
SANNS: Scaling Up Secure Approximate
k-Nearest Neighbors Search

Hao Chen
Microsoft Research

haoche@microsoft.com

Oxana Poburinnaya
Boston University
oxanapob@bu.edu

Ilaria Chillotti
KU Leuven

ilaria.chillotti@kuleuven.be

Ilya Razenshteyn
Microsoft Research

ilyaraz@microsoft.com

Yihe Dong
Microsoft Research

Yihe.Dong@microsoft.com

M. Sadegh Riazi
UC San Diego

mriazi@ucsd.edu

Abstract—We present new secure protocols for approximate
k-nearest neighbor search (k-NNS) over the Euclidean distance
in the semi-honest model, which scale to massive datasets. One
of the new ingredients is a circuit for the approximate top-k
selection from n numbers that is built from O(n+poly(k)) com-
parators. Using this circuit as a subroutine, we design new k-NNS
algorithms and two corresponding secure protocols: 1) optimized
linear scan; 2) clustering-based sublinear time algorithm.

The new secure protocols utilize a combination of additively-
homomorphic encryption, garbled circuits and oblivious RAM.
Along the way, we introduce various optimizations to these
primitives, which drastically improve concrete efficiency.

We evaluate the new protocols empirically and show that they
are able to handle datasets that are significantly larger than in
the prior work. For instance, running on two standard Azure
instances within the same availability zone, for a dataset of 96-
dimensional descriptors of 10 000 000 images, we can find 10
nearest neighbors with average accuracy 0.9 in under 10 seconds
improving upon prior work by at least two orders of magnitude.

I. INTRODUCTION

The k-Nearest Neighbor Search problem (k-NNS from now
on) can be defined as follows. For a given dataset X ⊂ Rd
lying in a d-dimensional space, and a query point q ∈ Rd,
the goal is to find k data points closest (with respect to
the Euclidean distance) to the query. To improve the search
efficiency, one typically relaxes the k-NNS problem in two
ways. First, one allows the answer to be approximate (i.e., the
returned set of k points should contain most but not necessarily
all of the true k closest points). Second, one may allow to
preprocess a dataset computing some auxiliary information,
which can be later used to speed up the query procedure.

The k-NNS has many applications in modern data analy-
sis, including web search, face recognition, recommendation
systems, advertisement matching, drug design, DNA analysis,
plagiarism detection, motion planning, spell checking, machine
learning and other areas. One typically starts with a dataset
and, using domain expertise together with machine learning
tools, produces feature vector representation of the dataset.
Then, similarity search queries (“find k objects most similar
to the query”) directly translate to k-NNS queries in the feature
space. Let us note, as a side remark, that one standard modern
technique for producing feature vectors is to train a deep neural

network and then read off the feature values from one of the
layers [72]. Even though some applications of k-NNS benefit
from non-Euclidean distances [6], the overwhelming majority
of applications utilize Euclidean distance or cosine similarity,
which can be modeled as Euclidean distance on a unit sphere.
Usually such reduction to the Euclidean geometry can be done
by learning an appropriate feature representation.

When it comes to applications dealing with sensitive data,
such as medical, biological or financial data, the privacy of the
information contained in the dataset and the queries needs to
be ensured. Such settings include: face recognition [34], [62],
biometric identification [35], [10], [28], patient data search in
a hospital [63], [6] and many others. One can naturally pose
the Secure k-NNS problem, where a server stores the dataset
X ⊂ Rd, and a client holds one or several query points q ∈ Rd.
We would like the client to learn k data points (approximately)
closest to q such that the server learns nothing about the query
or the result, while the client should not learn anything about
the dataset besides the answer to the query.

From the theoretical viewpoint, problems like these are
well-understood: one can use secure two-party computation
protocols [68], [41] or homomorphic encryption [56], [27],
[37], [36], [23], [38]. However, the known generic construc-
tions of these primitives as of today seldom lead to practically
efficient protocols for concrete tasks. As a result, secure k-
NNS has been thoroughly studied on its own: see Section I-B
for an overview.

In this paper, we design and evaluate two new highly-
efficient and secure k-NNS protocols. The first protocol is a
secure implementation of the (heavily-optimized) linear scan,
where we compute distances from the query to all the data
points, and then choose k smallest ones. The second protocol is
based on a new sublinear-time k-NNS algorithm, which avoids
computing all the distances. The new algorithm is based on
clustering: at a very high level, during the preprocessing phase,
we cluster the dataset, and then during the query stage, we
search for closest points in several clusters that are the closest
to the query point. Let us point out that—despite the long
line of prior work on secure k-NNS—the present paper is the
first, where a sublinear-time k-NNS algorithm is implemented
securely.

Security guarantee. The security of approximate k-NNS

can be defined in several ways. In this work, we follow
the standard approach in secure two-party computation, and
require that the secure protocol does not reveal more than what
is revealed by the outputs of a plaintext approximate k-NNS
algorithm1.

We remark that in the clustering-based protocol, the client
does learn the hyperparameters: for example, the total number
of clusters and the number of clusters the protocol processes
during the query stage (see Section III-H for more details).
Even though the hyperparameters can a priori be arbitrary, the
client can expect the server to set them in a way that optimizes
the performance of the overall computation. Note that this
situation is similar to the line of work on secure inference of
neural networks (e.g. [46], [60]), where the hyperparameters of
the underlying neural network, such as number of layers and
number of nodes in each layer, are revealed to both parties.
We leave the task of analyzing the potential leakage from the
hyperparameters or hiding them from the client to future work.

We prove simulation-based security of our protocols in
the semi-honest model, where both parties follow the protocol
specification while trying to infer information about the input
of the other party from the received messages. This is an
appropriate model for parties that in general trust each other
(e.g., two companies or hospitals) but need to run a secure
protocol due to legal restrictions. For instance, arguably most
of the cases of secure multi-party computation deployed in
practice operate in the semi-honest model: computing gender
pay gap [17], sugar beets auctions [19], and others. Besides,
any semi-honest protocol can be reinforced to be maliciously
secure (when parties can actively tamper with the sent mes-
sages), though usually it incurs a significant performance
hit [40]. Thus, obtaining a semi-honest protocol for a task is
a first natural step towards malicious security.

A. Our contributions

a) Plaintext approximate k-NNS algorithms tailored to
secure computation: There is a huge body of work on k-NNS
algorithms (both theoretical and practical): see [5], [65], [45]
for an overview of the area. However, those protocols are not
tailored to secure computation. For instance, consider the task
of hiding the database access pattern, which is necessary to
prevent the server learning information about the query. In
algorithms which access all data points in a coherent way – e.g.
in those which do a linear scan – this is not an issue; however,
(non-secure) algorithms that currently perform the best [54] are
not scanning the entire dataset, and therefore one would have
to employ oblivious RAM (ORAM) to hide the access pattern
(see Section II-A). The issue is that the best-performing k-
NNS algorithms, which are based on following paths in certain
carefully constructed graphs, are highly adaptive: addresses of
memory accesses highly depend on the content of the previous
memory accesses. Hence, when implemented securely, such
algorithms would require many rounds of interaction, each
protected by ORAM, which makes them inefficient. Another
issue which greatly affects performance is that the algorithm
from [54] and related ones needs to compute one individual
distance at a time, rather than computing distances to large
sets of points at once. This does not play well with certain

1For an alternative definition of security in this setting, see [43].

optimizations, such as batching the distance computation using
lattice-based AHE.

These observations give us two natural ways for solving
our problem. Our first algorithm performs a linear scan of the
dataset to compute all distances to the query point and returns
the k closest points. To achieve good performance, we employ
a number of algorithmic and implementational optimizations.
In particular, we introduce an efficient circuit that performs
approximate top-k selection which greatly impacts the overall
search performance.

Our second algorithm has sublinear complexity in the
dataset size and it is specifically designed to perform relatively
few non-adaptive memory accesses and compute distances to
many points at once. The starting point is a classic clustering-
based approach, which appears in [44] and relies on the k-
means clustering of the dataset. In short, during the query
stage, we find several clusters, whose centers are closest to
the query, and choose closest points from these clusters as an
answer. The problem with this algorithm is that clusters found
using k-means are typically highly unbalanced in cardinality,
which degrades the performance since we would have to pad
all clusters to the same size to avoid information leakage. In
order to rectify this issue, we perform clustering iteratively at
different scales, making sure the resulting clusters are balanced
in size. See Section III-B for more details.

b) Approximate top-k selection: Both of our algorithms
rely extensively on the top-k selection: given a sequence of n
numbers of b bits each, find k smallest of them2. In order to
implement top-k selection in a secure way, we need to design
a Boolean circuit that performs the top-k selection. If k =
1, this can be easily done in optimal O(bn) gates. For k >
1, the question becomes more interesting. In all of the prior
work, only naı̈ve circuits of sizes O(bnk) or O(b2n) have been
used. One can also use sorting networks and compute top-k
in O(bn log k) gates. We invite the reader to Section III-C for
a more thorough overview of the prior state of the art.

In this work, we show a new randomized circuit for top-k
selection with only O(b·(n+poly(k))) gates, which outputs the
correct result with high probability. The circuit is simple and it
gives a large boost to empirical performance. As a result, even
our version of the linear scan already significantly improves
upon the prior work on secure k-NNS for say k = 10. We also
provide theoretical analysis of the accuracy of the circuit.

c) Mixed protocols for secure k-NNS: Both of our
algorithms utilize two major subroutines: computing distances
between a query and a list of points, and top-k selection. In
case of clustering-based algorithm, we also require random
memory accesses. We implement distance computation using
lattice-based additively-homomorphic encryption (AHE), top-
k selection using garbled circuits (GC) and random access via
distributed oblivious RAM (DORAM). Combining all the three
primitives allows us to achieve better overall performance than
using only one or two of them.

For AHE, we use the SEAL library [55] which implements
the Brakerski/Fan-Vercauteren (BFV) scheme [21], [36]. For
garbled circuits we use our own implementation of Yao’s

2Sometimes, it is useful to return IDs along with the values, but for now
we ignore this issue for clarity.

2

protocol [68], and for DORAM we implement the Floram [32]
in the read-only mode.

d) Optimizing the cryptographic primitives: We have
made several optimizations to the underlying cryptorgraphic
primitives to improve efficiency of our protocol. Most no-
tably, in the Floram construction [32], we replace AES with
Kreyvium [26], which yields a speed-up by more than an order
of magnitude. When we use AHE for distance computation,
we utilize the SIMD capabilities of the BFV scheme via
coefficient-wise packing instead of the commonly used packing
technique via Chinese Remainder Theorem, to simultaneously
compute many distances. Our approach not only avoids expen-
sive homomorphic rotation operations, but also allows setting
the plaintext modulus to a power of two. The latter makes the
top-k part of the algorithm faster compared to using a prime
plaintext modulus, since we can avoid performing expensive
reductions modulo a prime in garbled circuits.

e) Efficient implementation: We implement our proto-
cols in 7400 lines of C++ code and 2300 lines of Python code
and evaluate them on two datasets: SIFT [53] (1 000 000 image
descriptors) and more modern Deep1B [9] (1 000 000 000
image descriptors obtained using deep neural networks, from
which we subsample 1 and 10 million). We require to return
10 nearest neighbors so that on average 9 of them are correct
(i.e., accuracy is 0.9, which is the level of accuracy routinely
adopted in practice). We find that the clustering-based algo-
rithm is faster than the linear scan, up to more than an order
of magnitude. Yet our linear scan protocol is already faster
than prior works by at least another order of magnitude due
to a more efficient top-k circuit.

Overall, we show the first practically efficient secure im-
plementation of a sublinear-time NNS algorithm, and our work
is the first to handle datasets of the scale of tens of millions
points, whereas we are not aware of any prior work, which runs
secure NNS on datasets more than several thousand points.
Finally, let us note that the set of primitives developed in this
paper should be sufficient to implement many other k-NNS
algorithms such as the ones based on locality-sensitive hashing
(LSH) [4]. We plan to investigate this direction in the future
work.

