
Benchmarking Privacy Preserving Scientific
Operations

Abdelrahaman Aly1[0000−0003−2038−5668] and Nigel P.
Smart1,2[0000−0003−3567−3304]

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

abdelrahaman.aly@esat.kuleuven.be, nigel.smart@kuleuven.be

Abstract. In this work, we examine the efficiency of protocols for secure
evaluation of basic mathematical functions (sqrt, sin, arcsin, amongst
others), essential to various application domains. e.g., Artificial Intelli-
gence. Furthermore, we have incorporated our code in state-of-the-art
Multiparty Computation (MPC) software, so we can focus on the algo-
rithms to be used as opposed to the underlying MPC system. We make
use of practical approaches that, although, some of them, theoretically
can be regarded as less efficient, can, nonetheless, be implemented in
such software libraries without further adaptation. We focus on basic
scientific operations, and introduce a series of data-oblivious protocols
based on fixed point representation techniques. Our protocols do not re-
veal intermediate values and do not need special adaptations from the
underlying MPC protocols. We include extensive computational experi-
mentation under various settings and MPC protocols.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of parties to compute an
arbitrary function of their inputs without revealing anything about them, except
for what can be deduced from the output of the function. Standard MPC pro-
tocols usually provide secure basic operations, such as additions, multiplications
and logic gates, from which more complex functionalities can be built. In many
data processing applications one requires access to standard scientific opera-
tions, and thus to an approximation of what in the C language is represented by
the data types float and double. There are two techniques for performing this
approximation in the literature: fixed point representations and floating point
representations. Both of which have been implemented in various MPC systems;
for example [2, 6, 10].

Efficient algorithms for fixed point representations were introduced in a series
of works by Catrina et al (see [8] for a detailed summary). Typically, fixed point
arithmetic uses a publicly available, predefined precision to which all data values
are kept. This is more efficient than a floating point representation, as examined
in [1] for example, where the operations are closer to what one would expect for
the equivalent C data types. However, the increased cost of using floating point



representations makes their use highly problematic in practice. In addition, it is
sufficient, in many applications, to work with a fixed point precision, for example
in various statistical or machine learning applications.

Despite many prior works on fixed point operations in MPC, there has been
little work on benchmarking these operations. In this work we provide a number
of benchmarks of simple scientific operations on fixed point numbers in a variety
of cases. In particular, we focus on standard mathematical operations such as
sqrt(x), sin(x), cos(x), arcsin(x), exp(x), loga(x), etc, in both the full thresh-
old setting with two and three players, and in the honest majority three party
setting. We build our protocols on top of the actively-secure-with-abort MPC
protocols available in the SCALE-MAMBA system [2]. This system is chosen as it
is publicly available and allows different access structures to be utilized for the
same input program.

A number of previous works have looked at algorithms to implement these
operations [1, 3, 4, 11, 21, 22]; however our paper concentrates on investigating
practical performance and in addition looks at optimizations to such protocols
in the case of MPC systems which allow a certain amount of pre-processing (for
example in SCALE-MAMBA shared random bits are produced in the pre-processing,
and so come for free in the ‘online’ phase).

One can consider the current state of the art of MPC development as mir-
roring the development of standard computer programming and architectures.
Thus, one often needs to go an revisit earlier works to understand simple ways of
implementing functions which might be taken for granted. In this work we make
extensive use of the methods used in the 1960s and 1970s to build mechanisms
to evaluate scientific operations on fixed and floating point data. In particular
we use the work on function approximation by Taylor and Padé approximations
provided in the seminal work of Hart [16].

In our work a secret fixed point value is represented by a secret integer v
in the range [−2k−1, . . . , 2k−1] (k is fixed and public) and a public precision
value f . The fixed point number represented by v is v/2f . In the kind of MPC
systems we consider (i.e. those based on linear secret sharing) the value v is
embedded in a finite field Fq. We shall denote by [[v]] the fact that v is shared
over Fq. To represent a fixed point number x, whose sharing we denote by 〈x〉,
we take an integer v in the above range such that x ≈ v/2f . Thus we can write
〈x〉 = {[[v]], k, f}.

Given secure protocols for addition and multiplication of Fq elements, one
can construct secure protocols for addition and multiplication of fixed point
values, see [8] for the precise protocols. These protocols will be secure as long as
the underlying protocols for addition and multiplication of Fq elements are also
secure.

The addition and multiplication protocols of [8] often require one to open
‘masked’ values of fixed point values. To do this, there is a statistical security
parameter κ, and we require that κ+ 2 · k < log2 q. The statistical security pa-
rameter measures the statistical distance of certain opened values in the protocol
from a uniform distribution. In particular, when we want to open a masked k or

2



2·k bit integer value, we use a mask of k+κ or 2·k+κ bits. This ensures that the
distribution of the masked output is within statistical distance of 2−κ from the
uniform distribution. In our implementation we take (log2 q, κ, k) = (128, 40, 41)
and f = 20.

We emphasize that our work is centered around MPC based on secret sharing
based-MPC, as opposed to systems based on Garbled Circuits or Homomorphic
Encryption. More specifically, our works is aimed at any set of individuals that
want to perform these operations, whilst using some LSSS based system. Clearly,
on this regard, there are different tradeoffs and algorithms if the underlying MPC
system chosen is one based on, say Garbled Circuits, however, this falls outside
the scope of this work.

Square Root Function: The problem of computing securely the sqrt has been
studied by several authors in both the floating point and fixed point settings
e.g., [1, 18, 21, 22]. The collection of work that addressed this problem before,
approached it by either expressing the output as a Taylor series, or via some
other kind of numerical approximation (e.g. via Goldschmidt or Newton-Raphson
approximation).

Liedel’s [22] method at first glance seems to be the most efficient. This
method assumes a fixed point representation in line to what is expressed in [8],
produces (given private input 〈x〉) first an initial approximation of

√
〈x〉. This

initial approximation is then improved by performing iterations of Goldschmidt
and Newton-Raphson. Liedel offers a way to calculate the initial approximation
by solving a system of equations over normalized inputs. However, there is a hid-
den assumption in the method, which turns out to be very restrictive in practice.
This makes the applicability of Liedel’s method less useful, and has motivated
modern multiparty frameworks, such as Sharemind to use Taylor series based
protocols [18]. In our method we use the spirit of Liedel’s method, i.e. we use
Goldshmidt and Newton-Raphson to perform the final approximation, however
we produce the initial approximation to the

√
(〈x〉) by computing its closest

power of two.

