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Abstract. For 1 ≤ m ≤ n, we consider a naturalm-out-of-n multi-instance scenario for a public-key
encryption (PKE) scheme. An adversary, given n independent instances of PKE, wins if he breaks
at least m out of the n instances. In this work, we are interested in the scaling factor of PKE
schemes, SF, which measures how well the difficulty of breaking m out of the n instances scales in
m. That is, a scaling factor SF = ` indicates that breaking m out of n instances is at least ` times
more difficult than breaking one single instance. A PKE scheme with small scaling factor hence
provides an ideal target for mass surveillance. In fact, the Logjam attack (CCS 2015) implicitly
exploited, among other things, an almost constant scaling factor of ElGamal over finite fields (with
shared group parameters).
For Hashed ElGamal over elliptic curves, we use the generic group model to argue that the scaling
factor depends on the scheme’s granularity. In low granularity, meaning each public key contains
its independent group parameter, the scheme has optimal scaling factor SF = m; In medium and
high granularity, meaning all public keys share the same group parameter, the scheme still has a
reasonable scaling factor SF =

√
m. Our findings underline that instantiating ElGamal over elliptic

curves should be preferred to finite fields in a multi-instance scenario.
As our main technical contribution, we derive new generic-group lower bounds of Ω(√mp) on
the difficulty of solving both the m-out-of-n Gap Discrete Logarithm and the m-out-of-n Gap
Computational Diffie-Hellman problem over groups of prime order p, extending a recent result by
Yun (EUROCRYPT 2015). We establish the lower bound by studying the hardness of a related
computational problem which we call the search-by-hypersurface problem.
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1 Introduction

For integers 1 ≤ m ≤ n, consider the following natural m-out-of-n multi-instance attack scenario for a
public-key encryption scheme PKE1. An attacker is given n independent instances (public keys) of PKE
and would like to simultaneously break semantic security at least m out of n instances. Note that this
is a different setting from the standard, well studied, multi-user attack scenario by Bellare et al. [5]. In
the (security-wise) best possible scenario, compared to a (standard) single-instance attack, running an
m-out-of-n multi-instance attack is m times as difficult. However, there is no guarantee that breaking
m-out-of-n instances is more difficult than breaking a single instance.

This motivates the following question:
How well does the difficulty of breaking m out of n instances of PKE scale with m?

In order to quantify scalability, we define the scaling factor (relative to a fixed security notion) of PKE as

SFm,nPKE = resources necessary to break m out of n instances
resources necessary to break 1 instance , (1)

where “resources” refers to the running time to break PKE in the fixed security notion. Clearly, the larger
SFPKE, the better are the security guarantees in the multi-instance setting. The best we can hope for is
SFm,nPKE = m, meaning that breaking m out of n instances amounts to breaking m times a single instance
of PKE.
Scaling Factor and Mass Surveillance. In 2012, James Bamford wrote in Wired:

According to another top official also involved with the program, the NSA made an enormous
breakthrough several years ago in its ability to cryptanalyze, or break, unfathomably complex
encryption systems employed by not only governments around the world but also many average
computer users in the US. The upshot, according to this official: “Everybody’s a target;
everybody with communication is a target.”
This statement should appear as a surprise to the cryptographic community: Parameters for crypto-

graphic schemes are usually chosen to make even compromising a single user a daunting challenge, meaning
multi-instance attacks seem out of scope even for adversaries with nation-state capabilities. Unfortunately,
the use of outdated parameters is a widespread occurrence in practice [2,16], either as a consequence of
legacy infrastructure or hardware restrictions. In this case, a bad scaling factor would tip the scale from
single compromised users to full-scale mass surveillance. Even more so, the hardness of several common
number-theoretic problems is known to scale sub-optimally in the number of instances. Examples are
factoring [9] and computing discrete logarithms in the finite-field [3,4] and elliptic-curve [14,17,18] setting.
This sub-optimal scaling is typically inherited by the corresponding cryptographic schemes. It has been
exploited in practice by the famous Logjam attack [2], where the authors break many Diffie-Hellman
instances in TLS with nearly the same resources as to break a single Diffie-Hellman instance. Concretely,
the Logjam attack could successfully break multiple 512-bit finite-field instances, and the authors also
speculate about the feasibility of breaking 1024-bit instances. With our work we aim to deliver positive
results by computing (non-trivial lower bounds on) the scaling factors of concrete encryption schemes
that are currently employed in practice, thereby providing bounds on the hardness of performing mass
surveillance.
Considered Encryption Schemes. We are able to provide non-trivial bounds on the scaling factor
for Hashed ElGamal (HEG), aka. DHIES [1], in the elliptic curve (HEG[GGenE(F`)]) and the finite field
(HEG[GGenF∗

`
]) setting, the arguably most widely used discrete-logarithm type encryption schemes. Here

GGenE(F`) and GGenF∗
`
are group-generating algorithms that generate prime-order subgroups of elliptic

curves and finite fields respectively. In both cases, ` denotes randomly chosen primes of appropriate
size. We consider both schemes instantiated in low, medium, and high granularity, leading to 6 schemes
HEG[GGenE(F`), low], HEG[GGenE(F`), med], HEG[GGenE(F`), high], HEG[GGenF∗

`
, low], HEG[GGenF∗

`
, med],

and HEG[GGenF∗
`
, high] offering different trade-offs between public key sizes and scalability. The term

granularity specifies which parts of the scheme’s parameters belong to the global system parameters
(shared among all n users), and which parts belong to the individual, user-specific public keys. Table 1
depicts the shared public system parameters and individual keys in a multi-instance setting with n parties
for HEG at different granularities.
1 Formally, in this work we consider key-encapsulation mechanisms.
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PKE Setting Shared params Public key pki

HEG[GGenE(F`), high] Elliptic curve E(F`), p, g gxi

HEG[GGenE(F`), med] Elliptic curve E(F`), p gi, g
xi
i

HEG[GGenE(F`), low] Elliptic curve – Ei(F`i ), pi, gi, g
xi
i

HEG[GGenF∗
`
, high] Finite field F∗` , p, g gxi

HEG[GGenF∗
`
, med] Finite field F∗` , p gi, g

xi
i

HEG[GGenF∗
`
, low] Finite field – F`i , pi, gi, g

xi
i

Table 1. Shared public system parameters and individual public keys for schemes HEG[GGenE(F`), gran] and
HEG[GGenF∗

`
, gran] at different granularities. Here g generates a subgroup of prime order p of either an elliptic

curve E(F`) or a finite field F∗` and ` is a prime.

1.1 Our Results

Formal Definitions: Multi-Instance Security. The notion of n-out-of-n multi-instance security
for any n ≥ 1 was first considered and formally defined by Bellare et al. [6] in the setting of secret-
key encryption. As our first contribution, we extend their notion to m-out-of-n multi-instance security
for public-key encryption, for arbitrary 1 ≤ m ≤ n. In fact, we give two different notions, modeling
(m,n)-CPA (passive) and (m,n)-CCA (active) security.

Our (m,n)-CPA experiment provides the adversary with n independent public keys pk[1], . . . , pk[n].
Next, it picks n independent challenge bits b[1], . . . , b[n] and grants the adversary access to oracle Enc(·, ·, ·)
which, given i,M0,M1, returns an encryption of message Mb[i] under pk[i]. The adversary outputs a single
bit b′ together with a list L ⊆ {1, . . . , n} of cardinality at least m. The advantage function is defined as

Adv(m,n)-cpa
PKE = Pr

[
b′ =

⊕
i∈L

b[i]
]
− 1

2 .

That is, the adversary wins if it guesses correctly the XOR of at least m (out of n) challenge bits. (Note
that the standard multi-user security notion [5] is different: Most importantly, in [5] there exists only
a single challenge bit, in particular limiting this notion to the case of m = 1.) Why using XOR for
defining the winning condition? Bellare et al. [6] argue that this is a natural metric because its well-known
“sensitivity” means that even if the adversary figures out m − 1 of the challenge bits, it will have low
advantage unless it also figures out the last. They further argue that other possible winning conditions
such as using AND2 are less natural and lead to inconsistencies. We refer to [6] for an extensive discussion.
In (m,n)-CCA security, the adversary is furthermore provided with a decryption oracle Dec(·, ·) which
given i, c returns a decryption of c under sk[i]. To expand on the characteristics of the multi-instance
setting, we determine the relations between the security notions (m,n)-CPA and (m,n)-CCA for different
values of n,m.

Scaling Factor of HEG[GGenE(F`), ·] and HEG[GGenF∗
`
, ·]. In order to give a lower bound on SFm,nPKE

as defined in Eq. (1), we need to lower bound the numerator (i.e., resources required to break m out of n
instances) for all possible adversaries and upper bound the denominator (i.e., resources needed to break one
instance) by specifying a concrete adversary. Unfortunately, unless the famous P vs. NP problem is settled,
all meaningful lower bounds on the resources will require either an unproven complexity assumption or a
restricted model of computation. We rely on the generic group model [20] for HEG[GGenE(F`), ·] (which is
considered to be meaningful for elliptic-curve groups) and on a hypothesis on the best running time of
variants of the number field sieve for HEG[GGenF∗

`
, ·] based on the fastest known attacks on finite fields.

Our main results regarding the scaling factor SFm,nHEG in different granularities relative to (m,n)-CCA
security are summarized in Table 2. In both considered group instantiations, HEG shows the same
asymptotic scaling behavior for high and medium granularity. Thus, discrepancies in the scaling of
high-granularity HEG can not be solved by switching to the less efficient medium-granularity version. In
both cases however, HEG scales better in the low-granularity case. Concretely, Hashed ElGamal over
2 I.e., by letting the adversary output a vector b′[1], . . . , b′[n] and a set I and defining the advantage function as

Adv(m,n)-cpa
PKE = Pr[

∧
i∈I

b[i] = b′[i]]− 1/2m.
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PKE Setting Scaling factor
HEG[GGenE(F`), {high, med}] Elliptic curve Θ(

√
m)

HEG[GGenE(F`), low] Elliptic curve Θ(m)

HEG[GGenF∗
`
, {high, med}] Finite field

{
1 δ ≤ 0.67
L`(1/3, δ − 0.67) δ > 0.67

HEG[GGenF∗
`
, low] Finite field


L`(1/3, δ) 0 ≤ δ < 0.105
L`(1/3, 0.105) 0.105 ≤ δ < 0.368
L`(1/3,−0.263 + δ) 0.368 ≤ δ

Table 2. Lower bounds on the scaling factor SFm,n
HEG relative to (m,n)-CCA security. L`(1/3, c) is defined as

exp((c+ o(1))(log `)1/3(log log `)2/3). In the finite field case m = L`(1/3, δ) for some δ ≥ 0.

elliptic curves (modeled as generic groups) scales optimally for low-granularity parameters. For medium
and high granularity, on the other hand, the scaling factor is of order Θ(

√
m), where the constants hidden

by the Θ-notation are small.
Let L`(1/3, c) := exp((c+ o(1))(log `)1/3(log log `)2/3). For HEG in the finite field setting with respect

to high and medium granularity, we see that the scaling factor is roughly 1 for up to m = L`(1/3, 0.67)
instances. Beyond, the KEM scales linearly with slope L`(1/3,−0.67). Note that L`(1/3, 0.67) is large
for typical values of `. Concretely, for 512 bit primes we get that L`(1/3, 0.67) ≈ 222 meaning that
the effort of breaking 222 instances roughly equals the effort to break a single instance. While the
concrete number is obtained ignoring the o(1) terms in L`, it still matches the empirical results of [2,
Table 2]. For low granularity and for up to L`(1/3, 0.108) instances, HEG[GGenF∗

`
, low] scales optimally.

For L`(1/3, 0.108) ≤ m ≤ L`(1/3, 0.368), the scaling factor is roughly constant, and for larger numbers of
instances, it scales linearly with slope L`(1/3,−0.263).

Derivation of the Scaling Factors. As we will explain below in more detail, the bounds from
Table 2 are obtained in two steps. In a first step, we consider an m-out-of-n multi-instance version of
the the Gap Computational Diffie-Hellman problem, (m,n)-GapCDH[GGen, gran], where the term “gap”
refers to the presence of a Decisional Diffie-Hellman (DDH) oracle. The following theorem holds for all
GGen ∈ {GGenE(F`),GGenF∗

`
} and gran ∈ {high, med, low}.

Theorem If (m,n)-GapCDH[GGen, gran] is hard, then HEG[GGen, gran] is (m,n)-CCA secure, tightly.

The theorem (described formally in Section 4) is a somewhat straightforward generalization of [1]. We
stress that tightness in our previous theorem is an essential ingredient to obtain overall tight bounds on
the scaling factor.

In a second step, we provide bounds on the (m,n)-GapCDH[GGen, gran] problem. In the finite field
case, we rely on the following hypothesis:

Hypothesis 1 The fastest algorithms to break (m,n)-GapCDH[GGenF∗
`
, gran] are variants of the number

field sieve [3,4] which require running time

T =
{
L`(1/3, 1.902) +m · L`(1/3, 1.232) gran ∈ {high, med}
min{m · L`(1/3, 1.902), L`(1/3, 2.007) +m · L`(1/3, 1.639)} gran = low .

