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Abstract. As fault based cryptanalysis is becoming more and more of a practical threat, it is
imperative to make efforts to devise suitable countermeasures. In this regard, the so-called “infective
countermeasures” have garnered particular attention from the community due to their ability in
inhibiting differential fault attacks without explicitly detecting the fault. We observe that despite
being adopted over a decade ago, a systematic study is missing from the literature. Moreover, there
seems to be a lack of proper security analysis of the schemes proposed, as quite a few of them have
been broken promptly. Our first contribution comes in the form of a generalization of infective
schemes which aids us with a better insight into the vulnerabilities, scopes for cost reduction and
possible improvements. This way, we are able to propose lightweight alternatives of two existing
schemes, propose new design based on already established standards, refute a security claim made
by a scheme proposed in CHES’14 and re-instantiate another scheme which is deemed broken by
proposing a simple patch.
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1 Introduction

Fault attacks are becoming a real threat to small scale devices performing a cryptographic operation.
This type of attack forces a certain device to work under suboptimal condition resulting in erroneous
calculations, which is then exploited. Differential fault analysis or differential fault attack (DFA) [7],
one type of fault attack, is predominantly used against symmetric key ciphers. Most, if not all, ciphers
which are considered secure against classical attacks are shown to have severe weaknesses against DFA.
This attack works by injecting a difference (fault) during the cipher execution, which normally results in
flipping one of more bits of a register. Then, after analyzing the output difference of the non-faulty and
the faulty outputs of the cipher computations; the attacker, Eve, is often able to deduce information on
the secret key.

Success of DFA also gives rise to a series of works attempting to protect ciphers from this attack.
Various types of countermeasures are proposed in the literature. All of these countermeasures rely on full
or partial redundancy either in device, cipher implementation or the protocol. Broadly, the state-of-the-art
schemes can be classified into three categories:

(i) Using a separate, dedicated device. They can be either active which uses a sensor to detect any
potential fault, such as [17]; or passive, where a shield to block external interference [3] is used.

(ii) Using redundancy in computation. These type of countermeasures commonly duplicate (fully/partially)
the circuit, followed by a certain procedure which dictates what to do in case a fault is sensed.

(iii) Using protocol level technique. Here the underlying protocol ensures that the conditions required for
a successful fault happens with low probability, e.g., [12,1].

Our interest lies in the second category of fault protection (further elaborated in Section 2). In
particular, we focus on the so-called infective countermeasures (or, infection based countermeasures).
These countermeasures work by doing two computations of the same cipher (which we call, actual and
redundant); thereafter computing the difference (XOR) between them (we denote it by ∆). This difference
serves the purpose of implicitly detecting the fault — a non-zero difference implies a fault injection. This
difference is further processed to produce a random vector in an unintelligible manner. This random vector



is then used to corrupt (infect) output from the actual computation, which is then made available to
Eve. Hence, the attacker gets the original (non-faulty) output if no fault is sensed by the countermeasure;
or gets a random output otherwise — thus she has no meaningful information on ∆. This makes DFA
impossible to mount as it requires the knowledge of ∆.

This idea of infection is proposed to counter the shortcomings of the previously proposed detective
countermeasures (also referred to as detection based countermeasures, see Section 2.2 for more details).
Incidentally however, most of the infective countermeasures proposed in the literature are broken quite
soon (it is even stated in [4] that, “it is very difficult to design a secure infective countermeasure”). In
fact, after more than a decade of their first introduction, we only have a handful of the schemes which are
not broken – and yet, they generally have heavy implementation cost. Our observation is that almost
all of the schemes proposed in this context are ad-hoc solutions, instead of utilizing already established
design standards. This motivates us to look further down into the topic to gain better understanding of
the solution that the infective countermeasures intend to provide. To do a more systematic and complete
study on the designs proposed, we first categorize them. Following this, we revisit the design choices to
explore vulnerabilities and/or improvements.

Since we perform a critical analysis on DFA, we choose to ignore the side channel adversarial model
(such as power or electro-magnetic analysis). Existing SCA countermeasures can be applied on top of our
proposals, hence no special treatment is necessary.

Our Contributions

Here we mention the key contributions.

• We categorize the existing countermeasures into two types, so that a more systematic and comprehensive
study is possible. For convenience, we call them type I (Section 2.3) and type II (Section 2.3)
countermeasures. The basic difference between them is that, the type I schemes allow the full
computations of the actual and redundant ciphers to run, then computes ∆; in contrast, type II
schemes computes the difference on the fly – the difference is computed after each round. Type I
countermeasures are further divided into two sub-categories based on existing literature; multiplication
based (Section 3.1) and derivative based (Section 3.2). Type II countermeasures are also referred to as
cipher level countermeasures (described in Section 4).
• Among the schemes in the type I category, we find two schemes which are not broken. Although, we

do not find any attack to those schemes, we remark that, both of them incur a substantial hardware or
software overhead. In this regard, we propose two hardware efficient alternatives to the countermeasure
described in [24] (Section 3.1). Also, we propose software friendly options for the scheme proposed in
[15], (Section 3.2) based on existing ciphers.

• For the type II schemes, we show (in Section 4.1) the CHES’14 infective countermeasure proposed in
[28] is not any infective countermeasure at all; thereby refuting its security claim and also showing
its weakness against DFA. This also refutes the security claim made by the modified infective
countermeasure in [26]. The basic principle of this paper is same as that of [28]; certain modifications
are done on [28] to make it better resilient against instruction skip attacks on a microcontroller1.

• Interestingly though, this CHES’14 scheme is proposed as an improvement on the first cipher level
infective countermeasure presented in [16] (LatinCrypt’12), which is broken in [4,28]. We propose a
simple patch (in Section 4.2) on the [16] scheme that resists the attacks presented in [4,28].

2 Background

2.1 Context of Differential Fault Analysis

As mentioned earlier, DFA works by injecting a difference (fault) during cipher computation. This fault
injection can be done by various methods; clock/power glitch, LASER shot, to name a few. This fault,
in effect, results in a few bit(s) flip of the cipher at a round. Normally, attacker can choose the round,
but unable to precisely target the words; as a result, she does not know the actual fault value (the value
which is effectively XORed with the cipher state). This is a very commonly employed model, and termed
as random fault model.

Now, flipping one/few bit(s) of a register works as a simplified version of the classical differential attack
(DA). In DA, the difference is inserted through the chosen plaintexts (hence, works at the beginning of

1An instruction skip is considered a separate (non-DFA) type of fault.

2



the cipher execution). In contrast, in DFA, the difference can be inserted at any point of time during
execution (normally it is inserted near the end of the cipher execution). Now, since the difference passes
through a small number of rounds of the cipher (can be even one round), the resistance against differential
attack is not very strong. At the end of the cipher execution, when attacker gets the corresponding output
difference, an analysis similar to DA may reveal secret information.

Although, DA and DFA work very similarly, one may notice that the same idea used to thwart DA
cannot be potentially used to thwart DFA. The DA protection arises from many iterations of the cipher;
which is meaningless in DFA, as attacker is able to attack any round near the end. Hence, the solutions
proposed to protect against DFA require certain assumption on the underlying device/communication
protocol, rather than completely relying on the cipher description (which is the case for DA).

We assume that Eve can inject faults temporarily (the fault values are not permanent — the device goes
back to its normal situation once the source of fault is revoked). This is in contrast to the stuck-at/hard
fault model where particular bit(s) are permanently stuck with the fault value (one may refer to [9] for an
example). The stuck-at model assumes more control for the attacker, and is outside the scope of DFA.
Similar to this, modification of operation is also a strong attacker model (such as instruction skip in [23]),
and also not a DFA. In short, DFA assumes the transient fault model where only the operands are subject
to alteration.

2.2 Early Countermeasures: Detection Based

One of the earliest countermeasures proposed against DFA is known as detective countermeasure (or
detection based countermeasure). Conceptually, it checks whether any fault is injected by explicitly
checking whether ∆ = 0. If a fault is detected; i.e., ∆ 6= 0; it blocks the device from producing the faulty
output (either the output from the cipher is suppressed, or an invalid signal (⊥) is generated, or a random
output is generated). This stops the attacker from getting any meaningful information regarding the
faulty state, which makes DFA impossible. Ideas in this direction are commonly generated from coding &
information theory, such as linear parity [19], non-linear [n, k] codes [22], etc.

