16]), since the UC does not need to

10
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(b) Y-Switching Block

Figure 2: Programmable switching blocks [KS08a].

fulfill the fanout 2 restriction. In Un(Γ2), w is added due to the fanout 2 restriction in the
EUG necessary for the edge-embedding.

G3 If w is not a pole and has indegree and outdegree 1, w is removed and replaced by a wire
between its parent and child nodes.

G4 If w is a pole and corresponds to a gate (poles {u+ 1, . . . , u+ g}) in G, w is programmed as a
universal gate (UG). A 2-input UG supports any of the 16 possible gate types represented by 4
control bits of the gate table (c1, c2, c3, c4). It implements function U : {0, 1}2×{0, 1}4 → {0, 1}
that computes

U(x1, x2, c1, c2, c3, c4) = x1 x2c1 + x1x2c2 + x1x2c3 + x1x2c4. (1)

G5 If w is not a pole and has indegree and outdegree 2, w is programmed as an X-switching block,
that computes X : {0, 1}2 × {0, 1} → {0, 1}2 with X((x1, x2), c) = (x1+c, x2−c) as shown in
Fig. 2a. The inputs of an X-switching block are forwarded to its outputs, switched or not
switched, depending on control bit c.

G6 If w is not a pole and has indegree 2 and outdegree 1, w is programmed as a Y-switching block
that computes Y : {0, 1}2×{0, 1} → {0, 1} with Y ((x1, x2), c) = x1+c as visualized in Fig. 2b.
The inputs of a Y-switching block are forwarded to its output depending on the control bit c,
i.e., it provides the functionality of a 2-input multiplexer.

We note that the u inputs and the v outputs can be ordered arbitrarily within themselves as
long as the inputs are kept before the g topologically ordered gates and the outputs after them.
Even though the output nodes cause an overhead in Valiant’s UC, they are required to fully hide
the topology of the circuit in the corresponding universal circuit. Note that optionally it is possible
to modify the input circuit such that the outputs of the last v gates in order are the outputs of the
circuit by inserting at most v copy gates [KM11].

The nodes programmed as UG (G4), X-switching block (G5) or Y-switching block (G6) are so-
called programmable blocks. This means that a control bit c or vector c = (c1, c2, c3, c4) is necessary
aside from the two inputs to define their behavior. The universal gates are programmed according
to the simulated gates in Cgu,v and the universal switches according to the paths defined by the
edge-embedding of the graph of the circuit G into the edge-universal graph Un(Γ2). Depending on
if the path takes the same direction during the embedding (e.g., arrives from the left and continues
on the left) or changes its direction at a given node (e.g., arrives from the left and continues on
the right), the control bit of the universal switch is programmed accordingly. In §7.1, we describe
efficient implementations of programmable blocks. All control bits and vectors together are the
programming cf of the UC.

11



3.3 Valiant’s 2-way UC Construction

p2i+1

p2i+2

r1i r2i

r1i+1 r2i+1

Figure 3: Body
block B(2) of
Valiant’s 2-way EUG
U

(2)
n (Γ1) [Val76].

We described in §3.1 that a Un(Γρ) EUG can be constructed of ρ in-
stances of Un(Γ1) EUGs. Valiant [Val76] provides an EUG for Γ1(n)
graphs, two of which can build an EUG for Γ2(n) graphs, which suf-
fices for circuits with 2-input gates that have at most two outgoing wires.
Let P = {p1, . . . , pn} be the set of poles in Un(Γ1) that have indegree
and outdegree 1, corresponding to the inputs, gates and outputs of the
input circuit Cgu,v, i.e., poles Pin = {p1, . . . , pu} correspond to the inputs,
Pgate = {p(u+1), . . . , p(u+g)} to the gates, Pout = {p(u+g+1), . . . , pn} to the
outputs. The main, so-called body block B(2) used for constructing Valiant’s
EUG for Γ1(n) graphs U (2)

n (Γ1) of size ∼2.5n log2 n is shown in Fig. 3, and
consists of 2 poles (large circles), 4 so-called recursion points (rectangles)
and 3 additional nodes (small circles). The corresponding UC has twice
the size ∼5n log2 n, since it corresponds to an EUG for Γ2(n) graphs. This
construction is called the 2-way EUG or UC construction since there are
two sets of recursion nodes at each recursion step as we describe below.

The recursive construction works as follows: the rectangles are spe-
cial nodes that build up the set of poles in the next recursion step,
i.e., R1

dn
2
−1e = {r1

1, . . . , r
1
dn
2
−1e} and R2

dn
2
−1e = {r2

1, . . . r
2
dn
2
−1e} are the poles of two smaller edge-

universal graphs called subgraphs. EUGs are built with these poles which produces new subgraphs
with size d d

n
2
−1e
2 − 1e, such that we have four subgraphs at the next level, etc. The blocks are

chained together at the recursion points to form a skeleton, i.e., each recursion point belongs to
two in the corresponding subgraph. Thus, the main skeleton of the UC consists of dn2 e such blocks

with poles {p1, p2, . . . , pn}, the next two skeletons consist of d d
n
2
−1e
2 e blocks with sets of poles

{r1
1, . . . , r

1
dn
2
−1e} and {r2

1, . . . r
2
dn
2
−1e}. We visualize the process of chaining the blocks together to

form this skeleton in Fig. 4.
We note that the top (resp. bottom) block of a skeleton does not need the upper (resp. lower)

recursion points since its poles are the inputs (resp. outputs) in the block. Therefore, we presented
optimized so-called head H(2) and tail T (2) blocks that occur in the top and bottom of a skeleton,
respectively, in [GKS17, Figs. 2b-2e].

Theorem 4 ( [Val76]). The resulting 2-way EUG is edge-universal and therefore the resulting circuit
is universal.

Proof of Theorem 4 [Val76]. We recapitulate the proof from [Val76] that U (2)
n (Γ1) is edge-

universal for Γ1(n), such that any graph with n nodes and fanin and fanout 1 can be edge-embedded
into U (2)

n (Γ1). According to the definition of edge-embedding, it has to be shown that given any Γ1(n)
graph G = (V,E), for any (i, j) ∈ E and (k, l) ∈ E we can find pairwise edge-disjoint paths from pi

to pj and from pk to pl in U
(2)
n (Γ1). As before, the labelling of nodes V = {1, . . . , n} in G is

according to a topological order of the nodes.
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Figure 4: Skeleton built of a chain of body
blocks B(2) of Valiant’s 2-way EUG U

(2)
n (Γ1)

.

Firstly, each two neighbouring poles of the EUG,
p2s and p2s+1 for s ∈ {1, . . . , dn2 e}, are thought
of as merged poles, so-called superpoles, with their
fanin and fanout becoming 2. In a similar manner,
any G ∈ Γ1(n) graph can be regarded as a Γ2(dn2 e)
graph with supernodes, i.e., each pair (2s, 2s + 1)
will be merged into one node in a Γ2(dn2 e) graph
G′ = (V ′, E′). If there are edges between the nodes
in G, they are simulated with loops. The set of edges
of this graph G is partitioned to disjoint sets E1

and E2, such that G1 = (V,E1) and G2 = (V,E2)
are instances of Γ1(dn2 e) and Γ1(bn2 c), respectively.
This can be done efficiently, as shown in Theorem 1.
The edges in E1 are embedded as directed paths in
R1
dn
2
−1e, and the edges in E2 as directed paths in

R2
dn
2
−1e. Both E1 and E2 have at most one edge

directed into and at most one directed out of any su-
pernode and therefore, there is only one edge from E1

and one from E2 to be simulated going through any
superpole in U (2)

n (Γ1) as well. Thus, the edge coming
into a superpole (p2s, p2s+1) in E1 is embedded as a
path through r1

s−1, while the edge going out of the
pole in E1 is embedded as a path through r1

s in the
appropriate subgraph. Similarly, the edges in E2 are
simulated as edges through r2

s−1 and r2
s . These paths

can be chosen disjoint according to the induction
hypothesis. Finally, the paths from r1

s−1 and r2
s−1

to superpole (p2s−1, p2s) as well as the paths from
(p2s−1, p2s) to r1

s and r2
s can be chosen edge-disjoint

due to the skeleton built up of the body blocks shown
in Fig. 3. With this, Valiant’s graph construction re-
sults in a valid EUG with asymptotically optimal size
O(n log n), and depth O(n) [Val76]. With the build-
ing blocks described in §3.2, it is easy to see that the
resulting Boolean circuit is universal. �

Implementation. We provided an open-source
implementation of this 2-way UC optimized for PFE
in [KS16]. In concurrent and independent related
work, Lipmaa et al. [LMS16] also showed the practi-
cality of Valiant’s 2-way UC. They decrease its total
number of gates compared to that of Valiant’s block
(Fig. 3) by one XOR gate. However, the number of
AND gates is exactly the same and therefore their
improvement does not affect PFE using UCs, where
XOR gates are evaluated for free [KS08b].
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3.4 Valiant’s 4-way UC Construction
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(a) Body block of
Valiant [Val76].
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(b) Body block of
Zhao et al. [ZYZL19].

Figure 5: Body block B(4) alterna-
tives for 4-way EUG U

(4)
n (Γ1).

Similarly to the 2-way EUG construction (cf. §3.3),
Valiant provides a more efficient 4-way EUG or UC con-
struction [Val76] for Γ1(n) graphs which can be ex-
tended to an EUG for Γ2(n) graphs by utilizing two
instances U

(4)
n (Γ1)1 and U

(4)
n (Γ1)2 as described in §3.1.

U
(4)
n (Γ1) has a 4-way recursive structure, i.e., at each recur-

sion step, nodes in special sets R1
dn
4
−1e = {r1

1, . . . r
1
dn
4
−1e},

R2
dn
4
−1e = {r2

1, . . . r
2
dn
4
−1e}, R3

dn
4
−1e = {r3

1, . . . r
3
dn
4
−1e} and

R4
dn
4
−1e = {r4

1, . . . r
4
dn
4
−1e}

1 are the poles in the next recur-
sion step (the main body block is shown in Fig. 5a). The
recursion base is the same as for the 2-way UC construc-
tion described in §3.1. This construction results in UCs
of smaller size ∼4.75n log2 n but has a more complicated
structure and programming algorithm. We have studied and
implemented this universal circuit in [GKS17], and recapit-
ulate our results here and in §7. Valiant offers the main,
so-called body block B(4) consisting of 4 poles (large circles),
15 nodes (small circles) as well as 8 recursion points (rect-
angles) shown in Fig. 5a. As before, we provide so-called
head H(4) and tail T (4) blocks that occur at the top and
bottom of a skeleton in [GKS17, Figs. 4b-4i], respectively.
The blocks are connected such that the 4 top (resp. bottom)
recursion points of one block are the 4 bottom (resp. top)
recursion points of the next block. Similarly to the 2-way
EUG, 4 sets are created for n nodes, i.e., R1

dn
4
−1e, R

2
dn
4
−1e,

R3
dn
4
−1e, and R

4
dn
4
−1e which are the poles of 4 Udn

2
e−1(Γ1) EUGs in the next recursion step. Then,

these also create 4 subgraphs until the recursion base is reached, cf. §3.1.
Recently, Zhao et al. in [ZYZL19] optimized the body block of Valiant’s UC by finding a more

efficient block using exhaustive search over all possible blocks. As opposed to Valiant’s UC that
uses 15 additional nodes in the body block, their block uses only 14 additional nodes and therefore,
their UC achieves an asymptotically better size of ∼4.5n log2 n. We depict the further optimized
body block B(4) of Zhao et al. in Fig. 5b. Zhao et al. provide a computer generated proof of that
this block can indeed be used to construct universal circuits. Moreover, they show that there exists
no block with only 13 additional nodes that can be used to construct UCs in the same manner.
This proves that the minimal size of a 4-way UC is the achieved ∼4.5n log2 n.

Theorem 5 ( [Val76]). The resulting 4-way EUG is edge-universal and therefore the resulting circuit
is universal.

The proof of this theorem is analogous to that of Theorem 4.

1n (mod 4) of these have size bn
4
− 1c, but for the sake of simplicity, we disregard distinguishing these here.
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4 Programming Valiant’s Universal Circuits

We designed the detailed embedding algorithm and the open-source UC implementation of [KS16]
specifically for the 2-way UC, dealing with the whole UC skeleton as one block. In contrast, based on
the modular design of [LMS16], we modularized the edge-embedding task into multiple sub-tasks
and described how they can be performed separately in [GKS17]. In this section, we detail this
modular approach for edge-embedding a graph into Valiant’s `-way EUG, where ` = 2 or ` = 4: the
edge-embedding can be split into two parts, which are then combined.