B. Related work

The works [34], [62], [35], [10], [28] consider the secure
computation scenarios that can be mapped to the k-NNS
problem for k = 1, with the exception that [10] returns all
matches with distance below a given threshold. While these
works employ different techniques, they share some common
properties: first, they perform linear scan over the database.
Second, these works use the Paillier AHE scheme [57] for
distance computation (except for [28], which uses secret shar-
ing schemes). In contrast, we use a more recently developed
packed lattice-based AHE scheme which significantly reduces
the computation cost. Moreover, all experiments done in these
works have the dataset size to be at most 5 000.

Several works implemented secure algorithms tailored for
NNS. The work [63] assumes that both dataset and query
belong to the client and the goal is to outsource the k-NNS
computation to a server, while client only pays a minimal cost
per query. This was done using FHE but resulted in significant

inefficiency. In contrast, our work assumes that the database
belongs to the server, and both client and server are allowed to
perform non-negligible computation. The work of [6] considers
approximate NNS problem in a setting very similar to ours.
They focus on a biological application, which requires NNS
with respect to the edit distance. The number of points in their
dataset is relatively small (at most several thousands), so the
top-k selection can be done in a straightforward way (using
O(nk) comparisons). We explore a different regime for the
NNS problem, which is arguably more relevant for practice:
the number of points n is large (in the order of millions or
more), the dimension d is not too high (several hundreds), and
the distance of choice is Euclidean (for instance, this holds for
by now standard and very popular k-NNS benchmarks [7]). In
this regime, as it turns out, the top-k computation is a vast
bottleneck.3

The work [64] implements the entire k-NNS computation
using garbled circuits, which results in prohibitive network
communication unless the dimension d is small (besides,
they consider Hamming distance which is much more gar-
bled circuit-friendly than the Euclidean distance4). The work
of [59] provides a secure k-NNS solution based on the BMR
protocol [13] in the multiparty setting where the database is
distributed among different parties and another party wants to
find the k nearest neighbors among all databases. Finally, the
work [58] provides an extremely efficient secure NNS protocol
in a different security model in which several clients use a
specific hash functions and store hashes of their data on an un-
trusted server. The scheme introduces a trade-off between the
search quality and an upper bound on the information leakage
from hashes. In contrast, our protocols avoid any information
leakage beyond the search result and the hyperparameters.

C. Organization.

In Section II, we recall some background information
on the cryptographic primitives used in this work. We in-
troduce our plaintext k-NNS algorithms in Section III and
the corresponding secure protocols in section IV. We present
implementation details and performance results in Section V.
Finally, we conclude with discussions of future directions in
Section VI.

II. PRELIMINARIES

A. Distributed oblivious RAM (DORAM)

As we have mentioned, previous solutions for secure k-
NNS require computing distance between the query point and
all points in the database. This linear complexity is undesirable,
in particular for large databases. In fact, this problem is
ubiquitous in secure computation involving large datasets:
most of the existing secure computation techniques only handle
computation in the circuit model, whereas in practice, many
computations are efficient in the RAM model and a direct
translation of RAM programs into circuits may incur large
overhead.

3Interestingly, when trying to implement (non-secure) k-NNS on a GPU,
the top-k selection is a bottleneck as well [45].

4Since the Euclidean distance requires multiplications, which are known to
be expensive in terms of the number of gates.

3

One of the constructions that we use in this work in
order to achieve sublinear search complexity is oblivious
RAM (ORAM). ORAM was first proposed by Goldreich and
Ostrovsky [42] to allow a client to outsource data storage to a
server, and later perform efficient read/write operations without
leaking addresses to the server.

ORAM can be used in the context of secure computation,
and the corresponding version is called distributed ORAM
(DORAM). In this scenario, the access address is secret-shared
among two parties that are executing the secure computation
protocol and neither client nor the server know the value of
the address. The goal is to retrieve data at a secret address
and use it within some secure computation protocol without
revealing address or data to either party. One typically requires
the complexity (communication and/or computation) of the
retrieval procedure to be sublinear in the database size. There
are many known DORAM constructions [67], [66], [71], [33],
among which we chose Floram [33] for efficiency reasons.
In this work, we use Floram in read-only mode, and we
further enhance its performance through careful optimizations.
At a high level, we implement and use two subroutines for
DORAM:

• DORAM.Init(1λ, DB) → (kA, kB , DB). This step
creates a masked version of the database (DB) from
the plaintext version (DB) and outputs two secret keys
kA and kB , one to each party.

• DORAM.Read(DB, kA, kB , iA, iB)
→ (DB[i]A, DB[i]B).
This subroutine performs the read operation where
address i is secrete-shared between two parties as
iA ⊕ iB = i. Both parties acquire a XOR-share of
the database content DB[i].

In Section IV-C, we describe these subroutines and various
optimizations in a greater detail.

B. Additive homomorphic encryption (AHE)

We utilize a lattice-based additive homomorphic encryption
(AHE) scheme to securely compute the Euclidean distance
between two points. For our purposes, it suffices to use a
private-key AHE scheme, consisting of the following random-
ized algorithms:

• AHE.KeyGen(1λ) → sk. Given security parameter
λ, generate a secret key used for encryption and
decryption.

• AHE.Enc(sk,m) → c. Encrypt a message m to a
ciphertext c.

• AHE.Add(c1, c2)→ c3. Given encryptions of m1,m2,
output an encryption of m1 +m2.

• AHE.CMult(c, µ)→ c′. Given an encryption of m and
a scalar µ, return an encryption of m · µ.

• AHE.CAdd(c,m′) → c′. Given an encryption of m
and a plaintext m′, return an encryption of m+m′.

• AHE.Dec(sk, c)→ m. Decrypt the plaintext message
m.

We require our AHE scheme to satisfy standard correctness
and two security properties: IND-CPA security and circuit
privacy, which means that a ciphertext generated from Add,
CAdd and CMult operations should not reveal any information
about the operations to the secret key owner, other than the
resulting plaintext message. This is required for privacy, since
in our case the server will input its secret values into CAdd
and CMult. We chose to use the BFV scheme, and we achieve
circuit privacy through noise flooding in the same fashion as
[46].

C. Garbled Circuits

Garbled circuit (GC) is a technique first proposed by Yao
in [68] for achieving generic secure two-party computation.
Abstractly, a garbled circuit of a given Boolean circuit f
is a triple (F, e, d), where F is the garbled circuit, e is an
encoding function and d is a decoding information. One party,
the garbler, randomly samples (F, e, d) and encodes its input
x1 as X1 = e(x1). Then, the two parties execute an oblivious
transfer [47] so that the second party, the evaluator, obtains
X2 = e(x2) while the garbler learns nothing about x2. Finally,
the garbler sends the evaluator F, d,X1, who then evaluates the
garbled circuit, obtains Y = F (X1, X2), and converts it to the
final output y = d(Y) = f(x1, x2) of the computation.

Many improvements to GC have been proposed in litera-
ture, such as free XORs [48] and half-gates [69]. In addition,
we use the fixed-key block cipher optimization for garbling and
evaluation [14]. Using Advanced Encryption Standard (AES)
as the block cipher, we leverage Intel AES instructions to
perform faster garbling and evaluation.

D. k-means clustering

One of our algorithms uses the k-means clustering algo-
rithm [52] as a subroutine. It is a simple heuristic, which
finds a clustering X = C1 ∪ C2 ∪ . . . ∪ Ck into disjoint
subsets Ci ⊆ X , and centers c1, c2, . . . , ck ∈ Rd, which
approximately minimize the following objective function:

k∑
i=1

∑
x∈Ci

‖ci − x‖2.

It is immediate that for a given cluster Ci, the optimal choice
of center is the mean of the points in Ci.

k-means clustering is implemented with repeated Lloyd it-
erations [52] as follows. The cluster centers {ci} are randomly
initialized in the beginning. During each iteration, each point
is attached to the nearest center with respect to the Euclidean
distance. Cluster centers are recalculated at the end of an
iteration by averaging over the points in each cluster. The
algorithm stops either when the center-assignments converge,
or when a preset maximum number of iterations is reached.

III. PLAINTEXT k-NNS ALGORITHMS

A. High-level overview

In this paper, we present efficient and secure implementa-
tions of the following two algorithms.

4

a) Algorithm 1: The first algorithm is a heavily opti-
mized implementation of the straightforward linear scan: we
compute distances from the query point to all the data points,
and then (approximately) select knn data points closest to the
query. At a high level, we will implement distance computation
using AHE, while the selection step is done using garbled
circuits.

To speed up this protocol, we employ the following op-
timization. Computing top-k naı̈vely would require a circuit
consisting of O(nk) comparators. Instead, we use a new
algorithm for an approximate selection of top-k, which allows
for a smaller circuit size (see section III-C) and will help us
later when we implement the top-k selection securely using
garbled circuits.

b) Algorithm 2: The second algorithm is based on the
k-means clustering (see Section II-D) and, unlike the first one,
has sublinear query time. We now give a simplified version
of the algorithm, and in Section III-B we explain why this
simplified version is inadequate and provide a full description
that leads to efficient implementation.

At a high level, we first compute k-means clustering of the
server’s dataset with k = kc clusters. Each cluster 1 ≤ i ≤ kc
is associated with its center ci ∈ Rd. During the query stage,
we find 1 ≤ u ≤ kc centers that are closest to the query,
where u is a parameter to be chosen. Then we compute knn
data points from the corresponding u, and return IDs of these
points as a final answer.

B. Balanced clustering and stash

To implement the above Algorithm 2 securely without
linear cost, we use secure DORAM for retrieval of clusters.
In order to prevent leaking the size of each cluster, we
need to set the memory block size equal to the size of the
largest cluster in the clustering. This can be very inefficient,
if the clustering at hand is not very balanced, i.e., the largest
cluster is much larger than a typical cluster. Unfortunately,
this is exactly what we observed in our experiments. Thus, we
need a mechanism to mitigate imbalance of clusters. Below
we describe one such approach, which constitutes the actual
version of Algorithm 2 we securely implement. With cluster
balancing, our experiments achieve 3.3× to 4.95× reduction
of maximum cluster sizes for different datasets.

We start with specifying the desired largest cluster size
1 ≤ m ≤ n and an auxiliary parameter 0 < α < 1, where
n denotes the total number of data points. Then, we find the
smallest k (recall k denotes the number of centers) such that in
the clustering of the dataset X found by the k-means clustering
algorithm at most α-fraction of the dataset lies in clusters of
size more than m. Then we consider all the points that belong
to the said large clusters, which we denote by X ′, setting
n′ = |X ′| ≤ αn, and apply the same procedure recursively
to X ′. Specifically, we find the smallest k such that the k-
means clustering of X ′ leaves at most αn′ points in clusters
of size more than m. We then cluster these points etc. The
algorithm terminates whenever every cluster has size ≤ m.

At the end of the algorithm, we have T̃ groups of clusters
that correspond to disjoint subsets of the dataset (as a side
remark, we note that one always has T̃ ≤ log1/α n). We

denote the number of clusters in the i-th group by kic, the
clusters themselves by Ci1, C

i
2, . . . , C

i
kic
⊆ X and their centers

by ci1, c
i
2, . . . , c

i
kic
∈ Rd. During the query stage, we find

ui clusters from the i-th group with the centers closest to
the query point, then we retrieve all the data points from
the corresponding

∑T̃
i=1 u

i clusters, and finally from these
retrieved points we select knn data points that are closest to
the query.