The lower bounds on SFm,n for HEG[GGenF∗
`
, gran] are obtained by combining the previous theorem

and Hypothesis 1. The running times specified in the hypothesis stem from the multi-field NFS [4]
(high/medium granularity) and the DLOG factory [3] (low granularity). Both variants first require an
instance-independent precomputation. Then instances can be solved with a constant computational effort.
The values δ = 0.67 and δ = 0.368 of Table 2 correspond to the number of instances starting from which
the cumulative cost of breaking the instances outweighs the cost of the precomputation.

In the elliptic-curve case, we make the hypothesis that the fastest adversary attacking the system
is a generic-group adversary. Concretely, we provide lower bounds on (m,n)-GapCDH[GGengg, gran]
in different granularities, where GGengg generates a generic group [20] of prime-order p. We do so
by first relating it to a m-out-of-n multi-instance version of the Gap Discrete Logarithm problem,
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m-out-of-n problem Given Break m out of Gap? Complexity Ref.
DL[GGen, high] G, p, g, gx1, . . . , gxn x1, . . . , xn – Θ(√mp) [23,22,18]
DL[GGen, med] G, p, g1, g

x1
1 , . . . , gn, g

xn
n x1, . . . , xn – Θ(√mp) §5.3

DL[GGen, low] G1, p1, g1, g
x1
1 , . . . ,Gn, pn, gn, g

xn
n x1, . . . , xn – Θ(m√p) §5.4

GapDL[GGen, high] G, p, g, gx1, . . . , gxn x1, . . . , xn X Θ(√mp) §5.2
GapDL[GGen, med] G, p, g1, g

x1
1 , . . . , gn, g

xn
n x1, . . . , xn X Θ(√mp) §5.3

GapDL[GGen, low] G1, p1, g1, g
x1
1 , . . . ,Gn, pn, gn, g

xn
n x1, . . . , xn X Θ(m√p) §5.4

GapCDH[GGen, high] G, p, g, gx1, gy1, . . . , gxn, gyn gx1y1, . . . , gxnyn X Θ(√mp) §6.1
GapCDH[GGen, med] G, p, g1, g

x1
1 , g

y1
1 , . . . , gn, g

xn
n , gyn

n gx1y1
1 , . . . , gxnyn

n X Θ(√mp) §6.2
GapCDH[GGen, low] G1, p1, g1, g

x1
1 , g

y1
1 , . . . ,Gn, pn, gn, g

xn
n , gyn

n gx1y1
1 , . . . , gxnyn

n X Θ(m√p) §6.3

Table 3. Definition and generic-group complexity of problems (m,n)-DL[GGen, gran], (m,n)-GapDL[GGen, gran],
and (m,n)-GapCDH[GGen, gran], where gran belongs to {low, med, high}. G and Gi are generic groups of prime
order p and pi, with generators g and gi, respectively. The third column defines the problem’s winning condition.
The Gap column indicates the presence of a DDH oracle.

(m,n)-GapDL[GGengg, gran]. We furthermore extend Yun’s known lower bounds in the generic group
model for (m,n)-DL[GGengg, high] [23,22,18] to the gap setting and to (m,n)-GapDL[GGengg, gran] for
different granularities gran ∈ {high, med, low}. Concretely, we will prove the following main theorem.

Theorem The best generic algorithm to break (m,n)-GapCDH[GGengg, gran] requires running time

T =
{
Θ(√mp) gran ∈ {high, med}
Θ(m√p) gran = low

,

and the constant hidden by the Θ notation are small (between 0.1 and 6.6).

The lower bounds on SFm,n for HEG[GGenE(F`), gran] are obtained by combining our previous theorems
and assuming that elliptic curve groups behave like generic groups.

1.2 Generic Bounds on Multi-Instance GapCDH: Technical Details

As a technical tool to prove the security of Hashed ElGamal, we consider the multi-instance vari-
ants of three different problems: discrete logarithm ((m,n)-DL[GGengg, gran]), gap discrete logarithm
((m,n)-GapDL[GGengg, gran]), and gap computational Diffie-Hellman ((m,n)-GapCDH[GGengg, gran])
in different granularities, see Table 3.

We now discuss the complexity column of Table 3. It is well known that the running time of solving
(m,n)-DL[GGengg, high] is Θ(√mp), the lower bound being in the generic group model [23,22], the
matching upper bound stemming from a concrete generic algorithm [18]. It is not hard to see that the
bounds on (m,n)-DL[GGengg, med] are basically the same because the generators gi can be viewed as
“high-granularity instances” gxj . As for (m,n)-DL[GGengg, low], the adversary essentially has to solve
m discrete logarithms in n independent generic groups G1, . . . ,Gn, which results in a lower bound of
Ω(m√p).

Our first main technical result (Corollary 1) is a non-trivial extension of Yun’s generic lower bound
[23,22] to the gap setting, i.e., a new lower bound of Ω(√mp) on solving the (m,m)-GapDL[GGengg, high].

Our second main technical result (Theorem 5) states that, in high granularity, the (m,m)-GapDL
and the (m,n)-GapCDH problems are essentially equally hard in the algebraic group model [12], hence
implying the required bounds in the generic group model. The results in medium and low granularity
follow as in the discrete logarithm setting.

Main Technical Result 1: Lower Bound on (m,m)-GapDL[GGengg, high]. We define a new “hard”
problem called the polycheck discrete logarithm problem: The security game is the same as that of standard
multi-instance DL, but the adversary has additional access to an oracle Eval that behaves as follows.
Given as input to Eval a polynomial f ∈ Zp[X1, . . . , Xk] and group elements gx1 , . . . , gxk , it returns 1
if and only if gf(x1,...,xk) = 1. This problem is easier than GapDL: In fact, we can simulate the gap
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oracle DDH(gx, gy, gz) by querying Eval(f := X1X2 −X3, g
x, gy, gz). In the generic group model, we can

bound the advantage of an adversary against the m-out-of-m polycheck discrete logarithm problem that
queries polynomial of degree at most d ((m,m)-d-PolyDL[GGengg, high]) as

Adv(m,m)-d-polydl .

(
dq2 + dqEval

mp

)m
,

where q bounds the queries to the group-operation oracle, qEval to Eval, and p is the order of the generic
group. The bound for high-granularity GapDL follows by setting d = 2.

The result is proven by extending the arguments by Yun [23] for the standard multi-instance DL
problem. In line with Yun’s approach, we define the search-by-hypersurface problem in dimension m
(m-SHSd[p]), which requires to find a uniformly sampled point a ∈ Zmp while being able to check whether
a is a zero of adaptively chosen polynomials in Zp[X1, . . . , Xm] for polynomials of degree at most d.
Notably, Yun’s search-by-hyperplane-queries problem in dimension m is equivalent to m-SHS1.

We show that any generic adversary against (m,m)-d-PolyDL[GGengg, high] can be transformed into
an adversary against m-SHSd, and then proceed to bound the advantage of an adversary against m-SHSd.
The key step is observing that an adversary can make at most m useful hypersurface queries, that is,
queries that return 1 (hence, identify a hypersurface on which the point a lies) and whose output is not
easy to determine based on previous queries. The key difference between our result and Yun’s lies in how
useful queries are processed and counted. Since Yun considers only polynomials of degree 1, a hypersurface
defined by a polynomial of degree 1 is a hyperplane of the affine space Zmp . Each useful query identifies
another hyperplane on which the sought point lies. When intersecting another hyperplane with the
intersection of the hyperplanes previously found, the dimension of the intersection as an affine subspace
is brought down by one. The dimension of the full affine space being m, at most m such queries can be
made before identifying a single point (dimension 0). However, generalizing to hypersurfaces generated by
polynomials of degree ≥ 2 requires to carry over more sophisticated arguments from algebraic geometry.
Firstly, intersecting m hypersurfaces does not, in general, identify a single point. Secondly, intersection
of two hypersurfaces might give rise to the union of two or more irreducible components. Intersecting
further with a hypersurface containing just one of those irreducible components would qualify as a useful
query, however would not bring down the dimension of the intersection by one. This impasse is overcome
by guessing the correct component at each step. Fortunately, Bézout’s theorem and a discerning choice of
the guessing probabilities at each useful query makes the argument go through with just an additional
loss of dm, which is absorbed by the exponential bound in the dimension.

Main Technical Result 2: (m,m)-GapDL[GGen, high] Implies (m,n)-GapCDH[GGen, high].The
algebraic group model, introduced by Fuchsbauer et al. [12], essentially treats all algorithms as algebraic, in
the sense that for every group elementX they output they also have to provide a representationX =

∏
Y ai
i

in terms of all previously observed group elements Y1, . . . , Yk. Importantly, a bound in the generic group
model can be extended through an algebraic reduction to a different problem.

Our second technical result (Theorem 5) presents an algebraic reduction between the problems
(m,n)-GapCDH[GGen, high] and (m,m)-GapDL[GGen, high] with a tightness loss of 2m in the algebraic
group model. Combining this with the generic-group lower bound we prove as our first main technical
result, we obtain, in the generic group model:

Adv(m,n)-gcdh
high

Th. 5
≤ 2m ·Adv(m,m)-gdl

high

Cor. 1
. 2m

(
q2 + qDDH

mp

)m
≈
(

2q2

mp

)m
,

where q bounds the queries to the group-operation oracle, qDDH to the gap oracle, and p is the or-
der of the generic group. Note that the reduction’s exponential loss of 2m gets swallowed by the
(m,m)-GapDL[GGengg, high] bound. More importantly, by the above bound one requires q ≥ Ω(√mp)
generic-group operations to break (m,n)-GapCDH[GGengg, high] with overwhelming advantage.

A natural approach to tackle the proof of Theorem 5 would be to adapt the single-instance proof
presented in [12] to the multi-instance setting. By following this strategy, however, the reduction would
need to solve multivariate systems of quadratic equations, which is in general believed to be a hard
problem. The proof techniques we employ are in fact significantly different.

The path we pursue maintains, instead, the linear character of the system. The reduction distributes
the i-th DL challenges in either the X or Y components of the i-th challenges to the CDH adversary. The
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intuition at the core of the proof is that an adversary finding the CDH solution for any one instance must
provide the DL of at least one of the two corresponding challenge components (even if possibly depending
on the remaining, unrecovered DLs). If the reduction manages to embed the m DL challenges at the
right spot, then it is able to recover all logarithms. The reduction loss of 2m is consequence of this guess.
Moreover, expanding the m DL challenges into n CDH challenges adds a further layer of complexity. Any
wrong choice at this step would undermine either the reduction’s ability to extract the discrete logarithms
or give to the adversary information on where the DL challenges are embedded.

1.3 Future Directions

Corrigan-Gibbs and Kogan [11] consider the multi-instance discrete logarithm problem in a setting where
the adversary is allowed to first perform unbounded preprocessing over the group to produce an advice
string of bounded size, which in a second stage is used to solve multiple discrete logarithm instances.
The resulting lower bounds in the generic group model were also derived by Coretti et al. [10] using a
different technique. It would be interesting to compute scaling factors of the considered schemes taking
preprocessing into account. Another possible direction is to derive lower bounds on the scaling factor for
practical encryption schemes in the RSA setting (e.g., RSA-OAEP [7]) and in the post-quantum setting
(e.g., based on lattices and codes).

2 Preliminaries

2.1 Notation

Vector Notation. We denote vectors with boldface fonts, for example v. The number of elements of
a vector is represented by |v|. Element indexing starts from 1, and the entry at position i is accessed
through square brackets: v[i]. To initialize all entries of a vector to some element a we write v[·] ← a.
We may initialize multiple vectors simultaneously, and moreover initialize them through running some
(possibly randomized) routine. As an example, we could initialize a vector of public and of secret keys as
(pk, sk)[·] ←$ Gen to indicate that for every index i we run Gen with fresh randomness and, denoting
the output with (pk, sk), set pk[i] ← pk and sk[i] ← sk. Given any set of indices I, we denote with
v[I] the vector that contains only the entries indexed with elements in I. For example, if v = (a, b, c)
then v[{1, 3}] = (a, c). We slightly abuse this notation, writing v[I] ← w when replacing each entry
of v whose indices belong to I by the elements of w in their order. For example, if v = (a, b, c) and we
execute v[{1, 3}]← (d, e) then v = (d, b, e).

Group Notation. In this paper we consider groups G of prime order p, generated by g. We call G =
(G, p, g) a group representation. A group-generating algorithm GGen is a randomized algorithm that
outputs a group representation G. We assume that all groups output by GGen are of the same bit length.

In this work we consider two instantiations GGenE(F`) and GGenF∗
`
of group-generating algorithms.

In both cases ` denotes a randomly sampled prime of appropriate size. Group descriptions G output by
GGenE(F`) are prime-order p subgroups of elliptic curves defined over the field F`. Group descriptions
output by the second considered group-generating algorithm GGenF∗

`
are subgroups of the multiplicative

group F∗` of sufficiently large prime order.
Except for the group generators, all group elements will be denoted with uppercase letters, e.g., X.

We use vectors and matrices of elements in Zp to compute with group elements: If Y is a group element
and x is a vector of elements in Zp, we write Y x to denote the group element vector (Y x[1], Y x[2], . . .).
Similarly, given some matrix M = (mij)i,j∈[1 .. n]×[1 .. k] and a vector of group elements Y of size k, we
define Y M to be the n-size vector (Y [1]m11 . . .Y [k]m1k , . . . ,Y [1]mn1 . . .Y [k]mnk ). Note that if Y = gy

then Y M = gMy.