In the following, we describe the two main steps of our modular approach presented in [GKS17]
that are based on the edge-embedding algorithm of [KS16]. 1) Block edge-embedding (§4.1) allows
for the programming of the blocks visualized in Fig. 3 on p. 12 and in Figs. 5a or 5b on p. 14.
2) Recursion point edge-embedding (§4.2) takes care of the programming of the whole UC. Here,
the paths are defined and the necessary information is provided to the blocks (cf. §4.2). The process
can be generalized to any 2i-way EUG. Moreover, the same modular edge-embedding algorithm can
be applied with a few modifications for Lipmaa et al.’s generalization to any k-way UC [LMS16],
which we describe later in §5.1.

4.1 Block Edge-Embedding

We consider the ` top (resp. bottom) recursion points of a block (Figs. 3 and 5a or 5b) as interme-
diate nodes where the inputs (resp. outputs) of the block enter (resp. exit). The blocks are built so
that any of these inputs can be forwarded to exactly one of the ` poles of the block and the output
of any pole can be forwarded to an output or another pole with a higher topological order.

We formalize this behaviour as follows: In U
(`)
n (Γ1) = (VU , EU ), let B(`) be the (i − 1)-th

block in the skeleton made up of blocks visualized in Fig. 3 for ` = 2 and Fig. 5a or Fig. 5b
for ` = 4 with poles p`i+1, . . . , p`i+`. Let the mapping ηU : VU → N+ denote a topological or-
der of all nodes and poles in VU . Then, the nodes r1

i , . . . , r
`
i and r1

i+1, . . . , r
`
i+1 denote the input

and output recursion points of block B(`). Additionally, let in = (in1, . . . , in`) ∈ {0, . . . , `}` and
out = (out1, . . . , out`) ∈ {0, . . . , 2`− 1}` denote the input and output vectors of B(`). The value 0
of the input and output vectors is a dummy value which is used if there is no specific path between
an input and a pole, or between a pole and an output of B(`). The output vector has a larger value
range, since a pole can be forwarded to another pole or an output recursion point. Therefore, we use
values 1, . . . , `−1 for poles p`i+2, . . . , p`i+` , and values `, . . . , 2`−1 for the output recursion points.
Pole p`i+1 cannot be a destination for a path in B(`), since ηU (p`i+1) is less than the topological order
of any other pole in B(`). Additionally, the values of in and out need to be pairwise different or 0.
Every combination of input and output vector covering the conditions formalized below in Eqs. 2–6
are valid for B(`). A pair (rli, pj) ∈ P or (pj , r

l
i+1) ∈ P is a path from rli to pj or pj to r

l
i in the set

of all paths P in B(`). Then, P(`)
B ⊆ P denote the paths that are to be edge-embedded (cf. §3.1).

InPolePath: ∀l ∈ {1, . . . , `} : inl 6= 0→(rli, p`i+inl
) ∈ P(`)

B , (2)

PolePolePath: outl 6= 0 ∧ outl < `→(pj , p`i+1+outl) ∈ P
(`)
B ∧ η

U (pj) < ηU (p`i+1+outl), (3)

PoleOutPath: outl > `− 1→(p`i+l, r
outl−`−1
i+1 ) ∈ P(`)

B . (4)

InDiff: ∀ini, inj ∈ in : i 6= j →ini = 0 ∨ ini 6= inj . (5)
OutDiff: ∀outi, outj ∈ out : i 6= j →outi = 0 ∨ outi 6= outj . (6)
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4.2 Recursion Point Edge-Embedding

Block edge-embedding covers only the programming of the nodes within the blocks of the UC.
Another task is to program the recursion points. We use the construction of [KS16] which, in every
step, splits a Γ2(n) graph in two Γ1(n) graphs, which are merged to two Γ2(dn2−1e) graphs. This, as
described later, results in a tree of graphs with fanin and fanout one or two called supergraph [KS16].
We use this supergraph for defining the paths in Valiant’s 2-way EUG. For Valiant’s 4-way EUG,
we use every second step of the algorithm with a minor modification. We describe our modular
algorithm for the 2-way and 4-way UCs below and in Listing 1.

Let Cku,v be the Boolean circuit computing function f that our UC needs to compute, and
G ∈ Γ2(n) its graph representation (cf. §2.2).

1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: As described in §3.1, Valiant’s UC is
derived from an EUG for Γ2(n) graphs, which is built up of two EUGs (U (`)

n (Γ1))1 and (U
(`)
n (Γ1))2

for Γ1(n) graphs merged by their poles. G is similarly split into two Γ1(n) graphs G1 and G2, which
then need to be edge-embedded into (U

(`)
n (Γ1))1 and (U

(`)
n (Γ1))2, respectively. G = (V,E) ∈ Γ2(n) is

split by 2-coloring its edges [Val76,KS16], which can always be done due to Kőnig’s theorem [Kő31,
LP09b] recapitulated in Theorems 1 and 2 on p. 7-8. After 2-coloring, E is divided to sets E1 and
E2, using which we build G1 = (V,E1) and G2 = (V,E2), with the following conditions:

EdgeInE1orE2 : ∀e ∈ E :(e ∈ E1 ∨ e ∈ E2) ∧ ¬(e ∈ E1 ∧ e ∈ E2). (7)
Fanin1E1 : ∀e = (v1, v2) ∈ E1 :¬∃e′ = (v3, v4) ∈ E1 : v2 = v4 ∨ v1 = v3. (8)
Fanin1E2 : ∀e = (v1, v2) ∈ E2 :¬∃e′ = (v3, v4) ∈ E2 : v2 = v4 ∨ v1 = v3. (9)

2. Merging a Γ1(n) graph into a Γ2(dn2 − 1e) graph: In an EUG, the number of poles decreases
in each recursion step and merging a Γ1(n) graph into a Γ2(dn2 − 1e) graph provides information
about the paths to be taken. Let G1 = (V,E) ∈ Γ1(n) be a topologically ordered graph and
Gm = (V ′, E′) ∈ Γ2(dn2−1e) be a graph with nodes V ′ = {v′1, . . . , v′dn

2
e}. We define two labellings ηin

and ηout on Gm with ηin(vi) = i and ηout(vi) = ηin(vi) − 1 = i − 1. Additionally, we define a
mapping θV that maps a node vi ∈ V to a node vj ∈ V ′ with θV (vi) = v′d i

2
e, i.e., two nodes in G1

are mapped to one node in Gm. At last, we define a mapping θE that maps an edge ei = (vi, vj) ∈ E
to an edge ej ∈ E′ with θE((vi, vj)) = (vηin(θV (vi)), vηout(θV (vj))), i.e., every edge in G1 is mapped to
an edge in Gm as follows: e = (vi, vj) ∈ E is mapped to e′ = (v′k, v

′
l) ∈ E′, such that v′k = θV (vi),

and the new node of vj in Gm is v′l+1 (not v′l). Gm is built as follows: V ′ = {v′1, . . . , v′dn
2
e}

and E′ =
⋃
e∈E θE(e). Then for all e = (v′i, v

′
j) ∈ E′ and j < i, e is removed from E′, along with

the last node vdn
2
e (due to the definition of θE , it does not have any incoming edges). The resulting

Gm is a topologically ordered graph in Γ2(dn2 − 1e).
3. The supergraph for Valiant’s EUG construction: In the first step, G is split to two Γ1(n)

graphs G1 and G2. G1 and G2 contain all the edges that should be embedded as paths between
poles in the first and second EUGs for Γ1(n), respectively. We now explain how to edge-embed the
Γ1(n) graph G1 into an EUG U

(`)
n (Γ1) (for G2 it is analogous).

For edge-embedding in the 2-way EUG, G1 is first merged to a Γ2(dn2 − 1e) graph Gm. Gm is
then 2-colored and split into two Γ1(dn2 − 1e) graphs G1

1 and G2
1 [KS16]. These get merged to two

graphs G1
m and G2

m, which are then 2-colored and split into two Γ1(d d
n
2
−1e
2 − 1e) graphs. These

steps are repeated until the recursion base is reached. In the supergraph, Gψ◦11 and Gψ◦21 is the
first and second subgraph of Gψ1 for any ψ, respectively.
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Listing 1: Edge-embedding algorithm for Valiant’s `-way EUG
1 procedure edge−embedding (U , G1 = (V,E))
2 Let S be the s e t o f the ` Γ1 subgraphs o f G1 in the supergraph
3 Let R be the ` r e cu r s i on step graphs
4 Let B be the s e t o f b locks in U
5 for a l l e = (vi, vj) ∈ E do
6 Let i′ and j′ denote the p o s i t i o n s o f vi and vj in t h e i r b locks
7 bi ← d i` e , bj ← d j` e // number o f b l o c k in which vi and vj are
8 Let out [ r1 ] denote the output vec to r [ r e cu r s i on po in t s ] o f B[bi]
9 Let in [ r0 ] denote the the input vec to r [ r e cu r s i on po in t s ] o f B[bj ]

10 i f bi = bj do // vi and vj are in the same b l o c k
11 i f vi 6= vj do
12 outi′ ← j′ − 1
13 end i f
14 else // vi and vj are in d i f f e r e n t b l o c k s
15 Let s = (V ′, E′) ∈ S denote the Γ1 graph with e′ = (pbi , pbj−1

) ∈ E′ and e′ i s not marked
16 Mark e′

17 Let x denote the number with s = S[x]
18 Set the con t r o l b i t o f rx0 to 1
19 i f bj = bi + 1 do // bj and bi are neighbours
20 y ← 0
21 else
22 y ← 1
23 end i f
24 Set the con t r o l b i t o f rx1 to y
25 outi′ ← x+ ` , inx ← j′

26 end i f
27 end for
28 Edge−embed a l l b locks in B // edge−embed a l l sub−b l o c k s
29 for i = 1 to ` do
30 i f S[i] e x i s t s do
31 ca l l edge−embedding (R[i] , S[i])
32 end i f
33 end for
34 end procedure

In Valiant’s 4-way EUG construction [Val76], a supergraph that creates 4 subgraphs in each
step is necessary. We require a merging method where a Γ1(n) graph is merged to a Γ4(dn4 − 1e)
graph where 4 nodes build a new node, and 4-color this graph to retrieve 4 subgraphs. However,
this can directly be solved by using the method described above from [KS16]: after repeating the
2-coloring and the merging twice, we gain 4 subgraphs (G11

1 , G12
1 , G21

1 and G22
1 ). These can be used

as if they were the result of 4-coloring the graph obtained by merging every 4 nodes into one.
However, there is a modification in this case: the first 2-coloring is a preprocessing step,

which does not map to an EUG recursion step. Therefore, we have to define another labelling
ηoutP (v) = ηin(v), since in this preprocessing step we need to keep node vdn

2
e. Then the creation

of the supergraph for the 4-way EUG construction works as follows: We merge G1 to a Γ2(dn2 e)
graph with labelling ηin and ηoutP and get Gm. After that, we split Gm into two Γ1(dn2 e) graphs G

1
1

and G2
1. These get merged to Γ2(dn4 e − 1) graphs G1

m and G2
m using the ηin and ηout labellings.

Finally, these two graphs get splitted into 4 Γ1(dn4 − 1e) graphs G11
1 , G12

1 , G21
1 and G22

1 . These
are the relevant graphs for the first recursion step in Valiant’s 4-way EUG construction. Then we
continue for all 4 subgraphs until we reach the recursion base.

`-way Edge-Embedding Algorithm. In Listing 1, we combine block edge-embedding and re-
cursion point edge-embedding.
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Let U denote the part of U (`)
n (Γ1) without recursion steps (the main skeleton) and G1 = (V,E)

be the Γ1(n) graph which is to be edge-embedded in U
(`)
n (Γ1). S denotes the set of ` subgraphs

of G1 in the supergraph, i.e. S = {G1
1, G

2
1} for ` = 2, and S = {G11

1 , G
12
1 , G

21
1 , G

22
1 } for ` = 4. A

recursion step graph of U is one of the graphs having one of the ` sets of recursion points as poles
(e.g., r1

1, . . . , r
1
dn
`
−1e) without the recursion steps. R denotes the set of all ` recursion step graphs

of U , and B denotes the set of all blocks in U .
We give a brief explanation of Listing 1 that describes the edge-embedding process. For any edge

e = (vi, vj) ∈ E in G1, bi and bj denote the block numbers in which vi and vj are. We distinguish
between two cases:
Case 1. vi and vj are in the same block: bi = bj. The edge-embedding is solved within the block
and no recursion points have to be programmed for the path. Therefore, vector out of block B[bi]
is set accordingly.
Case 2. vi and vj are in different blocks: bi 6= bj. There exists an edge e′ = (bi, bj−1) in one of the
` Γ1(dn` − 1e) subgraphs of G1 that is not yet used for an edge-embedding. This determines that
the path in the next recursion step has to be between poles pbi and pbj−1

. We denote with s ∈ S
the subgraph of G1 which contains e′, and x denotes its number in S, i.e. S[x] = s. This implies
in which of the ` recursion step graphs we need to edge-embed the path from pbi to pbj−1

, and so
which recursion points we need to program. We first set the control bit of the x-th input (resp.
output) recursion points to 1 since the path between the poles with labelling i and j enters (resp.
exits) the next recursion step over this recursion point. A special case to be considered here is when
blocks B[bi] and B[bj ] are neighbours (i.e. bj = bi + 1). Then, the path enters and leaves the next
recursion step graph at the same node, whose control bit thus has to be 0. The output vector of
block B[bi] is the i′th value to the xth recursion point and the input vector of block B[bj ] is the xth

value to the j′th pole in this block.
We repeat these steps for all edges e ∈ E. Since all input and output vector of all blocks in B

are set, they can be embedded with the block edge-embedding. For all ` subgraphs of G1 in the
supergraph and in the EUG, we call the same procedure with S[i] ∈ S, R[i] ∈ R, 1 ≤ i ≤ `.