We now describe one further optimization that helps to
speed up the resulting k-NNS algorithm even more. Namely,
we collapse last several groups into a special set of points,
which we call a stash, denoted by S ⊆ X . Unlike clusters
from the remaining groups, we perform linear scan on the
stash. We denote s = |S| the stash size and T ≤ T̃ the number
of remaining groups of clusters that are not collapsed.

The motivation for introducing the stash is that the last
few groups are usually pretty small, so in order for them
to contribute to the overall accuracy meaningfully, we need
to retrieve most of the clusters from them. But this means
many DORAM accesses which are less efficient than the
straightforward linear scan.

Note that while the simplified version of Algorithm 2
from Section III-A is well-known and very popular in practice
(see, e.g., [44], [45]), our modification of the algorithm in
this section, to the best of our knowledge, is new. Let us
reiterate that the clustering-based k-NNS algorithms are not
the fastest on the CPU5, but they are a perfect match for secure
computation.

C. Approximate top-k selection

In both of our algorithms, we rely extensively on the
following top-k selection subroutine: given a list of n numbers
x1, x2, . . . , xn, find k ≤ n smallest list elements in the sorted
order. Let us denote the corresponding function, which outputs
a tuple of size k, by MINk

n(x1, x2, . . . , xn). In the RAM
model, computing MINk

n is a well-studied problem, and it
is by now a standard fact that it can be computed in time
O(n + k log k) [18]. However, to perform top-k selection se-
curely, we need to implement it as a Boolean circuit. Suppose
that all the list elements are b-bit integers. Then the desired
circuit has bn inputs and bk outputs. To improve efficiency, it
is desirable to design a circuit for MINk

n with as few gates as
possible.

a) The naı̈ve construction: A naı̈ve circuit for MINk
n

performs O(nk) comparisons and hence consists of O(bnk)
gates. Roughly, it keeps a sorted array of the current k minima.
For every xi, it uses a “for” loop to insert xi into its correct
location in the array, and discards the largest item to keep it
of size k.

b) Sorting networks: Another approach is to first sort
the array and then take the first k elements. We could use
a sorting network such as AKS [1], with O(bn log n) gates,
which is better than the naı̈ve bound whenever k � log n.
The number of gates can be further reduced to O(bn log k)
by splitting the input array into subsets of size k, and then

5However, they are known to be extremely efficient on GPU [45] due to
reasons similar to the ones considered in this paper.

5

repeatedly merging two subsets into one of size k consisting of
the k smallest elements from the union of the two arrays. The
merge operation can be done in O(bk log k) gates using the
AKS sorting network, and we need to perform it O(n/k) times,
which gives a total of O(nk log k) gates. This is asymptotically
better than the naı̈ve method for any super-constant value of k.
However, the hidden constant factor for AKS sorting network
is prohibitively high. At the same time, Batcher’s sorting
network [11] has slightly worse complexity O(n log2 n), but
very good concrete efficiency. Plugging it into the above
construction yields the bound of O(bn log2 k) gates, which
is still better than the naı̈ve approach for super-constant k.

c) Approximate randomized selection: We are not
aware of any circuit for MINk

n with O(bn) gates unless k
is a constant (such bound—if true—would have been opti-
mal, since the input size is bn bits). Instead, we propose
a randomized construction of a circuit with O(bn) gates.
We start with shuffling the inputs in a uniformly random
order. Namely, instead of x1, x2, . . . , xn, we consider the
list xπ(1), xπ(2), . . . , xπ(n), where π is a uniformly (pseudo-
)random permutation of {1, 2, . . . , n}. We require the output
to be “approximately correct” (more on the precise definitions
later) with high probability over π for every particular list
x1, x2, . . . , xn.

We proceed by partitioning the input list into l ≤ n bins
of size n/l as follows:

U1 = {xπ(1), . . . , xπ(n/l)},
U2 = {xπ(n/l+1), . . . , xπ(2n/l)},
. . . ,

Ul = {xπ((l−1)n/l+1), . . . , xπ(n)}.

Our circuit works in two stages: first, we compute the min-
imum within each bin Mi = minx∈Ui x, then we output
MINk

l (M1,M2, . . . ,Ml) as a final result using the naı̈ve circuit
for MINk

l . The circuit size is O(b · (n+ kl)), which is O(bn)
whenever kl = O(n).

Intuitively, if we set the number of bins l to be large
enough, the above circuit should output a high-quality answer
with high probability over π. We state and prove two theorems
formalizing this intuition in two different ways. We defer the
proofs to Appendix C.

Theorem 1. There exists δ0 > 0 and a positive function k0(δ)
such that for every n, 0 < δ < δ0, and k ≥ k0(δ), one can
set the number of bins l = k/δ such that the intersection I of
the output of our circuit with MINk

n(x1, x2, . . . , xn) contains
at least (1− δ)k entries in expectation over the choice of π.

This bound yields a circuit of size O(b · (n+ k2/δ)).

Theorem 2. There exists δ0 > 0 and a positive function k0(δ)
such that for every n, 0 < δ < δ0, and k ≥ k0(δ), one can set
the number of bins l = k2/δ such that the output of our circuit
is exactly MINk

n(x1, x2, . . . , xn) with probability at least 1−δ
over the choice of π.

This yields a circuit of size O(b·(n+k3/δ)), which is worse
than the previous bound, but the corresponding correctness
guarantee is stronger.

In some applications, it is enough to output a binary vector
of length n with exactly k ones on the positions that correspond
to the k smallest entries of the list. It was known how to do this
in O(b2n) gates [24], and we show how to improve this bound
to the optimal O(bn) gates. Such a circuit can be used for the
linear scan, but for the clustering-based algorithm, we need
to return k smallest entries explicitly. Due to this requirement
and also the fact that the new O(bn)-sized circuit has a higher
hidden constant than the above randomized construction, we
decided not to implement it. For completeness and for the
future reference, we describe the new circuit in Appendix D.

D. Approximate distances

To speed up the top-k selection further, instead of exact
distances, we will be using approximate distances. Namely,
instead of storing full b-bit distances, we discard r low-order
bits, and the overall number of gates in the selection circuit
becomes O((b− r) · (n+ kl)).

For the clustering-based algorithm, we set r differently
when we select closest cluster centers and when we select
closest data points, which allows for a more fine-grained
parameter tuning.

E. Putting it together

We now give a high-level summary of our algorithms and in
the next two sections we provide a more detailed description.
For the linear scan, we use the approximate top-k selection to
return the knn IDs after computing distances between query
and all points in the database.

For the clustering-based algorithm, we use approximate
top-k selection for retrieving ui clusters in i-th group for all
i ∈ {1, . . . , T}. Then, we compute the closest knn points from
the query to all the retrieved points using the naive algorithm.
Meanwhile, we compute the approximate top-k with k = knn
between query and the stash. Finally, we compute and output
the knn closest points from the above 2knn candidate points.

Note that in the clustering-based algorithm, we use exact
top-k selection for retrieved points and approximate selection
for cluster centers and stash. The main reason is that the
approximate selection requires a random shuffle of the input
values. The corresponding permutation can be known only
by the server and not by the client to ensure that there is
no additional leakage when the algorithm is implemented
securely. Jumping ahead to the secure protocol in the next
section, the points we retrieve from the clusters will be secret-
shared. Thus, performing approximate selection on retrieved
points would require a secure two-party shuffling protocol,
which is expensive. Therefore, we run a naı̈ve circuit for exact
computation of top-k for the retrieved points.

F. Hyperparameters

Here we list the hyperparameters used by our algorithms.
See Figure 4 and Figure 5 for the values that we use for various
datasets.

Main hyperparameters:

• n is the number of data points

6

• d is the dimension

• knn is the number of data points we need to return as
an answer

• T is the number of groups of clusters

• kic is the total number of clusters for the i-th group,
1 ≤ i ≤ T

• m is the largest cluster size

• ui is the number of closest clusters we retrieve for the
i-th group, 1 ≤ i ≤ T

• uall =
∑T
i=1 u

i is the total number of clusters we
retrieve.

• s is the stash size

• li is the number of bins we use to speed up the selec-
tion of closest clusters for the i-th group, 1 ≤ i ≤ T

• ls is the number of bins we use to speed up the
selection of closest points for the stash

• bc is the number of bits necessary to encode one
coordinate

• bd is the number of bits necessary to encode one
distance (bd = 2bc + dlog2 de)

• bcid is the number of bits necessary to encode the ID
of a cluster (bcid =

⌈
log2

(∑T
i=1 k

i
c

)⌉
)

• bpid is the number of bits necessary to encode the ID
of a point (bpid = dlog2 ne)

• rc is the number of bits we discard when computing
distances to centers of clusters, 0 ≤ rc ≤ bd

• rp is the number of bits we discard when computing
distances to points, 0 ≤ rp ≤ bd

Additional hyperparameters:

• α is the allowed fraction of points in large clusters
during the preprocessing

• N is the ring dimension in BFV scheme;

• q is the ciphertext modulus in BFV scheme;

• t = 2bd is the plaintext modulus in BFV scheme and
the modulus for secret-shared distances.

G. Pseudocode

We now present the pseudocode for plaintext algorithms.
The algorithms use functions MIN (which returns the smallest
element and its ID) and NAIVETOPK (which returns k smallest
elements together with their IDs). We refer to Section III-F for
the hyperparameters used in the below pseudocode. For a point
p ∈ X , we denote ID(p) its ID.

Algorithm 1 Plaintext linear scan

function PLAINLINEARSCANKNNS(q)
The algorithm depends on: rp, knn, ls
for i← 1, . . . , n do

di ← ‖q−pi‖2
di ← b di2rp c

end for
(v1, ID1), . . . , (vknn , IDknn)←
← APPROXTOPK((d1, 1), . . . , (dn, n), knn, ls)

return ID1, . . . , IDknn
end function

Algorithm 2 Plaintext clustering-based algorithm
function PLAINCLUSTERINGKNNS(q)

The algorithm depends on:
partition into clusters Cij and the stash S
knn, rp, rc, ui, li, ls
for i← 1, . . . , T do

for j ← 1, . . . , kic do
dij ← ‖q− cij‖2

dij ← b
dij
2rc c

end for
(v1, ID

i
1), . . . , (vui , ID

i
ui)←

← APPROXTOPK((di1, 1), . . . , (dikic
, kic), u

i, li)
end for
C ←

⋃
1≤i≤T

⋃
1≤j≤ui

Ci
IDij

for p ∈ C ∪ S do
dp ← ‖q − p‖2
dp ← b dp2rp c

end for
(a1, ĨD1), . . . , (aknn , ĨDknn)←
← NAIVETOPK({(dp , ID(p))}p∈C , knn)

(aknn+1, ĨDknn+1), . . . , (a2knn , ĨD2k)←
← APPROXTOPK({(dp , ID(p))}p∈S , knn, ls)

(v1, ÎD1), . . . , (vknn , ÎDknn))←
← NAIVETOPK((a1, ĨD1), . . . , (a2knn , ĨD2knn), knn)

return ÎD1, . . . , ÎDknn
end function

Algorithm 3 Approximate top-k selection
function APPROXTOPK((x1, ID1), . . . , (xn, IDn), k, l)

π ← random permutation of {1, 2, . . . , n}
for i← 1 . . . l do

(Mi, ĨDi)←
← MIN({(xπ(i·n/l+j), IDπ(i·n/l+j))}

n/l
j=1)

end for
return NAIVETOPK((M1, ĨD1), . . . , (Ml, ĨDl), k)

end function

7

H. What does the output of our algorithms leak?

We briefly discuss the potential leakage from the output of
our k-NNS algorithms. Note that this discussion is independent
from the privacy guarantee of our secure protocols, which have
no leakage beyond the output. We note that quantifying the
exact amount of leaked information is likely to be challenging
and we leave this (admittedly, very important) question for the
future work.