Security Games. We define security notions via code-based games [8]. A game G consists of a main
procedure and zero or more oracles that can be accessed from within the game. The game is defined with
respect to an adversary A, which is invoked within the main procedure. The adversary may have access
to some of the oracles of the game: The ability to access oracle O is represented by invoking the adversary
as AO. When the game stops, it outputs either a success (1) or a failure (0) symbol. With Pr[G(A)] we
denote the probability that adversary A wins, i.e., that game G, executed with respect to A, stops with
output 1.
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2.2 Generic/Algebraic Group Model

Generic Group Model. Intuitively, the Generic Group Model (GGM) is an abstraction to study the
behavior of adversaries that do not exploit any specific structure of the group at play, but rather treat
the group in a black-box fashion. This is usually modeled by representing group elements exclusively
through “opaque” handles, which hide the structure of the group. These handles are used as input to
a model-bound oracle, the group-operation oracle, which is the only interface to the group available to
the adversary. An algorithm with such restrictions is referred to as a generic algorithm. The running
time of generic adversaries is normally measured in number of calls to the group-operation oracle. For
further details on the GGM we refer to [20,19]. To derive bounds on the hardness of solving certain
computational problems with respect to GGenE(F`) we model the output elliptic curves as generic groups.
For clarity, in this case we denote the group-generating algorithm by GGengg.

Algebraic Group Model. For every group element Z it returns, an algebraic algorithm A must present
a description of this element in terms of the elements it has previously seen. That is, if n is the order of
the group and X1, . . . , Xk are the elements that A received so far from the game, then A must return
some elements a1, . . . , ak ∈ Zn such that Z = Xa1

1 . . . Xak

k . We use the algebraic group model to analyze
generic reductions:

Note that a generic reduction executed with respect to a generic adversary is itself a generic algorithm.
Without loss of generality we may assume that generic adversaries are algebraic, which allows the reduction
to exploit the useful algebraic representation of the input group elements. As demonstrated by Fuchsbauer
et al. [12], this idea gives a handy technique for carrying over generic lower bounds through generic
reductions, as seen in the following lemma.

Lemma 1 ([12, Lemma 2.2]). Let α,∆ be constants and let R be a generic reduction R from game G0
to G1. Assume that for every generic adversary A that succeeds with probability ε and makes at most q
group-operation queries, reduction R executed with respect to A makes at most q +∆ group-operation
queries and succeeds with probability of at least αε. If there exists a function f such that Pr[G1(B)] ≤ f(q)
for every generic adversary B making at most q group-operation queries, then for every generic adversary A
making at most q group-operation queries we obtain Pr[G0(A)] ≤ α−1f(q +∆).

2.3 Key-Encapsulation Mechanisms

A key-encapsulation mechanism (KEM) KEM specifies the following. Parameter generation algorithm Par
generates public parameters par to be utilized by all users. Key-generation algorithm Gen gets the
parameters as input and outputs a pair (pk, sk) consisting of a public and a secret key. Encapsulation
algorithm Enc on input of the parameters and a public key outputs a pair (K, c) consisting of an
encapsulated key K belonging to the encapsulated key space KS(par) and a ciphertext c belonging to the
ciphertext space CS(par). Deterministic decapsulation algorithm Dec receives the parameters, a secret
key sk and a ciphertext c as input and returns either the symbol ⊥ indicating failure or an encapsulated
key K. For correctness we require that for all par output of Par and for every (pk, sk) output of Gen(par)
we obtain K ← Dec(par , sk, c) for (K, c)←$ Enc(par , pk).

3 Multi-Instance Security

In this section we investigate the m-out-of-n multi-instance security of key-encapsulation mechanisms.
After giving security definitions in Section 3.1, in Section 3.2 we consider the relation between security
notions for varying m and n. In Section 3.3 we define the scaling factor, which measures how well the
security of KEMs scales with the number of users. Finally, in Section 3.4 we give security definitions for
Diffie-Hellman type problems in the multi-instance setting, which will be used in the security analysis of
the Hashed-ElGamal KEM in the next section.

3.1 Key Encapsulation in the Multi-Instance Setting

Below we give security definitions for key-encapsulation mechanisms in the multi-instance setting. Our
definitions are in the xor metric introduced by Bellare et al. [6] for symmetric encryption schemes.
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Games G(m,n)-cpa
KEM (A), G(m,n)-cca

KEM (A)
00 C∗[·]← ∅
01 b←$ {0, 1}n

02 par ←$ Par
03 for i ∈ [1 .. n]:
04 (pk[i], sk[i])←$ Gen(par)
05 (L, b′)←$ AEnc(par ,pk) \\(m,n)-CPA
06 (L, b′)←$ AEnc,Dec(par ,pk) \\(m,n)-CCA
07 if |L| < m: return 0
08 if ⊕i∈Lb[i] = b′: return 1
09 else: return 0

Oracle Enc(i)
10 (K∗1 , c∗)←$ Enc(par ,pk[i])
11 K∗0 ←$ KS(par)
12 C∗[i]← C∗[i] ∪ {c∗}
13 return (K∗b[i], c

∗)
Oracle Dec(i, c)
14 if c ∈ C∗[i]: return ⊥
15 K ← Dec(par , sk[i], c)
16 return K

Fig. 1. Games G(m,n)-cpa
KEM and G(m,n)-cca

KEM modeling m-out-of-n multi-instance indistinguishability of encapsulated
keys from random. We assume that L ⊆ [1 .. n].

We target m-out-of-n multi-instance indistinguishability of encapsulated keys from random against
chosen-plaintext attacks ((m,n)-CPA) or chosen-ciphertext attacks ((m,n)-CCA).

In its most general form, the xor metric models the inability of an adversary to break m out of n
instances of a decisional problem. The adversary receives as input n challenges, generated independently
of each other with respect to n independent challenge bits b. The adversary’s task is to output a
subset L ⊆ [1 .. n] of size at least m (representing the “broken instances”) together with a guess for⊕

i∈L b[i]; the intuition being that as long as at least one of the challenge bits contained in L is hidden
to the adversary, so is

⊕
i∈L b[i], reducing the adversary to guessing the final output.

Formally, let KEM be a KEM and let m,n ∈ N such that 1 ≤ m ≤ n. Consider games G(m,n)-cpa
KEM (A)

and G(m,n)-cca
KEM (A) of Fig. 1 associated to KEM,m, n, and an adversary A. In both games, b is a vector of

n challenge bits, which corresponds to vectors pk, sk of public and secret keys, which are set up using a
single set of global parameters par . The adversary has access to a challenge oracle Enc, which on input
of index i ∈ [1 .. n] returns a pair consisting of an encapsulated key and a ciphertext generated with
Enc(par ,pk[i]) if the challenge bit b[i] equals 1, or, if b[i] equals 0, a ciphertext and a randomly sampled
element of KS(par). At the end of the game, adversary A outputs a list of indices L ⊆ [1 .. n] and a bit b′.
A wins if L contains at least m elements and if b′ =

⊕
i∈L b[i]. In game G(m,n)-cca

KEM (A) the adversary
additionally has access to a decapsulation oracle Dec, which on input of index i ∈ [1 .. n] and ciphertext c
returns the decapsulation of c under parameters par and secret key sk[i] (unless c was output as response
to a challenge query Enc(i) for index i).

We define A’s advantage in game G(m,n)-cpa
KEM and G(m,n)-cca

KEM respectively as

Adv(m,n)-cpa
KEM (A) = 2 Pr[G(m,n)-cpa

KEM (A)]− 1 ,

Adv(m,n)-cca
KEM (A) = 2 Pr[G(m,n)-cca

KEM (A)]− 1 .

The definition we have just presented lends itself naturally to a comparison with the standard multi-
user security notion of Bellare et al. [5]. We describe the relationship between multi-user security and
(1, n)-CCA in detail in Appendix A.

3.2 Advantage Relations for Different m and n

The relations between (m′, n′)-CPA and (m,n)-CPA security are summarized in Fig. 2. They are stated
more formally in the following theorem, whose proof is in Appendix B.

Theorem 1. Let m, n, m′, n′ be positive integers such that m ≤ n, m′ ≤ n′, and let KEM be any
KEM scheme. Then for every adversary A against game G(m,n)-cpa

KEM there exists an adversary B against
game G(m′,n′)-cpa

KEM such that:

1. If m′ ≤ m and m′n ≤ mn′ then B has roughly the same running time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2Adv(m,n)-cpa
KEM (A) .
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`ε

ε/2

εk/2

`εk

ε

(n,m)

n′

m′

Fig. 2. Relations between (m′, n′)-CPA and (m,n)-CPA security. Given A against (m,n)-CPA with advantage ε,
one can build B against (m′, n′)-CPA with advantage as shown in figure, depending on its position on the plane.
The constants in the figure are k = dm′/me and ` = 1

2

(
n′

m′

)(dnm′/me
m′

)−1. The same result holds for CCA.

Additionally, if n′−m′ ≥ n−m then the reduction does not lose the factor 1/2.
2. If m′ ≤ m and m′n > mn′ then B has roughly the same running time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
dnm′/me

m′

)−1
Adv(m,n)-cpa

KEM (A) .

3. If m′ > m and m′n ≤ mn′ then B has roughly k = dm′/me times the running time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
Adv(m,n)-cpa

KEM (A)
)k

.

Additionally, if m divides m′ then the reduction does not lose the factor 1/2.
4. If m′ > m and m′n > mn′ then B has roughly k = dm′/me times the running time of A and

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
dnm′/me

m′

)−1 (
Adv(m,n)-cpa

KEM (A)
)k

.

An analogous statement holds between (m,n)-CCA and (m′, n′)-CCA. If A queries its decryption
oracle q times, then adversary B queries its decryption oracle at most q, q, kq, and kq times respectively.

3.3 Scaling Factor

We now formally define the scaling factor of key-encapsulation mechanisms. We fix a computational
model that associates to each adversary A its running time. Let MinTime(m,n)-cpa

KEM be the minimal time T
for which there exists an adversary A that runs in at most time T and achieves overwhelming advantage
Adv(m,n)-cpa

KEM (A).
We define the scaling factor of KEM relative to (m,n)-CPA security as

SF(m,n)-cpa
KEM :=

MinTime(m,n)-cpa
KEM

MinTime(1,1)-cpa
KEM

.

The scaling factor of KEM relative to (m,n)-CCA security, SF(m,n)-cca
KEM , is defined in the same way relative

to advantage Adv(m,n)-cca
KEM (A). By the results of Section 3.2 we can give concrete bounds on the scaling

factor (which also hold in the CCA setting).

SF(m,n)-cpa
KEM ≤ SF(m,m)-cpa

KEM ≤ m .

The lower bound follows since any adversary against (m,m)-CPA is also an adversary against (m,n)-CPA
with the same advantage (Theorem 1, item 1). The upper bound follows from Theorem 1, item 3.
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Surprisingly, the scaling factor can be smaller than 1: Being able to chose which users to attack can
make the task of breaking multiple instances easier than breaking a single one. An artificial example of a
KEM with scaling factor of m/n is sketched in Appendix C. This is, however, a phenomenon limited
to the case m 6= n: For n = m, we know that SF(n,m)-cpa

KEM ≥ 1 by Theorem 1, item 1. Importantly,
specific KEMs such as HEG or Cramer-Shoup are known to be “random self-reducible”, which implies
MinTime(1,n)-cpa

KEM = MinTime(1,1)-cpa
KEM , and hence by Theorem 1, item 1:

1 ≤ SF(m,n)-cpa
KEM ≤ m .

Remark 1. Our definition of scaling factor exclusively considers adversaries achieving overwhelming
advantages. This definition is generalized naturally to encompass adversaries with arbitrary advan-
tage as follows. Let MinTime(m,n)-cpa

KEM (ε), associated with 0 ≤ ε ≤ 1, denote the running time of
the fastest adversary achieving advantage at least ε in game (m,n)-CPA. Intuitively, an optimally
scaling scheme requires m independent execution of a (1, 1)-CPA adversary in order to break m in-
stances of the scheme. Hence, an advantage-dependent scaling factor for advantage ε is defined as
SF(m,n)-cpa

KEM (ε) := MinTime(m,n)-cpa
KEM (εm)/MinTime(1,1)-cpa

KEM (ε). Our definition of scaling factor is a special
case of this generalized definition for overwhelming success probability. Again, we can use Theorem 1 to
show that, for every 0 ≤ ε ≤ 1, SF(m,n)-cpa

KEM (ε) ≤ SF(m,m)-cpa
KEM (ε) ≤ m.

3.4 Multi-Instance Diffie-Hellman-Type Problems

Gap Discrete Logarithm Problem. The m-out-of-n multi-instance gap discrete logarithm problem
((m,n)-GapDL) requires to find the discrete logarithms of at least m out of n input group elements given
access to a decisional Diffie-Hellman oracle. We consider three variants of the problem, which differ in
their granularity. For high granularity all discrete logarithm challenges are sampled with respect to a
fixed group and group generator, while for medium granularity the challenges are elements of a fixed
group but defined with respect to different group generators. Finally, in the case of low granularity a
fresh group and generator is used for each challenge.