2.3 Rise of Infective Countermeasures

It is commonly argued that the concept of explicit equality checking in detection based countermeasures
is subject to bypassing that step (e.g., [21]). Generally, such comparisons rely only on one bit (like the
zero flag in a microcontroller); any attack that is able to flip this bit renders the whole countermeasure
useless2. Although, injecting two faults in one invocation of cipher is not a model commonly used; it is
commented in [25] that, one bit flip is an incidence which may happen “by chance”.

The idea of infection is first proposed in the context of public key cryptography [29]. The concept is
later adopted in symmetric key setting [18,13,16,24,28,26,14]. The infective countermeasures proposed in
[18,13] do not involve randomness, and are attacked in [24]. The authors in [24] also speculates, randomness
may be required in such countermeasures; although they do not present any formal proof. Anyway, all
infective countermeasures proposed thereafter adopt this idea and use randomness. Still, most schemes
proposed in the literature are broken soon. In fact, in our literature survey we observe that basically 3
different schemes are proposed which are not considered broken by DFA.

Before proceeding further, we define terms and notations that we use the subsequent parts of the
document.

• Actual & redundant computations. As mentioned earlier, infective countermeasures require two
computations of the same cipher. These two are referred to as actual and redundant computations;
and symbolically denoted as C = E1

K(P ) and C ′ = E2
K(P ), respectively (E is the underlying cipher

parametrized by the secret key K with input P ). Output from the actual cipher is later infected, and
made available to the attacker. The notations, C and C ′, are used in this document to denote the
output from the actual and redundant computations, respectively. When ∆ is computed after the full
iteration of both the actual and redundant computations are finished; i.e., in type I countermeasures;
∆ = C ⊕ C ′.
Also, we assume that the attacker is able to repeat the exactly same fault, in exactly the same location
and during exactly the same round on one particular device; as many times she wants (as long as it is

2Not to be confused with the case where the fault flips only one bit.
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practicable). Thus, we give the attacker to repeat exactly the same fault over temporal domain, and
to make ∆ constant3.

• η. We denote by η the total number of rounds of the cipher; e.g, for AES, η = 11 (counting the initial
AddRoundKey as a separate round).
• n. We use n to denote the block size of the cipher; e.g., n = 128 for AES.
• RoundFunctionj(·), j = 1, . . . , η. We use RoundFunctionj(p) to denote the jth round function of the

underlying cipher with the corresponding input p, j ∈ {1, . . . , η}. Note that, it does not involve the
round key insertion.
For example, in case of AES;

RoundFunction1(p) = p;

RoundFunctionj(p) = MixColumns(ShiftRows(SubBytes(p))) for j = 2, . . . , 10;

and
RoundFunction11(p) = ShiftRows(SubBytes(p)).

Basically, when the jth round key kj is inserted with RoundFunctionj(·), it gives the actual jth round
of the cipher. In other words, RoundFunctionj(·) is the internal diffusion within the state of a cipher
(not involving the round key).
• RoundFunction0(·). By RoundFunction0(p); we denote the standard (most frequent) round of a cipher,

with input p (without involving the round key). In case of AES, RoundFunction0(p) ≡ RoundFunction2
(p).
• ξ. Generally, cipher designers are conservative in the sense that the number of rounds (η) in a cipher

is kept more than that of what would be required to reach a practical security. Often, we may not
need full η rounds of iteration to ensure a practical security. Instead, with less than η iterations of
RoundFunction0(·), together with corresponding round key insertions; one can achieve good resistance
against classical cryptanalysis techniques such as differential or linear attacks. We denote, by ξ, the
minimum number of iterations required for a cipher to offer a practical security.
For an example, consider a reduced version of AES with 4 RoundFunction0(·) rounds, together with
corresponding AddRoundKeys. It can be proven to have no differential path with probability better
than 2−113 [20]. Hence, we take ξ = 4 for AES.

• R. By R, we denote an n-bit random vector. When more than one random vectors are used, we
denote them by R0, R1, . . ., respectively. These vectors are generated using entropy external to the
cipher computation, and hence uncontrollable & unknown to the attacker. The numeric values of Ri’s
change at every invocation of the countermeasure, but fixed during the course of one invocation of the
countermeasure.

• 0. We use 0 to denote an n-bit vector of all 0 bits.
• 1. Similarly, we use 1 to denote an n-bit vector of which most significant n − 1 bits are 0 and the

least significant bit is 1.

Type I This type of countermeasures allow the two computations, E1
K(·) and E2

K(·) to finish their
iterations full (η) iterations, the difference ∆ is then obtained by XORing the outputs from the actual (C)
and the redundant cipher computations (C ′). Figure 1 shows a pictorial view.

C

C ′

∆ τR(∆) C ⊕ τR(∆)

E1
K

P
⊕

τ
⊕

E2
K R

Fig. 1: Type I infective countermeasures

Then, ∆ is passed through a function τ(·), which is parametrized by R. This τR(∆) is such that,
τR(0) = 0 ∀R; and for any ∆ 6= 0, the distribution of {τR(∆)} is indistinguishable from the uniform
distribution over Fn

2 .

3We assume the most common fault attacker model, where the fault value is constant but unknown to the
attacker; but the same fault can be repeated over time by keeping the source of the fault unchanged.
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Notice that, the attacker should not be able to deduce the input of τR(·) except the case when output
of τR(·) = 0. If, somehow, the attacker is able to do so, then she can find out ∆ and hence can perform a
DFA. So, one intrinsic property of τR(·) is that, it is not invertible, except τR(0) = 0.

The output from τR(·) is XORed with C (the output from the actual computation), and this is made
available. Hence, the attacker gets, C ⊕ τR(∆), which can be interpreted as the infected output from the
actual cipher.

Examples of this type of countermeasures include the schemes in [24] (τR(∆) = R ·∆ over GF(2n)
multiplication) or [15] (τR(∆) = N(R)⊕N(R⊕∆), where N is defined as a non-linear hybrid cellular
automata).

Type II (Cipher Level) This new type of infection is introduced in [16], we also use the alias of cipher
level countermeasure. The schemes belonging to this type rely on the diffusion property of the underlying
cipher to spread the infection. Instead of letting both the ciphers to run full (η) rounds, these schemes try
to identify the effect of a fault at an intermediate round.

Say, the registers S0 and S1 are computing the actual and redundant computations. In the actual
round, S0 is updated only; whereas in the redundant round, S1 is only updated; and a meaningful round
refers to either an actual or a redundant round. Then the XOR difference, δ, is computed (δ = S0 ⊕ S1)4;
and this δ goes through a function σ(·). This function, σ(·) is such that, it outputs 0 only when its input
is 0. Note that, unlike the τ(·)(·) function in type I schemes, it does not take any random input. As
for the choice of σ(·), inversion in GF(28) is proposed per SBox (8-bit) of AES in [16]; whereas [28,26]
propose the n : 1 OR gate. The scheme also takes a random n-bit vector β such that, ∃k0 for which,
k0 ⊕ RoundFunction0(β) gives β (see Section 4 for more details).

One special register, called the dummy register, denoted by S2 here, is initialized with β. In the
so-called dummy rounds, this register S2 is updated only (so, this is not a meaningful round). This S2 is
updated (with influence from ∆) by a clever rule such that:

S2 ←
{
β if no fault is injected,

β′ ( 6= β) if fault is injected.

During the subsequent meaningful rounds, S0 and S1 are updated with influence from S2. So, in case of a
fault, the contents of S0 and S1 are infected, which propagates further in the subsequent rounds. This
ideally makes the final output, S0, random in case of a fault. In case of no fault, the content of S0 and
S1 are not deviated from its actual computation – this ensures a proper execution of the cipher. In our
patched version of LatinCrypt’12, we do not update S0 and S1 during meaningful rounds (see Section 4.2
for more details).

To determine whether a dummy or a meaningful round will take place, the authors in [16] propose to
use a random bit, λ: λ = 0 means a dummy round, λ = 1 means a meaningful round. Also, one counter i
is looped from 1 to 2η; within this loop, RoundFunctionj(·)’s, (1 ≤ j ≤ η) are performed, together with
the corresponding round key insertions. Further, when this is a meaningful round (i.e., λ = 1), i is even
implies an actual round takes place, and i is odd implies a redundant round takes place. We make the
ordering of actual, redundant and dummy rounds deterministic in the patched version; so we do not
use λ. In both [16,28], i is initialized by 1 (odd); which means, a redundant round always precedes the
corresponding actual round. In the modified scheme in [26], however, the order of execution of actual and
redundant rounds are not predetermined.