One can naturally consider what the exact answer for a
k-NNS query leaks. For example, [50] shows that for low-
dimensional datasets, one can approximately reconstruct the
database after issuing sufficiently many k-NNS queries. Here,
we remark that the current techniques of database recovery
from k-NNS query results still do not scale well to high-
dimension data considered in this work. We also note that
by asking many queries adaptively, the client can recover the
k-NN graph of the dataset, which contains lots of valuable
information about the data, including community structure. To
prevent this, one needs to restrict the client in the number of
queries and the allowed degree of adaptivity.

Next, the leakage can occur due to our answers being
approximate. For instance, just asking the same query several
times, we will be potentially receiving different answers due
to the randomness used in the approximate top-k selection.

IV. SECURE PROTOCOL FOR k-NNS

In this section, we describe the new secure protocols. For
the formal specification, see Appendix F. For the security
proofs, see Appendix E.

A. Overview of our protocol

We give a high-level overview of our secure protocols im-
plementing the plaintext algorithms from the previous section,
followed by description of individual subroutines (AHE, GC,
and DORAM). We start with the clustering-based protocol. For
the illustration of the protocol, see Figure 1.

Recall that the server’s input to the protocol is a partition
of the dataset X into clusters and a stash

X = [
T⋃
i=1

kic⋃
j=1

Cij] ∪ S,

such that each cluster Cji has size at most m. Let cij denote
the center of Cij . Our protocol works in the following stages:

Setup. The server and the client execute DORAM.Init to insert
all clusters from all groups into DORAM, with one cluster in
each block. Clusters are padded by very far points to reach
size m.

Query. This stage consists of the following steps.

1) The server performs T + 1 independent random
shuffles necessary for the approximate top-k: on each
of the T groups of the cluster centers and stash points.

2) For each group of clusters i ∈ {1, . . . , T},
• The client and server use AHE with noise

flooding to compute secret shares of dij =
||q − cij ||2 for all j.

• Client and server run approximate top-k se-
lection algorithm from Section III-C using
garbled circuits, with k = ui, and output
secret shares of ui cluster indices. Before
running top-k, distances are truncated by rc
bits (within the circuit).

3) Client and server input the secret shares of the uall =∑T
i=1 ui indices (i1, j1), . . . , (iuall

, juall
) obtained in

previous step into DORAM.Read to retrieve all points
in C := Ci1j1 ∪ · · · ∪ C

i
uall

j
uall

in secret-shared form.
4) Use AHE with noise flooding to compute secret

shares of distances between q and all points in C∪S.
5) Use garbled circuit to securely evaluate a naı̈ve top-k

circuit, compute secret shares of IDs and distances of
knn closest points in C to the query. The distances
are truncated by rp bits.

6) Use garbled circuit to securely evaluate the approx-
imate top-k circuit from Section III-C to compute
secret shares of IDs and distances of knn closest
points in S to the query. The distances are truncated
by rp bits.

7) Use garbled circuit to evaluate the naı̈ve top-k se-
lection circuit which takes as input secret shares of
the above 2knn points (and truncated distances) and
outputs the IDs of the closest knn points to the client’s
query.

Now, our linear scan protocol can be obtained by setting
the stash equal to the entire database, i.e. S = X , and skipping
the clustering and DORAM altogether. Then, we execute step
(3) and (6) in the above query procedure to obtain a list of
knn IDs.

B. Distance computation from AHE

It is well-known that secure computation of Euclidean
distances can be done using AHE. Among the existing AHE
schemes, we select the lattice-based Brakerski/Fan-Vercauteren
(BFV) scheme [22], [36] with the nice property that it supports
efficient single-instruction-multiple-data (SIMD) operations on
encrypted vectors. This allows us to compute distances from
the query point to many points of the dataset at once. The
idea of using the BFV scheme to perform fast secure linear
operations is in the same spirit as [46]. However, compared
to [46], our approach avoids expensive ciphertext rotations.
Also, we modify the SIMD encoding technique to fit our
scenario, notably removing the restriction on the plaintext
modulus and perform computation modulo a power of two
instead. The benefit of computation modulo powers of two (as
opposed to modulo prime p) is that it allows us to later avoid
a costly addition modulo p transformation inside a garbled
circuit when reconstructing distances from secret shares. Thus,
our approach is more efficient and more compatible with the
garbled circuit components of our protocols.

More precisely, in order to enable SIMD operation such
as elementwise multiplication of vectors in the BFV scheme,
we need to work with plaintexts consisting of integers modulo
some prime p ≡ 1 mod 2N , where N is the ring dimension
parameter. However, we observe that our distance computation
protocol only requires efficient multiplication between scalars
and vectors. Therefore we can drop the requirement on the

8

New Query q

Group 2

Group 1

Group 3

Cluster Center

Data Point

Cluster

Group 2. Distance
Computation

3. Approximate Top-𝒖𝒊 𝒊 = 𝟏…𝑻

Retrieve IDs

Oblivious RAM

4. Access Closest Clusters

5. Distance
Computation

Stash

k-NNS Result

7. Naïve Top-k

Cluster Centers

6. Approximate
Top-k Selection

1. Permutation of
Centers within Groups

6. Naïve Top-k

1

2

3
1

2

1

1 2 1 2 3 1

2 1 2 3 1 1

Fig. 1: Global computation and data flow of SANNS.

plaintext modulus and perform computation modulo some
power of two without losing efficiency.

We now describe our distance computation protocol in
more detail. Recall that plaintext space of the BFV scheme
is a polynomial ring Rt := Zt[x]/(xN + 1), where we take N
to be a power of 2 and t an integer modulus. So a plaintext
is represented as a polynomial with degree less than N and
coefficients in Zt. Then, the client encodes each coordinate
of the query separately into the constant coefficient in Rt,
i.e., we encode the query q = (q[1], . . . ,q[d]) ∈ Rd as
fi = q[i] + 0 · x + · · · + 0 · xN−1 for each 1 ≤ i ≤ d. For
the sake of simplicity, assume that the server has exactly N
points p1, . . . ,pN . It encodes these points into d plaintexts,
each encoding one coordinate of all points, resulting in

gi = p1,i + p2,ix+ · · ·+ pN,ix
N−1, 1 ≤ i ≤ d.

Then, we could verify that
∑d
i=1 figi =

∑N
j=1〈q,pj〉xj−1.

That is, we could compute N dot products using d homo-
morphic scalar multiplications and additions. Our protocol
works by letting the client encrypt each fi into a ciphertext
ci and send to the server; then the server uses AHE.CMult
and AHE.Add to compute a ciphertext encrypting h(x) =∑N
j=1〈q,pj〉xj−1. The server then samples a random poly-

nomial r(x) and uses AHE.CAdd to compute encryption of
h(x) + r(x), which it sends back to the client. The client then
decrypts the ciphertext to obtain h(x) + r(x), and the server
keeps r(x); in other words, the client and the server hold secret
shares of 〈q,pj〉 modulo t. Then, secret shares of Euclidean
distances can be reconstructed via local operations, using the
identity ‖q− pj‖2 = ‖q‖2 − 2〈q,pj〉+ ‖pj‖2.

We need to slightly modify the above routine when com-
puting distances of points retrieved from DORAM. Here the
server does not hold points in the clear: instead, the client
and server secret share the points and their squared Euclidean
norms. We use 〈x〉C and 〈x〉S to denote the client and server’s
shares of a private input x, such that x = 〈x〉C+〈x〉S mod t.
Then, we only need to compute dot products securely between

q and each 〈pj〉S , since

‖q− pj‖22
= ‖q‖22−2〈q, 〈pj〉C〉+〈||pj ||22〉C−2〈q, 〈pj〉S〉+〈‖pj‖22〉S .

C. Point Retrievals Using DORAM

To retrieve points from given clusters, we use Floram, a
DORAM construction proposed by Doerner and Shelat [32].
Here, we briefly explain the functionality of Floram and refer
the reader to the original paper [32] for details.

In Floram, both parties hold identical copies of the masked
database. Let the plaintext database be DB, block at address
i be DB[i], and the masked database be DB. We set:

DB[i] = DB[i]⊕ PRFkA(i)⊕ PRFkB (i),

where PRF is a pseudo-random function, kA is a secret key
owned by A and kB is similarly owned by B. At a high level,
Floram’s retrieval functionality consists of the two main parts:
token generation using Functional Secret Sharing (FSS) [39]
and data unmasking from the PRFs. In Floram, FSS is used to
securely generate two bit vectors (one for each party) uA and
uB such that individually they look random, yet uAj ⊕uBj = 1
iff j = i, where i is the address we are retrieving. Then, party
A computes

⊕
j u

A
j ·DB[i] and, likewise, party B computes⊕

j u
B
j ·DB[i]. The XOR of these two values is simply DB[i].

To recover the desired value DB[i], the parties use a garbled
circuit to compute the required PRFs and XOR to remove the
masks6.

We implemented Floram with a few optimizations. The
first two are proposed by the Floram paper itself. The third
optimization reduces the overhead of FSS evaluation. We also
propose to use a PRF based on Kreyvium [26] instead of AES
as was done in [33]. Last but not least, we reduce the number of
interactions between two parties when accessing the database
at several different indices. We discuss these optimizations
below.

6The retrieved block can be either returned to one party, or secret-shared
between the parties via the same garbled circuit

9

Constant PRG (CPRG). The bottleneck of FSS is many
evaluations of a pseudo-random generator (PRG) within GC.
Doerner and Shelat [32] propose an optimization that replaces
secure evaluation of PRG with log2 n simple secure compu-
tations. As a result of this technique, the round complexity
is increased to log2 n per access but all PRG evaluations
(required by FSS) are performed in plaintext.

Tree trimming. The second optimization proposed for read
operations in Floram is to avoid evaluating last several layers in
FSS tree at a cost of small computational overhead. However,
the overhead is quickly paid off due to the exponential growth
of the last layers in FSS tree. We refer the reader to the Floram
paper [32] for a more detailed explanation.

Precomputing OT. Recall that with CPRG technique, two
parties have to execute the GC protocol log2 n times iteratively
which in turn requires log2 n set of Oblivious Transfers (OTs).
Performing consecutive OTs can significantly slow down the
FSS evaluation. In order to mitigate the overhead, we use
Beaver OT precomputation protocol [12] which allows to
perform all necessary OTs on random values in the beginning
of FSS evaluation with a very small additional communication
for each GC invocation.

Kreyvium as PRF. In original Floram, PRF is implemented
using Advanced Encryption Standard (AES). While computing
AES is fast in plaintext due to Intel AES instructions, it
requires many AND gates to be evaluated within a garbled
circuit. Thus, we propose a more efficient solution based on
stream ciphers. In particular, we implement our PRF using
Kreyvium [26] which requires significantly fewer number of
AND gates (see Appendix B for various related trade-offs).
However, evaluating Kreyvium in plaintext during the initial
database masking adds large overhead compared to AES. To
mitigate the overhead, we pack multiple (512 in our case)
invocations of Kreyvium and evaluate them simultaneously by
using AVX-512 instructions provided by Intel CPUs.

Multi-address access. All of the aforementioned optimizations
improve the performance of a single access. Accessing the
database at k different locations, requires k log2 n number of
interactions. If these memory accesses are non-adaptive, then
the same process can be implemented much more efficiently
by fusing all of the access procedures reducing the number of
rounds to merely log2 n.

D. Top-k selection using Garbled Circuits

For the top-k selection, the client and server start with
secret shares of n distances and IDs. At a high level, we imple-
ment secure top-k selection by plugging the circuit described
in Section III-C into Yao’s garbled circuits [68]. We make
some further optimizations to improve the performance. First,
instead of working with exact distances, we truncate them,
which allows us to reduce the circuit size significantly (see
Section III-D). The truncation is done by simply discarding
some lower order bits after adding the secret shares in the
garbled circuit. The second optimization comes from the
implementation side. Using generic MPC frameworks such
as ABY [28] ends up being problematic for us, since such
frameworks require storing the entire circuit explicitly with
accompanying bloated data structures. However, our top-k

circuit is highly structured (i.e., it is a composition of a certain
small circuit with itself many times), which allows us to work
with it looking at one small part at a time. This means that
the memory consumption of the garbling and the evaluation
algorithms is essentially independent of n, which makes them
much more cache-efficient and as a result much faster. To
accomplish this, we use our own GC implementation with most
of the standard optimizations [13], [49], [14], [70]7, which
allows us to save more than an order of magnitude in both
time and memory usage compared to ABY.