Formally, let m,n ∈ N such that 1 ≤ m ≤ n and consider game G(m,n)-gdl
GGen,gran(A) of Fig. 3 associated

to adversary A, group-generating algorithm GGen, and granularity gran ∈ {high, med, low}. In the
game, a vector G of n group descriptions is set up according to the desired level of granularity using
parameter generation algorithm PGen[gran]. Each entry of G is of the form (G, p, g) with G being a
group of prime order p generated by g. After the setup of G the three variants of the game proceed
in the same way. A vector x of length n is sampled, where x[i] is uniformly distributed in Zp[i]. The
corresponding challenge vector contains the group elements X[i] = g[i]x[i]. At the end of the game,
adversary A outputs a list of indices L ⊆ [1 .. n] and a vector x′ of length n, where the i-th entry is
in Zp[i]. The adversary wins if L contains at least m elements and if the vector x′ coincides with x for all
indices in L. Additionally, the adversary has access to an oracle DDH, which, on input of index i ∈ [1 .. n]
and three group elements X̂, Ŷ , Ẑ, behaves as follows. The game computes the discrete logarithms x̂, ŷ of
input X̂, Ŷ with respect to generator g[i], and then returns 1 if and only if g[i]x̂ŷ = Ẑ.

We define A’s advantage in game G(m,n)-gdl
GGen,gran(A) as

Adv(m,n)-gdl
GGen,gran(A) = Pr[G(m,n)-gdl

GGen,gran(A)] .

The m-out-of-n multi-instance discrete logarithm ((m,n)-DL) problem is defined as (m,n)-GapDL
with the restriction that A cannot query DDH.

Gap Computational Diffie-Hellman Problem. The m-out-of-n multi-instance gap computational
Diffie-Hellman problem ((m,n)-GapCDH) requires, on input of vectors gx and gy, to compute at least
m elements of the form gx[i]y[i] for distinct i ∈ [1 .. n]. As in the corresponding DL game, the adversary
has access to an oracle DDH which computes whether three given group elements are a Diffie-Hellman
triple. As in the definition of (m,n)-GapDL, we consider three variants of the problem, which differ in
their granularity.
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Games G(m,n)-gdl
GGen,gran (A)

00 G ←$ PGen[gran]
01 x[·]←$ Zp[·]; X[·]← g[·]x[·]

02 (L,x′)←$ ADDH(G,X)
03 if |L| < m: return 0
04 if x′[L] = x[L]: return 1
05 else: return 0

Oracle DDH(i, X̂, Ŷ , Ẑ)
06 parse X̂, Ŷ as gx̂, gŷ

07 if g[i]x̂ŷ = Ẑ:
08 return 1
09 else: return 0

Procedure PGen[high]
10 G = (G, p, g)←$ GGen
11 G[·]← G
12 return G

Procedure PGen[med]
13 (G, p, g)←$ GGen
14 g ←$ (G \ {1})n

15 G[·]← (G, p, g[·])
16 return G

Procedure PGen[low]
17 G[·]←$ GGen
18 return G

Fig. 3. Security game G(m,n)-gdl
GGen,gran (A) for gran ∈ {high, med, low} modeling the m-out-of-n multi-instance discrete

logarithm problem and the gap version.

Game G(m,n)-gcdh
GGen,gran (A)

00 G ←$ PGen[gran]
01 x[·]←$ Zp[·]; X[·]← g[·]x[·]

02 y[·]←$ Zp[·]; Y [·]← g[·]y[·]

03 Z[·]← g[·]x[·]y[·]

04 (L,Z′)←$ ADDH(G,X,Y )
05 if |L| < m: return 0
06 if Z[L] = Z′[L]: return 1
07 else: return 0

Oracle DDH(i, X̂, Ŷ , Ẑ)
08 parse X̂, Ŷ as gx̂, gŷ

09 if g[i]x̂ŷ = Ẑ:
10 return 1
11 else: return 0

Fig. 4. Security game G(m,n)-gcdh
GGen,gran (A) for gran ∈ {high, med, low} modeling the m-out-of-n multi-instance gap

computational Diffie-Hellman problem. PGen is defined in Fig. 3.

Formally, for m,n ∈ N s.t. 1 ≤ m ≤ n and consider game G(m,n)-gcdh
GGen,gran (A) of Fig. 4 associated to

adversary A, group-generating algorithm GGen, and granularity gran ∈ {high, med, low}. In the game,
a vector G of n group descriptions is set up according to parameter generation algorithm PGen[gran].
After the setup of G the three variants of the game proceed in the same way. Two vectors x, y of length
n are sampled, where x[i], y[i] are uniformly distributed in Zp[i]. The corresponding challenge vectors
contain the group elements X[i] = g[i]x[i] and Y [i] = g[i]y[i]. Additionally, the adversary has access to an
oracle DDH, which behaves as described for G(m,n)-gdl

GGen,gran(A). At the end of the game, adversary A outputs
a list of indices L ⊆ [1 .. n] and a vector Z′ of length n, where the i-th entry is an element of the group
represented by G[i]. The adversary wins if L contains at least m elements and if the vector Z′ coincides
with Z for all indices in L.

We define A’s advantage in game G(m,n)-gcdh
GGen,gran (A) as

Adv(m,n)-gcdh
GGen,gran (A) = Pr[G(m,n)-gcdh

GGen,gran (A)] .

Further, the m-out-of-n multi-instance computational Diffie-Hellman ((m,n)-CDH) problem is defined
as (m,n)-GapCDH with the restriction that A cannot query oracle DDH.

4 Hashed ElGamal in the Multi-Instance Setting

We investigate the multi-instance security of the well-known Hashed-ElGamal key-encapsulation mecha-
nism [1]. We consider three variants, HEG[GGen, high], HEG[GGen, med], and HEG[GGen, low], correspond-
ing to high, medium, and low granularity respectively. After giving formal definitions of these variants in Sec-
tion 4.1, in Section 4.2 we prove the main result of this section: The multi-instance security of each variant
of the KEM in the random oracle model is tightly implied by the hardness of (m,n)-GapCDH[GGen, gran]
for the corresponding granularity. Finally, in Section 4.3 we compute lower bounds on the scaling factor
of HEG[GGen, gran] for GGen ∈ {GGenF∗

`
,GGenE(F`)} and gran ∈ {high, med, low}.
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gran = high

Algorithm Par[high]
00 G = (G, p, g)←$ GGen
01 par ← G
02 return par
Algorithm Gen[high](par)
03 x←$ Zp; X ← gx

04 pk ← X; sk ← x
05 return (pk, sk)

gran = med

Algorithm Par[med]
06 G = (G, p, g)←$ GGen
07 par ← (G, p)
08 return par
Algorithm Gen[med](par)
09 g ←$ G \ {1}
10 x←$ Zp; X ← gx

11 pk ← (g,X); sk ← (g, x)
12 return (pk, sk)

gran = low

Algorithm Par[low]
13 par ← ⊥
14 return par

Algorithm Gen[low](par)
15 G = (G, p, g)←$ GGen
16 x←$ Zp; X ← gx

17 pk ← (G, X); sk ← (G, x)
18 return (pk, sk)

Algorithm Enc(par , pk)
19 y ←$ Zp

20 c← gy

21 K ← H(pk, c,Xy)
22 return (K, c)

Algorithm Dec(par , sk, c)
23 K ← H(pk, c, cx)
24 return K

Fig. 5. Variants of Hashed-ElGamal KEM HEG[GGen, high], HEG[GGen, med], and HEG[GGen, low] relative to hash
function H and group-generating algorithm GGen. The KEMs share the same encapsulation and decapsulation
algorithms. Note that both (par , pk) or (par , sk) determine group description (G, p, g) and key pk.

4.1 Hashed-ElGamal Key Encapsulation

We consider three variants of the Hashed-ElGamal KEM, defined relative to a hash function H and
differing in the way parameters and key-pairs are generated. For high granularity the parameters specify
a group description G = (G, p, g) with a fixed generator g. Key-pairs (pk, sk) are of the form pk = X = gx

and sk = x, where x is randomly sampled in Zp. For medium granularity the parameters consist of a
group G of order p, but no fixed generator. In this case pk = (g, gx) and sk = (g, x), where g is a randomly
chosen generator of the group G. Finally, for low granularity empty parameters are used. Correspondingly,
in this case public keys are of the form pk = (G, gx) and secret keys of the form sk = (G, x), where
G = (G, p, g) is a freshly sampled group description.

Note that in all three cases the parameters par and a key-pair (pk, sk) generated with respect to par
determine a group description (G, p, g) as well as x and X. In all three variants encapsulated keys are of
the form H(pk, gy, Xy) with corresponding ciphertext gy, where the y is sampled at random in Zp. The
decapsulation of a ciphertext c is given by H(pk, c, cx). A formal description of the algorithms describing
the Hashed-ElGamal key-encapsulation mechanism for each of the three considered variants can be found
in Fig. 5.

4.2 Multi-Instance Security of Hashed ElGamal

The following theorem shows that the security against chosen-ciphertext attacks of each variant of HEG
in the multi-instance setting tightly reduces to the corresponding (m,n)-GapCDH problem3. Its proof is
a generalization of the single-instance version [1] and can be found in Appendix D.

Theorem 2. Let m,n ∈ N with 1 ≤ m ≤ n, let gran ∈ {high, med, low}, let GGen be a group-generating
algorithm, and let HEG[GGen, gran] be the Hashed-ElGamal KEM of Fig. 5 relative to hash function
H. If H is modeled as a random oracle and if the (m,n)-GapCDH[GGen, gran] problem is hard, then
HEG[GGen, gran] is (m,n)-CCA secure. Formally, for every adversary A against game G(m,n)-cca

HEG[GGen,gran]
making at most q queries to random oracle RO there exists an adversary B against game G(m,n)-gcdh

GGen,gran that
makes at most q queries to DDH and runs in essentially the same time as A and satisfies

Adv(m,n)-gcdh
GGen,gran (B) ≥ Adv(m,n)-cca

HEG[GGen,gran](A) .

3 The same result holds under the multi-instance version of the strong Diffie-Hellman assumption [1], a falsifiable
assumption that is implied by (m,n)-GapCDH.
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4.3 Scaling Factor of Hashed ElGamal for Different Parameters

Below we compute the scaling factor of Hashed-ElGamal key encapsulation for different parameter choices.
Recall that the scaling factor is given by

SF(m,n)-cca
HEG[GGen,gran] = MinTime(m,n)-cca

HEG[GGen,gran]/MinTime(1,1)-cca
HEG[GGen,gran] .

Note, that the multi-instance security of HEG can be broken by computing m public keys, which
corresponds to computing m DL instances. On the other hand, from Theorem 2 we know that the
(m,n)-CCA-security of HEG is tightly implied by (m,n)-GapCDH. Thus,

MinTime(m,n)-gcdh
GGen,gran ≤ MinTime(m,n)-cca

HEG[GGen,gran] ≤ MinTime(m,n)-dl
GGen,gran .

Hence, we can bound the scaling factor of Hashed ElGamal as

SF(m,n)-cca
HEG[GGen,gran] ≥ MinTime(m,n)-gcdh

GGen,gran /MinTime(1,1)-dl
GGen,gran .

Below we consider two instantiations of group-generating algorithms: GGenF∗
`
and GGenE(F`). Due

to either Hypothesis 1 from the introduction or the results of Sections 5 and 6 respectively, for both
instantiations solving (m,n)-GapCDH is as hard as (m,n)-GapDL. Thus, the lower bounds on the scaling
factor derived below are sharp.

Hashed ElGamal in the Finite-Field Setting. Assuming the correctness of Hypothesis 1, we
conclude that MinTime(m,n)-gcdh

F∗
`
,gran = MinTime(m,n)-dl

F∗
`
,gran is given by

L`(1/3, 1.902) +m · L`(1/3, 1.232) for gran ∈ {high, med} , and
min{m · L`(1/3, 1.902), L`(1/3, 2.007) +m · L`(1/3, 1.639)} for gran = low .

We obtain the scaling factor by dividing by MinTime(1,1)-dl
F∗

`
,gran = L`(1/3, 1.902). Defining δ viam = L`(1/3, δ)

we can rewrite m · L`(1/3, 1.232) as L`(1/3, δ + 1.232). For δ ≤ 0.67 we get L`(1/3, 1.902) ≥ L`(1/3, δ +
1.232). Hence for these values of δ the scaling factor for medium and high granularity is roughly 1. For
larger m, on the other hand, it is of order L`(1/3, δ − 0.67).

Summing up for gran ∈ {med, high} we obtain

SF(m,n)-cca
HEG[GGenF∗

`
,gran] =

{
1 δ ≤ 0.67
L`(1/3, δ − 0.67) δ > 0.67

.

Further, we get L`(1/3, δ + 1.902) ≤ L`(1/3, 2.007) for δ ≤ 0.105. Hence in this case for low granularity
the scaling factor is given by m = L`(1/3, δ). Moreover, we obtain L`(1/3, δ + 1.639) = L(1/3, 2.007) for
δ = 0.368 implying that for 0.108 ≤ δ ≤ 0.368 the scaling factor is of order L`(1/3, 2.007− 1.902) and of
order L`(1/3, δ + 1.639− 1.902) for larger values of δ. Summing up:

SF(m,n)-cca
HEG[GGenF∗

`
,low] =


L`(1/3, δ) 0 ≤ δ < 0.105
L`(1/3, 0.105) 0.105 ≤ δ < 0.368
L`(1/3,−0.263 + δ) 0.368 ≤ δ

.

Formally, the asymptotic behavior of the scaling factor computed above is linear4 in m and hence, at
first glance, seems optimal. However, as discussed in the introduction, the numbers of L`(1/3, 0.67) or
L`(1/3, 0.368) instances starting from which the cumulative cost of breaking the instances outweighs the
cost of the precomputation are typically large.