Trigonometric functions: There are a number of works that explore alter-
natives to build trigonometric functions [3,4]. All use numerical approximations
or series evaluations, but restrict the values to specific ranges (i.e. angle reduc-
tion is not performed before the trigonometric function is computed). We on the
other hand, offer an angle reduction protocol that is designed to take advantage
of the fixed point representation of [8]. This would naively utilize a division with
remainder operation which is usually a more expensive primitive [1, 21], than a
multiplication. Instead, we make an intelligent use of the fixed point represen-
tation of our inputs and a series of more basic operations. We then utilize, as
do the two prior works, the numerical methods of Hart [16] to produce the final
approximation to sin(x) and cos(x). Our method is then extended to tan(x).

3



Inverse trigonometric functions: In the same direction as our other contri-
butions in this paper, we propose an approach to build oblivious inverse trigono-
metric functions, by using numerical approximations. We again use the methods
of Hart here. Bayatbabolghani et al. [4], introduced a protocol based on the work
of Medina [24], using a sequence of polynomials to obtain the arctan(〈x〉) of a se-
cret shared input x. In their work, they provided secure protocols to achieve this,
and some discussion about complexity and performance, comparing it with [16].
However no specific implementation details were provided, except for the us-
age of these operations within spectrum fingerprint detection algorithms. Their
experimentation was performed using the PICCO compiler [27].

The functions exp and log: Following the same methodology, we present pro-
tocols for algorithms such as exponentiation (considering the base and exponent
as secret shared inputs) and log (to a public available base). We achieve this, by
numerically approximatingtoWe both operations using the methods of Hart [16]
(base two), and then making use of standard logarithmic identities, with the
aim of computing both functions. Previous work on exponentiation algorithms,
initially used binary expansions and utilized existing work on bit-decomposition
for field elements. The basic relevant work in this regard was introduced by
Damg̊ard et al. [11], where the authors hide both the exponent and the base by
evaluating the binary expansion of the exponent. Further works have centered
on reducing the influence of the binary expansion [25,26]. For logarithmic func-
tions, there is virtually no prior work on fixed point MPC variants, although
there has been some work on floating point variants. For instance, Kamm [17]
makes use of Taylor series to obtain the natural logarithm of a given floating
point input.

In summary we provide methods to securely compute various scientific op-
erations, and we evaluate their performance in practice using an off-the-shelf
MPC system. We hope our work stimulates others to investigate improvements
to our methods. Our choice of fixed point representation is to enable fast secure
evaluation of the scientific functions, clearly it would be better to use floating
point representations.

2 Preliminaries

In this section we outline the necessary details to understand the following con-
tributions. In particular, how we perform fixed point arithmetic, numerical ap-
proximation, our arithmetic black box, as well as our experimental setup.

Notation for fixed point arithmetic: We make use of the square bracket
notation from [13], where [[a]] denotes a secret shared value a ∈ Fq. Note that
our protocols are designed to work regardless of the underlying Linear Secret
Sharing Scheme (LSSS). We assume all our inputs are elements of some field

4



elements Fq, where q is a prime of bit-size `. We use typical assumptions while
encoding integer values in Fq. That is to say that we consider half of the input
domain to represent positive numbers, and the other half negative. Let P be the
set of all parties of size |P |.

We follow a representation proposed by Catrina and Saxena [8], which is
common in the MPC literature and libraries [2–4]. We define Z〈k〉 as the set of

integers {x ∈ Z : −2k−1 ≤ x ≤ 2k−1 − 1}, which we embed into Fq via the
map x 7→ x (mod q). We define Q〈k,f〉 as the set of rational numbers {x ∈ Q :

x = x · 2−f , x ∈ Z〈k〉}. We represent x ∈ Q as the integer x · 2f = x ∈ Z〈k〉,
which is then represented in Fq via the mapping used above. Thus x ∈ Q is in
the range [−2e, 2e − 2−f ] where e = k − f . As we are working with fixed point
numbers we assume that the parameters f and k are public. For our following
algorithms to work (in particular fixed point multiplication and division) we
require that q > 22·k. We can then imagine a minimal representation of a secret
shared fixed point number x, as 〈x〉 to be a tuple composed by {[[v]], k, f}. We
extend the notation in [13], encoding secret shared field elements as [[x]] and
fixed-point inputs as 〈x〉. Note that operations with public fixed-point operations
are possible by using the same basic encoding. Vectors of secret shared inputs are
also denoted by [[Y ]] or 〈Y 〉, and its size is |Y |, with the context being implicitly
clear.

Experimental setup: All experiments in this paper were run using a LAN
network test-bed (10 Gb switch and connections), with dedicated machines.
Each machine had the same hardware and software configuration, namely 32
GB RAM, 256 SSD storage, Intel Core i7-770 3.6GHZ processor, and were run-
ning Ubuntu 16.04.5 LTS. The machines ran the SCALE-MAMBA system [2] for
their base MPC protocols. This is an MPC framework which runs in the offline-
online paradigm, namely work is performed in two distinct phases: a function
independent offline phase (used to generate correlated randomness) and an on-
line phase (where the function is evaluated). More specifically, the former phase
is dedicated to generating Beaver Triples [5] and random shared bits.

SCALE-MAMBA allows us to test our protocols in an actively secure environ-
ment (in particular active security with abort) for various access structures. For
comparison purposes we looked at three setups;

– A two and three party full-threshold access structure which uses (essentially)
the SPDZ protocol from [12,14,19],

– A three party honest majority setting using Shamir secret sharing. This
variant uses Maurer’s protocol [23] to generate offline data, which is then
processed as in [20].

SCALE-MAMBA has built in protocols for performing fixed point arithmetic
based on the methodology of [8] described above. We made use of the default
configuration of SCALE-MAMBA to run all our experiments, except for those for
the exponentiation and logarithm functions. This implies that we used a 128-bit
modulus for Fq. Additionally, fixed point inputs are k = 41 bits in length of

5



which f = 20 bits are dedicated to its fixed point precision. This implies an
implicit statistical security parameter κ for the fixed point arithmetic emulation
of 40 bits.

We note that the implementation of SCALE-MAMBA optimizes execution times
by running parallel threads to create offline data “just-in-time”. However, for
the cases where the offline phase can be executed in advance, we also run ex-
periments to measure exclusively the online phase and to estimate the execution
time of any associated offline phase. Communication cost greatly influences the
overall running times of the system; and because of this the compiler will try to
optimize execution times so as to maximize throughput. This is done by execut-
ing multiple operations in a single round. Our experiments include configurations
for cases when compilation is optimized in this way, and when is not. Thus, we
get estimates for when one wants to maximize throughput, and when one wants
to minimize latency.