V. IMPLEMENTATION AND PERFORMANCE RESULTS

A. Environment

We perform the evaluation on two Azure F72s_v2 in-
stances (with 72 virtual CPUs and 144 GB of RAM each)
hosted in the “West US 2” availability zone. We evaluate our
algorithms in 1 and 72 threads (for the query procedure, the
preprocessing and OT phases are always single-thread). We
implement networking using ZeroMQ: the latency between
instances ends up being around 0.5 ms, while the throughput
ranges between 374 MB/s on a single thread and 3.30 GB/s on
72 threads. We also perform an experiment on two instances
hosted in “West US 2” and “East US” availability zones. In
that case, the networking is a good deal slower: the latency is
34 ms and the throughput ranges between 36 MB/s for a single
thread, and 2.0 GB/s for 72 threads. We use g++ 7.3.0, Ubuntu
18.04, SEAL 2.3.1 [55] and libOTe [61] for the OT phase
(in the single-thread mode due to unstable behavior when
run in several threads). We implement balanced clustering as
described in Section III-B using PyTorch and run it on four
NVIDIA Tesla V100 GPUs. It is done once per dataset and
takes several hours (with the bottleneck being the vanilla k-
means clustering described in Section II-D).

B. Datasets

We evaluate our algorithms as well as baselines on two
datasets: SIFT (n = 1 000 000, d = 128) is a standard
dataset of image descriptors [53] that can be used to com-
pute similarity between images; Deep1B (n = 1 000 000 000,
d = 96) is also a dataset of image descriptors [9], which
is more modern and are feature vectors obtained by passing
images through a deep neural network (for more details see
the original paper [9]). We conduct the evaluation on two
subsets of Deep1B that consist of the first 1 000 000 and
10 000 000 images, which we label Deep1B-1M and Deep1B-
10M, respectively. SIFT comes with 10 000 sample queries
which we use for evaluation; for Deep1B-1M and Deep1B-
10M, we use a sample of 10 000 data points, which we
remove from the dataset, as queries. For all the datasets we use
Euclidean distance to measure similarity between points. Note
that the Deep1B-1M and Deep1B-10M datasets are normalized
to lie on the unit sphere.

Note that both SIFT and Deep1B have been extensively
used in nearest neighbors benchmarks. In particular, SIFT is
a part of ANN Benchmarks [8], where a large array of NNS
algorithms has been thoroughly evaluated. Deep1B has been
used for evaluation of NNS algorithms in, e.g., [9], [45], [54]
and a number of other places.

7For oblivious transfer, we use libOTe [61]

10

Threads Algorithm Overall query ORAM Top-k Distances OT phase Preprocessing

SI
FT

1
Linear scan 35.4 s

4.52 GB None 15.6 s
4.42 GB

19.8 s
98.8 MB

2.99 s
950 MB None

Clustering 8.63 s
1.77 GB

4.38 s
1.07 GB

1.98 s
645 MB

2.22 s
56.7 MB

0.63 s
166 MB

12.9 s
484 MB

72
Linear scan 6.15 s

4.52 GB None 2.54 s
4.42 GB

3.08 s
98.8 MB N/A None

Clustering 2.36 s
1.79 GB

0.92 s
1.07 GB

1.00 s
666 MB

0.35 s
56.7 MB N/A N/A

D
ee

p1
B

-1
M 1

Linear scan 30.0 s
4.50 GB None 15.1 s

4.42 GB
14.9 s

86.2 MB
3.07 s

950 MB None

Clustering 7.44 s
1.59 GB

3.87 s
921 MB

1.86 s
621 MB

1.67 s
44.1 MB

0.59 s
153 MB

11.0 s
407 MB

72
Linear scan 6.02 s

4.50 GB None 2.66 s
4.42 GB

2.87 s
86.2 MB N/A None

Clustering 2.33 s
1.61 GB

0.91 s
921 MB

1.07 s
640 MB

0.33 s
44.1 MB N/A N/A

D
ee

p1
B

-1
0M 1

Linear scan 390 s
47.9 GB None 187 s

47.4 GB
203 s

518 MB
32.6 s

10.4 GB None

Clustering 31.6 s
5.53 GB

18.0 s
3.12 GB

7.23 s
2.35 GB

6.33 s
59.4 MB

1.83 s
576 MB

86.3 s
3.72 GB

72
Linear scan 75.9 s

47.9 GB None 54.0 s
47.4 GB

17.0 s
518 MB N/A None

Clustering 6.37 s
5.59 GB

2.94 s
3.12 GB

2.74 s
2.41 GB

0.68 s
59.4 MB N/A N/A

Fig. 2: Performance of our algorithms on two “West US 2” Azure instances. We show the break down of the running time and
communication between the parts of the algorithm. “Overall query time” does not include the OT phase, which is done once per
query. Preprocessing is done once per client. We run OT and preprocessing in a single thread. Also we measure overall query
time as the maximum between server and client, but measure the parts on the server.

C. Parameters

Accuracy. In our experiments, we require the algorithms to
return knn = 10 nearest neighbors and measure accuracy as
the average of the number of correctly returned points over
the set of queries (we refer to this later as “10-NN accuracy”).
We evaluate our algorithms requiring that the 10-NN accuracy
is at least 0.9, which is a level of accuracy considered to be
acceptable in practice.

Quantization of coordinates. For SIFT, coordinates of points
and queries are already small integers between 0 and 255, so
we leave them as is. For Deep1B, the coordinates are real
numbers, and we quantize them to 8-bit integers uniformly
between the minimum and the maximum coordinates for the
dataset. In experiments, such quantizations barely affect the
10-NN accuracy compared to using the true floating point
coordinates.

Cluster size balancing. As noted in Section III-B, our clus-
ter balancing algorithm achieves the crucial bound over the
maximum cluster size needed for efficient ORAM retrieval
of candidate points. In our experiments, for SIFT, Deep1B-
10M, and Deep1B-1M, the balancing algorithm reduced the
maximum cluster size by factors of 4.95×, 3.67×, and 3.31×,
respectively.

Parameter choices. We initialized the BFV scheme with
parameters N = 213, t = 223 and a 180-bit modulus q. For
the parameters such as standard deviation error and secret key

distribution we use SEAL default values. These parameters
allow us to use the noise flooding technique to provide 108 bits
of statistical circuit privacy8. We used the LWE estimator9 by
Albrecht et al. [2] to estimate the security level of the scheme,
which suggests 141 bits of security.

Let us describe how we set the hyperparameters of our
algorithms. Both of our algorithms (especially the clustering-
based) have quite a few moving parts that nontrivially affect
the overall performance. See Section III-F for the full list
of hyperparameters, below we list the one that affect the
performance for both of our algorithms:

• Both algorithms depend on n, d, knn, which depend
on the dataset and our requirements;

• Besides that, linear scan depends on ls, bc and rp,

• The clustering-based algorithm depends on T , kic, m,
ui, s, li, ls, bc, rc and rp, where 1 ≤ i ≤ T .

For both of the algorithms, we use the total number of AND
gates in the top-k and the ORAM circuits as a proxy for both
communication and running time. Moreover, for simplicity we
neglect the FSS part of ORAM, since it does not affect the
performance much. We refer the reader to Appendix A for the
exact formulas used in our cost model. Overall, we search for
the hyperparameters that yield 10-NN accuracy at least 0.9

8We refer the reader to [46] for details on the noise flooding technique
9We used the most recent commit (3019847) from https://bitbucket.org/

malb/lwe-estimator

11

Threads Algorithm Overall query ORAM Top-k Distances OT phase Preprocessing

SI
FT

1
Linear scan 130 s None 103.7 s 24.9 s 30.2 s None
Clustering 61.8 s 41.3 s 16.09 s 3.56 s 4.95 s 23.6 s

72
Linear scan 21.5 s None 4.45 s 13.5 s N/A None
Clustering 11.5 s 3.70 s 5.30 s 2.01 s N/A N/A

D
ee

p1
B

-1
M 1

Linear scan 125 s None 104 s 20.1 s 23.9 s None
Clustering 47.1 s 27.6 s 16.4 s 3.09 s 4.56 s 20.2 s

72
Linear scan 20.5 s None 4.43 s 12.9 s N/A None
Clustering 11.2 s 3.78 s 5.29 s 1.90 s N/A N/A

D
ee

p1
B

-1
0M 1

Linear scan 1400 s None 1190 s 204 s 250 s None
Clustering 172 s 103 s 58.3 s 10.1 s 14.5 s 165 s

72
Linear scan 211 s None 186 s 16.8 s N/A None
Clustering 29.7 s 9.00 s 16.4 s 4.04 s N/A N/A

Fig. 3: Similar to Figure 2, but now the instances are hosted on “West US 2” and “East US”, so the running times are higher
due to the slower networking (which, however, benefits from multi-threaded communication). We do not report communication,
since it’s the same to Figure 2.

(approximately) minimizing the total number of AND-gates.
In Figure 4 and Figure 5, we summarize the parameters we
use for both of our algorithms on each of the datasets.

D. Evaluation

Figure 2 shows the running times and communication vol-
umes for both of our algorithms evaluated on SIFT, Deep1B-
1M and Deep1B-10M run on two “West US 2” instances. Since
the OT phase and per-client preprocessing are implemented
only in a single-thread regime, we mark the respective entries
in the “multi-thread” rows with “N/A”. Let us note however
that both of these phases should be easily parallelizable. We
find that the clustering-based algorithm consistently outper-
forms the linear scan, both in terms of the running time and
the communication, both for 1 and 72 threads. On Deep1B-
10M, the gap for the respective characteristics exceeds an order
of magnitude. It is interesting that for a single thread and a
single query, the clustering-based algorithm beats the linear
scan even taking the per-client preprocessing time into account.
We do not report the timing of hyperparameter tuning and
clustering, since it needs to be done only once per dataset. We
also evaluate our algorithms on a slower network connection:
between a “West US 2” and an “East US” instance, see
Figure 3. The results are qualitatively similar to Figure 2.

Let us now compare the numbers we obtain with two
baselines. First, we use the arithmetic mode of ABY [28] to
compute distances from a query to the data points. We find that
on SIFT it takes 620 seconds and 167 GB of communication,
which is significantly worse than what can be achieved by
AHE (2.22 s, 56.7 MB). On Deep-1B-1M, ABY takes about
the same time, and on Deep-1B-10M, it consumes more than
all the available RAM on our instances, but it is likely to
be an order of magnitude slower. Second, we evaluate the
naı̈ve top-k circuit that consists of O(nk) comparisons that
has been used in the prior work (e.g., in [64]) using our GC
implementation. On SIFT it takes 147 seconds and 24.7 GB
of communication, while our better circuit takes merely 15.6
seconds and 4.42 GB of communication, improving by almost
an order of magnitude. We note that the gap in communication
is around 5x due to the fact that we compute distances from

secret shares, which becomes one of the bottlenecks for our
faster top-k selection.

We summarize the running times of our algorithms as well
as the baselines on Figure 6.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we design new secure computation protocols
for approximate k-Nearest Neighbors Search between a client
holding a query and a server holding a database, with the
Euclidean distance metric. Our solution combines several state-
of-the-art cryptographic primitives such as lattice-based addi-
tively homomorphic encryption, FSS-based distributed ORAM
and garbled circuits with various optimizations. Underlying
one of our protocols is a new sublinear-time plaintext approx-
imate k-NNS algorithm tailored to secure computation. No-
tably, it is the first sublinear-time k-NNS protocol implemented
securely. Our performance results show that our solution scales
well to massive datasets consisting of up to ten million points.