2.4 Necessity and Sufficiency of Randomness

It is well-known from [24] that, randomness is required in infective countermeasures. However, they do
not present any formal proof; rather, their comment is more of an informal case-study with AES-128.

The attacker basically exploits the information she gains from DFA to derive the key K. If Z is the
information obtained from DFA, then the amount of information available about the key can be measured
by the mutual information between random variables K and Z:

I(K;Z) =
∑

k∈K

∑

z∈Z
Pr(k, z) log

(
Pr(k, z)

Pr(k)Pr(z)

)
.

4In our patched version of [16] (Section 4.2), we do not explicitly compute δ.

5



It is easy to see that I(K;Z) = 0 if and only if K and Z independent. Therefore, it is sufficient that Z is
uniform to make DFA fail.

For instance, in type I infective countermeasures, the attacker gets a Z = C⊕ τR(C ′⊕C) as an output.
Therefore, Z must be random in order to be independent of key K. Thus for infective countermeasure it is
necessary and sufficient to have τR(C ′ ⊕C) random. On the other hand, in the defective countermeasure,
once we detect the faulty cipher, we can simply output Z as constant, here randomness of Z is not
necessary (random Z works too).

Detection based countermeasures set the mutual information zero by suppressing the (faulty) output.
In contrast, infection based countermeasures apply one-way functions on the output difference (which
contains non-zero mutual information regarding the secret key) to reduce the mutual information to zero.

2.5 Scope of Infective Countermeasures

The working procedure of infective countermeasures is, it relies on the (non-zero) difference between the
actual and redundant computations of the cipher. Hence, if both the actual and the redundant computations
are infected by identical faults, which result in the same output in both cases, the corresponding difference
will be zero. In this case, the countermeasure will treat this as non-faulty; and make the faulty output
(from the actual cipher) available to the attacker (without infection). Hence, this type of repeated faults
can be used to make the countermeasure invalid. We call this type of faults double fault.

However, repeating the identical fault in spatial domain would require a very strong adversary model.
Such models, although used in literature (the only case we know is, [27]), is not common. In a more
common model, the authors assume that the attacker can repeat the fault in time domain (such as, the
model used in [2] to break an infective countermeasure). Dealing with double faults is rather tricky in
infective countermeasure; and we leave this problem open for future research.

Besides double faults, infective countermeasures cannot provide safeguard against few other fault
models; for example, ineffective fault attack [9], where knowledge of the faulty output is not required.

Another type of fault attack, known as collision fault attack (CFA) [8], injects transient fault near the
start of the cipher (E) execution. This attack works very similarly to DFA. Suppose, one computation
is allowed to run as-is, where the other computation is injected with a fault (near the beginning of the
cipher execution). If, it happens that, both the faulty and non-faulty outputs are equal; then the situation
is similar to attacking the inverse of the cipher (E−1) by DFA (as the fault can be thought to be injected
near the end of execution of E−1). The attacker may be able to deduce information regarding the early
rounds of the cipher (or equivalently, the later rounds of E−1). This may eventually help her to find
information on the secret key (by an analysis similar to DFA on E−1). We note that, while such model
cannot be protected by type I countermeasures (as both the actual and redundant computations produce
equal output); our patched version of the LatinCrypt’12 countermeasure (Section 4.2) can indeed protect
against such an attack.

In a very recent paper, the authors propose a new block cipher named CRAFT that inherently helps to
mount one particular type of detection mechanism in hardware [6]. When implemented with a particular
error detecting code together with the duplicated cipher, the overall design takes less area in hardware;
compared to common block ciphers when duplicated and implemented with that particular error detecting
code. Hence, the duplicated cipher along with the code can detect faults up to a certain extend. However,
detecting a fault is only one part of the story; the real problem lies in what will be done if a fault is
detected — which is not addressed in the paper. In a real life scenario, this may turn out to be a vital
problem; in part because there is a common belief that the detection mechanism can be bypassed if no
external randomness is used [24]. We believe, an infective countermeasure may be used with this fault
detection mechanism to make the overall design resistant to DFA.

3 Type I Constructions

3.1 Multiplication Based Constructions

To the best of our knowledge, the earliest infective countermeasure, which is still unbroken, is based on
the GF(2n) multiplication proposed in [24] (see Algorithm 1). In our terminology, here τR(∆) = R ·∆,
where (·) refers to a GF(2n) multiplication and given R 6= 0, 1. If R = 0, then C is available without
infection to the attacker. On the other hand, if R = 1, then she gets C ⊕∆ as the output; from where she
can compute ∆ (as she knows C).

Hence, for AES, one has to implement a GF(2128) multiplication. However, the authors acknowledge
that the GF(2128) multiplication is costly in hardware, although they do not provide any benchmarking
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result. So, they come up with the idea of substituting the GF(2128) multiplication by sixteen independent
GF(28) multiplications (which replace the GF(2128) multiplications in Lines 1, 2, 5 of Algorithm 1). The
authors claim, the security of the scheme will remain unchanged, given those sixteen random multipliers
are independent.

Algorithm 1: Multiplication based infective countermeasure: FDTC’12

Input: C, C′; R0, R1, R2 . None of R0, R1, R2 equals 0 or 1
Output: C if no fault; random, otherwise
1: a← R2 · (C ⊕R0) . · refers to GF(2n) multiplication
2: b← R2 · (C′ ⊕R1)
3: c← a⊕ b
4: d← R0 ⊕R1

5: e← R2 · d
6: f ← (C ⊕R0)⊕ c
7: g ← f ⊕ e . g = (C ⊕R0)⊕R2 · (C ⊕ C′)
8: return g ⊕R0

While the original proposal remains unbroken so far; this lightweight alternative is broken soon
afterwards in [4], we describe the attack here. Assume attacker is able to replicate the same fault value in
the temporal domain (i.e., the fault value is constant in all the injections). Under this assumption, the
lightweight variant will restrict two particular values to output per GF(28) multiplication; corresponding
to the cases when R = 0 or 1. So, per GF(28) multiplication, it only outputs 254 values. One of the
missing values is the non-faulty output block (C), whereas the other is the faulty output block (C ⊕∆).
As explained earlier, leaking C ⊕∆ can lead to a successful DFA. This breaks the security claim of the
lightweight proposal, as attacker can exhaust 254 cases (then repeat the procedure sixteen times). For
the original GF(2128) multiplication for AES, it would require 2128 repeats of the same fault and storage;
making it impractical.

One may note that, the authors [24] do not explicitly compute ∆ from C and C ′. This is because they
are careful to avoid what they call combined attacks. Such attacks work by first injecting the fault to cause
a non-zero ∆, then to recover ∆ by side channel attacks (such as the power leakage). In this way, attacker
can solve for ∆ from the side channel information, the knowledge of ∆ further helps to recover the secret
key by utilizing DFA. The authors first mask C and C ′ by XORing them with two random vectors R0 and
R1 respectively; then applying the GF(2n) multiplications (Lines 1, 2 in Algorithm 1); and later canceling
the effect of unwanted masks. In this regard, we observe and argue that if the attacker has access to side
channels then she can choose the degree to which she can use it to obtain further information – she should
not be limited to recover only ∆. More precisely, she can target other potentially useful registers as well;
which may allow her to recover the secret key directly, thereby totally cutting off the need for a DFA.
It seems futile to protect only ∆ against such kind of combined analysis which, we feel, unnecessarily
complicates the scheme. In any case, a full SCA protection is needed (not just ∆). Following this, we focus
our analysis keeping in mind protection against exclusively differential fault and other fault attacks; and
keep side channel protection out of scope. SCA protection, if deemed necessary, can be implemented on
top of our schemes by existing countermeasures.

Our Hardware Friendly Alternatives As GF(2n) multiplication consumes much resources in hardware
(where n is generally 128), here we propose two lightweight alternatives. First we present a scheme that
requires a significant amount of randomness in Algorithm 2(a). It generates n fresh random vectors (each
of which is of n bits) R0, . . . , Rn−1 (none of which is equal to 0,1). They are used to generate a random
n× n binary matrix M , which is then multiplied (over GF(2)) with ∆ to constitute τ(·)(·).