5 Extensions to Valiant’s UC Constructions

Here, we describe ideas for novel UC constructions and implementations. Firstly, in §5.1, we describe
the k-way generalization of Valiant’s UC presented by Lipmaa et al. in [LMS16]. In §5.2, we describe
our modular building blocks for a potentially more efficient 3-way UC. We show that Valiant’s
optimized U3(Γ1) cannot directly be applied as a building block in the construction due to the fact
that it must have an additional node to be part of a generic EUG. We prove that the EUG without
this node is not a valid EUG by showing a counterexample. Therefore, it actually results in a worse
asymptotic size than Valiant’s 2-way and 4-way UCs [Val76]. Thereafter, in §5.3, we propose a
hybrid UC, utilizing both Valiant’s 2-way and 4-way UCs or Valiant’s 2-way and Zhao et al.’s 4-way
UC [ZYZL19] so that the overall size of the resulting hybrid UC is minimized, and is at least as
efficient as the better construction for the given size (in §6.2 we show its concrete improvement).
Finally, in §5.4, we propose a different modular and scalable approach of Valiant’s 4-way UC. This
approach requires a lot of modifications in the UC generation and programming algorithm, but can
be generalized to any k-way UC or to our hybrid UC.
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Figure 6: k-way EUG construction U (k)
n (Γ1) [LMS16].

5.1 Generalized k-way UC

In [LMS16], Lipmaa et al. generalize Valiant’s approach by providing a UC with any number of
recursion points k, the so-called k-way EUG or UC. We note that their construction slightly differs
from Valiant’s EUG, since they do not consider the restriction on the fanout of the poles, i.e., the
nodes in the EUG that correspond to universal gates or inputs (cf. §3.1). This optimization has
also been included in [KS16] when translating an EUG to a UC, but including it in the block design
leads to better sizes for the number of XOR gates. This, however, does not make a difference in
case of our most prominent application of private function evaluation (PFE) (cf. §1.1), where XOR
gates are free, i.e., do not require cryptographic operations and communication.

The idea is to split n = u+ v + g in m = dnk e blocks as shown in Fig. 6. Every block i consists
of k inputs r1

i , r
2
i , . . . , r

k
i and k outputs r1

i+1, r
2
i+1, . . . , r

k
i+1 as well as k poles, except for the last

block which has a number of poles depending on n mod k. For every j ≤ k, the list of all rji builds
the poles of the jth subgraph of the next recursion step, i.e., we have k subgraphs. Additionally,
every block begins and ends with a Waksman permutation network [Wak68] such that the inputs
and outputs can be permuted to any pole. A Y-switching block is placed in front of every pole pi
which is connected to the ith output of the permutation network as well as the ith output of a
block-intern EUG Uk(Γ1). This means that Lipmaa et al. in [LMS16] reduce the problem of finding
an efficient k-way EUG U

(k)
n (Γ2) block B(k) to the problem of finding the smallest EUG Uk(Γ1).

Their solution is to build the block-intern EUG with the UC of [KS08b], which was claimed to be
more efficient for smaller circuits than [Val76]. Moreover, they calculate the optimal k value to be
around 3.147 with their construction, which implies that the best solutions are found using small
EUGs, for which Valiant provides hand-optimized solutions (i.e., for k = 2, 3, 4, 5, 6) [Val76].

We note that the results recently presented by Zhao et al. [ZYZL19] do not fit into this generalized
k-way construction. Therefore, Zhao et al.’s optimized 4-way block is an optimization over Valiant’s
modular 4-way block construction [Val76].

Programming the Generalized UC

In this section, we extend the recent work of [LMS16] by providing a detailed and modular embedding
mechanism for any k-way EUG construction. We provide the main differences to the edge-embedding
of the 2-way and 4-way EUG detailed in §4.

k-way Block Edge-Embedding. In this setting, our main block is a programmable block B(k)

with k poles p1, . . . , pk, and k input [output] recursion points r1
0, . . . , r

k
0 [r1

1, . . . , r
k
1 ]. B(k) is topo-

logically ordered with mapping ηU as defined in §2.1. Vectors in = (in1, . . . , ink) ∈ {0, . . . , k}k, and
out = (out1, . . . , outk) ∈ {0, . . . , 2k− 1}k denote the input and output vectors of B(k), respectively.
Values k, . . . , 2k− 1 in out denote the recursion point targets r1

1, . . . , r
k
1 (cf. §4.1). The setting of in
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and out is formalized in Eqs. 2–6 when ` = k.
k-way Recursion Point Edge-Embedding. G ∈ Γ2(n) denotes the transformed graph of a Boolean

circuit Cgu,v, where n = u+ v + g.
1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: Similarly as in §4.2, we first split G into

two Γ1(n) graphs G1 and G2 with 2-coloring.
2. Merging a Γ1(n) graph into a Γk(dnk − 1e) graph: G1 = (V,E) ∈ Γ1(n) is merged into a

Γk(dnk − 1e) graph Gm = (V ′, E′) (same for G2). Therefore, we redefine mapping θV (cf. §4.2)
that maps node vi ∈ V to node vj ∈ V ′. In this scenario, k nodes in V build one node in V ′,
so θV (vi) = vd i

k
e. The mapping of the edges θE is the same as in the 2-way and 4-way EUG

construction, and (v′i, v
′
j) ∈ E′ where j < i edges are removed along with vdn

k
e in the end. Gm is

then a topologically ordered graph in Γ1(dnk − 1e).
3. The supergraph for Lipmaa et al.’s k-way EUG construction: The next step of the construc-

tion is to split Gm ∈ Γ1(dnk − 1e) into k Γ1(dnk −1e) graphs. This is done with k-coloring: a directed
graph K = (V,E) can be k-colored, if k sets E1, . . . , Ek ⊆ E cover the following conditions:

Disjoint ∀i, j ∈ {1, . . . , k} :i 6= j → Ei ∩ Ej = ∅. (10)
EdgeInEi ∀e ∈ E :∃i ∈ {1, . . . , k} : e ∈ Ei. (11)
Fanin1Ei ∀i ∈ {1, . . . , k}, ∀e = (v1, v2) ∈ Ei :¬∃e′ = (v3, v4) ∈ Ei \ {e} : v2 = v4 ∨ v1 = v3.

(12)

According to Kőnig’s theorem [Kő31,LP09b] described in §2.1, Γk(n) graphs can always be k-
colored efficiently with a dedicated algorithm. The rest of the supergraph construction and the way
it is used for edge-embedding is the same as for the 2-way and 4-way EUG as described in §4.2.

k-way Edge Embedding Algorithm. The edge-embedding algorithm is the same as shown in
Listing 1, with ` = k.

5.2 Potentially More Efficient 3-way UC

The optimal k value for minimizing the size of the k-way UC was calculated to be 3.147 in [LMS16].
We describe our idea of a 3-way UC. Intuitively, based on an optimization by Valiant [Val76], this
UC should result in the best asymptotic size. The asymptotic size of any k-way UC depends on
the size of its modular body block B(k) (e.g., Figs. 5a or 5b on p. 14 for the 4-way UC). Once
it is determined, the size of the UC is size(U (k)

n (Γ2)) = 2 · size(U (k)
n (Γ1)) ∼ 2 · size(B(k))

k n logk n =

2 · size(B(k))
k log2(k) n log2 n. The modular block consists of two permutation networks P (k), an EUG Uk(Γ1),

and (k − 1) Y-switching blocks (cf. §5.1, [LMS16])2.

2We note that in this section, we design the body block according to [LMS16], i.e., the poles do not have a fanout
restriction. However, all other nodes have fanout-2 restriction.
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Figure 7: Body block B(3) construction
for our 3-way EUG U

(3)
n (Γ1).

Size of Body Block B(3) with Valiant’s Opti-
mized U3(Γ1). According to Valiant [Val76], an EUG
U3(Γ1) with 3 poles contains only 3 connected poles
(used as recursion base in §3.1). An optimal per-
mutation network P (3) that achieves the lower bound
has 3 nodes as well. This implies that size(B(k)) =
2 · P (3) + size(U3(Γ1)) + (3 − 1) = 11. Then, the size
of the UC becomes ∼2 · 11

3 log2 3n log2 n ∼ 4.627n log2 n,
which means an asymptotically by around 2.5% smaller
size than that of Valiant’s 4-way UC with ∼4.75n log2 n.

However, there is a flaw in this initial design.
Valiant’s U3(Γ1) only works as an EUG for 3 nodes un-
der special conditions, e.g., when it is a subgraph within
a larger EUG. There are 3 possible edges in a topolog-
ically ordered graph G = (V,E) in Γ1(3): (1, 2), (2, 3)
and (1, 3). (1, 2) and (2, 3) can be directly embedded in
U3(Γ1) using (p1, p2) and (p2, p3), respectively. (1, 3),
however, has to be embedded as a path through node 2,
i.e., as a path ((p1, p2), (p2, p3)). When U3(Γ1) is a sub-
graph of a bigger EUG, this is possible by program-
ming p2 accordingly. However, when we use this U3(Γ1)
as a building block in the body block of our EUG, it
cannot directly be applied, due to the fact that the pro-
gramming of p2 depends on other constraints as well. A generic U3(Γ1) that can embed (1, 3)
without going through p2 as before has an additional Y-switching block between p2 and p3.

We depict in Fig. 7a the 3-way body block that uses Valiant’s optimized U3(Γ1) in the k-way
block design of [LMS16] and show that it is not a valid body block for an EUG construction. Assume
that the output of pole p3i+1 has to be directed to pole p3i+3 (green path). Then, it needs to go
through pole p3i+2, which means that the red edge going to p3i+2 is used by this path. However,
there can be an other edge coming from the permutation network as an input to p3i+2, e.g., from p3i

from the preceding block through r1
i (blue path). This cannot be directed to p3i+2 anymore, as

shown in Fig. 7a, since the red edge would carry two different values. Therefore, in the 3-way body
block construction, it does not suffice to use Valiant’s optimized U3(Γ1) [Val76].

Size of Body Block B(3) with Our Generic U3(Γ1). In Fig. 7b, we show the 3-way body block
with the generic U3(Γ1) that allows the output from p3i+1 to be directed to p3i+3 without having
to go through p3i+2 (green path), and the edge going into p3i+2 can be utilized by the path directed
into this node (blue path). This results in size(B(3)) = 2 ·P (3) + size(U3(Γ1)) + (3− 1) = 12, which
implies that the size of the UC is ∼2 · 12

3 log2 3n log2 n = 5.047n log2 n. Unfortunately, this is even
worse than the size of the 2-way UC with ∼5n log2 n, and we therefore conclude that the most
efficient known UC is Valiant’s 4-way UC with Zhao et al.’s optimization.

Recently, Zhao et al. [ZYZL19] have shown by exhaustive search over all possible topologies that
the 3-way body block B(3) presented in Fig. 7b results in the smallest 3-way UC by showing that
no block with only 11 additional nodes can be used as a universal block, and indeed, our block with
12 additional nodes can be utilized.
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Listing 2: Hybrid construction algorithm, where B(k)(i), H(k)(i) and T (k)(i) denote body, head and
tail blocks with i poles in the k-way UC, respectively.