Hashed ElGamal in the Elliptic-Curve Setting. Recall that GGenE(F`) generates elliptic curves
of size p ≈ ` defined over the field F` for randomly chosen `. If we model elliptic curves as generic groups
we can derive the scaling factor as follows. Ignoring constants, a single DL instance can be solved in
4 For fixed ` and very large values of m and n generic attacks start to outperform the NFS and the scaling factor
actually becomes Θ(

√
m).
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time O(√p). The lower bounds derived in Section 6 (Corollaries 3 and 4 and Theorem 6) imply the
following: A generic algorithm solving (m,n)-GapCDH for high and medium granularity performs at least
Ω(√mp) group operations; the low-granularity case requires at least Ω(m√p) group operations. (In the
low-granularity case we formally consider n groups of differing group orders p1, . . . , pn. Here p denotes a
lower bound on all pi.) Summing up, we obtain

SF(m,n)-cca
HEG[GGenE(F`),gran] =

{
Θ(√mp/√p) = Θ(

√
m) gran ∈ {high, med}

Θ(m√p/√p) = Θ(m) gran = low
.

(The constants hidden within the Θ notation can be made explicit from our results, and are between 0.1
and 6.6.) In Appendix E we illustrate how the scaling factors computed above could be taken into account
when choosing parameters for HEG.

5 Generic Hardness of the Multi-Instance Gap Discrete Logarithm Problem

In this section we define a new hard problem, namely the polycheck discrete logarithm problem (PolyDL),
in the multi-instance setting. Then, we proceed to show a concrete bound on its security in the generic
group model (Theorem 3). Most notably, from this bound we present a concrete bound on the security
of GapDL. To prove the bound we define an additional problem, the search-by-hypersurface problem (SHS).

In Section 5.1 we define the PolyDL and SHS problems. Next, we show our bounds on the security
of GapDL, and further argue that all derived bounds are optimal. Section 5.2 covers high, Section 5.3
medium, and Section 5.4 low granularity.

5.1 Polycheck Discrete Logarithm and Search-by-Hypersurface Problem

Polycheck Discrete Logarithm Problem. The m-out-of-n multi-instance polycheck discrete
logarithm problem ((m,n)-d-PolyDL) for polynomials of degree at most d requires to find the discrete
logarithms of at least m out of n input group elements given access to a decisional oracle Eval with
behaves as follows. Eval takes as input a polynomial f ∈ Zp[X1, . . . , Xk] of degree at most d and a list of
group elements (gx̂1 , . . . , gx̂k ), where k is an arbitrary integer, and returns 1 if and only if gf(x̂1,...,x̂k) = 1.
As usual, we consider three variants of the problem, which differ in their granularity.

Formally, let m,n, d ∈ N such that 1 ≤ m ≤ n, d ≥ 1, and consider game G(m,n)-d-polydl
GGen,gran (A) of

Fig. 6 associated to adversary A and granularity gran ∈ {high, med, low}. In the game, a vector G of
n group descriptions is set up according to the desired level of granularity using PGen[gran]. After the
setup of G the three variants of the game proceed in the same way. A vector x of length n is sampled,
where x[i] is uniformly distributed in Zp[i]. The corresponding challenge vector contains the group
elements X[i] = g[i]x[i]. At the end of the game, adversary A outputs a list of indices L ⊆ [1 .. n] and
a vector x′ of length n, where the i-th entry is in Zp[i]. The adversary wins if L contains at least m
elements and if the vector x′ coincides with x for all indices in L. Additionally, the adversary has access
to an evaluation oracle Eval, which on input of an index i ∈ [1 .. n], a polynomial f ∈ Zp[X1, . . . , Xk],
and a list of group elements (X̂1, . . . , X̂k), where k is an arbitrary integer which might be different on
different calls, behaves as follows. If deg f > d, then Eval returns 0. Otherwise, the game computes the
discrete logarithms xi of the challenges X with respect to generator g[i], and then returns 1 if and only
if g[i]f(xi) = 1.

We define the advantage of A in game G(m,n)-d-polydl
GGen,gran (A) as

Adv(m,n)-d-polydl
GGen,gran (A) = Pr[G(m,n)-d-polydl

GGen,gran (A)] .

The next definition extends the search-by-hyperplane-query problem (SHQ) by Yun [23].

Search-by-Hypersurface Problem. The search-by-hypersurface problem in dimension n for polyno-
mials of degree at most d (n-SHSd) requires to find a randomly sampled point a of the space by adaptively
checking whether point a is contained in the queried hypersurface (i.e., the set of zeroes of a polynomial).

Formally, let n, d, p ∈ N such that p is prime and d, n ≥ 1, and consider game Gn-shsd
p (A) of Fig. 7

associated to adversary A. In the game, a vector a of length n is sampled, where a[i] is uniformly
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Game G(m,n)-d-polydl
GGen,gran (A)

00 G ←$ PGen[gran]
01 x[·]←$ Zp[·]; X[·]← g[·]x[·]

02 (L,x′)←$ AEval(G,X)
03 if |L| < m: return 0
04 if x′[L] = x[L]: return 1
05 else: return 0

Oracle Eval(i, f, X̂)
06 if deg f > d: return 0
07 parse X̂ as g[i]x̂
08 if g[i]f(x̂) = 1:
09 return 1
10 else: return 0

Fig. 6. Security game G(m,n)-d-polydl
GGen,gran (A) relative to GGen, gran, modeling the m-out-of-n multi-instance polycheck

discrete logarithm problem for polynomials of degree at most d. We assume that polynomial f input to Eval
has |X̂| indeterminates. PGen is defined in Fig. 3.

Game Gn-shsd
p (A)

00 a←$ Zn
p

01 a′ ←$ AEval(p)
02 if a′ = a: return 1
03 else: return 0

Oracle Eval(f)
04 if deg(f) > d: return 0
05 if f(a) = 0: return 1
06 else: return 0

Fig. 7. Security game Gn-shsd
p (A) with respect to integer d and prime p modeling the search-by-hypersurface

problem on dimension n for polynomials of degree at most d. All inputs f to oracle Eval are elements of the
polynomial ring Zp[X1, . . . , Xn].

distributed in Zp. At the end of the game, adversary A outputs a vector a′ ∈ Znp . The adversary wins
if a′ = a. Additionally, the adversary has access to an evaluation oracle Eval, which on input of a
polynomial f ∈ Zp[X1, . . . , Xn] behaves as follows. If deg f > d, then Eval returns 0. Otherwise, the
oracle returns 1 if and only if f(a) = 0.

We define the advantage of A in game Gn-shsd
p (A) as

Advn-shsd
p (A) = Pr[Gn-shsd

p (A)] .

5.2 Generic Hardness of High-Granularity (m, n)-d-PolyDL

Below, we state the main result of this section, an explicit upper bound on the security of high-
granularity (n, n)-d-PolyDL in the generic group model.

Note that this bound is of particular interest in the context of generic bilinear (or even multilinear)
maps. In fact, a d-linear map yields a natural way to compute any answer of oracle Eval for polynomials
of degree at most d in the base group.

Theorem 3. Let n, d be positive integers and p a prime number. Let GGengg be a group-generating
algorithm that generates generic groups of exactly size p. Then for every generic adversary A against
(n, n)-d-PolyDL[GGengg, high] that makes at most q queries to the group-operation oracle and qEval queries
to oracle Eval:

Adv(n,n)-d-polydl
GGengg,high (A) ≤

(
d

p

)n
+ 1

2

(
ed(q + n+ 1)2 + 2edqEval

2np

)n
.

This extends [23, Corollary 2] from standard DL to the polycheck case. Most importantly, it allows us
to prove the following theorem.

Corollary 1. Let n be any positive integer and GGengg be a group-generating algorithm that generates
generic groups of at least size p. Then for every generic adversary A against (n, n)-GapDL[GGengg, high]
that makes at most q queries to the group-operation oracle and qDDH queries to the DDH oracle:

Adv(n,n)-gdl
GGengg,high(A) ≤

(
2
p

)n
+ 1

2

(
e(q + n+ 1)2 + 2eqDDH

np

)n
≈
(
q2

np

)n
.

Proof (Corollary 1). Note that oracle DDH of game (n, n)-GapDL can be simulated using oracle Eval from
game (n, n)-2-PolyDL. In fact, gxy = gz if and only if gf(x,y,z) = 1, with f(X1, X2, X3) := X1X2 −X3.
Then apply Theorem 3 with d = 2. ut
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The latter result gives a lower bound on the amount of queries required to solve (n, n)-GapDL with
overwhelming success probability. In fact, in this case we get e(q+n+1)2 +2eqDDH > np. Assuming p large
compared to n and qDDH (which allows us to ignore the additive terms n+ 1 and qDDH), we obtain that
the fastest adversary with overwhelming success probability in game (n, n)-GapDL requires q >

√
np/e

group operations. Moreover, there exists a generic algorithm which solves (n, n)-GapDL[GGengg, high]
with probability 1 in q < 2√np steps (see Appendix F for details). This shows that our result is optimal
in terms of number of group operations up to a factor of 2

√
e.

The proof of Theorem 3 follows a structure similar to Yun [23]. First we prove the equivalence
of n-SHSd[p] and (n, n)-d-PolyDL[GGengg, high], and then we bound the success probability of an adversary
against n-SHSd[p]. The equivalence of the two problems corresponds to the lemma below.

Statement and proof closely follow [23, Theorem 1] while additionally handling Eval queries.

Lemma 2. Let n, d be positive integers and p a prime number. Let GGengg be a group-generating al-
gorithm that generates generic groups of exactly size p. Then for every adversary A against game
(n, n)-d-PolyDL[GGengg, high] there exists an adversary B against n-SHSd[p] such that

Advn-shsd
p (B) ≥ Adv(n,n)-d-polydl

GGengg,high (A) .

Moreover, if A makes q group-operation queries and qEval queries to Eval, then B makes at most qEval +
(n+ q)(n+ q + 1)/2 queries to Eval.

Proof. Let A be an adversary against (n, n)-d-PolyDL[GGengg, high]. We build adversary B as follows.
Recall that B can query an oracle Eval on input of polynomials f ∈ Zp[X1, . . . , Xn] that returns 1 if
f(a) = 0 and 0 otherwise, where a is uniformly sampled in Znp at the start of the game. The prime p,
that B receives as input, serves as the order the generic group. Note that it is correctly distributed.

We introduce the two lists S = {si} and L = {li}, held by B. The first stores the representation
strings of each generic group elements returned to A; the second stores polynomials of degree at most 1
in Zp[X1, . . . , Xn]. B samples a uniform representation s0 that serves as the group generator and sets l0 = 1.
Then B defines the i-th DLOG challenge iteratively: First B sets li = Xi, then for every j < i, B calls Eval
on input li − lj . If any query returns 1, B sets si = sj , otherwise B sets si to be a uniform representation
among those not already present in S. The group generator is defined as g = s0 and the challenge vector
as X = (s1, . . . , sn). Adversary A is run on input p, g, and X.

In the following description, let c be a counter variable updated by B representing the number of
elements of S and L.

Assume that A queries the group-operation oracle on input s, s′ ∈ S. B retrieves the polynomials l, l′ ∈
L corresponding to s, s′ and adds to L the element lc+1 = l+l′. Then, for every j < c adversary B calls Eval
on input lc+1 − lj . If for any j the oracle returns 1 then the adversary adds to S the element sc+1 = sj .
Otherwise B sets sc+1 to be a uniform representation among those not already present in S. Finally sc+1
is returned to A.

Assume that A queries the oracle Eval on input f ∈ Zp[X1, . . . , Xk], s ∈ Sk for some integer k.
If deg f > d, then B returns 0. Otherwise, B retrieves the list of polynomials l ∈ Lk, corresponding to
each entry of s. Then adversary B calls Eval on input f(l) and forwards the output to A.

Finally, when A terminates B forwards its output.
We show that B offers a perfect simulation of the oracle DLOG security game to A. First we observe

that the DLOG challenges have been implicitly set to X = ga and each si to gli(a). The initialization
of X guarantees that two entries of X coincide if and only if the corresponding entries of a coincide.
Similarly, each time a new group element is returned to A, it is checked for equality against all previous
elements. Note that all elements known to the adversary are associated to polynomials of degree at
most 1 by construction. The oracle Eval is simulated correctly since gf(l(a)) = 1 if and only if f(l(a)) = 0.
Moreover, f(l) is a polynomial of degree at most deg f ≤ d when expanded, since all polynomials in L
have degree at most 1.

To conclude, we count the amount of queries to Eval. For every element added to S we need to
query Eval as many times as there are elements of S, while each DDH query requires a single query
to Eval. The total amount of queries of B to Eval is then:

n+q∑
i=0

i+ qEval = (n+ q)(n+ q + 1)
2 + qEval . ut
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We start working on n-SHSd[p] with the next lemma. Here we express that, up to a loss of dn, an
adversary against n-SHSd[p] does not need more than n hypersurface queries which return 1 to identify a
solution.

Importantly, observe how we limit the resources of an adversary against n-SHSd[p] exclusively in terms
of its queries to Eval. Our adversaries are otherwise unbounded. For this reason, the following reduction
does not consider the computational resources needed by the adversary to perform its operations.

Lemma 3. Let n, d be positive integers and p a prime number. For every adversary A against n-SHSd[p]
that makes at most q queries to Eval there exists an adversary B against n-SHSd[p] that makes at most q
queries to Eval such that at most n of them return 1 and

Advn-shsd
p (B) ≥ d−nAdvn-shsd

p (A) .