In all our experimental reports in what follows we present three figures.

- Offline Phase. We measure the average time it takes to produce enough
triples during the offline phase for a single execution of the functionality
(e.g., a single 〈sin(x)〉 or 〈tan(x)〉 call).

- Latency Measurement. In this setting we evaluate the online phase of our
protocol executing a single operation at a time (i.e. sequential as opposed
to parallel execution). We then present the average run time for the online
phase only. This gives an estimate of the expected latency a user can expect
if latency of computation is the main performance issue.

- Throughput Maximization. We also measured when we run several in-
stances of the functionality (in our case 50) in parallel. Thus this enables us
to give a lower bound for the expected throughput, i.e. how many operations
can be performed per second, if throughput is the main performance issue.

Note that computational costs for the offline phase dominate on overall per-
formance, and that in SCALE-MAMBA, the offline phase works on the same way
regardless of whether the online phase is configured to maximise throughput or
minimize latency.

Arithmetic Black Box: To facilitate the understanding of the implications of
using functionalities that are as secure as the underlying MPC protocols that
implement them, we follow literature on the field by describing an arithmetic
blackbox (FABB). This was originally introduced by [13], in the context of ab-
stracting away finite field operations in Fq via shares [[x]], but one can also extend
it to operations on our fixed point sharing 〈x〉, as well as more complex opera-
tions which have already been proved to be secure under composition.

The FABB works as an idealized functionality, capable to store secret values
over Fq (input) and make them public under request (output). A stored x ∈ Fq
will be denoted by [[x]]. Furthermore, it can perform a series of operations under
request by the computational parties, for example addition and multiplication of
of such elements. Hence, it can be asked to compute any function, by constructing

6



the associated functionality as an arithmetic circuit. This allows our protocols to
abstract themselves from the specific details of how the MPC system implements
them. The basic functionality, which includes addition and multiplication of
field elements as well as fixed-point inputs and is detailed in Table 1. With the
protocols used to implement these functions, in our experiments, being taken
from the underlying protocols in SCALE-MAMBA described above. In the same
table, we also present the number of rounds needed to execute each function in
the online phase of the SCALE-MAMBA system. Additionally, we make occasional
use of high level functionalities which have been given and proven secure by
various other authors. These protocols are given by Table 2.

Operation Purpose Rounds

x← [[x]] Opening/outputing a secret field element 1

[[x]]← x Inputing secret a field element 1

[[z]]← [[x]] + [[y]] Adds secret field elements 0

[[z]]← [[x]] + y Adds secret field and public element 0

[[z]]← [[x]] · y Multiplies secret field and public element 0

[[z]]← [[x]] · [[y]] Multiply secret elements 1

〈z〉 ← 〈x〉+ 〈y〉 Adds secret fixed point numbers 0

〈z〉 ← 〈x〉+ y Adds secret and public fixed point numbers 0

〈z〉 ← 〈x〉 · 〈y〉 Multiplies secret fixed point numbers 1

〈z〉 ← 〈x〉 · y Multiplies secret and public fixed point numbers 0

〈z〉 ← [[x]] + 〈y〉 Adds secret fixed point number with secret field element 0

〈z〉 ← [[x]] · 〈y〉 Multiplies secret fixed point number with secret field element 1

Table 1. Secure Arithmetic operations provided by the FABB .

Operation Purpose Rounds Protocol
[[b]]← [[x]] < [[y]] Compares a secret and

field elements
1 + log2(`) [7]

[[b]]← [[x]] < y Compares a secret and
public field elements

1 + log2(`) [7]

[[b]]← 〈x〉 < 〈y〉 Compares a secret and
fixed point numbers

1 + log2(`) [7]

[[b]]← 〈x〉 < y Compares a secret and
public fixed point num-
bers

1 + log2(`) [7]

〈z〉 ← 〈x〉/〈y〉 Divides secret
fixed point numbers

2 · log2( k
3.5 ) + 8 [8]

〈z〉 ← choose([[b]], 〈x〉, 〈y〉) MUX. Returns 〈x〉 or 〈y〉
depending on bit [[b]] s.t.
(〈y〉 − 〈x〉) · [[b]] + 〈x〉

1 [11]

〈z〉 ← choose(b, 〈x〉, 〈y〉) MUX. Returns 〈x〉 or 〈y〉
depending on bit b s.t.
(〈y〉 − 〈x〉) · b+ 〈x〉

1 [11]

[[b]]0, ..., [[b]]`−1 ← bit decompose([[x]]) Bit decomposition of
secret field element

log2(q) [11,26]

[[b]]0, ..., [[b]]k−1 ← pre OR([[x]]0, .., [[x]]k−1) fan-in or 1 [11]
[[z]]← trunc(〈x〉) trunc(x) so that returns

x’s integral magnitude
2 [8]

Table 2. Secure complex functionalities derived from the FABB .

7



On mixed type operations: In some cases, and as denoted by Table 1, we may
need to either add or multiply secret share fixed point with a standard shared
modulo p value. In this case we are assumed to know a bound on the number
of bits in the shared modulo p value; i.e. it is never a general element in Fp
but one of bounded size when reduced to a centre around zero. As described
by Catrina and Saxena [8] we need to scale the integer inputs by 2f . This way,
integer operands share the same encoding than their fixed point counterparts.
This process is called “scaling”, and can be achieved by shifting the input to the
left by |f | bits. We refer the reader to [8], for a more complete explanation of
this process.

Note that subtractions, can be trivially derived from the functionality de-
scribed by Table 1. Given that we can encode negative numbers, subtractions
can be seen as a special case of addition, where the substracted input is multi-
plied by −1.

On numerical approximation: As it was previously mentioned, our protocols
are based on the results outlined by Hart in his work, Computer Approxima-
tions [16]. We make use of numerical methods that, through the use of Poly-
nomial and Padé approximants, can obtain “good enough” approximations to
transcendental functions, over a given input interval. To be able to operate, we
reduce (normalize) our inputs to such intervals and keep track of their cyclic po-
sition. Throughout this work, polynomials are referred in the same way as in the
original work by Hart; that is to say a polynomial is described as capital Pi and
Qi where i, refers to the index of table, taken directly from Hart’s work [16]. In
the case of a polynomial approximation to a function f we have f(x) ≈ Pi(x),
whilst in the case of a Padé approximation we have f(x) ≈ Pi(x)/Qi(x). We
have included, an appendix with all the polynomials used in this work, as well
as their precision.