1 procedure hybrid (p1, . . . , pn , K = {2, 4})
2 Let s i z e (U

hybrid(K)
n′ (Γ1)) be the func t i on c a l c u l a t i n g the s i z e o f the sma l l e r hybrid

↪→ c on s t ru c t i on s with s i z e n′ ≤ n
3 for a l l k ∈ K do // Number o f po l e s in the l a s t b l o c k f o r a l l k
4 i f n | k do
5 mk ← k
6 else
7 mk ← n mod k
8 end i f
9 sk ← size(H(k)(k)) +

(
dn
k
e − 3

)
· size(B(k)(k)) + size(B(k)(rk)) + size(T (k)(mk)) +

↪→ m2 · size
(
size(U

hybrid(K)
dn

2
−1e (Γ1))

)
+ ((k −mk) · size

(
size(U

hybrid(K)
bn
k
−1c (Γ1))

)
10 end for
11 si ← min(sk : k ∈ K) // Choose the b e t t e r cons t ruc t i on
12 // GENERATION
13 Create sk e l e t on for i−way cons t ru c t i on with n po l e s
14 ca l l hybrid

(
r11 , . . . , r

1
dn

i
−1e,K

)
, . . . , hybrid

(
r
mi
1 , . . . , r

mi
dn

i
−1e,K

)
15 i f (i−mi) > 0 do ca l l hybrid

(
r
mi
1 , . . . , r

mi
bn

i
−1c,K

)
, . . . , hybrid

(
ri1, . . . , r

i
bn

i
−1c,K

)
16 end i f
17 // PROGRAMMING
18 Cal l edge−embedding(U(i), G

(i)
1 = (V,E)) // Ca l l embedding a lgor i thm corresponding to i

19 end procedure

5.3 2/4 Hybrid UC Construction

In this section, we detail our hybrid UC based on Valiant’s 2-way and 4-way UCs with the optimiza-
tion by Zhao et al. [ZYZL19], which yields the smallest UCs to date. Given the size of the input
circuit Cgu,v, i.e., n = u + v + g, we can calculate at each recursion step if it is better to create 2
subgraphs of size dn2 − 1e and utilize the 2-way recursive skeleton, or it is more beneficial to create
a 4-way recursive skeleton with 4 subgraphs of size dn4 − 1e.

We assume that for every n, we have an algorithm that computes the size (i.e., size(Uhybrid(K)
n (Γ1)))

of the hybrid UC for sizes smaller than n. We give details on how it is computed in §6. Then, List-
ing 2 describes the algorithm for constructing a hybrid UC, at each step based on which strategy is
more efficient. We note that our hybrid construction is generic, and given multiple k-way UCs as
parameter K (K = {2, 4} in our example), it minimizes the concrete size of the resulting UC.

5.4 Scalable 4-way UC Construction

Our existing implementations of [KS16,GKS17] store the whole UC of size O(n log n) in memory,
which therefore becomes a bottleneck when it comes to scalability. In this section, we present the
design of our scalable universal circuit construction. Specifically, we show how Valiant’s 4-way UC
can be modified to use O(n) memory in the input circuit size n at each step of the execution. We
note that our approach is generic and with additional implementation effort, it can be extended to
any k-way UC as well as for the 4-way UC of Zhao et al. [ZYZL19].

In this section, we present our design that utilizes two separate phases. The first phase is scalable
UC generation (§5.4.1), where the universal circuit is generated given the size n of the input circuit.
This is solved by generating the topologically ordered UC layer by layer, each of which has size O(n).
The output of this step is a set of circuit files, which all contain a subgraph of size O(n), which helps
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Figure 8: Scalable body block construction. 8a shows the first part B0 = B0
4 of the body block, 8c

the second B1 = B1
4 , 8b the third B2 = B2

4 , and 8d the forth B3 = B3
4 , where further subgraphs

are created. We note that the nodes are shown only for one of the four subgraphs, but they are the
same for all four subgraphs. Scalable head and tail blocks are designed analogously.

to significantly reduce the complexity of the second phase, i.e., scalable UC programming (§5.4.2).
In this step, the subcircuits resulting from the first phase are programmed individually, i.e., we
proceed subcircuit by subcircuit instead of edge by edge of the input circuit as before. Therefore,
the output of this step is a set of programming files that contain the programming bits respective to
the circuit files. In §7.2, we will show experimentally that our scalable UC construction significantly
reduces the memory usage.

5.4.1 Scalable Per-Block UC Generation

The underlying idea behind our scalable UC generation is to generate the blocks of the main skeleton
one by one, only keeping one such block and its corresponding subgraph nodes in memory at once.
In this scenario, these blocks will be regarded as layers. Additionally, we store some necessary
information from the preceding three layers in dedicated files, but delete these as soon as they
become redundant. The required additional information is the topological order of nodes that are
already defined and have edges directed into the current layer. Since the number of subgraphs in
any layer is O(n), the number of nodes held in memory at any point is O(n) as well, since in each
layer there are only a constant number of nodes.

Our scalable UC generation relies on the fact that at each block of the main skeleton, based
on the modulo 4 result for each next recursion step, we know which part of the next subgraph
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4 B T 0
4 . . . T 0

4

T 1
4 . . . T 1

4 B T 1
4 . . . T 1

4

T 2
4 . . . T 2

4 B T 2
4 . . . T 2

4

T 3
4 . . . T 3

4 T T 3
4 . . . T 3

4

1 1 1 1 8 . . . 1 1 1 1 8 36 8 1 1 1 1 . . . 8 1 1 1 1

Table 1: Files storing the UC in our scalable UC generation for an example with n = 36.

skeleton or potentially recursion base graph we build at each layer. This observation helps us
reconstruct how the subgraphs may look like for a given body block in Valiant’s 4-way UC. Since
the structure of this is complicated and there are many cases to consider, we show in Fig. 8 the
cases for Valiant’s body block from Fig. 5a on p. 14 [Val76], and note that head and tail blocks can
be constructed analogously. Moreover, a similar scalable design can be constructed for Zhao et al.’s
body block (Fig. 5b) [ZYZL19].

Fig. 8d shows a recursive block construction with Figs. 8a – 8c being base cases. From Fig. 8,
each body block construction type is denoted by Bi where i = {0, 1, 2, 3}3 is the position of nodes
between two poles in a body block in the subgraph. A given subgraph has node(s) between every
two set of recursion points of the parent graph to which this subgraph belongs. We know that
the recursion points, for instance {r1

1, ..., r
1
dn−4

4
e} are the poles of the next recursion step subgraph.

Analogously, we can design head H i, tail T ix, and special last body blocks Bi
x, where x = {1, 2, 3, 4}

denotes the type of the body or tail block based on the number of input or output recursion points,
respectively. In the following, we use an example to detail how our scalable UC generation works.
We depict the resulting UC files and what their content is in Table 1.

Generation of first (main) skeleton. Generating the first (main) skeleton of the two Un(Γ1)
EUGs that are merged into a Un(Γ2) EUG differs from the next, recursive steps. Let us consider
an example of a DAG with n = u + k + v = 36. Ideally, our approach constructs twice the same
block from the left and right Un(Γ1) EUGs. In this scenario for Un(Γ1), we have one (merged)
head block H, seven (merged) body blocks B, and one (merged) tail block T4 with 4 nodes in the
main skeleton. Constructing the first head block is straightforward according to [GKS17, Fig. 4e] as
we do not have to construct any subgraph. Thereafter, we construct seven body blocks according
to Fig. 5a, and a tail block according to [GKS17, Fig. 4f]. However, these merged blocks require
constructing the subgraph nodes in the same layer alongside with it, as we describe next. Note that
in this first step, we actually generate twice the four sets of subgraph nodes, since the two Un(Γ1)
EUGs are merged into a Un(Γ2) EUG (cf. §3.1), but in later recursion steps, only four sets of
subgraph nodes are generated.

3Note that our design corresponds to Valiant’s 4-way UC, but for simplicity, we use Bi instead of B(4)i.
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Generating subgraph nodes recursively per layer. We can generate the subgraph nodes
recursively for all recursion steps at a given position for nodes n. In our example with n = 36,
we only have a head and a tail block for the recursion graph with dn−4

4 e = 8 poles. Therefore,
we construct the first body block with H0 as subgraph level, the second body block with H1,
thereafter H2 and H3. The fifth body block is constructed with T 0, the sixth and seventh with T 1

and T 2, respectively, and the tail block with T 3. Recursive scalable blocks are H3 and B3 as shown
in Fig. 8d. T 3

4 does not have recursion points anymore, since a tail block has no output recursion
points. For n = 8, we reach a recursion base with dn−4

4 e = 1. However, for a larger n, more recursion
steps might be necessary. Therefore, at each layer, we generate all subgraph nodes necessary and
if a recursion step, i.e., H3 or B3 occurs, we generate the nodes of the next subgraph as well, etc.
We denote the recursion bases by R1, R2, R3 and R4 with 1, 2, 3, and 4 nodes, respectively.

With this, we have shown how to generate topologically ordered universal circuits using the file
system and achieve a scalable algorithm for UC generation that stores at most O(n) information in
memory. Moreover, our approach requires 4.75n log2 n disk space to store the universal circuit as
before, and additionally O(n) extra storage space for every layer. However, we only store additional
data for the prior three layers, and delete any other stored data at each step. In the end of the UC
generation, we can delete any additionally stored data. The maximum storage requirement for our
algorithm is before deleting the additionally stored data for the last layer, since the size of the UC
dominates the storage requirements at any other step (when only a part of it is generated yet).

5.4.2 Scalable UC Programming

As described in §5.4.1, we design our scalable UC generation such that each subgraph is written into
a separate file. This is important to also allow the programming step to require only O(n) memory.
It can be observed in Listing 1 on p. 17 that the recursion point edge-embedding algorithm inherently
handles the UC subgraph by subgraph (cf. §4.2), which in turn calls the block edge-embedding for all
blocks in a subgraph. We observe that each skeleton can be programmed based on the information
stored only in the corresponding Γ1 graph, and therefore, we can store the programming bits in a
separate file for each subgraph in the same order as the nodes of the subgraph.

After reading a subgraph from its file resulting from the UC generation step detailed in §5.4.1,
it is programmed as described in Listing 1. The embedding starts from the main skeleton in file f0,
and continues with f1, . . . , f4 and g1, . . . , g4, etc., and results in the corresponding programming
files p0, p1, . . . , p4 and q1, . . . , q4, etc.

6 Size and Depth of UCs

In this section, we review the size and depth of the UCs considered in this article. The size of
the edge-universal graph U (k)

n (Γ1) is the number of nodes, counting all the poles and nodes created
using Valiant’s construction from §3.1. The depth of the edge-universal graph is the number of
nodes on the longest path between any two nodes, i.e., essentially the path between the first input
and last output. U

(k)
n (Γ2) is built from two U (k)

n (Γ1) edge-universal graphs as described in §3.1.
When transforming U (k)

n (Γ2) into a UC, the first u poles are associated with inputs, the last v poles
with outputs, and the g poles between are realized with universal gates (cf. Eq. 1 on p. 11) whose
programming is defined by the corresponding gates in the simulated circuit. The rest of the nodes
of U (k)

n (Γ2) are translated into universal programmable (X and Y) switching blocks (cf. Fig. 2 on
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p. 11), whose programming is defined by the edge-embedding of the graph of the circuit G into
U

(k)
n (Γ2). Thus, when considering the sizes and depths of the UCs, we realize the nodes and poles

as circuit building blocks and express the concrete and asymptotic sizes in the number of switches
(X and Y ) and universal gates (U) (cf. §3.2).

In §6.1, we recapitate the asymptotic size and depth of Valiant’s 2-way and 4-way UCs [Val76],
i.e., UCValiant-2 and UCValiant-4, respectively, of Zhao et al.’s 4-way UC UCZhao et al.-4 [ZYZL19] and
of the smallest k-way UCs following Lipmaa et al.’s generalization [LMS16]. Thereafter, in §6.2, we
present optimizations that reduce the size (and potentially the depth as well) of UCs, regardless
of which constructions were used for their generation. We revise the concrete sizes and depths of
UCValiant-2 and UCValiant-4, UCZhao et al.-4 as well as that of our 2/4 hybrid UCs UCH(Valiant-2,4) and
UCH(Valiant-2, Zhao et al.-4) (cf. §5.3).

6.1 Asymptotic Size and Depth of k-Way UCs

Lipmaa et al.’s k-way UC [LMS16] is discussed briefly in §5.1 and is depicted in Fig. 6 on p. 19.
They show that a k-way body block may consist of two permutation networks P (k), an EUG for
k nodes, i.e., Uk(Γ1), and additionally, (k − 1) Y-switching blocks. In this section, we recapitulate
the sizes in Table 2 and depths in Table 3 of these building blocks and give an estimate for the
leading constant for Lipmaa et al.’s k-way EUGs and UCs with size O(n log2 n) and depth O(n),
for k ∈ {2, . . . , 8}. We conclude that among all UCs following this generalization, the best size
is achieved by Valiant’s 4-way UC, UCValiant-4. This does not exclude the possibility for a more
efficient UC, as has been shown in [ZYZL19], where Zhao et al. propose a 4-way UC, UCZhao et al.-4,
using a smaller body block. Therefore, their construction achieves the smallest asymptotic size to
date. However, Zhao et al. state that their method cannot be used yet to find more efficient UCs
for k > 4, since it includes an exhaustive search for which the domain becomes too large.

6.1.1 Edge-Universal Graph with k Poles

Size. Valiant optimized EUGs up to size 6 by hand in [Val76]: for k = 2, U2(Γ1) has two poles,
for k = 3 we discussed in §5.2 that an additional node is necessary. For k ∈ {4, 5, 6} the sizes are
{6, 10, 13}, as shown in [KS16, Fig. 1] (the nodes denoted as empty circles disappear in the UC).
For k = 7 and k = 8, we observe that UCValiant-2 results in a better size than that of UCValiant-4 due
to the smaller permutation network and less recursion nodes. Therefore, we use these constructions
to compute the size of U7(Γ1) and U8(Γ1). As mentioned in [LMS16], another possibility is to use
the UC of [KS08b] instead of these EUGs since they have better sizes for small circuits. These UCs
UKS08
k are built from two smaller UKS08

k
2

, a P ( k
2

) and k
2 Y switches [KS08b]. It results in a smaller

size of 21 for k = 8.