Since this scheme requires a total of n2 bits of entropy; therefore, it may not appear suitable where
frequent random number generations is not easy. Hence, instead of using n2 random bits; we next propose
another scheme that uses 2n bits of entropy, which is described in Algorithm 2(b). We define the ith cyclic
rotation, ρi(·), on an n-bit vector a = (a0, a1, a2, . . . , an−1), recursively as:

ρ0(a) = a;

ρ1(a) = (an−1, a0, a1, . . . , an−2);

ρi(a) = ρi−1(ρ1(a)) for i = 2, . . . , n− 1.

For example, with the vector a = (a0, a1, a2, a3); we have ρ1(a) = (a3, a0, a1, a2); ρ2(a) = ρ1(ρ1(a))
= ρ1(a3, a0, a1, a2) = (a2, a3, a0, a1); and so on. Once we generate an n-bit random vector R0 ( 6= 0,1); we
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create an (n− 1)× n binary matrix M whose ith row is the ith cyclic rotation of R0 (for i = 0, . . . , n− 2).
Following this, we augment another randomly generated n-bit binary vector R1 ( 6= 0,1) as the last row to
M (to make it an n× n binary matrix). Then, we multiply M and ∆ over GF(2).

Algorithm 2(a): Multiplication based infective
countermeasure: Our first variant

Input: C;C′ . |C|, |C′| = n
Output: C if no fault; random, otherwise
1: ∆← C ⊕ C′ . ∆ is represented as an n-bit vector
2: for i← 0; i < n; i← i+ 1 do

3: Ri
$← Fn2

4: M ←


R0

R1

...
Rn−1


5: a←M ·∆ . Multiplication is over GF(2)
6: return C ⊕ a

Algorithm 2(b): Multiplication based infective
countermeasure: Our second variant

Input: C;C′ . |C|, |C′| = n
Output: C if no fault; random, otherwise
1: ∆← C ⊕ C′ . ∆ is represented as an n-bit vector

2: R0, R1
$← Fn2

3: M ←


R0

ρ1(R0)
...

ρn−2(R0)
R1


4: b←M ·∆ . Multiplication is over GF(2)
5: return C ⊕ b

In both the algorithms, if the attacker can guess M , then she will be able to deduce information about
∆. However, guessing M succeeds with probability 1

2n2 for Algorithm 2(a), and 1
22n for Algorithm 2(b).

Remark 1. One may notice, the structure of M in our second alternative is same as a circulant matrix,
except the last row (it would be a circulant matrix if last row would be equal to (n − 1)th cyclic
rotation of R0). However, we observe that circulant M reveals one bit of entropy of ∆. Suppose, ∆ =
(∆0, ∆1, ∆2, . . . ,∆n−1)> and R0 = (r0, r1, r2, . . . , rn−1). So, we have:

τR(∆)

= M ·∆

=




r0 r1 r2 . . . rn−1
rn−1 r0 r1 . . . rn−2

...
...

...
. . .

...
r1 r2 r3 . . . r0







∆0

∆1

...
∆n−1




=

[
n−1⊕

i=0

ri∆i, rn−1∆0 ⊕
(

n−2⊕

i=0

ri∆i+1

)
, . . . , r0∆n−1 ⊕

(
n−1⊕

i=1

ri∆i−1

)]>

XORing all the bits of τR0(∆) will give:
⊕n−1

i=0

⊕n−1
j=0 ri∆j =

(⊕n−1
j=0 ∆j

) (⊕n−1
i=0 ri

)
= (parity of ∆)

AND (parity of R0). Now, since we assume that the attacker is able to replicate the same ∆ over multiple
runs; hence ∆ is constant, so is parity of ∆. Also, R0 is random, which means; its parity is 0 with
probability 1

2 . Hence,

(parity of ∆) AND (parity of R0) =

{
0,with probability 1 ⇐⇒ parity of ∆ is 0

0,with probability 1
2 ⇐⇒ parity of ∆ is 1

.

So, just by XORing all the bits, attacker is able to deduce the parity of ∆.

3.2 Derivative Based Constructions

The generic schemes of the derivative based category follow the concept of the Boolean derivative. More
precisely, they use a non-linear function N(·) and compute τR(·) as the derivative of N(·) at ∆:

τR(∆) = N(R)⊕N(R⊕∆).

In [14], the authors propose such a construction by choosing a quadratic N . However, this scheme is
subsequently broken in [2]. Recall from Section 3 that τR(·) has to be non-invertible. This claim is shown
to be incorrect in [2], under the assumption that attacker can keep ∆ a constant. Note that derivative of
a quadratic function is affine; further the attack generates a sequence where in each bit, there is only one
term of the form ∆iri, and rest of terms are independent of R. So for a constant ∆, it easy to find the
value of ri by seeing the distribution of these bits. Later, the authors of [14] opt for more complex and
high degree function N(·) based on non-linear cellular automata in [15]; and this is the only yet unbroken
proposal in this category.
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R

•

~0 ER ER

⊕

∆

Fig. 2: Derivative based construction of τR(∆): Our design

Our Construction Since the constructions in this category use the derivative of a function, our idea is
to use any existing cipher, rather than the usual approach of using an ad-hoc solution. With our usual
notations, this construction can be described as, τR(∆) = ER(0)⊕ ER(∆), E being any standard cipher.
Figure 2 shows the construction.

We do not impose any restriction on E, so it can be taken as the underling cipher (which is required
to be protected against DFA), or can be another cipher. However, to keep overhead low, we recommend
to reuse the underlying cipher or use an optimized implementation/lightweight cipher.

Advantages This strategy gives us a few advantages over the usual ad-hoc approaches, such as:

1. The underlying cipher is already analyzed thoroughly for weakness. This gives us more confidence (as
breaking such a countermeasure would probably imply breaking the cipher used); particularly when
compared to the new and ad-hoc approaches.

2. The cipher to be protected can be reused. This avoids the necessity to build a new hardware/code
afresh for a new component. In that case, we only have performance penalty in terms of throughput.

Further, as already mentioned, instead of the full cipher; ξ rounds of RoundFunction0(·), together
with the corresponding round key insertion can be used with minimal compromise to security.

3. One may notice, for example, the derivative based construction in [15] is only defined for block size,
n = 128. Although, in theory, the concept can be generalized for other block sizes (e.g., for a 64-bit
block); one has to go through the lengthy design process, and has to guarantee its security from
scratch. In our construction, one can easily choose from a pool of already analyzed ciphers (including
the underlying cipher itself).

Remark 2. Since this type of construction does not require inversion, any hash function or MAC can
be used in place of E. For a hash function H (which does not involve a key), we propose to use
τR(∆) = H(R)⊕H(R⊕∆).

R

•

~0 ER
⊕

E−1
R

∆

Fig. 3: Encrypt-XOR-decrypt based design of τR(∆)

Remark 3. If the cipher E is invertible, then a new construction of τ(·)(·) can be given. The cipher, E,
takes a random vector R as its key and 0 as input. Then it XORs ∆ with ER(0). This is then decrypted
using the same key R. So, τR(∆) is given by: τR(∆) = E−1R (ER(0)⊕∆). We call this type of construction
as encrypt-XOR-decrypt based design, a pictorial description is given in Figure 3. This may, however, cost
more due to inverse key schedule, inverse SBox etc. during decryption.
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Table 1: Software benchmarking results (clock cycles, code size) for type I schemes

Construction
Clock cycles Code size

Reference
AVR MSP AVR MSP

AES Encryption

(unprotected)
1.00 1.00 1.00 1.00 –

GF(2128) Multiplication 2.28 2.57 0.28 0.47 [24], Section 3.1

Algorithm 2(b) 41.86 34.06 0.28 0.35 Section 3.1

Cellular Automata > 2700 > 3400 0.82 0.88 [15], Section 3.2

AES Encryption

Derivative

z = 11 1.65 1.81 1.42 1.35
Section 3.2

z = 4 0.64 0.63 1.06 1.36

3.3 Benchmarking Results for Type I Schemes

Here, we present benchmarking results for type I schemes. The extra component needed to provide external
randomness is not considered, following the previous papers (such as [1]). We consider AES encryption
as the underlying cipher (which is deemed to be protected), so we implement it to get a perspective of
overhead (so, n = 128, η = 11).