3 Approximated Square Root

In this section, we introduce our results, with respect to the oblivious computa-
tion of the square root. The intuition of our work is as follows, given a shared
fixed point number 〈x〉 = {[[v]], k, f}; we create an initial approximation of the

form 〈v〉/2
[[m]]
2 , where [[m]] is the secret shared location of the most significant

bit in [[v]]. Following Liedel [22], we then improve our approximation by using
a number of Newton-Raphson and Goldschmidt iterations. However, the initial
approximation to the square root presented by Liedel does not work on all pos-
sible input numbers. In particular the approximation algorithm requires a fixed
point division by the number 23·k−2·f = 2t. To perform this we create the clear
fixed point representation of the value 1/2t and then perform a multiplication
between a clear and a shared value. However, to represent 1/2t in our fixed point
representation we require there to be a value i ∈ [0, . . . , k) such that i− f = −t,
i.e. t = f − i < f . Thus there are some inputs for which Liedel’s method to

8



produce the first approximation would require us to increase our precision, and
hence our costs, and potentially the underlying prime size. However, we will see
that a more crude initial approximation suffices.

Most Significative Bit: Our protocols require us to identify the Most Signi-
ficative Bit (MSB) from any Fq element. To achieve this, we adapt the results
from [11, 22], in such a way that we can isolate it. Our adapted construction
makes use of the following inputs:

- [[v]]: Integer input value.
- k: Represents a bound on the size of v as an integer. In particular |v| < 2k.

Our protocol will return the most significative bit, which is less than k, but en-
coded as an index vector. Protocol 1, encompass the method used to achieve this.
Note that, to improve the understanding (implementation-wise) of the protocols
in this section (and, in particular Protocol 2), the output index vector will be
of size k when k is even and k + 1 when k is odd. This is needed to enable the
indexing in our parity extraction step in Protocol 2 to be correct.

Protocol 1: Most Significative Bit Extraction

Input: Secret shared integer input[[v]]. Bit-wise upper bound k
Output: Returns secret shared vector [[z]] with z ∈ {0, 1}k or {0, 1}k+1, which

is all zero except for the location of the MSB of v.
1 [[V ]]b ← bit decompose([[v]]);
2 [[V ′]]b ← {01, ..., 0|Vb|};
3 for i← k to 1 do
4 [[V ′]]l−i+1 ← [[V ]]i; //invert its order

5 [[Y ]]← pre OR([[V ′]]b);
6 [[Y ′]]← {01, ..., 0|Y |};
7 for i← k to 1 do
8 [[Y ′]]k−i+1 ← [[Y ]]i; //restore its order

9 [[z]]← {01, ..., 0k+1−(k mod 2)};
10 for i← 1 to k − 1 do
11 [[z]]i ← [[Y ′]]i − [[Y ]]i+1;
12 [[z]]k ← [[Y ′]]k;
13 return [[z]];

The protocol works by first obtaining the bit decomposition of our field el-
ement, we then obtain the fan-in OR (pre OR([[x]])) of the binary expansion of
the input, in inverse order. Note that, without loss of generality, our protocol is
explained by using full integers of size k, however it can be used to select the
MSB of any substring of size smaller than k. We then simply proceed to obliv-
iously identify the point where, the pre OR([[a]]) stop returning [[0]] and become
[[1]]. Finally, we adjust the return vector size depending on k.

9



Initial Square Root Approximation: By extracting the MSB of the input

we can obtain our initial approximation via [[w]]← 2
[[m]]
2 if [[m]] is even, or 〈w〉 ←

2
[[m−1]]

2 if odd, where [[m]] is the MSB of [[v]]. Note, this needs to be done without
disclosing the parity of m, as explained in Protocol 2. This would suffice to
obtain the desired approximation. Additionally, we have to deal with the effects
of the parity of f (by making minor changes depending on whether f is even or
odd).

Protocol 2: Approximation of the Square Root (app sq)

Input: Secret shared integer input [[v]], and bit-wise upper bound k.
Output: MSB index position [[m]], its parity [[o]] and a power of 2

approximation for 〈
√
x〉 in [[w]]

1 [[z]]← MSB([[v]], k); (i.e. Protocol 1)
2 [[m]]← [[0]];
3 [[o]]← [[0]]; //is odd

4 for i← 1 to k do
5 [[m]]← [[m]] + (i) · [[z]]i−1;
6 if (i mod 2) = 1 then
7 [[o]]← [[o]] + [[z]]i;

8 [[W ]]← {[[0]]1, ..., [[0]]d k
2
+1e}; //size is d k

2
e+ 1

9 [[W ]]← [[0]];

10 for i← 1 to k
2

+ 1 do
11 [[w]]← [[w]] + (2i−1) · [[W ]]i;
12 return [[o]], [[m]], [[w]];

The protocol converts the sharing of the {0, 1}k vector in [[z]] produced by
Protocol 1 into an integer sharing [[m]] with m ∈ {1, ..., k}. At the same time
we identify the parity of m, and we then calculate [[w]] by evaluating the binary
expansion of the index encoding vector.

Privacy Preserving Square Root: Once, we have obtained our initial ap-
proximation, following Liedel [22] results, which we present in Protocol 3. We fix
the maximum number of iterations for the Goldshmidt Newton-Raphson combi-
nation, just as in Liedel [22], and assign it to θ. The precision of our construction
is tied to θ and, has to be tunned in according to the application at hand. Our
experiments yielded an accuracy of around six digits after six repetitions. We
first obtain [[w]] by invoking Protocol 2 and then proceed to build an instance of
[[w]] as a fixed point number, in accordance to the parity of f , [[m]] and Proto-
col 2. The protocol works by executing a Goldschmidt’s iteration followed by a
final Newton iteration.

Results: To provide a comparison with the previous work of Liedel, we also
present run-times for his results as well. However, we stress again that Liedel’s

10



Protocol 3: Optimized Approximated 〈
√
x〉 for fixed point

Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Square root of input 〈

√
x〉.