Depth. The depth of the hand-optimized EUGs for k ∈ {2, 3, 4, 5, 6} are respectively {2, 4, 5, 7, 10}
as shown in [KS16, Fig. 1]. The depth of U7(Γ1) and U8(Γ1) becomes respectively 16 and 19 with
Valiant’s 2-way UC, and 14 and 16 with the UC from [KS08b].

6.1.2 Permutation Networks P (k)

Size. Waksman in [Wak68] showed that the lower bound for the size of a permutation network
is dlog2(k!)e for k elements. We show this lower bound in Table 2 as P (k)

l . The size of the small-
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k Ref. Uk(Γ1) Uk(KS08) P
(k)
l P

(k)
W B(k) U

(k)
n (Γ1) UC

#nodes #nodes #nodes #nodes #nodes #nodes #switches
(·n log2 n) (·n log2 n)

2 [Val76] 2 2 1 1 5 =2.500 =5.000
3 [GKS17] 4 6 3 3 12 ≈2.524 ≈5.047
4 [Val76] 6 7 5 5 19 =2.375 =4.750
5 [LMS16] 10 11 7 8 30 ≈2.584 ≈5.168
6 [LMS16] 13 14 10 11 40 ≈2.579 ≈5.158
7 [LMS16] 19 19 13 14 53 ≈2.697 ≈5.394
8 [LMS16] 23 21 16 17 62 ≈2.583 ≈5.167
4* [ZYZL19] - 18 =2.250 =4.500

Table 2: Leading term of the asymptotic O(n log2 n) sizes of k-way edge-universal graphs (U
(k)
n (Γ1))

and universal circuits (UC) and the concrete size of their building blocks for k ∈ {2, . . . , 8} according
to the design of [LMS16]. 4* [ZYZL19] denotes the 4-way construction with the optimized block
of [ZYZL19], i.e., UCZhao et al.-4. n denotes the size of the input Γ2(n) circuit, Uk(Γ1) Valiant’s edge-
universal graph with k poles, UKS08

k the UC of [KS08b], P (k)
l the permutation network for k nodes

achieving the lower bound for the size, and P
(k)
W Waksman’s permutation network [Wak68]. B(k)

is the k-way body block with the best existing alternative for universal circuits and permutation
networks marked in bold.

est existing permutation network is Waksman’s permutation network P
(k)
W [Wak68, BD02]. For

k ∈ {2, 3, 4} its size matches the lower bound, but for larger values of k, P (k)
W uses additional nodes.

Depth. The depth of a permutation network has lower bound dlog2(k!)e+ 1, since each input has
to have a path to each output, where switches have only two inputs and two outputs. We show
these as the depth of P (k)

l in Table 3. Waksman’s permutation network matches the lower bound
when k ∈ {2, 3, 4}, but utilizes additional nodes for larger values of k.

6.1.3 Body Blocks

A body block B(k) is built of (k−1) Y-switching blocks, an EUG for k nodes, and two permutation
networks P (k) [LMS16] (cf. Fig. 6 on p. 19). B(k) shown in Tables 2 and 3 is built using Waksman’s
permutation network P (k)

W .

Size. The size of the body block is the sum of the sizes of its building blocks, i.e., size(B(k)) =
min

(
size(Uk(Γ1)), size(UKS08

k )
)

+ 2 · size(P (k)) + (k − 1) · size(Y ).

Depth. The depth of B(k) is the number of edges in its building blocks, the additional edges
between the different blocks and the recursion nodes. This means that in total depth(B(k)) =
min

(
depth(Uk(Γ1)),depth(UKS08

k )
)

+ 2 · depth(P (k)) + (k − 1) · depth(Y ) + 1.
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k Ref. Uk(Γ1) Uk(KS08) P
(k)
l P

(k)
W B(k) U

(k)
n (Γ1) UC

#nodes #nodes #nodes #nodes #nodes #nodes #switches
(·n) (·n)

2 [Val76] 2 2 1 1 6 =3.000 =3.000
3 [GKS17] 4 5 3 3 13 ∼4.333 ∼4.333
4 [Val76] 5 6 3 3 15 =3.750 =3.750
5 [LMS16] 7 9 4 5 22 =4.400 =4.400
6 [LMS16] 10 12 4 5 26 ∼4.333 ∼4.333
7 [LMS16] 16 14 4 5 31 ∼4.429 ∼4.429
8 [LMS16] 19 16 4 5 34 =4.250 =4.250
4* [ZYZL19] - 14 =3.500 =3.500

Table 3: Leading terms of the asymptotic O(n) depths of k-way edge-universal graphs (U
(k)
n (Γ1))

and universal circuits (UC) and the concrete depth of their building blocks for k ∈ {2, . . . , 8}
according to the design of [LMS16]. 4* [ZYZL19] denotes the 4-way construction with the optimized
block of [ZYZL19], i.e., UCZhao et al.-4. n denotes the size of the input Γ2(n) circuit, Uk(Γ1) Valiant’s
edge-universal graph with k poles, UKS08

k the UC of [KS08b], P (k)
l the permutation network for k

nodes achieving the lower bound for the depth, and P (k)
W Waksman’s permutation network [Wak68].

B(k) is the k-way body block with the best existing alternative for universal circuits and permutation
networks marked in bold.

6.1.4 Edge-Universal Graphs and Universal Circuits with n Poles

Two k-way EUGs U (k)
n (Γ1) graphs build up an EUG U

(k)
n (Γ2) as described in §3.1.

Size. The asymptotic size of EUG U
(k)
n (Γ1) is determined as size(U (k)

n (Γ1)) = size(B(k))
k log2 k

n log2 n.
The leading factor for a size(UC) is twice this number, since asymptotically, the number of switches
in the UC is the same as the number of nodes in U (k)

n (Γ2), which is summarized in Table 2. We use
Waksman’s permutation network P (k)

W when calculating the size of the UC, however, even with the
lower bound P (k)

l , for k ∈ {5, 6, 7, 8} we have the respective leading terms {4.824, 4.900, 5.190, 5},
which are larger than 4.75 for k = 4. The last column of Table 2 shows that the smallest UC
sizes are achieved in order by Zhao et al.’s optimized UC UCZhao et al.-4, Valiant’s 4-way (k = 4)
UCValiant-4 and 2-way UCs (k = 2) UCValiant-2.

Depth. The depths of the EUG and of the UC depend only on the depth of the main skeleton,
not on the subgraphs, since the longest path is between p1 and pn in the outest skeleton. Therefore,
the asymptotic depths of EUG U

(k)
n (Γ1) and the corresponding UC are calculated as depth(B(k))

k , as
shown in the last column of Table 3. With the lower bound P

(k)
l for k ∈ {5, 6, 7, 8} we have the

respective leading terms {4, 4, 4.14, 4}, which are larger than for k = 2 and k = 4. The UC depth is
minimal for Valiant’s 2-way UCValiant-2 (k = 2), followed by Zhao et al.’s 4-way UC UCZhao et al.-4

and Valiant’s 4-way UCValiant-4 (k = 4) as shown in Table 3.
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6.2 Concrete Size and Depth of UCs

In this section, we consider formulae for the concrete sizes and depths of Valiant’s UCs, i.e.,
UCValiant-2 and UCValiant-4 [Val76], Zhao et al.’s method UCValiant-4 [ZYZL19], and our hybrid
universal circuits UCH(Valiant-2,4) [GKS17] and UCH(Valiant-2, Zhao et al.-4). Beforehand, we describe
two optimizations.

6.2.1 Optimization for Fanin-1 Nodes

We observe that in U (k)
n (Γ1) there is a fanin-1 node in the head block (cf. [GKS17, Fig. 2c and 4e] for

UCValiant-2 and UCValiant-4, respectively). A similarly designed head block for Zhao et al.’s optimized
UCZhao et al.-4 [ZYZL19] has three such fanin-1 nodes (cf. in Fig. 19a in Appendix B). Moreover,
fanin-1 nodes exist in the base-cases for a small number of poles as well [KS16]. These nodes are
important to achieve fanin and fanout 2 of the graph, but can be replaced with wires when translated
into a circuit description as described in §3.2. Since at least one such node can be ignored in each
subgraph when nodes are translated into gates, this results in at least k ·

(∑logk n−1
i=0 ki

)
∼kn less

gates for the universal circuit, where n = u+v+g. We include this optimization in our calculations
further on. This improvement decreases the depth of the UC only by a few gates.

6.2.2 Optimization for Input and Output Nodes

In the skeleton of Valiant’s UC, the poles corresponding to circuit inputs need no ingoing edges
and those corresponding to circuit outputs need no outgoing edges. Therefore, since u, v and g
are publicly known, we optimize by deleting nodes that become redundant while cancelling the
edges going to the first u (input) and coming from the last v (output) nodes. The exact number of
redundant switching nodes depends on the parity or modulo 4 of u, v, n = u+ v+ g, and the k-way
UC, but is O(u + v) in both Γ1(n) edge-universal graphs that build up the graph of the UC. This
optimization also improves the depth by O(u+ v).

6.2.3 Concrete Sizes and Depths of 4-way and 2-way UCs

We realize that based on the parity (2-way UC) and the remainder modulo 4 (4-way UC), not
only the size of the outest skeleton, but also that of the smaller subgraphs can be optimized by
introducing so-called head and tail blocks (cf. §3.3 and §3.4). We considered this in our 2-way UC
in [KS16], and we now generalize the approach for k-way UCs. We provide a recursive formula for
the concrete size of the optimized k-way EUG as follows. Let mk be

mk :=

{
n mod k if k - n,
k if k | n.

(13)

Then, given the designed head, body and tail blocks (cf. [GKS17, Figs. 2 and 4]) with sizes and
depths shown in Table 4, we can compute the size by calculating the sizes of all the components of
the outest skeleton, and the sizes of the smaller subgraphs with the recursive formula in Eq. 14.4

4We note that for k ≥ 3, there exist H(k)(k− 1), . . . , H(k)(1) blocks. These are used for only one n, e.g., H(k)(1)
when n = k + 1, and H(k)(k − 1) when n = 2k. For simplicity, we consider these as special recursion base numbers
in our calculations, but the formula can be adapted to include these as well.
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Block Head H(k)(·) Body B(k)(·) Tail T (k)(·)
#poles in (next) block 4 3 2 1 4 3 2 1 4 3 2 1

si
ze

UCValiant-2 - - 3 - - - 5 5 - - 4 1
UCValiant-4 13 13 12 11 19 19 18 17 14 9 4 1

UCZhao et al.-4 11 11 11 10 18 18 18 17 14 9 4 1

d
ep

th

UCValiant-2 - - 3 - - - 6 6 - - 4 1
UCValiant-4 10 10 9 9 15 15 14 14 11 9 4 1

UCZhao et al.-4 9 9 9 9 14 14 14 14 11 9 4 1

Table 4: The sizes and depths of building blocks of the 2-way and 4-way UCs (cf. Figs. 3, 5a, 5b on
p. 12-14, [GKS17, Figs. 2 and 4], Figs. 19a-19b in Appendix B), including the fanin-1 optimization
from §6.2.1.

size(U (k)
n (Γ1)) = size(H(k)(k)) +

(⌈n
k

⌉
− 3
)
· size(B(k)(k)) + size(B(k)(mk)) + size(T (k)(mk))+

mk · size
(
U

(k)

dnk−1e(Γ1)

)
+ (k −mk) · size

(
U

(k)

bnk−1c(Γ1)

)
. (14)

As described in §3.1, a UC is constructed by means of an EUG U
(k)
n (Γ2), which is in turn

constructed from two EUGs with fanin and fanout one, U (k)
n (Γ1), by merging their poles together

and thus taking them only once into consideration. When constructing a UC for circuit Cgu,v, the
number of inputs u, the number of outputs v, and the number of gates g with fanin and fanout 2
is public. Thus, using Valiant’s construction, U (k)

n (Γ2) with n = u+ v + g poles is constructed and
thus, our formula for the concrete size of U (k)

n (Γ2) corresponding to Cgu,v is

size(U (k)
n (Γ2)) = 2 · size(U (k)

n (Γ1))− n, (15)

and the size of the UC is

size(UC n) ≤ (size(U (k)
n (Γ2))− n) · size(X) + g · size(U), (16)

where X, Y , and U denote X-, Y-switching blocks and universal gates (cf. §3.2), respectively, and
size(Y ) ≤ size(X) ≤ size(U).