Proof Idea. Intuition for the proof is simple for the case n = 1: All queries of A to SimEval are
forwarded to Eval. The first time Eval(g) returns 1, we know that the secret a must be a zero of g.
Since g has degree at most d, there can be at most d distinct zeroes. The reduction guesses which zero is
the correct one (this is the reduction loss) and then simulates the remaining queries of A to SimEval
accordingly. The proof is similar for n > 1. We know that, in general, n polynomials in Zp[X1, . . . , Xn] of
degree d have at most dn zeroes in common, one of which the reduction can use to simulate remaining
queries to SimEval. However, the n queried polynomials must be in general position: For example, the
zeroes of x1 + x2 are the same as those of 2x1 + 2x2, and querying both polynomials would not help the
reduction. To resolve this issue, the reduction keeps a set Z of common zeroes to all polynomials seen so
far which, when forwarded to Eval, make the oracle return 1 (i.e., polynomials which vanish on a). This
set has a rich structure: In fact, the study of zero sets of polynomial is the raison d’être of the field of
algebraic geometry. If the polynomial g queried by A carries no new information (i.e., g(Z) = {0}) then
the simulated oracle returns 1 without forwarding. Otherwise, the polynomial is forwarded. If the answer
is 1, then the reduction updates the set Z and then guesses which one of its irreducible components
contains a, which becomes the updated Z. The identification of irreducible components is made possible
by the underlying structure of the set Z. Selecting an irreducible component guarantees that, on a
following evaluation query, intersecting the now irreducible Z with another hypersurface not containing Z
brings down the dimension of Z by 1. Since the dimension of Znp is n, we can have at most n such queries.
With a careful choice of the guessing probability of each irreducible component, Bézout’s theorem ensures
that the probability of always making the right guess is again d−m.

In the following paragraph we introduce the notation needed to prove Lemma 3.

Algebraic Geometry. Let K be a field. We denote with K the algebraic closure of the field K. The
projective space of dimension n over K is represented with Pn(K). Let T ⊆ K[X0, . . . , Xn] a subset of
homogeneous polynomials. We define Z(T ) = {a ∈ Kn : f(a) = 0 ∀f ∈ T}. A (projective) algebraic
set A of Pn(K) is any set that can be described as Z(T ) for some T . We work with the Zariski topology
over Pn(K): Closed sets are the algebraic sets on Pn(K). A (projective) hypersurface S of Pn(K) is an
algebraic set generated by a single homogeneous polynomial f .5 An irreducible set X of the topological
space Pn(K) is a set which cannot be expressed as the union of two distinct closed subsets. A (projective
algebraic) variety V is an irreducible algebraic set. Given an algebraic set A, we say that A = V1∪ . . .∪Vk
is an irreducible decomposition (and Vi an irreducible component) if all sets Vi are varieties and Vi * Vj
for i 6= j. The dimension of a set X ⊆ Pn(K) (dimX) is the supremum of all integers m such that there
exists a chain V0 ( . . . ( Vm of distinct irreducible closed subsets of X. For a definition of the degree of
an algebraic set A (degA) we refer to [15, page 52].

Proof (Lemma 3). Let A be an adversary against n-SHSd[p] that makes at most q queries to SimEval.
Without loss of generality, we assume A only queries polynomials of degree between 1 and d.

We build adversary B as follows. B sets two internal variables: Z ← Pn
(
Zp
)
(the n-dimensional

projective space over the algebraic closure of Zp), and t← 1. Subsequently, B runs A, proceeds to simulate
each query of A to SimEval as described below, and eventually forwards its output.

Suppose that A queries SimEval on input of a polynomial g′ ∈ Zp[X1, . . . , Xn]. Then B computes the
homogenization of g′ and stores it as a variable g ∈ Zp[X0, . . . , Xn]. If g(Z) = {0} (all points in Z vanish
5 This is the only definition that differs from Hartshorne [15], who also requires f be irreducible.
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Adversary BEval

00 Z ← Pn
(
Zp

)
01 t← 1
02 a←$ ASimEval

03 return a

Oracle SimEval(g′) \\g′ ∈ Zp[X1, . . . , Xn], 1 ≤ deg g ≤ d
04 g ← homogenize(g′)
05 if g(Z) = {0}: return 1
06 Z′ ← {z ∈ Z : g(z) = 0}
07 if Z′ = ∅: return 0
08 b← Eval(g′)
09 if b = 1:
10 V1 ∪ . . . ∪ Vl ← Z′

11 for i ∈ [1 .. l − 1]:
12 pi ← deg Vi/(t deg g)
13 pl ← 1− p1 − . . .− pl−1
14 pick j among [1 .. l] with distribution {pi}
15 Z ← Vj

16 t← deg Vj

17 return b

Fig. 8. Adversary B for the proof of Lemma 3 with respect to adversary A.

on g), then B returns 1. B then computes the zeroes of g in Z (equivalently: the intersection of Z with the
algebraic set of zeroes of g) and stores the result in a variable Z ′. If Z ′ = ∅, then B returns 0. Afterwards,
B forwards the response of its own oracle and updates its internal variables as follows. If the output of
the forwarded query is 0, then everything remains unchanged. Otherwise, the adversary decomposes Z ′
as a union of irreducible varieties of the form Z ′ = V1 ∪ . . . ∪ Vl. B computes then the degree of each
component, deg Vi for i ∈ [1 .. l]. This is used to define a probability distribution over the set [1 .. l] as
pi = deg Vi/(t · deg g) for i ∈ [1 .. l − 1] and pl = 1− p1 − . . .− pl−1. An index j is then picked from [1 .. l]
according to the distribution defined by the pi’s. Then B redefines Z ← Vj and t← deg Vj .

Adversary B is also described in Fig. 8, which is used as reference for conciseness.
First, we show that B terminates without errors. To this end, we show that (a) there exists a finite

decomposition as in line 10, (b) such a decomposition is nonempty, (c) there is no division by zero in
line 12, and (d) the reals pi defined in lines 12 and 13 describe a probability distribution. For (a), the
irreducible decomposition exists by [15, Exercise 2.5(b)]6. For (b), observe that the decomposition of Z ′
is empty if and only if Z ′ = ∅. This does not happen by the check in line 07. For (c), we observe that, by
construction, deg g = deg g′ ≥ 1. At the start of the proof t = 1 and by [15, Proposition 7.6(a)] the degree
of a proper variety is always a positive integer. For (d), assume the condition in line 09 is triggered. Since
multiplicities are positive integers, Bézout’s theorem [15, Theorem 7.7] implies7 that

l∑
i=1

deg Vi ≤ degZ · deg g .

By their definitions, degZ = t and pi = deg Vi/(tdeg g) for i ∈ [1 .. l − 1] after running line 12. (Note
that at the start we set t = degPn

(
Zp
)

= 1 [15, Proposition 7.6(c)].) We can thus rewrite the previous
expression as:

l−1∑
i=1

pi + deg Vl
tdeg g =

l∑
i=1

deg Vi
tdeg g ≤ 1 .

Since by definition deg Vi/(tdeg g) > 0 for i ∈ [1 .. l], we also get pi ≤ 1 for i ∈ [1 .. l − 1] and

1 ≥ pl = 1−
l−1∑
i=1

pi = 1−
l−1∑
i=1

deg Vi
tdeg g ≥

deg Vl
tdeg g > 0 . (2)

6 All citations to Hartshorne [15] refer to Chapter I.
7 Technically, [15, Theorem 7.7] requires intersecting hypersurface H be irreducible, while in our case g might be
reducible. This condition is not necessary: If H =

⋃
Hi (irreducible decomposition) then by [15, Theorem 7.2]

dimHi ∩Hj = n− 2, by [15, Proposition 7.6(b)] degH =
∑

degHi, and we can apply [15, Theorem 7.7] on
each Hi and sum up the result.
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As a next step, we show that at most n queries of adversary B to Eval are answered with 1. Let m
be the number of times the check in line 09 is triggered. We want to prove that m ≤ n. Let Zi, Z ′i
and gi be the values assigned to varieties Z, Z ′ and polynomial g after a full execution of SimEval
the i-th time the query to Eval is answered with 1, and set Z0 = Pn

(
Zp
)
. We want to prove by induction

that dimZi = n− i. Then, since by definition the dimension is a nonnegative integer, n ≥ m = max{i}. By
definition dimZ0 = dimPn

(
Zp
)

= n [15, Exercise 2.7(a)]. Assume dimZi−1 = n− i+ 1. By construction,
for i ∈ [0 ..m] every Zi is a variety. By the check in line 05, we know that Z ′i 6= Zi−1. We assume that gi
is irreducible; otherwise, the following argument applies to each of its irreducible component. Calling V
the variety defined by the zeroes of the polynomial gi, we know that dimV = n− 1 [15, Exercise 2.8].
Observe that Z ′i = Zi−1 ∩ V . If we decompose Z ′i = V1 ∪ . . . ∪ Vl, we can apply [15, Theorem 7.2] to
argue that dimVk ≥ (n − i + 1) + (n − 1) − n = n − i for every k. If by contradiction dimVk > n − i,
then Vk ⊆ Z ′i ( Zi−1 contradicts the irreducibility of Zi−1.

Finally, we show that, with probability at least d−n, B perfectly simulates the n-SHSd[p] problem
to A under the same secret a of the problem B is run against.

We argue that while (1,a) ∈ Z the simulation is correct. Line 05 returns 1 if g(Z) = {0}, which in
particular means g′(a) = g(1,a) = 0. Line 07 returns 0 if Z ′ = ∅: In fact, if by contradiction g(1,a) = 0,
then (1,a) ∈ Z ′ = ∅. The last return statement, in line 17, is just the bit returned by the real oracle Eval
and then forwarded.

Consider the simulated oracle SimEval, and assume the condition in line 09 is triggered. Observe
that if (1,a) ∈ Z at start, then there exists an index h ∈ [1 .. l] such that (1,a) ∈ Vh. By induction, this
shows that there exists a sequence of indices h1, . . . , hm which, if picked in this order in line 14, make the
simulation correct.

To conclude, we show that the probability the indices h1, . . . , hn are picked by the simulation is at
least d−n. Note that it is sufficient to prove this when conditioning the probability on the randomness of
the adversary and of game n-SHSd[p]. The only randomized procedure remaining is the choice of index j
in line 14, whose randomness is freshly picked on each execution. The result then follows from the law of
total probability.

We define the quantities used in the rest of the proof. Let ji be the value assigned to variable j after a
full execution of SimEval the i-th time the query to Eval is answered with 1, and t0 = 1. For i ∈ [0 ..m],
we define events Ci = {jk = hk for all 1 ≤ k ≤ i}. Since n ≥ m, the proof is concluded if we show

Pr[Cm] ≥ d−m ≥ d−n .

Assume now that event Ci−1 occurs, which implies the actions of B are deterministic until the i-th
time the query to Eval is answered with 1. We define ti to be the (deterministic) degree of variety Vhi

and fi to be the homogenization of the (deterministically chosen) polynomial queried by A, that is, g.
Then, by definition and by Eq. (2):

Pr[Ci | Ci−1] ≥ ti
ti−1 deg fi

. (3)

This allows us to lower bound the winning probability by:

Pr[Cm] =
m∏
i=1

Pr[Ci | Ci−1] ≥
m∏
i=1

ti
ti−1 deg fi

≥ tm
t0dm

≥ d−m .

To prove this inequality we used, in order: Ci ⊆ Ci+1 and Pr[C0] = 1, Eq. (3), simplification of telescopic
product (no term is zero) and deg fi ≤ d, and tm ≥ 1 as any degree and t0 = 1. ut

Finally, we use Lemma 3 to bound the advantage of any adversary against n-SHSd[p]. Intuitively, this
lemma observes that the output of the adversary is, barring randomness, a function of the answers to the
oracle queries. The bound follows from counting all possible distinct input values to an adversary as a
function of the oracle answers and the total possible values for the secret a ∈ Znp . Lemma 3 is used to
limit the number of possible input values to the adversary.

Statement and proof closely follow [23, Theorem 6].
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Lemma 4. Let n, d be any positive integers and p a prime number. Then for every adversary A against
n-SHSd[p] that makes at most q queries to the group-operation oracle:

Advn-shsd
p (A) ≤

(
d

p

)n n∑
i=0

(
q

i

)
.

Proof. We apply Lemma 3 to build an adversary B from A. B makes exactly q queries to Eval (if less, we
can modify the adversary to make additional queries to the polynomial 1), of which at most n return 1.
Moreover

Advn-shsd
p (A) ≤ dnAdvn-shsd

p (B) .

In the rest of the proof we work exclusively with adversary B to show that

Advn-shsd
p (B) ≤ 1

pn

n∑
i=0

(
q

i

)
, (4)

which proves the original statement.
Note that it is sufficient to prove (4) for any deterministic adversary B. The result for probabilistic

adversaries follows from the law of total probability.
Since B is deterministic with fixed initial input, its output only depends on the answers to its

hypersurface queries. Let b ∈ {0, 1}q be any bit vector. For convenience we define the function out(b)
to return the output of (deterministic, fixed-input) adversary B when its i-th query to Eval is answered
with b[i].

Assume next to run game Gn-shsd
p (B) under a fixed point a ∈ Znp . The queries of B to Eval, as well as

their responses b, are fixed. Thus, we define the function B(a) to be the function returning the vector b
as described.