We highlight some directions for future work:

• Our construction can be proved secure in the semi-
honest model, but it would be interesting to extend
our protocols to protect against malicious adversaries,
where the client or the server can deviate from the
protocol in order to learn about the other party’s
data or manipulate the output of the other party. An
interesting compromise is the covert model, where a
cheating party is guaranteed to be caught with, say,
10% probability.

• We used Kreyvium instead of AES in order to re-
duce communication between the parties, but when
the cipher needs to be evaluated in the clear, AES
is still more efficient thanks to optimized hardware
implementation. It would be interesting to investigate
on improvements of the plaintext implementation of
Kreyvium.

• It would be interesting to implement other sublinear
k-NNS algorithms securely, most notably Locality-
Sensitive Hashing (LSH) [4], which has provable
sublinear query time and is widely used in practice.

12

Linear scan Clustering
Parameter SIFT Deep1B-1M Deep1B-10M SIFT Deep1B-1M Deep1B-10M

ls 8334 8334 83 262 210 423
bc 8 8 8 8 8 8
rp 8 8 9 8 8 8

Fig. 4: (Near-)optimal hyperparameters that are used both by linear scan and the clustering-based algorithm.

Parameter SIFT Deep1B-1M Deep1B-10M
T 4 5 6

kic
50810 25603

9968 4227
44830 25867

11795 5607 2611
209727 107417 39132

14424 5796 2394
m 20 22 48

ui
50 31
19 13

46 31
19 13 7

88 46 25
13 7 7

s 31412 25150 50649

li
458 270
178 84

458 270
178 84 84

924 458 178
93 84 84

rc 5 5 5
α 0.56 0.56 0.56

Fig. 5: (Near-)optimal hyperparameters that are specific to the clustering-based algorithm.

REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi, “An 0 (n log n) sorting network,”
in Proceedings of the fifteenth annual ACM symposium on Theory of
computing. ACM, 1983, pp. 1–9.

[2] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness
of learning with errors,” Journal of Mathematical Cryptology, vol. 9,
no. 3, pp. 169–203, 2015.

[3] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, 2015, pp. 430–454.

[4] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” in Advances in Neural
Information Processing Systems, 2015, pp. 1225–1233.

[5] A. Andoni, P. Indyk, and I. Razenshteyn, “Approximate nearest neigh-
bor search in high dimensions,” arXiv preprint arXiv:1806.09823, 2018.

[6] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin, “Privacy-preserving
search of similar patients in genomic data,” Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 4, pp. 104–124, 2018.

[7] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms,”
in International Conference on Similarity Search and Applications.
Springer, 2017, pp. 34–49.

[8] ——, “Ann-benchmarks: A benchmarking tool for approximate nearest
neighbor algorithms,” Information Systems, 2019.

[9] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale
datasets of deep descriptors,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2055–2063.

[10] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti et al., “Privacy-
preserving fingercode authentication,” in Proceedings of the 12th ACM
workshop on Multimedia and security. ACM, 2010, pp. 231–240.

[11] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30–May 2, 1968, spring joint computer conference. ACM,
1968, pp. 307–314.

[12] D. Beaver, “Precomputing oblivious transfer,” in Annual International
Cryptology Conference. Springer, 1995, pp. 97–109.

[13] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in STOC, vol. 90, 1990, pp. 503–513.

[14] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 478–492.

[15] D. J. Bernstein, “The chacha family of stream ciphers,”
https://cr.yp.to/chacha.html.

[16] ——, “The salsa20 family of stream ciphers,” in New Stream Cipher
Designs - The eSTREAM Finalists, 2008, pp. 84–97.

[17] A. Bestavros, A. Lapets, and M. Varia, “User-centric distributed solu-
tions for privacy-preserving analytics,” Communications of the ACM,
2017.

[18] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan,
“Time bounds for selection,” J. Comput. Syst. Sci., vol. 7, no. 4, pp.
448–461, 1973.

[19] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter et al.,
“Secure multiparty computation goes live,” in International Conference
on Financial Cryptography and Data Security. Springer, 2009, pp.
325–343.

[20] J. Boyar and R. Peralta, “A small depth-16 circuit for the AES s-
box,” in Information Security and Privacy Research - 27th IFIP TC 11
Information Security and Privacy Conference, SEC 2012, Heraklion,
Crete, Greece, June 4-6, 2012. Proceedings, 2012, pp. 287–298.

[21] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” in Annual Cryptology Conference. Springer,
2012, pp. 868–886.

[22] ——, “Fully homomorphic encryption without modulus switching from
classical gapsvp,” in Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, 2012, pp. 868–886.

[23] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” in Proc. of ITCS. ACM,
2012, pp. 309–325.

[24] M. Burkhart and X. Dimitropoulos, “Fast privacy-preserving top-k
queries using secret sharing,” in 2010 Proceedings of 19th International
Conference on Computer Communications and Networks. IEEE, 2010,
pp. 1–7.

[25] C. D. Cannière and B. Preneel, “Trivium,” in New Stream Cipher
Designs - The eSTREAM Finalists, 2008, pp. 244–266.

[26] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia,
P. Paillier, and R. Sirdey, “Stream ciphers: A practical solution for
efficient homomorphic-ciphertext compression,” in Fast Software En-

13

(a) Performance of our algorithms on SIFT (b) Performance of our algorithms on SIFT next to the baselines

(c) Performance of our algorithms on Deep1B-1M (d) Performance of our algorithms on Deep1B-10M

Fig. 6: Comparison of our algorithms run on 1 and 72 threads on two “West US 2” instances. The y-axis is the running time
(in seconds). OT phase is always run single-threaded. For SIFT we compare our algorithms with distances computed in ABY
as well as the naı̈ve top-k circuit.

cryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers, 2016, pp. 313–333.

[27] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure com-
parison for on-line auctions,” in Australasian Conference on Information
Security and Privacy. Springer, 2007, pp. 416–430.

[28] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[29] P. Diaconis and D. Freedman, “Finite exchangeable sequences,” The
Annals of Probability, pp. 745–764, 1980.

[30] J. Doerner, “The absentminded crypto kit,”
https://bitbucket.org/jackdoerner/absentminded-crypto-kit.

[31] J. Doerner and A. Shelat, “Floram: The floram oblivious ram imple-
mentation for secure computation,” https://gitlab.com/neucrypt/floram.

[32] ——, “Scaling ORAM for secure computation,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
2017, pp. 523–535.

[33] ——, “Scaling oram for secure computation,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 523–535.

[34] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in International Sympo-
sium on Privacy Enhancing Technologies Symposium. Springer, 2009,
pp. 235–253.

[35] D. Evans, Y. Huang, J. Katz, and L. Malka, “Efficient privacy-preserving
biometric identification,” in Proceedings of the 17th conference Network
and Distributed System Security Symposium, NDSS, 2011.

[36] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[37] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 -
June 2, 2009, 2009, pp. 169–178. [Online]. Available: http:
//doi.acm.org/10.1145/1536414.1536440

14

[38] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 75–92.

[39] N. Gilboa and Y. Ishai, “Distributed point functions and their ap-
plications,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2014, pp. 640–
658.

[40] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proceedings of the nineteenth annual ACM symposium on
Theory of computing. ACM, 1987, pp. 218–229.

[41] ——, “How to play any mental game or A completeness theorem for
protocols with honest majority,” in Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA,
1987, pp. 218–229.

[42] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431–473, 1996.

[43] P. Indyk and D. Woodruff, “Polylogarithmic private approximations and
efficient matching,” in Theory of Cryptography Conference. Springer,
2006, pp. 245–264.

[44] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[45] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” arXiv preprint arXiv:1702.08734, 2017.

[46] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A
low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium. USENIX Association, 2018.

[47] J. Kilian, “Founding crytpography on oblivious transfer,” in Proceedings
of the twentieth annual ACM symposium on Theory of computing.
ACM, 1988, pp. 20–31.

[48] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-
11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory
of Programming & Track C: Security and Cryptography Foundations,
2008, pp. 486–498.

[49] ——, “Improved garbled circuit: Free xor gates and applications,” in
International Colloquium on Automata, Languages, and Programming.
Springer, 2008, pp. 486–498.

[50] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Data recov-
ery on encrypted databases with k-nearest neighbor query leakage,” in
Data Recovery on Encrypted Databases with k-Nearest Neighbor Query
Leakage. IEEE, p. 0.

[51] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Springer,
2017, pp. 277–346.

[52] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[53] D. G. Lowe et al., “Object recognition from local scale-invariant
features.” in iccv, vol. 99, no. 2, 1999, pp. 1150–1157.

[54] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE transactions on pattern analysis and machine intelli-
gence, 2018.

[55] W. Microsoft Research, Redmond, “Simple Encrypted Arithmetic Li-
brary,” http://sealcrypto.org, 10 2018, SEAL 3.0.

[56] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application
of Cryptographic Techniques, Prague, Czech Republic, May 2-
6, 1999, Proceeding, 1999, pp. 223–238. [Online]. Available:
https://doi.org/10.1007/3-540-48910-X 16

[57] ——, “Public-key cryptosystems based on composite degree residuosity
classes,” in International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 1999, pp. 223–238.

[58] M. S. Riazi, B. Chen, A. Shrivastava, D. Wallach, and F. Koushan-
far, “Sub-linear privacy-preserving near-neighbor search with untrusted
server on large-scale datasets,” arXiv preprint arXiv:1612.01835, 2016.

[59] M. S. Riazi, M. Javaheripi, S. U. Hussain, and F. Koushanfar, “MPCir-
cuits: Optimized circuit generation for secure multi-party computation,”
in IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, 2019.

[60] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security. ACM,
2018, pp. 707–721.

[61] P. Rindal, “libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library,” https://github.com/osu-crypto/libOTe.

[62] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-
preserving face recognition,” in International Conference on Informa-
tion Security and Cryptology. Springer, 2009, pp. 229–244.

[63] H. Shaul, D. Feldman, and D. Rus, “Scalable secure computation of
statistical functions with applications to k-nearest neighbors,” arXiv
preprint arXiv:1801.07301, 2018.

[64] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushan-
far, “Compacting privacy-preserving k-nearest neighbor search using
logic synthesis,” in Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

[65] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

[66] X. Wang, H. Chan, and E. Shi, “Circuit ORAM: On tightness of
the goldreich-ostrovsky lower bound,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 850–861.

[67] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi, “SCORAM:
oblivious ram for secure computation,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 191–202.

[68] A. C.-C. Yao, “How to generate and exchange secrets,” in Foundations
of Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986,
pp. 162–167.

[69] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole -
reducing data transfer in garbled circuits using half gates,” in Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pp. 220–250.

[70] ——, “Two halves make a whole,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2015, pp. 220–250.

[71] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans,
and J. Katz, “Revisiting square-root ORAM: efficient random access
in multi-party computation,” in 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 2016, pp. 218–234.

[72] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 586–595.

APPENDIX

A. Cost model

Here we describe the cost model we use to tune the
hyperparameters. We focus on the clustering-based algorithm,
since tuning the linear scan can be seen as an easy special
case (all points in the stash etc.). We heavily use the notation
introduced in Section III-F.

There are three main steps of the algorithm:

1) Compute closest ui from the overall kic centers for
the i-th group for 1 ≤ i ≤ T ;

2) Retrieve uall =
∑T
i=1 u

i clusters from ORAM (of m
points each);

3) Compute knn closest points from the union of the
stash (of s points) and m · uall retrieved points.