For the GF(2128) multiplication in [24], we choose the irreducible polynomial as, x128 + x7 + x2 + x+ 1
(the same polynomial used in AES-GCM). Also, since we do not consider the combined attacks (i.e., the
fault attacks coupled with side channel attacks; see Section 3.1), we perform this field multiplication
only once (instead of 3 times, as in Algorithm 1). We only implement Algorithm 2(b) (second hardware
friendly alternative, see Section 3.1), as the other alternative (Algorithm 2(a)) can be considered a part of
it. We also implement the non-linear hybrid cellular automata based design in [15] (Section 3.2). For the
derivative based construction that relies on a standard cipher, we take AES encryption.

All type I schemes are implemented as stand-alone module, which means; one has to account for the
additional clock cycles/circuitry needed to run the actual and the redundant cipher, as well as other
subsidiary modules (such as, XORing the outputs of the actual and the redundant ciphers etc.).

For software, we implement two versions of the derivative and encrypt-XOR-decrypt based implemen-
tations; corresponding to z = 4 and z = 11, where we consider the cipher constituted by z-rounds of Round
Function0(·), with corresponding AddRoundKeys5. Such reduced round version helps to reduce latency. In
Table 1, we present the software performance results (both the clock cycles and code size) of our type I
proposals, along with the existing ones. These are given relative to 1.00× that of the unprotected AES

encryption. The data presented here are taken as the average of multiple runs. We use open source codes
available in FELICS tool [10] for AVR and MSP architectures.

As it can be seen, the derivative scheme based on AES (with z = 4) outperforms other schemes in
software (0.64× in AVR and 0.63× in MSP) in terms of clock cycles. Technically, these are equivalent to 8
rounds of AES, minus the key schedule. In terms of relative code size, the Algorithm 2(b) works similar to,
if not better, than a single GF(2128) multiplication [24].

The data in the previous table may appear counter-intuitive; particularly noticing the GF(2128)
multiplication takes less clock cycles than the matrix multiplication in Algorithm 2(b). However, one
should keep in mind that:

1. All implementations are quite basic. There are scopes to optimize the codes keeping clock cycles/code
size in mind. The reason behind this is to get a fair comparison among the constructions. For
example, the matrix multiplication in Algorithm 2(b) is done on bit-by-bit basis. In the 8-bit AVR
microcontroller, this can be sped up by using byte-by-byte operations.

2. The FELICS framework takes the input and output test vectors in (arrays of) bytes. This comes in
handy, e.g., for AES; but causes extra overhead for bit-oriented constructions. For the bit-oriented
matrix multiplication in Algorithm 2(b), one has to go through additional conversion from byte to bit
(at the beginning) and from bit to byte (at the end); which adds unnecessary costs.

As for the hardware benchmark, we choose the Spartan 3 (3s1500fg676-4) and Virtex 6 (6vcx75tff484-1)
FPGA families, and report the results in Table 2. Here, our hardware friendly variant, Algorithm 2(b)
outperforms all other designs in both the families. In fact, the relative amount of resource utilization in
the devices are negligibly small.

5Not to be confused with notation: z is a parameter, whereas ξ is a constant for a given cipher (e.g., ξ = 4 for
AES). So, z can take any value from [ξ, η].
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Table 2: Hardware benchmarking results (FPGA) for type I schemes

Construction
Spartan 3 Virtex 6

Reference
Slices

Slice
F/Fs

4-input
LUTs

Slice
Registers

Slice
LUTs

AES Encryption
(unprotected)

1931
(14)

785
(2)

3551
(13)

540†
1402
(3)

–

GF(2128) Multiplication
8398
(63)

–
16496
(61)

–
7264
(15)

[24]
Section 3.1

Cellular Automata
214
(1)

136†
406
(1)

136† 210†
[15]

Section 3.2

Algorithm 2(b) 91† 130† 88† 130† 56† Section 3.1

(·) indicates % resource utilization † indicates negligible utilization

4 Type II (Cipher Level) Constructions

Now, we focus on the type II constructions. At first, the n-bit random vectors β and k0
6 are so chosen

that,

RoundFunction0(β) = β ⊕ k0.

Finding such pairs is easy in SPN ciphers – one can set a β randomly, then compute, k0 = β ⊕
RoundFunction0(β). Notice that, β uniquely identifies k0; so once a k0 is fixed (based on a β), for β′

(6= β), RoundFunction0(β′)⊕ k0 will not give β. Both β and k0 are (re-)generated at each invocation of
the countermeasure, but are fixed during one invocation. They are kept secret from the attacker.

However, finding such (β, k0) pair for Feistel constructions can be tricky in general. In a Feistel cipher,
the f function can map n1 bits to n2 ( 6= n1) bits — in such a case, such k0 does not exist (as length of β
and k0 are different). Further, the round key can be non-linearly inserted (in contrast to SPN ciphers,
where they are always XORed); in which case, one has to go through a rigorous computation to get k0 for
a given β, which may turn out to be quite costly. We thus keep the incorporation of type II schemes for
Feistel ciphers out of scope for this work. There can be Feistel ciphers, where these countermeasures are
applicable at ease; but it has to be possibly checked on a case by case basis, and may not be generalized.

We use the following notations: ¬ for logical negation, ∧ for logical AND, ∨ for logical OR, +
for arithmetic addition, × for arithmetic multiplication, d·e for the ceiling function, x · y for scalar x
multiplication with the vector y over GF(2), ]x(y) for number of occurrence(s) of element x in vector y.

We now briefly describe how infection in [16] works (see Algorithm 3). A variable, i, loops from 1
until it reaches 2η. At each round, a randomly generated bit, λ, determines whether this round will be a
dummy round (i is not incremented) or a meaningful (actual or redundant) round (i is incremented by 1).
When λ = 0, a dummy round occurs. It sets the value β to the register S2 (S2 is also initialized with β).
When λ = 1, an actual or a redundant round occurs, depending on whether i is even or odd, respectively.

Since, λ = 1 makes i from even to odd, or vice-versa; both the actual and redundant rounds are
carried out η times. The two registers, S0 and S1 are used to compute the actual and redundant rounds,
respectively. The variables a and b are updated such that:

a =





0 if λ is 1 and i is even (actual round),

1 if λ is 1 and i is odd (redundant round),

2 if λ is 0 (dummy round);

b =

{
0 if λ is 0 (dummy round),

di/2e otherwise (meaningful round).
.

Effectively, a determines which register (among S0, S1, S2) to update; and b determines which Round

Function(·)(·) and which round key/k0 to use (Sa ← RoundFunctionb(Sa)⊕ kb, Line 8).
Since we start i from 1 (odd), the redundant round always precedes the actual round. Three back-up

registers, T0, T1, T2 are also updated based on a. Basically, Ta holds a copy of Sa. Then ∆ is computed by
T0 ⊕ T1, which is passed through a function σ(·) which has the property of outputting 0 if the input is 0.
The variable c is updated with the following rule:

c =

{
σ(T0 ⊕ T1) if λ is 1 and i is even (actual round),

0 otherwise.

6Not to be confused with notation: k0 is not a round key.
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Basically, c determines whether the output of σ(T0 ⊕ T1) (which is 0 for no fault, or non-zero for a
fault) can be infected to S2 (Line 11) and S0 (Line 12). The authors propose to use inversion in GF(28)
per SBox of AES as σ(·)7.

Finally, to infect the fault which is injected at the last round (when i = 2η − 1 or 2η); the authors
propose to update S0 one last time based on S2 (Line 14: S0 ← S0⊕ RoundFunction0(S2)⊕ k0⊕ β). This
ensures, any infection passes through at least one RoundFunction0(·).

If no fault is injected, then both the actual and redundant states (S0, S1) as well as T0, T1 contain the
same computation of the cipher; and the dummy state S2 as well as T2 contain β. Injecting a fault during
a dummy round (λ = 0) will not give attacker any meaningful information. If a fault is injected during an
actual round (S0), then it will infect both S0 and S2 (Lines 12, 13). Note that, this infection will spread
in S0 in the subsequent actual rounds. Also, notice that, the c is zero for a redundant round, that is due
to the fact that the corresponding actual round is not computed (but the redundant round is computed).
Now, the infection in S2 will change the subsequent update of S2 from β (Line 8); this will change T2
from β (Line 9). Now that T2 6= β, in all the subsequent rounds (actual, redundant and dummy alike)
T0, T1 and T2 will be infected more. In turn, this will infect subsequent S0 and S2 more. Finally, each of
S0, S1, S2, T0, T1, T2 will contain random values.