Let a′ be the random variable representing the sampling of the vector a ∈ Znp in Gn-shsd
p (B). Then,

the distribution of a′ is uniform over a set of size pn. We proceed to compute a bound on the winning
probability of B:

Pr[Gn-shsd
p (B)] = Pr[out(B(a′)) = a′]

=
∑

a∈Zn
p

Pr[a′ = a] Pr[out(B(a′)) = a′ | a′ = a]

= 1
pn

∑
a∈Zn

p

Pr[out(B(a)) = a] .

Observe that for any a there exists a b such that B(a) = b. We can split the latter sum as follows:

Pr[Gn-shsd
p (B)] ≤ 1

pn

∑
b

∑
a:B(a)=b

Pr[out(b) = a] . (5)

Note that ∑
a:B(a)=b

Pr[out(b) = a] ≤ 1 . (6)

Indeed, Pr[out(b) = a] can be either 1 or 0, since function out is deterministic, and there exists at most
one value of a which satisfies the expression out(b) = a, namely out(b).

Combining (5) with (6) we obtain:

Pr[Gn-shsd
p (B)] ≤ 1

pn

∑
b

1

To expand the previous expression we need to count all possible values for b. Recall that at most n
queries of B to Eval return 1. Counting all possible vectors of q bits of which at most n are 1 yields:

Pr[Gn-shsd
p (B)] ≤ 1

pn

n∑
i=0

(
q

i

)
ut
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We conclude by proving Theorem 3. The proof simply combines the bound in the previous lemma
with a combinatorial result by Yun.

Proof (Theorem 3). [23, Theorem 7] states that
n∑
i=1

(
q′

i

)
≤ 1

2

(
eq′

n

)n
for all positive integers q′, n with 1 ≤ n ≤ q′. Hence, by Lemma 4, every adversary B against n-SHSd[p]
that makes at most q′ hypersurface queries has advantage bounded by

Advn-shsd
p (B) ≤

(
d

p

)n
+ 1

2

(
edq′

np

)n
.

We apply Lemma 2 to obtain our result, noting that the reduction makes less than q′ = qEval +
(n+ q + 1)2/2 queries to the hypersurface oracle. ut

Remark 2. The bound on the advantage against (n, n)-d-PolyDL[GGengg, high] of Theorem 3 extends
to (m,n)-d-PolyDL[GGengg, high], where m � n. This is done by a simple tight reduction between
problems (m,n)-d-PolyDL[GGengg, high] and (m,m)-d-PolyDL[GGengg, high]. The reduction for standard
multi-instance discrete logarithm is in [22, Section 3]. To simulate oracle Eval, the reduction simply
forwards the queries to its own oracle.

5.3 Generic Hardness of Medium-Granularity (m, n)-GapDL

We present an explicit bound on the concrete security of n-out-of-n gap discrete logarithm in the generic
group model in the medium-granularity setting.

The bound is constructed by observing that we can simulate the medium-granularity game starting
from the high-granularity one. Then, we apply the “high-granularity” Corollary 1 after counting the
additional group queries by the simulation.

The following lemma states the existence of a reduction from (m,n)-GapDL in the medium-granularity
setting to (m,n)-GapDL in the high-granularity setting.

Lemma 5. Let GGen be a group-generating algorithm that generates groups of at least size p, and let m, n
be two positive integers such that m ≤ n. Then for every adversary A against (m,n)-GapDL[GGen, med]
there exists an adversary B against (m,n)-GapDL[GGen, high] such that

Adv(m,n)-gdl
GGen,high(B) ≥ Adv(m,n)-gdl

GGen,med (A) .

Moreover, calling qDDH the number of queries of A to DDH, adversary B makes at most 2(2n+qDDH)(log p+
1) group operations in addition to those made by A, and the same amount of queries to DDH.

Proof. Adversary B works as follows. B receives a group description G = (G, p, g) and a n-size vectors X =
gx. It generates a uniform vector, r ←$ (Zp \{0})n, and computes g′ ← gr; Z[·]←X[·]r[·]. The computed
elements correspond to the new group generators and the new challenges for A. Queries to DDH on input of
index i and group elements X̂, Ŷ , Ẑ are answered as follows. B queries its own oracle on input X̂, Ŷ 1/r[i], Ẑ
and forwards the output to A.

We prove that the oracle simulation is correct. Let x̂, ŷ, ẑ be such that X̂ = gx̂, Ŷ = gŷ, and Ẑ = gẑ

respectively. Since g′[i] = gr[i], A needs to receive output 1 if and only if(
gr[i]

) x̂
r[i]

ŷ
r[i] =

(
gr[i]

) ẑ
r[i]

,

or, equivalently, gx̂ŷ/r[i] = gẑ. This corresponds to a DDH query with respect to group generator g and
input X̂, Ŷ 1/r[i], Ẑ.

Next, we show that if A is successful then B is. If A is successful, then its output is a vector x′ and a
set L = {l1, . . . , lm, . . .} such that Z[li] = (g′[li])x′[li] for every i. If A is successful, x′ is also the discrete
logarithm vector of X. In fact, for every i:

gx′[li] = g′[li]x
′[li]/r[li] = Z[li]1/r[li] = X[li] .
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(L,x′) is the final output of B, which wins the high-granularity game.
To conclude the proof, we count the additional group queries made by B. The group-operation oracle

is used when creating the new generators (n), challenges (n), and answering DDH queries (qDDH). By
using square-and-multiply we can upper bound the amount of queries by 2(2n+ qDDH)(log p+ 1). ut

We use the previous reduction to compute the following bound.

Corollary 2. Let GGengg be a group-generating algorithm that generates generic groups of at least size p,
and let n be a positive integer. Then for every generic adversary A against (n, n)-GapDL[GGengg, med]
that makes at most q queries to the group-operation oracle and qDDH queries to oracle DDH:

Adv(n,n)-gdl
GGengg,med(A) ≤

(
e(q + 4(qDDH + 2n) log p)2

np

)n
≈
(
q2

np

)n
.

Proof. Combining Lemma 5, Corollary 1, and observing that, for m = n, the reduction makes addi-
tional 2(2n+ qDDH)(log p+ 1) group operations:

Adv(n,n)-gdl
GGengg,med(A) ≤ Adv(n,n)-gdl

GGengg,high(B)

≤
(

1
p

)n
+ 1

2

(
e(q + 2(qDDH + 2n)(log p+ 1) + n+ 1)2 + 2eqDDH

2np

)n
.

The previous expression can be simplified by noticing that, for the parameters we consider, 4n(log p+ 1) +
n+ 1 ≤ 8n log p, e(2qDDH)2 ≥ 2eqDDH, 2qDDH(log p+ 1) ≤ 4qDDH log p, and n

√
2 ≤ 2 ≤ (8n log p)2/n. ut

Similarly to the previous concrete bounds, this result is optimal, namely there exists a generic adversary
against (n, n)-GapDL[GGengg, med] needing Θ(√np) group operations to achieve success probability 1.
In fact, we can build an adversary against (n, n)-DL[GGengg, med] starting from an adversary against
(2n, 2n)-DL[GGengg, high] by using it to retrieve (high-granularity) discrete logarithms of both challenges
and generators in medium granularity, which can be used to retrieve the medium-granularity discrete
logarithms.

The adversary works as follows: It receives the m group generators g and the n DL challenges X[·] =
g[·]x[·]. Then it runs the (2n, 2n)-DL[GGengg, high] adversary using as parameter the generator g = g[1]
and, as DL challenges, the 2n group elements g,X. All queries to the gap oracle are forwarded prepending
index 1. Assume the adversary correct, hence returning r,x such that g = gr and X = gx′ . In particular
r[·]x[·] = x′[·], since

gr[·]x[·] = g[·]x[·] = X[·] = gx′[·] .

Retrieving x from the known x′ and r concludes the reduction.
Corollary 4 is optimal: Using the adversary against (2n, 2n)-DL[GGengg, high] of Appendix F we see

that for large p the best adversary against (n, n)-DL[GGengg, med] makes q queries, where 2
√

2np ≤ q ≤√
np/e.
As in the high-granularity case, the technique of Ying and Kunihiro [22] can be used to extend the

result to the case m 6= n.

5.4 Generic Hardness of Low-Granularity (m, n)-GapDL

In this section we present an explicit bound on the concrete security of m-out-of-n gap discrete logarithm
in the generic group model in the low-granularity setting. Unlike for high and medium granularity, the
CDH challenges belong to different groups: Since the n generic groups involved do not interact with each
other, the bound can be derived by applying the single-instance bound n times. The bound is stated in
the following theorem.

Theorem 4. Let GGengg be a group-generating algorithm that generates generic groups of at least size p,
and let m, n, q, qDDH and qi, i ∈ [1 .. n], be integers such that 1 ≤ m ≤ n, q = q1 + . . . + qn, and qi
is large (qi ≥ 2 and 2q2

i ≥ qDDH + 1). Then for every generic adversary A against the low-granularity
m-out-of-n multi-instance computational Diffie-Hellman problem that makes at most qi queries to the i-th
group-operation oracle and qDDH queries to the gap oracle:

Adv(m,n)-gdl
GGengg,low(A) ≤

(
4eq2

m2p

)m
.
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Proof. Let A be a generic adversary against (m,n)-GapDL[GGengg, low], and let x be the random variable
representing the (unique) solution vector with the discrete logarithms of the challenges. We model the n
groups generated by PGen[low] as independent generic groups of size p, where p[i] ≥ p for every i ∈ [1 .. n].
We can see the adversary as an adversary against the single-instance version in each of the n generic
group. By Corollary 1, for m = n = 1 we know that:

Pr
[
A computes x[i]

]
≤ 2
p

+ 1
2
e(qi + 2)2 + 2eqDDH

p
≤ 4eq

2
i

p
, (7)

where the last inequality follows since qi is large: qi ≥ 2 and 2q2
i ≥ qDDH + 1. Adversary A wins

exclusively if it can identify at least m discrete logarithms. Let L = {l1, . . . , lm, . . .} be the solution
indices returned by A. For the purpose of the proof, we define the set of indices S = {i1, . . . , im} such
that qi1 ≥ . . . ≥ qim ≥ qi for every i ∈ [1 .. n] \ S. We can bound the winning probability as:

Pr[G(m,n)-gcdh
GGengg,low (A)] ≤ Pr

[
A computes x[{l1, . . . , lm}]

]
≤

m∏
i=1

Pr
[
A computes x[li]

]
≤
∏
i∈S

(
4q

2
i

p

)
≤
(

4e
p

(
1
m

∑
i∈S

qi

)2)m
≤
(

4eq2

m2p

)m
.

To prove this bound we used, in order, the definition of G(m,n)-gdl
GGengg,low, the independence of each generic group,

Eq. (7) and the fact that, after reordering, qij ≤ qlj for every possible L and j ∈ [1 ..m], and the inequality
of arithmetic and geometric means, that is, for every nonnegative xi such that x1 + . . .+ xm = x:

m∏
i=1

xi ≤
( x
m

)m
. ut

Since the number of group operations performed by a (m,n)-GapDL adversary is typically large, we
reckon the requirements qi ≥ 2 and 2q2

i ≥ qDDH + 1 are rather mild.
We argue that this result is optimal. In fact, the well-known baby-step giant-step algorithm solves

(1, 1)-DL with success probability 1 in 2√p group operations. We can build a generic adversary against
game (m,n)-DL[GGengg, low] by independently running the single-instance adversary on the first m
instances. This adversary needs a total of 2m√p group operations to achieve success probability 1.
Summing up, for large p the fastest generic adversary achieving overwhelming success probability in
game (m,n)-GapDL[GGengg, low] requires m

√
p/(8e) ≤ q ≤ 2m√p group operations.

6 Generic Hardness of the Multi-Instance Gap Computational
Diffie-Hellman Problem

In this section we derive lower bounds on the hardness of the m-out-of-n gap computational Diffie-Hellman
problem in the generic group model for different granularities. We further argue that all derived bounds
are optimal. Section 6.1 covers high, Section 6.2 medium, and Section 6.3 low granularity.

6.1 Generic Hardness of High-Granularity (m, n)-GapCDH

We work in the algebraic group model to show that the generic lower bound on the hardness of high-
granularity (m,m)-GapDL carries over to high-granularity (m,n)-GapCDH. Concretely, Theorem 5
provides an algebraic reduction from (m,n)-GapCDH[GGen, high] to (m,m)-GapDL[GGen, high]. Then,
an application of Corollary 1 establishes the desired bound on (m,n)-GapCDH.

In this section we work with high-granularity problems, in which the group description G = (G, p, g)
is shared by all instances. For ease of notation, we treat G as an implicit parameter of the system until
the end of this section.

The algebraic reduction from (m,n)-GapCDH to (m,m)-GapDL in the high-granularity setting is
sketched below.
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Theorem 5. Let GGen be a group-generating algorithm that generates groups of at least size p, and
let m, n be two positive integers such that m ≤ n ≤ p. Then for every algebraic adversary A against
(m,n)-GapCDH[GGen, high] there exists an algebraic adversary B against (m,m)-GapDL[GGen, high]
such that

Adv(m,m)-gdl
GGen,high (B) ≥ 2−mAdv(m,n)-gcdh

GGen,high (A) .

Moreover, B makes at most 2n(m+ 2)(log p+ 1) group operations in addition to those made by A, and
the same amount of queries to DDH.

Despite the seemingly sizeable reduction loss of 2m, we argue that the factor is small in the context
of the final security bounds. In fact, as seen in Section 5, the advantage in breaking (m,m)-GapDL
decreases exponentially with m. This renders the exponential contribution of the factor 2m irrelevant, as
the following concrete bound on the hardness of (m,n)-GapCDH[GGengg, high] shows.