1 θ ← max(dlog2(xk)e, 6);
2 [[o]], [[m]], [[w]]← app sq([[xv]], xk);
3 [[o]]← choose((f mod 2), 1− [[o]], [[o]]);
4 [[w]]← choose((1− [[o]]) · (f mod 2), 2 · [[w]], [[w]]);
5 t← (f − (f mod 2))/2;
6 〈w′〉 ← ([[w]] · 2t, k − f, f);

7 〈w′〉 ← choose([[o]], 〈w′〉 ·
√

2, 〈w′〉);
8 〈y〉 ← 〈w′〉−1;
9 〈g〉 ← 〈x〉 · 〈y〉;

10 〈h〉 ← 〈y〉/2;
11 for i← 1 to θ do
12 〈r〉 ← 3

2
− 〈g · h〉;

13 〈g〉 ← 〈g〉 · 〈r〉;
14 〈h〉 ← 〈h〉 · 〈r〉;
15 〈r〉 ← 3

2
− 〈g · h〉;

16 〈h〉 ← 〈h〉 · 〈r〉;
17 〈H〉 ← 3− 4 · 〈x〉 · 〈h〉2;
18 〈H〉 ← 〈h〉 · 〈H〉;
19 〈
√
x〉 ← 〈x〉 · 〈H〉;

method is not as general as the method we propose, as we can cope with a much
larger set of input parameters. In Table 3 we present the required offline data, per
single square root operation. Then in Table 4 we present the execution times for
the offline phase (for a single square root operation), plus the minimum latency
and maximum throughput we obtained in the three different configurations we
tested. We see that, when Liedel’s method can be applied then the performance
is better, but the extra cost of our method in dealing with general inputs is only
about a factor of two.

Protocol Liedel This Work

Multiplication Triples 197 684

Square Tuples 1 0

Shared Bits 2598 4049
Table 3. Offline data needed for a single fixed point square root operation

Full Threshold Full Threshold Shamir
2 Parties 3 Parties 3 Parties

Protocol Liedel This Work Liedel This Work Liedel This Work

Offline (sec) 2.49 3.90 2.905 4.708 0.065 0.088

Latency (sec) 0.0034 0.0048 0.0043 0.0060 0.0039 0.0062

Throughput (ops/sec) 1042 491 795 313 785 308

Table 4. Performance figures for Full Threshold (2 and 3 parties) and Shamir with 3
parties for the fixed point square root calculation.

11



Discussion: A recent implementation, with regards to the secure evaluation
of square root functions on distributed environments, was introduced by Dim-
itrov et al. [15]. These implementations where part of their work on alternative
representations for real numbers. Their results make use of a golden number en-
coding, as well as some logarithmic based representation for real numbers. The
authors followed the Liedel line of work for their implementation, and used (the
passively secure) Sharemind [6] system as their test-bed. They made use of a
similar configuration (3 parties) on high-end machines, except for the fact they
ran their experiments using Intel Xeon microprocessor series. For comparison
reasons, they included experimentation against 32 and 64 bit long fixed point
representations included in Sharemind. Their work however only gives estima-
tions on the number of operations per second, but no mention on whether these
are batched together. The fastest implementation is their logarithmic represen-
tation using a low bit-size for the inputs and a somewhat small precision. Direct
comparison is hard to make as they target only passively secure MPC, whereas
we focus on actively secure MPC.

4 Trigonometric Functions

We introduce a series of adaptations of the numerical approximations given by
Hart [16] for the basic trigonometric functions, and then implement them in an
oblivious fashion. The approximations have been chosen to balance accuracy and
low degree (i.e. efficiency).

Angle reduction: We first introduce a mechanism, Protocol 4, to map any
input 〈x〉 to the range [0, π2 ], and the quadrant which 〈x〉 lies in (given by b1 and
b2). The quadrant is a byproduct of the process of the initial mapping. Protocol 4
requires a trunc(x) operation call, and a low number of fundamental operations.
The outputs of the operation, are as follows:

- 〈w〉: w = x (mod π/2).
- [[b1]]: b1 = (x (mod 2 · π)) > π.
- [[b2]]: b2 = (x (mod π)) > π/2.

Sine, Cosine and Tangent Functions: First, the input 〈x〉 has to be mapped
to the correct interval. We then can obtain the sin of any angle by using the
polynomial approximation sin(x) = ν · P3307(ν2) where ν = w · 2/π for w = x
(mod π/2), with the polynomial P3307 from Hart [16] given in the Appendix.
The explicit details are given in Protocol 5.

We can produce the cosine function, by evaluating P3508(w2) from [16] (again
details in Appendix). Given the cyclic nature of both sin and cos, we adjust the
sign of the outputs by b1 and b2 accordingly. The explicit details are given in
Protocol 6.

Finally, using the standard identity, tan(x) = sin(x)/ cos(x) we can then give
the tangent function. See Protocol 7.

12



Protocol 4: Angle reduction protocol

Input: Secret shared fixed point input 〈x〉 = {[[v]], p, f}.
Output: Secret shared reduced angle 〈w〉 such that 0 ≤ 〈w〉 ≤ π

2
, and flags [[b1]]

and [[b2]].
1 〈d〉 ← 〈x〉 · 1

2·π ; //This is a scalar mult.

2 [[d]]← trunc(〈d〉);
3 〈y〉 ← 〈x〉 − [[d]] · (2 · π);
4 [[b1]]← 〈y〉 > π;
5 〈w〉 ← choose([b1], (2 · π)− 〈y〉, 〈y〉);
6 [[b2]]← 〈w〉 > π

2
;

7 〈w〉 ← choose([[b2]], (π − w)− 〈w〉, 〈w〉);
8 return 〈w〉, [[b1]], [[b2]];

Protocol 5: Approximated sin(〈x〉)
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Approximation for 〈sin(〈x〉)〉.

1 〈w〉, [[b1]], [[b2]]← angle red(〈x〉);
2 〈ν〉 ← 〈w〉 · 2

π
;

3 [[b]]← choose([[b1]],−1, 1);
4 〈sin(〈x〉)〉 ← [[b]] · 〈ν〉 · P3307(〈ν〉2);

Inverse trigonometric functions Inverse trigonometric functions can be built
directly, from an approximation to the arctan function via

arcsin(x) = arctan

(
x√

1− x2

)
and arccos(x) =

π

2
− arcsin(x).