Algorithm 3: Infective countermeasure: Latin-
Crypt’12 (for SPN)

Input:


P

β; k0

round keys kj ; j = 1, . . . , η

derived from K

. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: T0 ← 0; T1 ← 0; T2 ← β
3: i← 1
4: while i ≤ 2η do

5: λ
$← F1

2

6: a← (i ∧ λ)⊕ ((¬λ)× 2)
7: b← di/2e × λ
8: Sa ← RoundFunctionb(Sa)⊕ kb
9: Ta ← Sa ⊕ T2 ⊕ β

10: c← (λ ∧ (¬(i ∧ 1))) · σ(T0 ⊕ T1)
11: S2 ← S2 ⊕ c
12: S0 ← S0 ⊕ c
13: i← i+ λ

14: S0 ← S0 ⊕ RoundFunction0(S2)⊕ k0 ⊕ β
15: return S0

Algorithm 4: Infective countermeasure: CHES’14
(for SPN)

Input:



P

β; k0

security level t (≥ 2η)

round keys kj ; j = 1, . . . , η

derived from K

. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: i← 1; q ← 1
3: rstr ← Ft2 3 ]1(rstr) = 2η
4: while q ≤ t do
5: λ← rstr[q]
6: a← (i ∧ λ)⊕ ((¬λ)× 2)
7: b← di/2e × λ
8: Sa ← RoundFunctionb(Sa)⊕ kb
9: c← (λ ∧ (¬(i ∧ 1))) ∧ σ(S0 ⊕ S1)

10: d← (¬λ) ∧ σ(S2 ⊕ β)
11: S0 ← (¬(c ∨ d) · S0)⊕ ((c ∨ d) · S2)
12: i← i+ λ
13: q ← q + 1

14: return S0

If the attacker chooses a redundant round (when S1 is updated) to inject a fault, then it will cause
infection to S0 and S2 in the next actual round. Then, by a similar process, all three registers will be
infected.

Despite its promise, this first cipher level protection is attacked soon afterwards in [4], and later in [28].
The basic observation that leads to the attack is, when fault is injected at the last round (i = 2η−1 or 2η),
infection passes through only one RoundFunction0(·) (Line 14). One round of diffusion is not generally
sufficient to resist Eve to recover information on the faulty state. Hence, attacker can still perform DFA
by injecting at the last round of the cipher computation.

The CHES’14 countermeasure, given in [28] (se Algorithm 4), is much alike to that of the LatinCrypt’12.
The variable, c is still updated the same way, but it now returns a bit instead of an n-bit vector; as σ(·)
now returns 1-bit as output (the n : 1 OR gate is chosen as σ(·)). Another major difference is, this scheme
computes another 1-bit variable d, which is updated such that (Line 8):

7However, they keep the choice for σ(·) relaxed, so other σ(·) can also be used with their scheme.

12



d =

{
σ(S2 ⊕ β) if λ is 0 (dummy round),

0 otherwise (meaningful round).

Then, if (c ∨ d) is 1, then S0 is substituted by S2 (Line 11: S0 ← (¬(c ∨ d) · S0) ⊕ ((c ∨ d) · S2). This
overwrites the content of S0, and makes it random, as content of S2 (= β) is random. Figure 4 depicts the
work-flow. We next show why this is a problem.

Yes

c← 1

No
c← 0

Yes

d← 1

No
d← 0

1

Meaningful
round

fault?

c ∨ d? S′
0 ← S2 = β

Dummy
round

fault?

Fig. 4: Fault detection work-flow in CHES’14 countermeasure

4.1 CHES’14 Countermeasure Is Not Infective

As the heading suggests, our claim is that the scheme proposed in CHES’14 [28] does not fall under the
purview of infective countermeasures. As already noted, the authors in [28] propose their scheme as a
fix for the LatinCrypt’12 countermeasure [16]; which is, indeed, infective (albeit weak). It appears that
the authors of the CHES’14 paper, while attempting to fix the weaknesses of [16], end up doing away
with the infection mechanism. It is further worth mentioning that there have been follow up works on [28]
which claim to further analyze and improve it [26] or scrutinize in the light of non-DFA attacks [5,11].
However, none of them uncovers this fact that this scheme is actually not infective. Below, we reveal our
analysis after a detailed inspection of [28] in contrast to the scheme they try to fix [16].

Before proceeding further, it would be helpful to recall the philosophy of infective schemes: To diffuse
the fault to the entire state of the cipher in a non-deterministic and unintelligible way. This philosophy is
already described in the existing literature, e.g., [24,15]. Even the CHES’14 paper [28, page 94] itself says,
“The infection countermeasure . . . aims to destroy the fault invariant by diffusing the effect of a fault in such
a way that it renders the faulty ciphertext ucnexploitable”. This is in sharp contrast with non-infective
schemes which generally suppress the output or return random output upon explicitly/implicitly detecting
the fault. Our claim is that CHES’14 countermeasure implicitly detects the fault while returning random
output and does not actually diffuse the fault in the state; thereby not following the infection philosophy.

In order to do a comparative analysis, one may recall their descriptions from Algorithm 3 and
Algorithm 4. We start by doing a dry run of the algorithms for two main cases (namely, for the final and
the penultimate rounds). This analysis can be easily extended for early rounds.
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• Initial conditions: i = 2η;λ = 1
• Assume fault injection in Line 8 of Algorithm 3 and in Line 8 of Algorithm 4

Dry Run 1: Algorithm 3, Lines 6 – 15
1: a← 0 . i is even
2: b← η

3: S′0
fault←−−− RoundFunctionη(S0)⊕ kη

4: T0 ← S′0 . Infection begins
5: c8 0
6: S′2 ← S2 ⊕ c
7: S′0 ← S′0 ⊕ c
8: i← 2η + 1
9: S′0 ← S′0 ⊕ RoundFunctionk0(S′2)⊕ β

10: return S′0 . S′0 is the infected state

Dry Run 2: Algorithm 4, Lines 6 – 14
1: a← 0 . i is even
2: b← η

3: S′0
fault←−−− RoundFunctionη(S0)⊕ kη

4: c← 1
5: d← 0
6: S′0 ← S2 = β . No infection
7: i← 2η + 1
8: q ← t+ 1
9: return S′0

. S′0 is just a random state

• Initial conditions: i = 2η − 2;λ = 1
• Assume fault injection in Line 8 of Algorithm 3 and in Line 8 of Algorithm 4

Dry Run 3: Algorithm 3, Lines 5 – 15

Iteration 1: (i = 2η − 2) < 2η
1: λ = 1 . (Say)
2: a← 0 . Actual Round
3: b← η − 1

4: S′0
fault←−−− RoundFunctionη−1(S0)⊕ kη−1

5: T0 ← S′0 . Infection begins
6: c8 0
7: S′2 ← S2 ⊕ c
8: S′0 ← S′0 ⊕ c
9: i← 2η − 2 + 1

Iteration 2: (i = 2η − 1) < 2η
10: λ = 1 . (Say)
11: a← 1 . Redundant Round
12: b← η
13: S1 ← RoundFunctionη(S1)⊕ kη
14: T1 ← S1

15: c8 0
16: S′2 ← S2 ⊕ c
17: S′0 ← S′0 ⊕ c
18: i← 2η − 1 + 1

Iteration 3: (i = 2η)
19: λ = 1 . (Say)
20: a← 0 . Actual Round
21: b← η
22: S′0 ← RoundFunctionη(S′0)⊕ kη
23: T0 ← S′0 . Infection continues
24: c8 0
25: S′2 ← S′2 ⊕ c
26: S′0 ← S′0 ⊕ c
27: i← 2η + 1
28: S′0 ← S′0 ⊕ RoundFunction0(S′2)⊕ k0 ⊕ β
29: return S′0 . S′0 is the infected state

Dry Run 4: Algorithm 4, Lines 5 – 14

Iteration 1: (q = t− 2) < t
1: λ = 1 . (Say)
2: a← 0 . Actual Round
3: b← η − 1

4: S′0
fault←−−− RoundFunctionη−1(S0)⊕ kη−1

5: c← 1
6: d← 0
7: S′0 ← S2 = β . No infection
8: i← 2η − 1
9: q ← t− 2 + 1

Iteration 2: (q = t− 1) < t
10: λ = 1 . (Say)
11: a← 1 . Redundant Round
12: b← η
13: S1 ← RoundFunctionη(S1)⊕ kη
14: c← 1
15: d← 0
16: S′0 ← S2 = β . No infection
17: i← 2η
18: q ← t− 1 + 1

Iteration 3: (q = t)
19: λ = 1 . (Say)
20: a← 0 . Actual Round
21: b← η
22: S′0 ← RoundFunctionη(S′0 = β)⊕ kη
23: c← 1
24: d← 0
25: S′0 ← S2 = β . No infection
26: i← 2η + 1
27: q ← t+ 1
28: return S′0

. S′0 is just a random state

Case 1: Last (Actual) Round Fault We start by analyzing a fault injection in the last actual round.
Dry Run 1 traces the relevant steps of Algorithm 3. It can be seen that, once the fault is injected in the
round; it is diffused. The faulty state is stored in T0 and continues further using c before the last call to
the round function, after which, the infected state is returned.