15

1) Number of AND gates: As a proxy for the total cost,
we use the number of AND gates in the circuits. For ORAM
retrieval, we do not count AND gates necessary for the
functional secret sharing.

1) Cost of computing closest centers of clusters:
T∑
i=1

(
kic · bd + (kic + ui · li) ·

(
2 · (bd − rc) + bcid

))
2) Cost of ORAM retrieval (modulo FSS):

uall ·
(

6·
(
1152+m·(d·bc+bd+bpid)

)
+m·(d+1)·bd

)
3) Cost of computing closest points (the final answer):(

s+m·uall
)
·bd+

(
s+m·uall+knn·

(
ls+m·uall

))
×

×
(
2 · (bd − rp) + bpid

)
Our cost is defined as the sum of the three above ex-

pressions. Next, for completeness we list the formulae for the
numbers of inputs and outputs for the server and client for all
of the three parts. These quantities affect the communication,
but we do not include them in the cost we optimize since
they affect the computation time less than the number of AND
gates.

1) Closest centers
• Server’s inputs:

T∑
i=1

(
kic · (bd + bcid) + ui · bcid

)
• Client’s inputs:

T∑
i=1

kic · (bd + bcid)

• Client’s outputs:
T∑
i=1

ui · bcid

2) DORAM retrieval
• Server’s inputs:

uall ·
(
bcid + 128+

+m·
(
d·bc+bd+bpid+(d+1)·bd+bpid

))
• Client’s inputs:

uall ·
(
bcid + 128 +m · (d · bc + bd + bpid)

)
• Client’s outputs:

uall ·m ·
(
(d+ 1) · bd + bpid

)
3) Closest points

• Server’s inputs:

(s+ uall ·m) · (bd + bpid) + knn · bpid
• Client’s inputs:

(s+ uall ·m) · (bd + bpid)

• Client’s outputs:

knn · bpid

B. Stream Ciphers as PRF

In the original Floram construction [32], the PRF and the
PRG used in the read-only process are chosen by the authors
to be AES-128. Indeed, AES-128 is a block cipher that has
been largely studied by the cryptographic community. The
implementations of the scheme are highly optimized (less than
5000 non-free gates per block [20]) and its security is often
used as a standard term of comparison. The implementation of
Floram [31], [30] uses the optimized AES-128 and proposes
two alternative symmetric encryption schemes: the streams
Salsa20 [16] and its variant Chacha20 [15].

However, other symmetric ciphers can be used to obtain an
efficient PRF/PRG. In particular, we looked for a PRF with low
number of AND gates in order to decrease the communication
between the parties when it is evaluated in GC (in the Free-
XOR setting). Between the block ciphers, one of the most
promising constructions is LowMC [3], which has a small
number of AND gates per output bit. Between the stream
ciphers, instead, Trivium [25] and its variant Kreyvium [26]
captured our attention. They are flexible in terms of input and
output size, since there is no fixed block size to respect, and
their evaluation is very efficient in terms of AND gates per
output bit of stream.

Trivium belongs to the 2008 eSTREAM portfolio. It
presents a simple construction, needing only 3 AND gates per
bit of stream produced, plus 3 · 1152 initialization AND gates
executed once per stream. Trivium uses a secret key and an
IV of size 80-bits each and achieves 80-bits of security. The
scheme uses three registers, which are initialized with the key,
the IV and some additional fixed bits. At each round, three
temporary variables are computed by adding or multiplying
some fixed elements in the register (9 XORs and 3 ANDs
per round): at the end of each round, every register is rotated
by 1 position, one element is discarded and one temporary
value is appended. The first 1152 (this number is chosen for
security reasons) rounds are the initialization rounds and they
do not produce any stream. After the initialization, every round
outputs one bit of stream, equal to the XOR of the three
temporary values.

Krevium was presented in 2015 as a 128-bits secure
variant of Trivium, as a solution particularly suited for
homomorphic-ciphertext compression: the construction uses
longer keys and IVs (128 bits each), 2 additional registers and
a few additional XOR gates per round, but keeps the same
amount of AND gates per bit of stream produced and for the
initialization phase.

AES-128 needs about 5000 AND gates to produce 128 bits
of stream, while Trivium and Kreyvium need 3 · (1152 + N)
AND gates, where N is the size of the input/output of the
stream. The difference is not impressive when the input blocks
are of size 128, but the gap between the two ciphers increases
when the size of inputs increases, since the stream cipher only
needs 3 more AND gates per bit of input. For AES-128 the
number of AND gates per bit remains constant (about 39 AND
gates per output bit) while in Kreyvium it decreases to about
3 AND gates per bit of stream (see Table I).

The inputs we use in our construction have different sizes.
For small datasets, every input is about 2.7 kB while for large

16

datasets the inputs are about 5 or 6 kB. We compute 2 PRFs
per input, so the actual number of AND gates in Table I should
be doubled.

128 bits 2.7 kB 6 kB

AES-128 5000 AND
(39 AND/bit)

865000 AND
(39.1 AND/bit)

1920000 AND
(39.06 AND/bit)

Chacha20 20480 AND
(160 AND/bit)

901120 AND
(40.7 AND/bit)

1966080 AND
(40 AND/bit)

Kreyvium 3840 AND
(30 AND/bit)

69810 AND
(3.15 AND/bit)

150912 AND
(3.07 AND/bit)

TABLE I: Estimates on the number of AND gates for ciphers
AES-128, Chacha20 and Kreyvium for different input sizes.
The estimates for Chacha20 refer to a naive implementation
of the scheme: we believe that the scheme would be more
efficient in terms of non trivial gates in practice, but we did
not found such optimal estimates in the literature. We do not
report the number of AND gates for LowMC: they should
be comparable to the estimates we have for Kreyvium for an
optimal choice of the parameters.

While our approach is more efficient in GC with respect
to Floram, the plaintext evaluation of Kreyvium is slower than
the (highly optimized) hardware implementation of AES. In
order to mitigate this issue, we vertically batch 512 bits and
we compute multiple streams in parallel (using AVX-512), so
we are able to process several hundreds of Mega Bytes of
information per second in single core.

C. Proofs of correctness for approximate top-k

In this section, we give proofs for Theorem 1 and Theo-
rem 2.

Proof of Theorem 1: First, suppose that we assign
a bin for each element uniformly and independently. For
this sampling model, it is not hard to see that the desired
expectation of the size of the intersection I is:

E [|I|]
= l · Pr[Ui contains at least one of the top-k elements]

= l ·

(
1−

(
1− 1

l

)k)
,

where the first step follows from the linearity of expectation,
and the second step is an immediate calculation. Suppose that
l = k/δ, where δ > 0 is sufficiently small, and suppose that
k →∞. Then, continuing the calculation,

l ·

(
1−

(
1− 1

l

)k)
=
k

δ
·
(

1− ek·ln(1− δk)
)

=
k

δ

(
1− e−δ+O(1/k)

)
=
k · (1− e−δ)

δ
+O(1)

≥
k ·
(
δ − δ2

2

)
δ

+O(1) = k ·
(

1− δ

2

)
+O(1),

where the first step is immediate, the second step uses the
Taylor series of lnx, the third step uses the Taylor series of
ex, the fourth step uses the inequality e−x ≤ 1 − x + x2

2 ,
which is true for sufficiently small positive x, and the last step
is immediate.

To argue about the actual sampling process, where instead
of uniform and independent assignment, we shuffle elements
and partition them into l blocks of size n/l, we use the main
result of [29]. Namely, it is true that the probability

Pr[Ui contains at least one of the top-k elements]

can change by at most O(1/l) when passing between two
sampling processes. This means that the overall expectation
changes by at most O(1), and is thus still at least:

k ·
(

1− δ

2

)
+O(1).

For a fixed δ, this expression is at least (1− δ)k, whenever k
is sufficiently large.

Proof of Theorem 2: As in the proof of the previous
theorem, we start with a simpler sampling model, where bins
are assigned independently. Suppose that δ > 0 is fixed and k
tends to infinity. We set l = k2/δ. In that case, one has:

Pr[all top-k elements end up into different bins]

=

(
1− 1

l

)
·
(

1− 2

l

)
· . . . ·

(
1− k − 1

l

)
=

(
1− δ

k2

)
·
(

1− 2δ

k2

)
· . . . ·

(
1− (k − 1) · δ

k2

)
= exp

(
ln

(
1− δ

k2

)
+ ln

(
1− 2δ

k2

)
+ . . .

+ ln

(
1− (k − 1) · δ

k2

))
= exp

(
−δ(1 + 2 + . . .+ (k − 1))

k2
+O

(
1

k

))
= e−δ/2 +O

(
1

k

)
≥ 1− δ

2
+O

(
1

k

)
,

where the fourth step uses the Taylor series of lnx and the
sixth step uses the inequality e−x ≥ 1− x. The final bound is
at least 1− δ provided that k is large enough.

Now let us prove that for the actual sampling procedure
(shuffling and partitioning into l blocks of size n/l), the
probability of top-k elements being assigned to different bins
can only increase, which implies the desired result. To see this,
let us denote ci the bin of the i-th of the top-k elements. One
clearly has:

Pr[all top-k elements end up into different bins] =∑
distinct j1, j2, . . . , jk

Pr[c1 = j1 ∧ c2 = j2 ∧ . . . ∧ ck = jk].

Thus, it is enough to show that any probability of the form

Pr[c1 = j1 ∧ c2 = j2 ∧ . . . ∧ ck = jk],

where j1, j2, . . . , jk are distinct, can only increase when pass-
ing to the actual sampling model. This probability can be
factorized as follows:

Pr[c1 = j1 ∧ c2 = j2 ∧ . . . ∧ ck = jk]

= Pr[c1 = j1] · Pr[c2 = j2 | c1 = j1] · . . .
· Pr[ck = jk | c1 = j1 ∧ . . . ∧ ck−1 = jk−1].

17

For the simplified sampling model, each of these conditional
probabilities is equal to 1/l due to the independence of ci.
However, for the actual model, they are larger: if we condition
on t equalities, then the probability is equal to n

l(n−t) . This
implies the required monotonicity result.

D. Optimal circuit for implicit top-k

Recall that our goal is, given n numbers each consisting
of b bits, to find k smallest numbers in the following form:
the output of a circuit it a binary vector with exactly k ones
at the positions that correspond to the smallest elements. Such
representation was used in [24] and [6].

Previously it was known how to achieve this in O(b2n)
gates as follows: we need to find a threshold y such that
|{i : xi ≤ y}| = k, after that finding the result can be trivially
done in O(bn) gates by comparing every number with y. We
can find y using binary search, which takes b iterations, and
for each iteration we compare every number with a current
guess for y, which takes O(bn) gates, resulting in O(b2n)
gates overall.

Now we show how to improve this construction to the
optimal O(bn) gates. Instead of running the full binary search
for y, we will be computing it bit-by-bit starting from the most
significant one. In order to do this, we maintain a binary vector
ai of “alive” elements of the list, initially ai ≡ 1. To figure
out i-th bit of y, we count how many alive elements of the
list have 0 as the i-th bit; let us denote this number by c0.
This counting can be done in O(n) gates using a binary tree
of adders. Next we compare c0 with k: if k ≤ c0, then we
zero out the entries of a for the elements of the list with the
i-th bit being 1, otherwise, we zero out the entries with the
i-th bit being 0 and subtract c0 from k. All of these operations
can be implemented in O(n) gates, and there are b iterations
in total. Overall, this circuit can be seen as a hybrid between
radix sort and a randomized selection algorithm.

E. Security proofs

We prove simulation-based security for our protocols for
approximate k-NNS. First, we recall the definition of two party
computation and simulation-based security for semi-honest
adversaries. The definitions are taken from [51].