For arctan we have to perform a somewhat similar input reduction procedure
as was done for the main trigonometric functions above; as is also the case
in [4]. We first simplify the process by operating on positive values only, since
arctan(−x) = − arctan(x). Thus, we first need to identify the sign of 〈x〉 sign. We
then can reduce 〈x〉 value to the interval [0, 1], by using the formula arctan(x) =
π
2 − arctan

(
1
x

)
. From this point, it suffices to obtain an approximation for

arctan(x) in the interval x ∈ [0, 1]. Which we again do via a Padé approx-
imation P5102(X)/Q5102(X) from [16] (see the Appendix). Protocol 8 shows

Protocol 6: Approximated cos(〈x〉)
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Approximation for 〈cos(〈x〉)〉

1 〈ν〉, [b1], [b2]← angle red(〈x〉);
2 [[b]]← choose([b2],−1, [1]);
3 〈cos(〈x〉)〉 ← [[b]] · P3308(〈ν〉2);

13



Protocol 7: Approximated tan(〈x〉)
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}
Output: Approximation for 〈tan(〈x〉)〉

1 〈w〉, [b1], [b2]← angle red(〈x〉);
2 [[v]]← 〈w〉 · 2

π
;

3 [[b]]← choose([b1],−1, [1]);
4 〈sin(〈x〉)〉 ← [[b]] · [[v]] · P3307([[v]]2);
5 〈ν〉 ← 〈w〉;
6 [[b]]← choose([b2],−1, [1]);
7 〈cos(〈x〉)〉 ← [[b]] · P3308(〈ν〉2);
8 〈tan(〈x〉)〉 ← 〈sin(〈x〉)〉/〈cos(〈x〉)〉;

how we obtain this value, by using the building blocks, enumerated in previous
sections.

Protocol 8: Approximated arctan(〈x〉)
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Approximation for 〈arctan(〈x〉)〉

1 [[s]]← 〈x〉 < 0;
2 〈abs(x)〉 ← choose([[s]],−1 · 〈x〉, 〈x〉);
3 [[b]]← 〈abs(x)〉 > 1;
4 〈ν〉 ← choose([[b]], 1

〈abs(x)〉 , 〈abs(x)〉);
5 〈y〉 ← P5102(〈ν〉2)/Q5102(〈ν〉2);
6 〈arctan(〈x〉)〉 ← 〈x〉 · 〈y〉;

Results: Just as in the case of the square root function we present our results in
two tables. To calculate 〈arccos(x)〉, trivially follows from solving 〈arcsin(x)〉,
hence, running times are essentially the same and thus ignored. The first table,
Table 5, gives the offline cost per function call, whereas the second, Table 6,
gives the actual measured costs using our programs.

Discussion: There are some related works that explore similar results but differ
in regards to the underlying method to compute on encrypted data. The problem
of computing trigonometric functions using Homomorphic Encryption was most
recently addressed by Cheon et al. [9]. In their work they tackle various topics
related to fixed point representation in the homomorphic encryption domain.
The authors included results for several operations related to statistical func-
tions. Amongst them, the authors provided timings for sigmoids, using Taylor
series. Their test-bed (a single machine) was fairly similar to the set-up of our
own machines, but they have used Intel i5 processors instead. On their timings

14



Protocol 〈sin()〉 〈cos()〉 〈tan()〉
Multiplication Triples 267 266 680

Square Tuples 1 1 1

Shared Bits 3806 3562 8018

Protocol 〈arcsin()〉 〈arctan()〉
Multiplication Triples 2053 967

Square Tuples 0 0

Shared Bits 13431 7732
Table 5. Offline data needed for a single fixed point trigonometric operation

Full Threshold Full Threshold Shamir
2 Parties 3 Parties 3 Parties

Protocol 〈sin()〉 〈cos()〉 〈tan()〉 〈sin()〉 〈cos()〉 〈tan()〉 〈sin()〉 〈cos()〉 〈tan()〉
Offline (sec) 3.78 3.37 7.89 4.62 4.24 9.49 0.084 0.084 0.18
Latency (sec) 0.0042 0.0035 0.0053 0.0050 0.0043 0.0076 0.0044 0.0045 0.0078
Throughput (ops/sec) 617 561 289 542 724 301 446 467 239

Full Threshold Full Threshold Shamir
2 Parties 3 Parties 3 Parties

Protocol 〈arcsin()〉 〈arctan()〉 〈arcsin()〉 〈arctan()〉 〈arcsin()〉 〈arctan()〉
Offline (sec) 15.43 7.36 18.3 8.70 0.56 0.18
Latency (sec) 0.024 0.0068 0.028 0.0082 0.030 0.0089
Throughput (ops/sec) 41 275 57 218 40 191

Table 6. Performance figures for Full Threshold (2 and 3 parties) and Shamir with 3
parties for the fixed point trigonometric operations.

themselves, they were slightly slower than what it was achieved by this work.
Namely, their variant of the HEEAN protocol, was capable of evaluating sigmoid
functions in around 167 ms (non-amortized cost), whereas our most common
set-up, which considers three parties using Shamir’s secret sharing such a func-
tion could be evaluated in 4 ms. As a final note, it has to be taken into account
that Homomorphic Encryption and MPC are often targetted at different scenar-
ios, thus making difficult to establish direct comparison, given that the protocol
selection does not exclusively depends on their performance.

5 Exponentiation and Logarithms

In this section, we explore how to obtain the power and the logarithm of any
base, to any exponent. This can be achieved by the use of standard logarithmic
identities and numerical approximations; namely logb(x) = log2(b) · log2(x)
and exp(x, y) = xy = exp(2, y · log2(x)).

Logarithmic Function: To calculate 〈log2(x)〉, we first need to express 〈x〉
using the secret shared floating point notation used in [1]. This is to enable us to
extract the normalized value of x in the range [0.5, 1], to enable the calculation of
the function via numerical approximation. We denote this operation as follows:

([[vf ]], [[ff ]], [[s]], [[z]])← f cast(〈x〉),

15



which produces the elements to encode the shared fixed point number 〈x〉 as a
shared floating point number. The details of these elements is as follows:

- [[s]] is a sharing of the sign of x.
- [[z]] is a sharing determining whether x is zero or not.
- [[ff ]] is the secret shared significand for the representation.
- [[vf ]] is the mantissa, namely an integer value which is normalized to be in

the range [2k−1, . . . , 2k).

The underlying floating point number can thus be expressed as (1− 2 · s) · (1−
z) · vf · 2ff . To compute f cast(〈x〉) we make use of the method introduced by
Aliasgari et al. [1]. Internally, this functionality determines the position of the
MSB in [[v]], this enables us to obtain the number of bit shifts needed to compute
[[vf ]] and, hence, 〈ff 〉 from the [[v]] and f values used to represent 〈x〉. We direct
the reader to [1] for a more complete explanation of this conversion routine.

Let us define [[ef ]] = k + [[ff ]]. To obtain the 〈log2(x)〉 we map 〈x〉 to the
range [0.5, 1], by computing 〈ν〉 = 〈 1

2k 〉 · [[vf ]]. Then we can use it to compute
〈log2(x)〉 = [[ef ]] + 〈log2(ν)〉. The approximation to 〈log2(ν)〉 can then be pro-
duced by a Padé approximation, calculated by the means of the P2524/Q2524

polynomials, introduced by [16] (and given in the Appendix). Protocol 9 de-
scribes this process, and the approximation in more detail. Note that we define
for this function log2(x) = 0 when x ≤ 0. The motivation behind this behaviour
is given because, including any abort would signal, when the answer is opened,
information related to the input.