The depth of a k-way UC also depends onmk, the head, tail and body blocks (cf. [GKS17, Figs. 2
and 4]), but not on the subgraphs. Thus, it is calculated using the formula in Eq. 17.

depth(U (k)
n (Γ1)) = depth(H(k)(k)) +

(⌈n
k

⌉
− 3
)
· depth(B(k)(k))+

depth(B(k)(mk)) + depth(T (k)(mk)). (17)

Since depth(U
(k)
n (Γ2)) = depth(U

(k)
n (Γ1)), the depth of the UC is

depth(UCn) ≤ (depth(U (k)
n (Γ2))− n) · depth(X) + g · depth(U), (18)

where depth(Y ) ≤ depth(X) ≤ depth(U).
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Figure 9: Improvement in size in percentage of our 2/4 hybrid, the 4-way UCs of [Val76,ZYZL19]
over Valiant’s 2-way UC for 15 ≤ n ≤ 107 with logarithmic x axis. We note that the different graphs
are in the same order as in the legend.

6.2.4 Concrete Size and Depth of Our 2/4 Hybrid UC

In §5.3, we provide a construction for minimizing the concrete size of the resulting 2/4 hybrid UC.
The construction chooses at each step the skeleton that results in the smallest size. We provide the
formula for determining its size using a dynamic programming algorithm in Eq. 19. size(H(k)(i)),
size(T (k)(i)) and size(B(k)(i)) are values from Table 4 for k = 2 and k = 4. Its depth is the depth
of the outest skeleton, either of the 4-way or 2-way UC, depending on which is chosen first.

size(Uhybrid(K)
n (Γ1)) = min

(
size(H(k)(k)) +

(⌈n
k

⌉
− 3
)
· size(B(k)(k)) + size(B(k)(mk))+

size(T (k)(mk)) +mk · size
(
U

hybrid(K)

dnk−1e (Γ1)

)
+ (k −mk) · size

(
U

hybrid(K)

bnk−1c (Γ1)

)
;

k ∈ K = {2, 4}
)
. (19)

6.2.5 Improvements in Size over Valiant’s 2-way UC

Fig. 9 shows the concrete improvement in percentage of UCValiant-4 and UCZhao et al.-4 over UCValiant-2

up to ten million nodes in the simulated input circuit. All reported averages are for the inter-
val n ∈ {15, . . . , 107}. From the asymptotic leading factors in Table 2, we expect an improvement
of up to 5% for UCValiant-4 and up to 10% for UCZhao et al.-4. In Table 5, we depict the mini-
mum, average and maximum improvement compared to the asymptotic improvement in the inter-
val n ∈ {2, . . . , 107}. For the smallest n values (n ≤ 15), UCValiant-2 is better than both 4-way UCs.
However, with growing values of n, the 4-way UCs are better, except for some short intervals as
shown in Fig. 9. However, Valiant’s and Zhao et al.’s 4-way UCs always outperform Valiant’s 2-way
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UC Ref. minimum average maximum asymptotic
UCValiant-4 [Val76] -34.78% 2.97% 3.78% 5%

UCH(Valiant-2,4) [GKS17] 0% 3.41% 4.00% 5%
UCZhao et al.-4 [ZYZL19] -26.09% 7.65% 8.88% 10%

UCH(Valiant-2, Zhao et al.-4) (this article) 0% 7.71% 8.88% 10%

Table 5: Minimum, average, maximum and expected asymptotic improvement in size of our 2/4
hybrid and the 4-way UCs of [Val76,ZYZL19] over Valiant’s 2-way UC in the range 15 ≤ n ≤ 107.

UC for n ≥ 10 996 and n ≥ 172, respectively, the average improvement being 2.97% and 7.65%, and
the biggest improvement being 3.78% and 8.88%.

The improvement of our UCH(Valiant-2,4) and UCH(Valiant-2, Zhao et al.-4) (cf. §5.3) is depicted in
the same Fig. 9 and summarized in Table 5. For some n values our hybrid UCs achieve the same
size as the 2-way or corresponding 4-way UCs, but due to their nature, their improvement is always
nonnegative, and greater than or equal to the improvement achieved by the 4-way UC. Moreover, in
most cases our hybrid UCs result in better sizes than the underlying 4-way UC, which means that
some subgraphs are created for an n for which the 2-way UC is smaller. The overall improvement
over UCValiant-2 for all n ∈ {2, . . . , 107} values of our UCH(Valiant-2,4) is on average 3.41% and at
most 4.00%, and for our UCH(Valiant-2, Zhao et al.-4) is on average 7.71% and at most 8.88%.

We note that our hybrid UC can also be used to reduce the depth of the UC by utilizing the
2-way UC, UCValiant-2, in the first step of the construction. This results in the smallest asymptotic
depth ∼3n (cf. Table 3).

7 Implementation and Evaluation of Our UC Compiler

In this section, we detail the challenges faced while demonstrating the practicality of Valiant’s and
Zhao et al.’s universal circuits. We show how to construct a UC and program it according to a
standard circuit description. We validate our results with a practical implementation that, upon
receiving a fanin-2 circuit C g̃u,v as input, outputs the corresponding 2-way or 4-way UC UCValiant-2,
UCValiant-4 or UCZhao et al.-4 and its programming cf . We have provided the first implementation
of Valiant’s 2-way UC of size ∼5n log2 n in [KS16] and implemented Valiant’s 4-way UC of smaller
size ∼4.75n log2 n in a modular way in [GKS17].

In this work, we extend our implementation with the modular 2-way UC and include the op-
timized 4-way UC of Zhao et al. [ZYZL19] with size ∼4.5n log2 n. We then combine the modular
2-way UC with both 4-way UCs in an implementation of our hybrid UC proposed in [GKS17]
and §5.3, i.e., UCH(Valiant-2,4) and UCH(Valiant-2, Zhao et al.-4), respectively. Moreover, we provide a
prototype implementation of our scalable 4-way UC from §5.4, which can be generalized to both
the 2-way UC and Zhao et al.’s improvement.

7.1 UC Compiler

The architecture of our UC compiler is depicted in Fig. 10. In this section, we briefly describe its
different artifacts and its use of the Fairplay [MNPS04] or CBMC-GC [FHK+14,BK17] frameworks
as a frontend. For a more detailed description the reader is referred to [KS16]. Our implementation
is available online at https://encrypto.de/code/UC.
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Figure 10: Our universal circuit compiler.

1. Compiling Input Circuits from High-Level Functionality. We can use the Fair-
play compiler [MNPS04, BNP08] with the FairplayPF extension [KS08b] or the CBMC-GC com-
piler [FHK+14,BK17] to translate the functionality described in a high-level language to the Fairplay
circuit description called Secure Hardware Definition Language (SHDL). These compilers output a
circuit C g̃u,v with fanin 2, which is required for all UCs. However, due to Valiant’s design, the input
circuit Cgu,v to our UC compiler has to have fanout 2 as well, i.e., the outputs of all gates and inputs
can only be used as the input of at most two subsequent gates. This can be achieved using copy
gates such that instead of g̃ gates, we have g̃ ≤ g ≤ 2g̃+v fanout-2 gates (cf. §2.2). We give concrete
examples in [KS16] on how this conversion affects the size of practical circuits and show that in
most cases, the resulting number of gates remains significantly below the upper bound 2g̃ + v.

2. Obtaining the Γ2(n) Graph G of the Circuit Cgu,v. As next step, we transform circuit Cgu,v
into a Γ2(n) graph G = (V,E) with n = u + v + g (cf. §3.1). This can directly be generated as
described in §2.2: with the number of inputs u, outputs v and gates g in circuit Cgu,v, G has n nodes
and the wires are represented as edges in the graph. Then, we define a topological order ηG on
the nodes of G such that every input node vi has a topological order of 1 ≤ ηG(vi) ≤ u and every
output node vj is labelled with u+ g + 1 ≤ ηG(vj) ≤ u+ v + g. Since Cgu,v has fanin and fanout 2,
the resulting graph G is in Γ2(n), where n = u+ v + g.

It is possible in the modified SHDL circuit description that an internal value becomes two times
the first or two times the second input of gates. Therefore, when a value is the second time the
same input to a gate (i.e., first or second), both the two inputs as well as the two middle bits of the
function table of the gate must be reversed (i.e., to compute f(in1, in2) instead of f(in2, in1)) for
the correct programming of the UC in Step 5.
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3. Generating Edge-Universal Graph U
(`)
n (Γ2) or Uhybrid(K)

n (Γ2) for Γ2(n) graphs, where
` ∈ {2, 4} and K = {2, 4}. An EUG U

(`)
n (Γ2) or Uhybrid(K)

n (Γ2) is constructed by creating two
instances of U (`)

n (Γ1) or Uhybrid(K)
n (Γ1), respectively, as described in §3.1. The two instances get

merged to U (`)
n (Γ2) so that one builds the left inputs and outputs and the other builds the right inputs

and outputs of the gates (based on the two-coloring ofG). For efficiency reasons, we directly generate
the merged edge-universal graph, i.e., an EUG for Γ2(n), with the poles as common nodes. We partly
include our optimization for the input and output nodes from §6.2.25 and Valiant’s optimizations
for the base cases n ∈ {2, 3, 4}, but do not consider Valiant’s optimizations for n ∈ {5, 6} [Val76].
Knowing the number of input bits u, the number of gates g and the number of output bits v, we
construct the corresponding edge-universal graph U `n(Γ2), where n = u + v + g. We note that no
knowledge is necessary about the topology or the gate tables in circuit C for this step.

4. Programming U `n(Γ2) and U
hybrid(K)
n (Γ2) According to an Arbitrary Γ2(n) Graph.

We edge-embed graph G into U (`)
n (Γ2) as described in §4 and into our hybrid Uhybrid(K)

n (Γ2) with
K = {2, 4} as described in §5.3. G is partitioned into two Γ1(n) graphs G1 and G2 which are
embedded into the two EUGs U `n(Γ1)1 and U `n(Γ1)2. Valiant proved in [Val76] that any topologically
ordered Γ1(n) graph can be edge-embedded in an EUG U `n(Γ1) (cf. §3.1). We perform the embedding
as described in §4 for Valiant’s 2-way and 4-way EUGs in Listing 1. The difference when using
Zhao et al.’s improvement [ZYZL19] is the block edge-embedding described in §4.1. Here, we utilize
a lookup table derived from the computer generated proof of Zhao et al. [ZYZL19] that maps
the in and out vectors as defined in §4.1 into the programming bits of the block, i.e., can be used
as block edge-embedding along with the recursion point edge-embedding described in §4.2. We
edge-embed G1 and G2 into our 2/4-hybrid EUGs Uhybrid(K)

n (Γ1)1 and Uhybrid(K)
n (Γ1)2 as described

in §5.3. When the edge-embedding is finished, we define the control bits of the programmable blocks
(universal gates and switches) as described in §3.2.

5. Generating the Output Circuit Description and the Programming of the Universal
Circuit. After embedding the graph of the simulated circuit into the edge-universal graph Un(Γ2),
we write the resulting circuit in a file using our generic UC description. In the edge-universal graph,
each node stores the control bit resulting from the edge-embedding (control bit c of the corresponding
universal switch in §3.2) and each pole corresponding to a gate stores four bits (the four control
bits of the function table of the corresponding gate in the original circuit Cgu,v, c0, c1, c2, c3 in Eq. 1,
their order possibly changed in Step 2). Thus, after topologically ordering Un(Γ2), one can directly
write out the gate identifiers into a circuit file UC and the control bits to a programming file cf .
We include our optimization from §6.2.1, and ignore extra nodes with fanin 1 when the graph is
translated into a UC description. This improves the size of the recursion bases for n = {4, 5, 6} as
well as of the head blocks [GKS17, Fig. 2c and Fig, 4e] and Fig. 19a in Appendix B.

Our circuit description format is generic, i.e., consists of universal switches and universal gates.
Therefore, any framework can be adapted to use them, independently from if it is interpreted as a
Boolean or arithmetic UC. We start with enumerating the client input wires as C 0 1 . . . u− 1.
As a reminder, the O(n log n) server input wires are in the programming file cf . In the UC, we have
universal gates denoted by U , universal switches denoted by X or Y depending on the number of

5We delete edges coming into inputs and going out from outputs. Due to this, some nodes are removed due to
our fanin-1 optimization §6.2.1 when translated into a UC.
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outputs (X with two outputs and Y with one):

U in1 in2 out1 (20)
X in1 in2 out1 out2 (21)
Y in1 in2 out1 (22)

denotes that wire out1 (and possibly out2) is coming from a gate with input wires in1 and in2. The
control bits are not represented in the circuit format, but for each universal gate we save a four-bit
number representing the control bits and for each universal switch we store the control bit in the
programming file cf . The output nodes are outputs of Y universal switches and are marked in the
end of the file as O o1 o2 . . . ov. The circuit and its programming are given in plain text files
as shown in Listings 3 and 4 in Appendix C.
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7.2 Experimental Evaluation

We ran all experiments for our UC compiler on a Desktop PC, equipped with an Intel Core i7-
4790 CPU with 3.6 GHz and 32 GB RAM, and provide our results in this section. We performed
experiments for circuit sizes n ∈ {10, 100, . . . , 1 000 000} as well as with notable circuits from [TS18]
such as the AES-128 circuit without key expansion with size n = 38 518 and the SHA-256 circuit
with size n = 201 206. We note that these sizes are for the circuits transformed to have fanin and
fanout 2 as described in §2.2 and in [KS16, Table 1].