Definition 1. A two-party functionality is a possibly random-
ized function

f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗,
where f = (f1, f2). That is, for every pair of inputs
x, y ∈ {0, 1}n , the output-pair is a random variable
(f1(x, y), f2(x, y)) ranging over pairs of strings. The first
party (with input x) wishes to obtain f1(x, y) and the second
party (with input y) wishes to obtain f2(x, y).

Let π be a protocol computing the functionality f , i.e.,
by honestly executing π via possibly multiple rounds of local
computations and sending messages, the two parties learn f1
and f2 when π completes. The view of the i-th party during an
execution of π on (x, y) and security parameter λ is denoted
by

Viewπ,i(x, y, λ)

and equals the party i’s input with its internal randomness,
plus all messages it receives during the protocol.

Definition 2. Let f = (f1, f2) be a functionality and let
π be a protocol that computes f . We say that π securely
computes f in the presence of static semi-honest adversaries
if there exist probabilistic polynomial-time algorithms S1 and
S2 (often called simulators) such that

S1(1λ, x, f1(x, y)) ≈ Viewπ,1(x, y, λ)

and
S2(1λ, y, f2(x, y)) ≈ Viewπ,2(x, y, λ).

Here ≈ means computational indistinguishability.

Next, we recall the security assumption, namely Ring
learning-with-errors (RLWE), specialized to the power of two
cyclotomic rings, which serves as the underlying assumption
of the AHE scheme we use.

Definition 3 (decision-RLWE problem). For security param-
eter λ and a power of two integer n depending on λ, set
R = Z[x]/(xn + 1). Let q = q(λ) ≥ 2 be an integer. For a
random element s ∈ Rq and a distribution χ = χ(λ) over
R, denote with A

(q)
s,χ the distribution obtained by choosing a

uniformly random element a ← Rq and a noise term e ← χ
and outputting (a, [a ·s+e]q). The Decision-RLWE problem is
to distinguish between the distribution A

(q)
s,χ and the uniform

distribution U(R2
q).

Lemma 1. Assuming the average-case hardness of decision-
RLWE problem for parameters λ, n, q, χ. Then the following
two distributions are in-distinguishable. For any fixed mes-
sage m, the first distribution is AHE.Enc(sk,m) where sk
is the output of AHE.Keygen, and the second distribution is
AHE.Enc(sk, 0).

Proof: We include the proof for reader’s convenience. Let
s = sk ∈ Rq . Note that AHE.Enc(s, 0) = (a, as + e + ∆m)
for some integer ∆ ≈ q/t, polynomial a ← U(Rq) and e ←
χ. From the decision-RLWE assumption, the pair (a, as + e)
is computationally insdistinguishable from uniform, hence for
any m, the pair (a, as+e+∆m) is also indistinguishable from
uniform. This proves the claim.

1) Ideal Fucntionalities: First, we define the ideal function-
alities that our protocol achieves. Note that the two protocols
have slightly different ideal functionalities. We will denote
them by FANNcl

(for clustering) and FANNls
(for linear scan).

Parameters: number of elements n, dimension d, bits of precision bc.
• Input: client inputs a query q ∈ Rd and server inputs database

DB = [(pi, IDi)]
n
i=1. Note that points are truncated to bc bits.

• Output: returns output of Algorithm 1 to client.

Fig. 7: Ideal functionality FANNls

2) Ideal functionalities for subroutines: Note that we used
garbled circuit to achive FTOPk and FaTOPk, and we used the
FLORAM construction [32] to implement FDROM securely.
We refer the reader to the referenced papers for the full security
proof of these sub-protocols. Below we give the definition of
the three ideal functionalities:

18

Parameters: number of elements n, dimension d, bits of precision bc, and
clustering-based hyperparameters T , kic, m, ui, s, li, ls, bc, rc and rp.
• Input: client inputs a query q ∈ Rd and server inputs database

DB = [(pi, IDi)]
n
i=1. The points are truncated to bc bits.

• Output: returns output of Algorithm 2 to client.

Fig. 8: Ideal functionality FANNcl

Parameters: array size m, modulus 2t, truncation bit size r.
• On input Ac from the client, store Ac.
• On input As, idlist from the server, store As and idlist.
• When both Ac and As are received, compute A =

(As + Ac) mod 2t = (a1, . . . , an). and A′ =
NAIVETOPK(a1, . . . , an, idlist). Sample an array R of size
k with random entries, output A′ +R to the client, and output
R to the server

Fig. 9: Ideal functionality FTOPk

Parameters: array size m, modulus 2t, truncation bit size r.
Extra parameter: returnDist ∈ {0, 1} (if set to true, return (dist, id)
instead of just id.)
• On input Ac from the client, store Ac.
• On input As and idlist from the server, store As and idlist.
• When both Ac and As are received, compute A = As + Ac

mod 2t = (a1, . . . , an). and set a′i = [ai/2
r]. Let B =

APPROTOPK(a′1, . . . , a
′
n, idlist). Sample an array R of

size k with random entries modulo 2t, output B + R to the
client and R to the server.

Fig. 10: Ideal functionality FaTOPk

Parameters: Database size n, bit-length of each data block b.
• Init: on input (Init, DB) from the server, it stores DB.
• Read: on input (Read, ic) and (Read, is) from both client

and server, it samples a random R ∈ {0, 1}b. Then it outputs
DB[(is + ic) mod n]⊕R to client and outputs R to server.

Fig. 11: Ideal functionality FDROM

3) Security proofs:

Theorem 3. Assuming the hardness of the decision-RLWE
problem, our linear scan protocol ΠANNls

securely implements
the functionality FANNls

in the FaTOPk hybrid model, with
semi-honest adversaries.

Proof: First, we construct a simulator for the client. The
simulator generates a key sk for the AHE scheme and sends
sk to the client. Then, it simulates the server’s first message
as AHE.Enc(sk, ri) for random values ri. From the circuit
privacy property of the AHE scheme, this is indistinguishable
from the first message in the real protocol. Next, the simulator
simply feeds {ri} to the ideal functionality FaTOPk and for-
wards the output to the client. This completes the simulation.

Next, we construct a simulator for the server. The simulator
generates a key sk for the AHE scheme. The first message
from the client to the server consists of the encryptions
AHE.Enc(sk,q[i]) in the real protocol. Instead, the simulator
just sends AHE.Enc(sk, 0) for 1 ≤ i ≤ d. From Lemma 1,
these views are indistinguishable.

Next, the simulator generates a random sequence R =
(r1, . . . , rn) of values and forwards that to the server. This
completes the simulation.

Theorem 4. Assuming the hardness of the decision-RLWE
problem, our clustering protocol ΠANNcl

securely implements
the FANNcl

functionality in the (FTOPk, FaTOPk, FDROM)-
hybrid model in the prescence of semi-honest adversaries.

Proof: Again correctness is easy to verify. We first de-
scrbie simulator for the client. First, the simulator generates a
secret key sk for the AHE scheme and sends sk to the client.
Next, the simulator sends blocks of zero to FDROM.Init. Then,
on receiving the query message from the client, the simulator
does the following: for each i, j, it samples random values rij
and generates AHE.Enc(sk, rij). Using a similar argument as
in the previous proof, these ciphertexts are indistinguishable
from the client’s view of the first step of the secure protocol.
Then, the simulator forwards the rij to FaTOPk and gets
back secret shares of indices, namely [i1], . . . , [iu]. Then, it
feeds these indices shares to FDROM.Read and forwards the
output to the client. Also, it samples random messages si and
sends AHE.Enc(sk, si) to the client. Later, when the simulator
receives the shares m · uall + s of (point, ID) pairs from the
client, it samples m ·uall + s random pairs of values and send
the first m · uall values to FTOPk and the last s values to
FaTOPk. Then, it forwards the output to the client. Since the
intermediate values revealed to the client are all independent
uniformly random values, the view generated from simulator
is indistinguishable from the real view.

Now, the simulator for server works in almost the same
fashion, with the difference that in contrast to the real client
which sends AHE.Enc(sk,qi) for 1 ≤ i ≤ d, the simulator
simply sends d encryption of zeros. This is indistinguishable
from Lemma 1.

F. Secure protocols

We formally specify our secure protocols implementing the
functionalities defined in previous section. Figure 12 formally
specifies our linear scan protocol. Figure 13 formally specifies
our clustering based protocol.

19

Public Parameters: coefficient bit length bc, number of items in the
database n, dimension d, AHE ring dimension N , plain modulus t.
Inputs: client inputs query q ∈ Rd; server inputs n points p1, . . . ,pn ∈
Rd and a list of n IDs idlist.

1) Client calls AHE.Keygen to get sk.
2) Both client and server discretize and normalize their points into

q′ and p′i ∈ Zd
2bc

.
3) Client sends ci = AHE.Enc(sk,q′[i]) for 1 ≤ i ≤ d to the

server.
4) Server sets pik = p′kN+1[i] + p′kN+2[i]x + · · · +

p′
(k+1)N

[i]xN−1, samples random vector r ∈ Zn
t and com-

putes homomorphically

fk =

d∑
i=1

ci · pik + r[kN : (k + 1)N]

for 1 ≤ k ≤ dn/Ne.
5) Server sends fk to the client. The client decrypts all fk and

obtains vector s ∈ Zn
t .

6) Client sends −2s + ||q′||2 · (1, 1, . . . , 1) to FaTOPk; server
sends idlist and (−2ri + ||p′i||2)i to FaTOPk. Client gets
back [id]c ∈ Zk

t , and server gets back [id]s ∈ Zk
t .

7) Server sends the vector [id]s to client, who outputs id =
[id]c + [id]s mod t.

Fig. 12: Protocol ΠANNls

Public Parameters: coefficient bit length bc, number of items in the
database n, dimension d, AHE ring dimension N , plain modulus t.
Clustering hyperparameters: T , kic, m, ui, s, li, ls, bc, rc and rp.
Inputs: client inputs query q ∈ Rd; server inputs T groups of clusters
with each cluster of size up to m, and a stash S of size s, for a total of
n points; server also inputs a list of n IDs idlist, and uall cluster centers
cij .

1) Client calls AHE.Keygen to get sk.
2) Both client and server discretize and normalize their points plus

the clueter centers into q′ and p′i ∈ Zd
2bc

.
3) Server sends all clusters, where points are accompanied by ID

and sqwuared norms of point, with one block per cluster, to
FDROM.Init, padding with dummy points if necessary to reach
size m for each block.

4) The server performs two independent random shuffles on the
cluster centers and stash points.

5) For each i ∈ {1, . . . , T},
• The client and server use line 3-5 in Figure 12 to

compute secret shares of vector di where di[j] =
||q− cij ||22.

• Client sends its share 〈di〉C to FaTOPk with k = ui;
Server sends its share 〈di〉S of distances and the
corresponding IDs to FaTOPk. Client and server
outputs secret shares of a vector indi of ui indices.

6) Client and server input the secret shares of the uall =
∑T

i=1 ui

indices (i1, j1), . . . , (iuall , juall) obtained in previous step
into FDROM.Read, to retrieve secret shared list of tuples
(p, ID(p), ||p||2) of all points in C := Ci1

j1
∪ · · · ∪ C

i
uall

j
uall

.
7) Client and server use line 3-6 in Figure 12 to get secret shares

of a distance vector d = 〈d〉C + 〈d〉S (calling FaTOPk with
returnDist = True). Client and server outputs secret shares of a
list of tuples (dCluster

i , IDCluster
i))ki=1.

8) For the stash S, client and server use line 3-6 in Figure 12 (with
returnDist = True). Client and server outputs secret shares of a
list of tuples (dStash

i , IDStash
i))ki=1.

9) Client and server inputs the union of the secret shares of (point,
id) pairs obtained from previous two steps into FTOPk, and
outputs secret shares of IDs of the closest k points to the client’s
query.

10) Server sends its secret shares of IDs to the client, who outputs
the final list of IDs.

Fig. 13: Protocol ΠANNcl

20