Protocol 9: Returns the Approximated 〈log2(x)〉
Input: secret shared fixed point input 〈x〉 = {[[v]], k, f}
Output: approximation for 〈log2(x)〉

1 ([[vf ]], [[ff ]], [[s]], [[z]])← f cast(〈x〉);
2 〈ν〉 ← 〈 1

2k
〉 · [[vf ]];

3 〈P/Q〉 ← P2524(〈ν〉)/Q2524(〈ν〉);
4 〈log2(x)〉 ← (1− [[z]]) · (1− [[s]]) · (〈P/Q〉+ k + [[ff ]]);

Exponentiation Functions: We are left with deriving 〈exp(2, x)〉, for a secret
shared input 〈x〉. Due to standard identities, this can be obtained from a polyno-
mial approximation to exp(2, x) in the interval [0, 1]. In this regard, we first need
to isolate the integral part [[i]] and fractional remainder 〈r〉 of the input value
〈x〉 such that 〈x〉 = [[i]] + 〈r〉. We can then calculate 2[[i]], using conventional
techniques for bit-decomposition and exponentiation e.g., [11]. We can obtain
2〈r〉 using a polynomial approximation, by means of P1045(〈r〉), as given in the
Appendix. From that point on, it suffices to follow the identities outlined at the
beginning of this section to obtain 〈exp(x, y)〉.

16



Protocol 10: Approximated 〈exp(2, x)〉
Input: Secret shared fixed point input 〈x〉 = {[[v]], k, f}.
Output: Approximation for 〈exp(2, x)〉

1 [[s]]← 〈x〉 < 0;
2 〈x〉 ← choose([[s]],−1 · 〈x〉, 〈x〉); //Convert input to positive number

3 [[i]]← trunc(x); //extract integer component of x

4 〈r〉 ← 〈x〉 − [[i]]; //Extract fractional component of x

5 ([[i]]0, ..., [[i`−1]])← bit decompose([[i]]);

6 [[d]]←
∏`−1
j=0([[ij ]] · 22j + 1− [[ij ]]);

7 〈u〉 ← P1045(〈r〉);
8 〈g〉 ← 〈u〉 · [[d]];
9 〈exp(2, x)〉 ← choose(1− [[s]], 〈g〉, 1

〈g〉 );

Protocol 〈log2(x)〉 〈exp(2, x)〉
Multiplication Triples 1880 1337

Square Tuples 0 1

Shared Bits 5937 7688

Table 7. Offline data needed for a single fixed point exp/log operation

Results: Under default precision parameters of the SCALE-MAMBA system, and
because of the size of the polynomials used for our approximations of both base
two functions i.e., 〈log2(x)〉 and 〈exp(2, x)〉, numerical results become less ac-
curate and numerically unstable. Thus, to run our experiments in this example,
we doubled the size of our inputs and their precision i.e. we use k = 81, f = 40,
κ = 80. This, of course, influences the field size on which we operate, which has
to be of at least 245 bits, instead of the 128 bits modulus used on our other
experiments. Bigger field sizes also imply an increase on communication cost
given that the size of the shares increases accordingly. Note that, as we use some
level of bit decomposition in our protocols, the number of triples required also
increases with the size of k and κ. Our results are presented in Tables 7 and 8.

Full Threshold Full Threshold Shamir
2 Parties 3 Parties 3 Parties

Protocol 〈log2(x)〉 〈exp(2, x)〉 〈log2(x)〉 〈exp(2, x)〉 〈log2(x)〉 〈exp(2, x)〉
Offline (s) 14 18 15.89 19.83 0.27 0.35

Latency (s) 0.015 0.015 0.018 0.016 0.021 0.18

Throughput (ops/s) 66 76 56 66 50 64

Table 8. Performance figures for Full Threshold (2 and 3 parties) and Shamir with 3
parties for the fixed point exp/log operations.

Discussion: Just as for the trigonometric functions we can compare our work
to that of Cheon et al. [9] using homomorphic encryption. They perform can
perform exponentiation operations in about 164 ms (not amortized), whereas we

17



can perform an exponentiation, with a known public base, in about 2.5 ms (under
our 3 parties Shamir based setting). It is worth noting that Dimitrov et al. [15]
also provided implementations for the exponent function, using alternative ways
to represent these rational numbers, using MPC. However, it is difficult to draw
direct comparisons with this later work as they target passively secure MPC,
whereas we focus on actively secure MPC.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and
Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070, and by the FWO under an Odysseus project GOH9718N.

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS 2013. The Internet Society (Feb 2013)

2. Aly, A., Keller, M., Orsini, E., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.:
SCALE and MAMBA documentation (2018), https://homes.esat.kuleuven.be/

~nsmart/SCALE/

3. Bayatbabolghani, F., Blanton, M., Aliasgari, M., Goodrich, M.: Poster: Secure
computations of trigonometric and inverse trigonometric functions

4. Bayatbabolghani, F., Blanton, M., Aliasgari, M., Goodrich, M.: Secure fingerprint
alignment and matching protocols. arXiv preprint arXiv:1702.03379 (2017)

5. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (Aug 1992)

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., López, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (Oct 2008)

7. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., Prisco, R.D. (eds.) SCN 10. LNCS, vol. 6280, pp. 182–
199. Springer, Heidelberg (Sep 2010)

8. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion,
R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (Jan 2010)

9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of ap-
proximate homomorphic encryption. Cryptology ePrint Archive, Report 2018/931
(2018), https://eprint.iacr.org/2018/931

10. Cybernetica SA: Sharemind (2018), https://sharemind.cyber.ee
11. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (Mar 2006)

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (Sep 2013)

18



13. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (Aug 2003)

14. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

15. Dimitrov, V., Kerik, L., Krips, T., Randmets, J., Willemson, J.: Alternative imple-
mentations of secure real numbers. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16. pp. 553–564. ACM Press (Oct
2016)

16. Hart, J.F.: Computer Approximations. Krieger Publishing Co., Inc., Melbourne,
FL, USA (1978)

17. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu, Estonia (2015)

18. Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite
collision analysis. Cryptology ePrint Archive, Report 2013/850 (2013), http://

eprint.iacr.org/2013/850

19. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Heidelberg (Apr / May 2018)

20. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels
in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp.
181–199. Springer, Heidelberg (Sep 2018)

21. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer
and floating-point arithmetic. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach,
D.S., Brenner, M., Rohloff, K. (eds.) FC 2016 Workshops. LNCS, vol. 9604, pp.
271–287. Springer, Heidelberg (Feb 2016)

22. Liedel, M.: Secure distributed computation of the square root and applications.
In: Ryan, M.D., Smyth, B., Wang, G. (eds.) Information Security Practice and
Experience. pp. 277–288. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

23. Maurer, U.: Secure multi-party computation made simple. Discrete Applied Math-
ematics 154(2), 370–381 (2006)

24. Medina, H.A.: A sequence of polynomials for approximating arctangent. The
American Mathematical Monthly 113(2), 156–161 (2006), http://www.jstor.org/
stable/27641866

25. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-
decomposition and a generalization to bit-decomposition. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (Dec 2010)

26. Ning, C., Xu, Q.: Constant-rounds, linear multi-party computation for exponenti-
ation and modulo reduction with perfect security. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 572–589. Springer, Heidelberg (Dec 2011)

27. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private
distributed computation. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM
CCS 13. pp. 813–826. ACM Press (Nov 2013)

A Polynomial and Padé Approximations

Tables in this appendix provide the concrete polynomials for the Polynomial/Padé
approximations used by our protocols. The tables were extracted from Hart’s

19



Computer Approximations [16]. We follow the same nomenclature as the book’s
author. That is to say, scientific notation where each of the polynomial coeffi-
cients, is given by its Significand (s) and its coefficient Magnitude (m). Let ci, be
the coefficient of term i, for all i ∈ P (x). Then ci can be obtained by calculating
mi · 10si . This is true for all polynomials in this Appendix.

P3307(X): The polynomial that is used to approximate the function sin(x) on
the interval [0, π2 ]. The absolute error of the approximation is given by:∣∣∣sin(x)− x · P3307(x2)

∣∣∣ < 10−20.19 for x ∈ [0,
π

2
].

s Magnitudes (m) of P3307

0 1 +0.15707 96326 79489 66192 31314 989
1 0 -0.64596 40975 06246 25365 51665 255
2 -1 +0.79692 62624 61670 45105 15876 375
3 -2 -0.46817 54135 31868 79164 48035 89
4 -3 +0.16044 11847 87358 59304 30385 5
5 -5 -0.35988 43235 20707 78156 5727
6 -7 +0.56921 72920 65732 73962 4
7 -9 -0.66880 34884 92042 33722
8 -11 +0.60669 10560 85201 792
9 -13 -0.43752 95071 18174 8
10 -15 +0.25002 85418 9303

P3508(X): The polynomial that is used to approximate the function cos(x) on
the interval [0, π2 ]. The absolute error, for this polynomial is given by:∣∣∣cos(x)− P3508(x2)

∣∣∣ < 10−23.06 for x ∈ [0,
π

2
].

s Magnitudes (m) of P3508

0 0 +0.99999 99999 99999 99999 99914 771
1 0 -0.49999 99999 99999 99999 91637 437
2 -1 +0.41666 66666 66666 66653 10411 988
3 -2 -0.13888 88888 88888 88031 01864 15
4 -4 +0.24801 58730 15870 23300 45157
5 -6 -0.27557 31922 39332 25642 1489
6 -8 +0.20876 75698 16541 25915 59
7 -10 -0.11470 74512 67755 43239 4
8 -13 +0.47794 54394 06649 917
9 -15 -0.15612 26342 88277 81
10 -18 +0.39912 65450 7924

20



P5102(X) and Q5102(X): These are the polynomials we use to calculate the
Padé approximation for the function arctan(x) on the [0, tan(π/4)] interval.
Note that, tan(π/4) = 1. We can express the relative error for this approximation
as: ∣∣∣arctan(x)− x · P5102(x2)

Q5102(x2)

arctan(x)

∣∣∣ < 10−22.69. for x ∈ [0, tanπ/4].

s Magnitudes (m) of P5102 s Magnitudes (m) of Q5102

0 5 +0.21514 05962 60244 19331 93254 468 5 +0.21514 05962 60244 19331 93298 234

1 5 +0.73597 43380 28844 42408 14980 706 5 +0.80768 78701 15592 48851 76713 209

2 6 +0.10027 25618 30630 27849 70511 863 6 +0.12289 26789 09278 47762 98743 322

3 5 +0.69439 29750 03225 23370 59765 503 5 +0.97323 20349 05355 56802 60434 387

4 5 +0.25858 09739 71909 90257 16567 793 5 +0.42868 57652 04640 80931 84006 664

5 4 +0.50386 39185 50126 65579 37791 19 5 +0.10401 13491 56689 00570 05103 878

6 3 +0.46015 88804 63535 14711 61727 227 4 +0.12897 50569 11611 09714 11459 55

7 2 +0.15087 67735 87003 09877 17455 528 2 +0.68519 37831 01896 80131 14024 294

8 -1 +0.75230 52818 75762 84445 10729 539 1 +0.1

P2524(X) and Q2523(X): These are the polynomials that are used to calculate
the Padé approximation for the function log2(x) on the interval [0.5, 1]. The
relative error for this approximation is given by:∣∣∣log2(x)− P2524(x)

Q2524(x)

log2(x)

∣∣∣ < 10−8.32 for x ∈ [0.5, 1].

s Magnitudes (m) of P2524 s Magnitudes (m) of Q2524

0 1 -0.20546 66719 51 0 +0.35355 34252 77
1 1 -0.88626 59939 1 1 +0.45451 70876 29
2 1 +0.61058 51990 15 1 +0.64278 42090 29
3 1 +0.48114 74609 89 1 +0.1

P1045(X): We use this polynomial, to calculate the Padé approximation for the
function exp(2, x) on the interval [0, 1]. The relative error of the approximation
is given by: ∣∣∣exp(2, x)− P1045(x)

exp(2, x)

∣∣∣ < 10−12.11 for x ∈ [0, 1].

s Magnitudes (m) of P1045

0 1 +0.10000 00077 44302 1686
1 0 +0.69314 71804 26163 82779 5756
2 0 +0.24022 65107 10170 64605 384
3 -1 +0.55504 06862 04663 79157 744
4 -2 +0.96183 41225 88046 23749 77
5 -2 +0.13327 30359 28143 78193 29
6 -3 +0.15510 74605 90052 57397 8
7 -4 +0.14197 84739 97656 06711
8 -5 +0.18633 47724 13796 7076

21