The CHES’14 scheme (Algorithm 4) is traced by Dry Run 2. It can be noticed that the faulty state
S′0 has no contribution to the final state that is returned (this is merely a random state β). The 1-bit
variables c and d implicitly detect the fault in meaningful or dummy rounds, respectively. If detected, the
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scheme simply replaces the faulty state by a random state; thereby, deviating from the basic notion of
infection. We use red to indicate infection, and blue to indicate substitution.

Case 2: Penultimate (Actual) Round Fault Here, we investigate how a fault propagates through
multiple rounds of Algorithms 3 and 4, by targeting the penultimate actual round for fault injection.

Like before, it can be observed from Dry Run 3 (tracing steps of Algorithm 3) and 4 (tracing steps of
Algorithm 4) that; while for the LatinCrypt’12 countermeasure, the induced fault is diffused across the
actual rounds; the CHES’14 countermeasure ends up substituting the faulty state with a random state
(= β).

It is well understood that detection countermeasures can be rendered useless if the bit that senses the
presence of fault is altered. Even though CHES’14 countermeasure is branch-less; effectively, the security
depends on whether one particular bit is 1 or 0. At the very end, all infective countermeasures replace
the state by a random value (so does this countermeasure). Still, it is necessary that the replacement
subroutine does not rely on one particular bit. That is not the case in [28], and it suffers from the same
vulnerability as detection (viz., it is susceptible to single bit flip). This invalidates the claim that this
countermeasure is ‘infective’. We believe this is a serious security flaw, and this countermeasure may not
be recommended. The same argument works for the modified countermeasure in [26].

4.2 Our Patch for LatinCrypt’12 Countermeasure

One may observe that if a fault is injected in a sufficiently early round, then it passes through sufficient
rounds of diffusion, thus making it random to the attacker. This is valid regardless of the nature (actual,
redundant or dummy) of the round. Hence, to make the [16] scheme sound, what we need is the assurance
that no matter which round attacker chooses; the countermeasure goes through sufficient rounds of
diffusion.

This observation leads us to propose a simple patch for the aforementioned scheme. Recall (Section 4)
that attacker can choose the last meaningful round as the target for fault injection, which goes through
only one round of diffusion (Line 14 of Algorithm 3). So, our patch for this scheme works basically by
retaining the preceding part of Algorithm 3 (with few amendments); mainly to insert more diffusion at
Line 14. In fact, we make use of the following interesting property:

β = RoundFunction0(β)⊕ k0
= RoundFunction0(RoundFunction0(β)⊕ k0)⊕ k0.

We now define z-nested round function, denoted by RoundFunctionz(· , ·); z = 1, 2, . . . , η; recursively
as:

RoundFunctionz(x, y) =

{
RoundFunction0(x)⊕ y if z = 1,

RoundFunction0(RoundFunctionz−1(x, y))⊕ y otherwise.

It is easy to check, independent of z, RoundFunctionz(β, k0) = β. Hence, we propose to substitute
Line 14 of Algorithm 3:

S0 ← S0 ⊕ RoundFunction0(S2)⊕ k0 ⊕ β

by

S0 ← S0 ⊕ RoundFunctionz(S2, k0)⊕ β

where z (≥ ξ) is predetermined.

In a nutshell, we incorporate the following amendments:

• We observe the back-up registers, T0, T1, T2 are indeed redundant – the same functionality can be
obtained by using actual (S0), redundant (S1) and dummy registers (S2) only. So, we do not use them.

• We remove λ altogether. Instead of running the meaningful/dummy rounds in a random order, we
simplify our scheme by running them in a deterministic order. Within a loop of i from 1 to η, we run
the redundant round, actual round and the dummy round (in this order). After this, we compute the
nested round function on a loop of j, counting from 1 to z (≥ ξ).
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• We only infect the dummy register within loop over i, that goes from 1 to η (neither S0, nor S1 is
infected within this loop). This makes sure that S2 contains β (in case of no fault) or something other
than β (in case of a fault). Introduction of nested round function ensures S2 gets sufficient diffusion,
no matter which round attacker targets. At then end, we infect S0 by S0 ← S0⊕S2⊕ β. Since, S2⊕ β
works like a one time pad (similar to the case of type I countermeasures), in case of a fault, attacker
gets no information on S0.

• The reason we do not infect S0 within the loop of i is, attacker can simply bypass any infection in S0

within the loop of i by injecting fault at the last actual round.
• We do not infect the redundant state S1 at all. This is inspired from the observation that, attacker

actually gets the infected S0 (and not S1).
• Instead of computing δ (i.e., δ ← S0 ⊕ S1; S2 ← S2 ⊕ δ) explicitly; we do the computation implicitly

(S2 ← S0 ⊕ S2; S2 ← S1 ⊕ S2). This modification helps to prevent any attack on δ (such as resetting
it to 0 before it updates S2; or skipping the XOR of δ with S2).

• We choose σ(·) as the identity function for simplicity8. Although we do not compute δ (= S0 ⊕ S1)
explicitly; technically speaking, we XOR S0 ⊕ S1 directly to S2.

One motivation for keeping random ordering of dummy/meaningful round (through λ), based on [16],
is to have a somewhat protection against side channel analysis. The authors speculate that, since the
operations in dummy rounds mimic that of a meaningful round; attacker cannot identify a meaningful
round (with probability > 1

2 ). However, this does not amount for secure enough protection against side
channel analysis. For example, say, the attacker can get λ itself by side channel analysis; thus the assumed
SCA security does not hold anymore. As mentioned earlier in Section 3.1, we do not consider Eve to
have the capability to do both fault and side channel attack. As such, we do not claim additional side
channel security from the patched scheme. When side channel protection is solicited, we recommend to
use existing SCA countermeasures: Our patched scheme can be implemented easily even when the cipher
implementations are protected by some SCA countermeasure. In summary, we emphasize that; making
the meaningful/dummy round computation deterministic do not incur additional vulnerability from the
perspective of DFA.

Algorithm 5: Our patched version of LatinCrypt’12 countermeasure (for SPN)

Input:


P

β; k0

round keys kj ; j = 1, . . . , η derived from K

z (≥ ξ)
. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: for i← 1; i ≤ η; i← i+ 1 do
3: S0 ← RoundFunctioni(S0)⊕ ki . Actual round
4: S1 ← RoundFunctioni(S1)⊕ ki . Redundant round
5: S2 ← S0 ⊕ S2

6: S2 ← S1 ⊕ S2

7: S2 ← RoundFunction0(S2)⊕ k0 . Dummy round

8: for j ← 1; j ≤ z; j ← j + 1 do
9: S2 ← RoundFunction0(S2)⊕ k0 . Dummy round

10: S0 ← S0 ⊕ S2 ⊕ β . S2 = RoundFunctionz(S2, k0)
11: return S0

In Algorithm 5, we present an algorithmic description of our patched scheme. As already described, here
we iterate over a loop of i, from 1 through η. Within this loop, we deterministically compute the actual,
redundant and the dummy round, in this order. After the actual and the redundant round computations
are done, we update the dummy register S2 (S2 ← S0 ⊕ S1 ⊕ S2: Lines 5, 6). S2 is also initialized with β
(Line 1). Hence, any fault in actual or redundant round will result S2 to contain a value different from
β. This change in S2 will affect the dummy round computation, ensuring S2 does not contain β (Line

8It is recommended in [16] to use a non-linear function as σ(·). However, we believe, this is not a necessary
condition.
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7). In case of no fault, S2 will continue to contain β. When this loop is over; the following loop over j,
from 1 to z (≥ ξ), will ensure the diffusion is spread sufficiently on S2 (in case of fault)/S2 still contains β
(otherwise) by additional dummy rounds. Finally, S0 is returned after it is XORed with S2 ⊕ β (Line 10).
It can be noted that, injecting fault anywhere during the loop over j will not yield useful information to
the attacker.