Circuit Sizes (Fig. 11). We first compare the circuit sizes of our implementations that slightly
differ from the expected sizes shown in §6. Our initial 2-way UCValiant-2 implementation from [KS16]
included the recursion bases for 1, 2, and 3 nodes, however, did not include those proposed by
Valiant [Val76] optimized for 4, 5, and 6 nodes. It included both size optimizations described
in §6.2.1 and §6.2.2. In Fig. 11 we show the improvement over our UCValiant-2 implementation
from [KS16] in percentage of the number of switches of our later, more modular UC implementations
presented in this article and in [GKS17]. We note that the number of universal gates is the same
for all implementations, i.e., the number of gates in the original circuits g.

Our modular 4-way UCValiant-4 implementation from [GKS17] additionally included the recursion
base with 4 nodes, however, only partly included the optimization described in §6.2.2 concerning
the input and output nodes. The edges directed into the inputs and out of the outputs are also
removed which results in smaller sizes due to the thus redundant nodes, however, not all unnecessary
connections are deleted. This, however, incurs only a small overhead of at most O(u + v). As we
can observe in Fig. 11 and as expected (cf. Table 5 on p. 32), this implementation improved by
around 5% over our implementation from [KS16].

In this article, we have first implemented the modular version of Valiant’s 2-way UCValiant-2

where inherently we use the optimized recursion base with 4 nodes as well. An around 1.5-2% im-
provement can be observed over our non-modular implementation from [KS16]. Using this and our
modular 4-way UCValiant-4, we have implemented our hybrid UCH(Valiant-2,4) using Valiant’s 2-way
and 4-way UCs as proposed in [GKS17]. This implementation has a more steady improvement of at
least 5% for most tested circuit sizes. Moreover, we also implemented the optimized UCZhao et al.-4

proposed in [ZYZL19], who have proved that their optimized block is universal by giving the pro-
gramming for all possible path combinations in the block. We use this proof to generate a lookup
table file for our implementation, that contains a mapping from any possible input-output vector
(cf. §4.1) and the corresponding programming bits for the block. The generation of this lookup
table is a one-time precomputation cost and takes around 82 seconds. In subsequent runs of the
UC compiler, this overhead is no longer needed and a file of size 1.08 MB is read which takes
only about 80 milliseconds. Thereafter, the expected gain of around 10% can be observed over our
2-way UCValiant-2 implementation from [KS16]. Moreover, the hybrid variant with this construction,
i.e., UCH(Valiant-2, Zhao et al.-4) achieves an at least 10% improvement for all our example circuits.

In Table 6 we show the concrete number of switches of the smallest UCs generated with
UCH(Valiant-2, Zhao et al.-4) as well as the sizes of the resulting UC and programming files. The univer-
sal circuit for n = 1 million gates has around 76 million switches and additionally around 1 million
universal gates (which, in the PFE setting results in a total of about 77 million AND gates for Yao’s
garbled circuit protocol and 79 million AND gates for the GMW protocol). The corresponding file
for the UC has size 2.8 GB and the programming file has size 0.15 GB.
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Input circuit size n 10 100 1 000 10 000 38 518 100 000 201 206 1 000 000
(AES) (SHA-256)

Size (#switches) 45 1 719 31 667 462 667 2 119 836 6 147 387 13 277 772 76 484 267
UC file (KB) 0.6 36 794 13 473 68 730 207 789 473 915 2 936 852
Prog. file cf (KB) 0.1 4 65 933 4 224 12 300 26 391 152 314

Table 6: Size of our smallest UCs generated with UCH(Valiant-2, Zhao et al.-4), i.e., its number of
switches, the sizes of the UC and programming files.

Runtime (Fig. 12). To compare the runtime of our UC implementation with that of the UC
compiler of [KS16], we ran the same experiments on the same platform using our novel implemen-
tations for UCValiant-2, UCZhao et al.-4, UCH(Valiant-2,4) and UCH(Valiant-2, Zhao et al.-4). Runtimes are
reported as averages from 10 executions. The differences in runtimes for the different construc-
tions are not significant, and therefore, we only depict the runtimes of our hybrid implementations
UCH(Valiant-2,4) and UCH(Valiant-2, Zhao et al.-4) in Fig. 12.

The runtimes of our modular UCValiant-2 and UCValiant-4 implementations are very similar to
those of UCH(Valiant-2,4), the latter of which becomes best for larger circuits (i.e., our examples
with n ≥ 10 000). The runtimes of UCZhao et al.-4 are only slightly lower than those of our hybrid
UCH(Valiant-2, Zhao et al.-4), both of which include a one-time overhead of around 80 milliseconds
for reading in our lookup table of size 1.08 MB for each possible block programming [ZYZL19].
However, this one-time expense is only significant for small circuits as can be observed in Fig. 12,
and UCH(Valiant-2, Zhao et al.-4) becomes faster than UCH(Valiant-2,4) for our examples with n ≥ 10 000.
The runtime of our original 2-way UCValiant-2 from [KS16] was slightly better due to its handling
of the UC as one big block. However, it also becomes worse than UCH(Valiant-2, Zhao et al.-4) for
our largest examples SHA-256 and the circuit for one million gates due to the gain in the size
that results in a less complex embedding. For instance, it takes about 12 seconds to generate
the smallest UCH(Valiant-2, Zhao et al.-4) with our new implementation for AES-128, while our original
implementation for UCValiant-2 took 9.4 seconds. Our largest examples SHA-256 and a circuit with
one million gates were generated and programmed in 2.1 and 18.6 minutes, respectively. The
runtimes are high for these large examples, however, they are generally a one-time precomputation
expense in most application scenarios such as private function evaluation (cf. §1.1).

Scalable 4-way UC Implementation (Figs. 13-14). We also implemented our scalable 4-way
UC generation algorithm presented in §5.4. We note that our implementation only includes H i, T ix
and Bi

x for i = 0, 1, 2, 3 and x = 4, and does not include the optimized versions for x = 1, 2, 3 which
we leave as future work. Moreover, we include the base cases for n = 1, 2, 3 but not that for n = 4.
This is due to the fact that a lot of engineering effort would be required for including the other
options as well and our work is only a proof-of-concept implementation of our method presented
in §5.4. Therefore, we test circuits with specific sizes where none of the other blocks or base case
are required, i.e., where all subgraphs at each recursion step have 4 nodes in the tail block and the
base case with n = 4 is not needed. Currently, for generating UCs for different sizes, one would
need to pad the original circuit with dummy gates to an allowed size. Our aim was to improve the
memory consumption of the UC generation (and programming) algorithm, while keeping the price
paid in runtime as low as possible. The number of files created is the number of subgraphs in the
UC, which is necessary for efficient scalable programming of the UC.
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We show that our scalable UC generation implementation provides the expected improvement
in memory usage by comparing our scalable UCValiant-4 implementation to our implementation
from [GKS17]. We depict in Fig. 13 the memory usage of the generation algorithm with growing
input circuit sizes on a machine with 32 GB RAM memory. As can be seen in the figure, instead
of holding the whole UC of size O(n log n) in memory, we indeed hold only O(n) information in
memory at each step. When using 1 GB, 8 GB, and 32 GB of memory, we can generate a UC for
over 27×, 28×, and 29× larger input circuit sizes n, respectively. Moreover, as can be observed
in Fig. 14, the runtime of the resulting scalable UC generation is only around 4× that of the
UCValiant-4 implementation of [GKS17]. This difference is becoming smaller with increasing n due
to the fact that the implementation of [GKS17] is running short on memory and starts swapping
to disk. Our experiments show that while reducing the memory requirements of our UC generation
for UCValiant-4, we keep the runtime asymptotically the same (cf. Fig. 14). Moreover, the required
storage capacity is also O(n log n) as before, since the additionally stored data at each step is at
most O(n), cf. §5.4.
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8 Toolchain for Private Function Evaluation

Secure function evaluation (SFE) allows two parties to jointly compute a public function on their
private inputs, without revealing anything to each other apart from the output of the computation.
As it is probably the most prominent application of UCs (cf. §1.1), we implement private function
evaluation (PFE) using SFE of a Boolean universal circuit. In this scenario, one of the parties holds
its input x and the other party holds the programming cf corresponding to a private function f
that allows the UC to compute UC(x, cf ) = f(x). We note that the UC (with control bits for the
universal gates and switches) can be publicly generated.

We have created a novel toolchain for private function evaluation (PFE) in [KS16], using the
ABY framework for SFE (secure against semi-honest adversaries) as backend of our UC compiler.
ABY implements state-of-the-art optimizations of Yao’s garbled circuit protocol [Yao82,Yao86] and
the GMW protocol [GMW87]. We emphasize that our tool for constructing and programming UC
is generic and can easily be adapted to other secure computation frameworks or other applications
of UCs listed in §1.1.

8.1 Extension of the ABY Framework

We adapt the ABY secure two-party computation framework [DSZ15] for securely evaluating uni-
versal circuits. We realize the universal circuit building blocks (universal gates and switches) with
a number of AND and XOR gates, which is the functionally complete set of logical gates that ABY
uses. Since XOR gates can be evaluated for free in the underlying protocols for secure function eval-
uation due to the free-XOR optimization [KS08a], from here on, we study the AND-size (sizeAND)
and AND-depth (depthAND) of UCs, i.e., the number of AND gates and the maximum number of
AND gates on the longest path, respectively. For other applications, however, the total sizes and
depths of the UCs with respect to both AND and XOR gates are relevant. We implement universal
gates and switches optimized for PFE and therefore use few AND gates, and only (free) XOR gates
alongside it. X and Y gates are obtained as shown in [KS08a]

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c⊕ in1 (23)
(out1, out2) = X(in1, in2; c) = (e⊕ in1, e⊕ in2) with e = (in1 ⊕ in2)c (24)

with sizeAND(Y ) = sizeAND(X) = depthAND(Y ) = depthAND(X) = 1 for both universal switches.
In case the SFE implementation uses Yao’s garbled circuit protocol [Yao86], both sizeAND(U) = 1
and depthAND(U) = 1, due to the fact that in some garbling schemes (such as in the case of gar-
bled 3-row-reduction (GRR3) [NPS99]) the evaluator does not learn the type of the evaluated gate.
Therefore, a universal gate can be implemented using only one 2-input non-XOR gate [PSS09]. For
other SFE protocols such as GMW where this optimization is not possible, our efficient implemen-
tation of generic universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (25)

with sizeAND(U) = 3 and depthAND(U) = 2. We note that the implementation of switches and
universal gates might look very different when other 2-input Boolean gates can also be used, e.g.,
when other size metrics are to be minimized.

We include our implementation of these efficient UC building blocks in the open-source ABY
framework https://encrypto.de/code/ABY. For evaluating a UC securely, the output universal
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circuit file of our UC compiler is parsed, a circuit UC is generated and evaluated with the input x
and the control bits cf to compute f(x). Our toolchain is the first implementation of Valiant’s
size-optimized UC that supports efficient private function evaluation [KS16].

8.2 Experimental Results

We validate the practicality of our implementation, which is the first practical implementation of
private function evaluation (PFE), cf. §1.1. We ran our experiments on two Desktop PCs, each
equipped with an Intel Core i9-7960X CPU with 2.8 GHz and 128 GB RAM. We give the runtimes
in Fig. 15 and communication in Fig. 16 for our example circuits from the previous section, i.e.,
for random circuits of sizes n ∈ {10, 100, . . . , 1 000 000} as well as the AES and SHA-256 circuits
from [TS18]. For completeness, we give the exact numbers in Table 7 in Appendix D. Our runtime
measurements are provided from an average of 10 executions, in two different settings: in a LAN
setting with 10 Gbit/s bandwidth and 1ms RTT, as well as in a simulated WAN setting with
100 Mbit/s bandwidth and 100ms RTT.

We evaluate UCs in ABY [DSZ15] both with the GMW protocol [GMW87] and Yao’s garbled
circuit protocol [Yao82] with state-of-the-art optimizations. Yao’s garbled circuit protocol achieves
much better runtimes than that of the GMW protocol since the latter has O(n) rounds (i.e., the
number of rounds is the depth of the circuit, and Valiant’s UCs have depth O(n), cf. §6.1 and
Table 7 in Appendix D) whereas Yao’s protocol runs in 3 rounds. The effect of this is especially
apparent in the WAN setting where the round-trip time is much higher. In both settings, the
runtime of the GMW protocol is dominated by the linear term due to the linear number of online
rounds. The amount of communication is similar in both implementations, however, it could be
reduced by half for Yao’s protocol if X and Y switches would be implemented with the optimization
from [KS08a] using only one ciphertext. The current implementation utilizes two ciphertexts per X
and Y switches.

Due to the clear advantage of Yao’s protocol over the GMW protocol, we highly recommend using
Yao’s protocol when evaluating UCs securely for PFE. Investigating depth-optimized UCs [CH85]
with O(d) depth in the depth of the input circuit d could improve the performance of the GMW
protocol, however, its number of rounds will still depend on d whereas Yao’s protocol runs in only
3 rounds.

8.3 Comparison of PFE Approaches

Mohassel et al. in [MS13] design a generic framework for PFE and apply it to three different
scenarios: to the m-party GMW protocol [GMW87], to Yao’s garbled circuits [Yao86], and to
arithmetic circuits using homomorphic encryption [CDN01]. Both the two-party versions of their
framework with the GMW protocol and the one with Yao’s garbled circuit protocol have two alter-
natives: using homomorphic encryption they achieve linear complexity O(n) in the circuit size n
and when using a solution solely based on oblivious transfers (OTs), they obtain a construction
with O(n log n) symmetric-key operations. The OT-based construction in both cases is more desir-
able in practice, since OT extension reduces the number of expensive public-key operations signifi-
cantly [IKNP03,ALSZ13].

As the asymptotical complexity of this construction and using Valiant’s UC for PFE is the
same, we compare these methods for PFE. We revisit the formulas provided in [MS13] for the PFE
protocol based on Yao’s garbled circuits and elaborate on the number of symmetric-key operations
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of PFE with the best available UC variant
UCH(Valiant-2, Zhao et al.-4).

when the different PFE protocols are used. Mohassel et al. show that the total number of switches
in their framework is 4g̃ log2(2g̃)+1 that are evaluated using OT extension, for which they calculate
8g̃ log2(2g̃) + 8 symmetric-key operations together with 5g̃ operations for evaluating the universal
gates with Yao’s protocol. We count only the work of the party that performs most of the work,
i.e., 4g̃ symmetric-key operations for creating a garbled circuit with g̃ gates and 3 symmetric-key
operations (two calls to a hash function and one call to a pseudorandom function (PRF)) for each
OT using today’s most efficient OT extension of [ALSZ13]. Hence, according to our estimations,
the protocol of [MS13] requires 12g̃ log2(2g̃) + 4g̃ + 12 symmetric-key operations.

In the same way, we assume that in the case of PFE with UCs, for both the universal gates and
switches, the garbler needs 4n symmetric-key operations. In this case, however, n = u+v+g, where
g̃ ≤ g ≤ 2g̃ + v. It is, therefore, difficult to directly compare complexities of specifically designed
protocols with g̃ fanin-2 gates and UCs where the input circuit is required to have fanout 2 as
well. In Fig. 17, we therefore depict the minimum and maximum required number of symmetric-
key operations for circuits with size g̃ ∈ {10, 100, . . . , 1 000 000}. Moreover, we depict the concrete
values with real-world circuits (AES-128 and SHA-256 from [TS18]) with UC with SFE, and note
that for the other approaches the points lie on the corresponding line.

The protocol of [MS13] has been improved to achieve better communication in [BBKL19]. The
communication of the protocol of [MS13] is (10g̃ log2 g̃ + 4g̃ + 5) · 128, while that of [BBKL19] is
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(6g̃ log2 g̃+0.5g̃+3)·128. For SFE with UC, we require one ciphertext per X and Y switches [KS08a]
and 3 ·2 ciphertexts per universal gates. Fig. 18 depicts the comparison between the communication
of SFE with UCs with minimum and maximum values depending on the relation of g and g̃ as before
and the alternatives of [MS13] and [BBKL19]. We can see that SFE with UCs always achieves the
best communication, requiring 1.5-3× less communication than the improvement of [BBKL19].

9 Conclusion

Universal circuits (UCs) are highly relevant for various applications such as verifiable computation,
attribute-based encryption, and private function evaluation (PFE) which can for example be used for
privacy-preserving evaluation of diagnostic programs, proprietary software and in private database
management systems. These applications require size-optimized universal circuits, first proposed by
Valiant [Val76]. Since then, several optimizations appeared to further reduce the size of the UCs.

In this article, we revisit Valiant’s original constructions and the optimizations later proposed
by our previous works by Kiss and Schneider [KS16] and Günther et al. [GKS17] as well as by
Zhao et al. [ZYZL19]. We have shown the practicality of Valiant’s universal circuit constructions
and its several improvements by providing the implementation of the most efficient UC to date with
size ∼4.5n log2 n in the input circuit size n. Moreover, we highly improve the memory consumption
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of our UC generation algorithm by designing and implementing a method that utilizes O(n) memory
instead of the previous methods using O(n log n) memory.

Universal circuits for an input circuit size of one million can be generated and programmed
within a matter of around 18 minutes on a standard PC and utilized in various applications. We
demonstrate the practicality of PFE with the secure evaluation of UCs and show that such a large
universal circuit can be evaluated within 1.3 and 5.9 minutes using Yao’s garbled circuit protocol
in LAN and WAN settings, respectively.
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A Abbreviations and Notations

ABE Attribute-based encryption.
DAG Directed acyclic graph.
DBMS Database management system.
EUG Edge-universal graph.
GRR3 Garbled row reduction.
OT Oblivious transfer.
PFE Private function evaluation.
semi-PFE Semi-private function evaluation.
SFE Secure function evaluation or secure two-party computation.
UC Universal circuit.

f Function to be privately evaluated using a universal circuit.
cf Control bits for a universal circuit to compute function f .
u Number of inputs in simulated Boolean circuit.
v Number of outputs in simulated Boolean circuit.
ĝ Number of gates in simulated Boolean circuit with arbitrary fanin and

fanout.
g̃ Number of gates in simulated Boolean circuit with fanin 2 and arbitrary

fanout.
g Number of gates in simulated Boolean circuit with fanin and fanout 2.
C ĝu,v The Boolean circuit that describes f with arbitrary fanin and fanout.
C g̃u,v The Boolean circuit that describes f with fanin 2 and arbitrary fanout.
Cgu,v The Boolean circuit that describes f with fanin and fanout 2.
n Size of the simulated circuit Cgu,v with fanin and fanout 2, n = u+ v + g.
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d Depth of the simulated circuit Cgu,v.
G The Γ2(n) graph of Cgu,v where every input, output and gate is represented

with a node and every wire is represented with an edge.
Γρ(n) The set of all graphs with fanin and fanout ρ and n nodes.
Un(Γρ) Edge-universal graph for Γρ(n) graphs, used generally for Valiant’s UC.
U

(k)
n (Γρ) k-way edge-universal graph for Γρ(n) graphs.

U
hybrid(K)
n (Γρ) Hybrid edge-universal graph for Γρ(n) graphs with a set K of k possible

values, e.g., K = {2, 4}.
pi Distinguished nodes in Un(Γρ), called poles, with fanin and fanout ρ.
P Set of all poles in Un(Γρ).
U A universal gate that computes any function with two inputs and one

output, using four control bits c0, c1, c2, c3 as in Eq. 1.
X A two-output X-switching block that returns its two input values either

in the same or in reversed order depending on control bit c.
Y A one-output Y-switching block that returns one of the two input values

depending on control bit c.
B(k) Body block of k-way EUG.
P (k) Permutation network for k nodes.
P

(k)
l Lower bound on the size of the permutation network for k nodes.
P

(k)
W Size of the Waksman’s permutation network [Wak68] for k nodes.
UKS08
n The UC of [KS08b].

UCValiant-2 Valiant’s 2-way UC [Val76].
UCValiant-4 Valiant’s 4-way UC [Val76].
UCZhao et al.-4 Valiant’s 4-way UC with Zhao et al.’s optimization [ZYZL19].
UCH(Valiant-2,4) Hybrid UC with UCValiant-2 and UCValiant-4.
UCH(Valiant-2, Zhao et al.-4) Hybrid UC with UCValiant-2 and UCZhao et al.-4.

B Optimized Blocks for Zhao et al.’s 4-way UC

In this section, we depict the head and tail block constructions in Fig. 19a and Fig. 19b, respectively,
for Zhao et al.’s body block (cf. Fig. 5b), similar to those of [GKS17, Figs. 4e-4f] for Valiant’s
4-way UC. Similarly, tail blocks can be designed also for smaller number of poles in the final
block, but as shown in Table 6, they will have the same size as our tail blocks for Valiant’s 4-way
UC [GKS17, Figs. 4g-4i].
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Figure 19: Optimized blocks for Zhao et al.’s 4-way block (Fig. 5b) [ZYZL19].

C Example Output of Our UC Compiler

In this section, we provide an example output of our UC compiler, i.e., the circuit and programming
files shown on Listings 3 and 4 corresponding to the universal circuit shown in Fig. 1e on p. 10.

Listing 3: Example output UC.
1 C 0 1
2 X 0 1 2
3 X 1 0 3
4 X 0 2 4
5 X 3 0 5
6 U 2 3 6
7 X 4 6 7
8 X 6 5 8
9 Y 4 7 9

10 Y 8 5 10
11 U 7 8 11
12 Y 9 11 12
13 Y 11 10 13
14 Y 12 13 14
15 O 14

Listing 4: Example programming.
1 // input b i t s
2 0 //X switch ( no swap grey )
3 1 //X switch ( swap green )
4 1 //X switch ( swap blue )
5 0 //X switch ( undef ined )
6 1 //AND gate (0001)
7 1 //X switch ( swap blue )
8 0 //X switch ( no swap red )
9 0 //Y switch ( undef ined )

10 0 //Y switch ( undef ined )
11 6 //XOR gate (0110)
12 0 //Y switch ( r i g h t input orange )
13 0 //Y switch ( undef ined )
14 1 //Y switch ( l e f t input orange )
15 // output b i t s
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D Concrete Performance Measures for Private Function Evaluation

In this section, we provide the concrete performance measures used for depicting the runtimes
and communication of PFE by securely evaluating UCs generated with UCH(Valiant-2, Zhao et al.-4)

in Figs. 15 and 16, respectively.

Input circuit size n 10 100 1 000 10 000 38 518 100 000 201 206 1 000 000
(AES) (SHA-256)

Yao LAN (s) 0.006 0.013 0.08 0.48 2.25 6.63 13.70 78.73
GMW LAN (s) 0.032 0.386 3.89 38.92 147.14 389.85 783.94 3 925.94
Yao WAN (s) 0.323 0.413 0.75 2.81 10.71 29.49 63.10 354.32
GMW WAN (s) 2.000 23.990 240.55 2395.32 9044.30 * * *
Yao comm. (MB) 0.005 0.087 1.51 21.79 99.36 287.51 620.07 3 562.21
GMW comm. (MB) 0.013 0.182 2.27 27.20 114.21 319.31 670.23 3 660.17
GMW rounds 34 441 4 491 44 991 169 871 449 991 903 686 4 499 991

Table 7: Runtime and communication of PFE with universal circuits generated for input circuit
size n (cf. Table 2 for the respective UC sizes). * denotes cases where an experiment would have
taken more than 5 hours and therefore was not performed.

51


	Introduction
	Applications of Universal Circuits
	Our Contributions and Outline 
	Additions to Conference Versions 

	Preliminaries
	Graph Theory 
	Circuit Theory

	Valiant's Universal Circuit Constructions
	Valiant's Edge-Universal Graph Construction
	Translating Edge-Universal Graphs into Universal Circuits
	Valiant's 2-way UC Construction
	Valiant's 4-way UC Construction 

	Programming Valiant's Universal Circuits
	Block Edge-Embedding
	Recursion Point Edge-Embedding

	Extensions to Valiant's UC Constructions
	Generalized k-way UC 
	Potentially More Efficient 3-way UC
	2/4 Hybrid UC Construction
	Scalable 4-way UC Construction 
	Scalable Per-Block UC Generation 
	Scalable UC Programming 


	Size and Depth of UCs
	Asymptotic Size and Depth of k-Way UCs 
	Edge-Universal Graph with k Poles 
	Permutation Networks P(k) 
	Body Blocks 
	Edge-Universal Graphs and Universal Circuits with n Poles 

	Concrete Size and Depth of UCs 
	Optimization for Fanin-1 Nodes
	Optimization for Input and Output Nodes
	Concrete Sizes and Depths of 4-way and 2-way UCs 
	Concrete Size and Depth of Our 2/4 Hybrid UC
	Improvements in Size over Valiant's 2-way UC 


	Implementation and Evaluation of Our UC Compiler
	UC Compiler 
	Experimental Evaluation 

	Toolchain for Private Function Evaluation
	Extension of the ABY Framework 
	Experimental Results 
	Comparison of PFE Approaches 

	Conclusion
	Abbreviations and Notations
	Optimized Blocks for Zhao et al.'s 4-way UC 
	Example Output of Our UC Compiler 
	Concrete Performance Measures for Private Function Evaluation