Now let us revisit the patched scheme for its usability against CFA (Section 2.5). When Eve injects
fault at any meaningful round, it sets a β′ ( 6= β) at S2; so S2 is now infected (Lines 5, 6). The infection
spreads on S2 over subsequent rounds. Even after several rounds of iteration, if S0 becomes equal to S1

(which is the case CFA wants to utilize), S2 will still be infected (i.e., S2 will contain something 6= β). The
next loop over j will also spread the infection to S2. Hence, S2 will be random (Line 10); this means, S0

will be XORed by by a random vector. Thus, in case of a CFA, attacker will always get a random (infected)
output; and cannot mount the attack. To the best of our knowledge, this is the first CFA countermeasure
reported in the literature.

Algorithm 6: Our patched version of LatinCrypt’12 countermeasure (for SPN): Protected up to µ− 1
instruction(s) skip

Input:



P

β; k0

round keys kj ; j = 1, . . . , η derived from K

z (≥ ξ)
µ (> 1)

. RoundFunction0(β) = β ⊕ k0

Output:

{
EK(P ) if no fault

random otherwise

1: S0 ← P . Actual state
S1 ← P . Redundant state
S2 ← β . Dummy state

2: for i← 1; i ≤ η; i← i+ 1 do
3: S0 ← RoundFunctioni(S0)⊕ ki . Actual round
4: S1 ← RoundFunctioni(S1)⊕ ki . Redundant round
5: for m = 1;m ≤ µ+ z;m← m+ 1 do
6: S2 ← S0 ⊕ S2

7: S2 ← S1 ⊕ S2

8: S2 ← RoundFunction0(S2)⊕ k0
9: S2 ← RoundFunction0(S2)⊕ k0 . Dummy round

10: for j ← 1; j ≤ z; j ← j + 1 do
11: S2 ← RoundFunction0(S2)⊕ k0 . Dummy round

12: for m = 1;m ≤ µ;m← m+ 1 do
13: S0 ← S0 ⊕ S2 ⊕ β . S2 = RoundFunctionz(S2, k0)

14: return S0

In the light of [26] (i.e., resilience of infective countermeasures against the instruction skip attack),
one may notice the interesting observations: Under non-faulty situation, Lines 5 — 7 of Algorithm 5 are
idempotent. So, it does not affect the non-faulty computation of the cipher if these lines are iterated, say,
µ (> 1) times:

1: for m = 1;m ≤ µ+ z;m← m+ 1 do
2: S2 ← S0 ⊕ S2

3: S2 ← S1 ⊕ S2

4: S2 ← RoundFunction0(S2)⊕ k0
In case of a fault, this will help the infection to propagate further in S2. Similarly, the Line 10 is still
vulnerable to one instruction skip. As this line is idempotent under non-faulty situation; we can substitute
it by:

1: for m = 1;m ≤ µ;m← m+ 1 do
2: S0 ← S0 ⊕ S2 ⊕ β . S2 = RoundFunctionz(S2, k0)

This ensures that the Line 10 is protected against µ − 1 instruction skip attack. Altogether, it can be
claimed that the overall construction can withstand up to µ− 1 instruction skips. The complete algorithm
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is given in Algorithm 6. This can pave the pathway to an infective countermeasure which is guaranteed to
have a certain protection against instruction skips.

Benchmarking In Table 3, we present the software benchmarking results (clock cycles and code size)
for the basic patched version of the LatinCrypt’12 scheme (Algorithm 5), for AVR and MSP architectures.
We take AES encryption as the underlying cipher. As before, we use the source codes from the FELICS [10]
tool. However, unlike the benchmarking in type I schemes, which are done as standalone implementations;
this one is done together with AES actual and redundant encryptions (because of the intrinsic nature of
this scheme). We choose two different nested round functions; corresponding to 11 and 4, respectively. As
before, we do not consider the cost due to generation of external entropy. Also, we assume β and k0 are
provided to the algorithm. The figures given here are taken after averaging multiple runs with different
test vectors; and are relative to unprotected AES (in × 1.00 unit). For the 11-nested rounds, the relative
clock cycles is slightly bigger than 3×; this is due to the fact that now AES is running 3 times together
with few other computations9. The relative code sizes are less than 3×, as part of the same code can be
reused (such as the SBox). For the 4-nested round, the relative clock cycles is less than 3 for AVR as now
less than 3× AES is computed; but the relative code size remains roughly the same as 11-nested rounds.
However, for MSP architecture, although the relative clock cycles reduces from the 11-nested rounds; the
relative code size has a slight increase (2.31× in 11-nested to 2.58× in 4-nested). This is probably due to
some optimization done by the compiler; which is more efficient when almost three identical computations
are running, compared to the case where one of them is slightly different.

Table 3: Software benchmarking results (clock cycles, code size) for our patch

Construction Countermeasure Architecture Clock cycles Code size

AES Encryption (unprotected) –
AVR 1.00 1.00
MSP 1.00 1.00

AES Encryption
(protected by Algorithm 5)

11-nested round
AVR 3.25 2.94
MSP 3.69 2.31

4-nested round
AVR 2.90 2.94
MSP 3.13 2.58

Since the same hardware (that is used to design the underlying cipher) can be reused to build this
scheme (with degraded throughput), we do not provide any separate hardware benchmarking here. Roughly,
it can be estimated that 11-nested round countermeasure is comparable to 4× unprotected AES, whereas
4-nested would be around 3.12× unprotected AES. So, the throughputs can be estimated to be downgraded
roughly by this scale.

5 Conclusion

In this work, we study the infective countermeasures, which are used to protect ciphers against certain
classes of fault attacks (including the most common differential fault attacks in symmetric key cryp-
tography). This is the first work studying these countermeasures in details. Apart from providing a
systematic classification, we show several new results. These results range from proposing new type of
countermeasures (that relies on already established standards instead of the usual ad-hoc approaches),
to proposing new lightweight schemes (in both software and hardware). We also show a flaw in the
scheme from [28] published at CHES’14. Moreover, we fix a broken scheme with a little amendment. Our
work underlies the need for more rigorous analysis of not only the standard ciphers, but also the fault
countermeasures.

The main differences between the two types of infective countermeasures are listed here. First, unlike
type I countermeasures; cipher level countermeasures do not construct a separate diffusion function τR(·),
rather they rely on the round function of the underlying cipher to infect the actual computation. Second,
cipher level countermeasures rely on sensing the infection round by round; whereas type I countermeasures
let both the actual and redundant executions to finish before infection. Third, type II countermeasures
compute a so called dummy round, which is idempotent in case of no fault; which is missing in type I.

9The actual and the redundant computations are basically identical except near the very end, hence the
compiler possibly optimizes the code that reduces the clock cycles.
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Fourth, the function τ(·)(·) in type I is recommended to be highly non-linear; in contrast, the non-linearity
in type II countermeasures come from the non-linearity of RoundFunction0(·), (not from σ(·)) hence σ(·)
can be linear. Fifth, a type I construction can be adopted to non-SPN designs, such as a Feistel Network
based block cipher or a stream cipher easily; whereas it may be rather non-trivial to do the same with a
type II construction.

Focusing only on DFA countermeasures gives us the advantage to explore the domain more extensively.
For this purpose, the side channel protection is not considered within the scope (similar to [15]); and we do
not claim any SCA security against our designs in general. As such, they may be vulnerable to side channel
attacks; but in that case, they can be easily protected by incorporating standard SCA countermeasures
(no specialized countermeasure will not be necessary), if/when needed.

Multiple works can be considered in the future scope, here we list a few. First, one may look into
constructing an integrated DFA and side channel countermeasure. Second, protecting against double
faults (that identically affect both the actual and the redundant ciphers) is an interesting problem.
Third, designing infective countermeasures which are more resilient against other types of faults, such as
instruction skip or double fault or IFA, can be an interesting direction to pursue. Finally, a cipher may be
constructed which is more suitable to deploy together with an infective countermeasure.
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