Corollary 3. Let GGengg be a group-generating algorithm that generates groups of at least size p,
and let m, n be two positive integers such that m ≤ n ≤ p. Then for every generic adversary A
against (m,n)-GapCDH[GGengg, high] that makes at most q queries to the group-operation oracle and
qDDH queries to the gap oracle:

Adv(m,n)-gcdh
GGengg,high(A) ≤

(
2e(q + 12mn log p)2 + 4eqDDH

mp

)m
≈
(
q2

mp

)m
.

Proof. Combining Theorem 5 with Corollary 1 via Lemma 1 and observing that the reduction in Theorem 5
makes additional 2n(m+ 2)(log p+ 1) group operations and the same amount of DDH queries we get:

Adv(m,m)-gcdh
GGengg,high (A) ≤

(
4
p

)m
+ 1

2

(
2e(q + 2n(m+ 2)(log p+ 1) +m+ 1)2 + 4eqDDH

mp

)m
.

The previous expression can be simplified by noticing that, for the parameters we consider, 2n(m +
2)(log p+ 1) +m+ 1 ≤ 12mn log p and 4 m

√
2 ≤ 8 ≤ (12mn log p)2/m. ut

Similarly to the bound for computing discrete logarithms, this result is optimal. Namely, problem
(m,n)-GapCDH[GGengg, high] can be solved computing 2√mp group operations with success probability 1
by extending the generic adversary against high-granularity DL in Appendix F. Summing up, for large p
the fastest generic adversary solving (m,n)-GapCDH[GGengg, high] with overwhelming success probability
requires

√
mp/(2e) ≤ q ≤ 2√mp group operations.

In the following paragraph we introduce some notation needed to prove Theorem 5.

Algebraic-Group Notation. Let Z be any group element returned by an algebraic adversary. We
write [Z]a1,...,ak

to represent its algebraic representation in terms of the input group elements X1, . . . , Xk,
that is, Z = Xa1

1 . . . Xak

k . Similarly, when we consider n-size output vectors of group elements Z we
write [Z]A1,...,Ah,b1,...,bk to indicate that Z = Y1

A1 . . .Yh
AhX1

b1 . . . Xk
bk , where Yi are si-size input

group-element vectors, Xi are input group element, Ai is a si × n matrix, and bi are n-size vectors. For
clarity, if z (resp. yi) is the n-size (resp. si-size) vector of discrete logarithms of Z (resp. Yi) and xi is
the discrete logarithm of Xi, then z = A1y1 + . . .+Ahyh + x1b1 + . . .+ xkbk.

Proof Idea of Theorem 5. This proof extends the following simple single-instance reduction B, in
turn built from two reductions B∅ and B{1}. The reductions build upon a CDH adversary A. Adversary A
receives X = gx and Y = gy, and is tasked with computing W = gxy. In the algebraic group model,
A must return a representation of the output as a combination of its input, i.e., some elements a, b, c ∈ Zp
such that W = XaY bgc. Rewriting this expression in the exponents, we obtain that, if A wins,

xy = ax+ by + c .

Given a DL challenge Z = gz, reduction B∅ embeds the challenge as X = Z and generates Y = gy by
picking a random y. Then, B∅ can compute the DL as z = x = (y − a)−1(by + c). However, y − a might
not be invertible. In this case, adversary B{1} would be successful: It embeds the challenge as Y = Z
and returns a, which is a correct solution if y − a is not invertible. Reduction B picks one of the
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two subsets I ⊆ {1} at random and runs BI . If the CDH adversary is successful, then B has at least
probability 1/2 of succeeding.

Case n = m > 1 is approached as follows. Again the reduction B is composed of components BI ,
where I ⊆ [1 .. n]. The DL challenge Z[i] is distributed as either X[i] or Y [i] according to whether i ∈ I,
and all remaining values are picked by the reduction. The CDH adversary—if successful—returns square
matrices A,B and vector c such that diag(y)x = Ax + By + c, where diag(y) is the diagonal matrix
with the elements of y on the diagonal. Rearranging, we obtain

(diag(y)−A)x = By + c .

Our goal is to iteratively decrease the dimension of this matrix equation. If n /∈ I adversary BI
expresses x[n] in terms of x[1 .. n− 1]. On the other hand, if n ∈ I then it computes y[n]. Whether this
computation is correct depends on whether I is the right choice for A, B, and c. More explicitly, from
the last row of the previous matrix equation we get the expression

x[n](y[n]−Ann) = (An1, . . . , An(n−1))x[1 .. n− 1] +
+ (Bn1, . . . , Bn(n−1))y[1 .. n− 1] +Bnny[n] + c[n] .

If the number y[n]− Ann is not invertible (case n ∈ I), then adversary BI can set y[n] = Ann. In the
other case (case n /∈ I) the adversary can replace the expression for x[n] into the remaining n− 1 rows of
the matrix. In this case, y[n] is known, and calling x′ = (x[1], . . . ,x[n− 1]), y′ = (y[1], . . . ,y[n− 1]), we
have recovered again a matrix equation of the form

diag(y′)x′ = A′x′ +B′y′ + c′

of decreased dimension n− 1. Repeating this argument, we arrive at an equation of dimension 1. At this
point all elements of y are known to BI , which is then able to recover the elements of x.

Note that there always exists, for every possible A, B, and c, a set I for which the above procedure
is successful, i.e., a set I such that, for every i ∈ [1 .. n], the expression i ∈ I is satisfied exactly if
y[i] = (A(i))ii, where A(i) is the i-th update of matrix A. Since adversary B picks I ⊆ [1 .. n] at random
and runs BI , the reduction loses a factor of 2n.

The case n 6= m adds more complexity to the proof. The reduction first expands them DL challenges Ẑ
to a vector Z = ẐV (plus some rerandomization) of length n. Here V is a n×m matrix for which each
m×m submatrix is invertible.8 This has two important consequences: Firstly, we can express any element
of Z as a combination of any other fixed m elements of Z. Secondly, retrieving any m DLs of Z allows
the reduction to compute the DLs of the original Ẑ. This has, however, an unintended side effect: We can
still obtain an equation of the form diag(y)x = Ax +By + c, where all terms are of size m (this is the
role, in the reduction code, of the function reduceMatrices), but now A,B, c depend on the distribution
of the challenges to X and Y , that is, on the set I. This means that the reduction cannot simply compute
the element y[i] as Aii at each step. It has to answer the question: “Assuming the reduction was not
trying to compute y[m], what would be the value for y[m] which would make it unable to compute x[m]?”
(In the reduction code, the answer is yielded by the function computeDlog.)

In the proof, the gap oracle of A is simply simulated by forwarding all queries to DDH.

Proof (Theorem 5). Let A be an adversary against (m,n)-GapCDH[GGen, high].
We proceed as follows: We build adversaries BI depending on some set I ⊆ [1 .. n]. The formal code

is in Fig. 10. The m discrete logarithm challenges Ẑ are expanded to n challenges Z as Z = ẐVgr

for a n×m Vandermonde matrix9 V and a uniform vector r ∈ Znp . The adversary produces the CDH
challenges X and Y for A by distributing the expanded DL challenges Z either in X (for indices in I)
or in Y (otherwise), and generating the remaining components uniformly. A returns a solution for m
of those challenges, specified with the set L, along with their linear representation in term of the CDH
challenges (algebraic adversary). Next it rewrites the linear representation to only depend on x[L],y[L]
instead of the full x,y This is achieved by function reduceMatrices. Adversary BI then computes the
8 This expansion technique is originally from the work of Ying and Kunihiro [22].
9 An n × m Vandermonde matrix is defined starting from a vector (a1, . . . , an) ∈ Zn

p as the matrix V =
{aj−1

i }i,j∈[1 .. n]×[1 .. m]. If the ai are pairwise distinct, then every m×m submatrix of V is invertible. Note that
there are enough distinct elements to create V , since p ≥ n.
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discrete logarithms of each expanded DL challenges embedded in Y (function computeDlog), which are
in turn used to recover the DLs of the entries of X indexed by elements of L. From this it extracts the
solution to the original DL challenge Ẑ. Any DDH query of A is simply forwarded to BI ’s own oracle.
Adversary B is defined by picking a random I and running BI .

Further, we define events EÎ for Î ⊆ [1 ..m] through the membership test in Fig. 9 (which, we remark,
is not part of the reduction). Event EÎ occurs if and only if the test returns 1. (The role of set Î can
be thought as picking which subset of the elements y[L] are computed, where L is the list of CDH
indices returned by A.) Later we show that, given I ⊆ [1 .. n], if E{i:li∈I} occurs and A wins, then
adversary BI is successful in the multi-instance DL game. Since, as we will show, for all possible indices Î
the events EÎ cover the whole probability space, we show that if A succeeds then adversary B succeeds
with probability 2−m.

Test membership of EÎ(Y , L, K̂, A′, B′) \\Y ∈Gn;L⊆ [1..n];K̂⊆ [1..n−m];A′,B′∈Zm×n
p

00 parse Y as gy \\membership test need not be efficient
01 parse L as {l1, . . . , lm} \\drop elements if |L| > m, return 0 if |L| < m

02 T ← [1 .. n] \ L
03 parse T as {t1, . . . , tn−m}
04 I ← {tk : k ∈ K̂} ∪ {li : i ∈ Î}
05 (A,B)← reduceMatrices(I) \\define m×m matrices A,B from A′ and B′

06 for d from m down to 1:
07 parse A as

(
Ad−1 A

r
d

Al
d ad

)
\\single out index d. Ad−1 is a square matrix of size d− 1

08 if ld ∈ I:
09 if y[ld] = ad: return 0
10 A← Ad−1 + (y[ld]− ad)−1Ar

dA
l
d \\update matrix A. Dimension decreases by 1

11 else:
12 ād ← computeDlog(I ∪ {ld}, d)
13 if y[ld] 6= ād: return 0
14 A← Ad−1 \\update matrix A. Dimension decreases by 1
15 return 1
Function reduceMatrices(I ′) \\I′ ⊆ [1 .. n], outputs two square matrices of dimension m
16 J ′ ← [1 .. n] \ I ′
17 V ← n×m Vandermonde matrix

18 parse V as

(
VL

VT∩I′

VT∩J′

)
\\group together rows with indices in L, T ∩ I′, and T ∩ J′

19 parse A′ as
(
A′L A′T∩I′ A

′
T∩J′

)
\\group together columns with. . .

20 parse B′ as
(
B′L B′T∩I′ B

′
T∩J′

)
\\. . . indices in L, T ∩ I′, and T ∩ J′

21 parse A′T∩I′VT∩I′V
−1

L as
(
MI′ MJ′

)
\\VL is always invertible if m ≤ p

22 parse B′T∩J′VT∩J′V
−1

L as
(
NI′ NJ′

)
23 Ā← A′L +

(
MI′ 0J′

)
+
(
NI′ 0J′

)
\\make MI′ and NI′ into square. . .

24 B̄ ← B′L +
(

0I′ MJ′
)

+
(

0I′ NJ′
)

\\. . .matrices adding zero columns

25 return (Ā, B̄)
Function computeDlog(I ′, k) \\I′ ⊆ [1 .. n], k ∈ [1 ..m], outputs element of Zp

26 (Ā, B̄)← reduceMatrices(I ′) \\as in line 05
27 for d from m down to k: \\similar to line 06, stops at k

28 parse Ā as
(
Ād−1 Ā

r
d

Āl
d ād

)
\\as in line 07

29 if ld ∈ I ′: \\as in line 08
30 Ā← Ād−1 + (y[ld]− ād)−1Ār

dĀ
l
d \\as in line 10

31 else: \\as in line 11
32 Ā← Ād−1 \\as in line 14
33 return āk

Fig. 9. Events EÎ for the proof of Theorem 5 with respect to index set Î ⊆ [1 ..m].
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Adversary BDDH
I (G, Ẑ) \\G group representation; Ẑ ∈ Gm

00 r ←$ Zn
p

01 V ← n×m Vandermonde matrix
02 Z ← ẐVgr \\from m to n challenges: z = V ẑ + r

03 J ← [1 .. n] \ I
04 x[I]← ⊥; X[I]← Z[I] \\allocate challenges to either X or Y

05 y[J ]← ⊥; X[J ]← Z[J ]
06 x[J ]←$ Z|J|p ; X[J ]← gx[J] \\uniformly pick remaining entries

07 y[I]←$ Z|I|p ; Y [I]← gy[I]

08 (L, [W ]A′,B′,c′ )←$ ADDH(G,X,Y ) \\algebraic adversary: w = A′x + B′y + c′

09 parse L as {l1, . . . , lm} \\drop elements if |L| > m, abort if |L| < m

10 T ← [1 .. n] \ L
11 (A,B)← reduceMatrices(I) \\define m×m matrices A,B from A′ and B′

12 c← c′ +A′T∩J x[T ∩ J ] +B′T∩Iy[T ∩ I] +A′T∩IVT∩IV
−1

L r[L] +A′T∩Ir[T ∩ J ] +
−B′T∩JVT∩JV

−1
L r[L] +B′T∩J r[T ∩ J ] \\c has size m. x[J] and y[I] are known

13 for d from m down to 1: \\A,B square matrices, c vector: all of dimension d

14 parse A as
(
Ad−1 A

r
d

Al
d ad

)
\\single out index d. Ad−1 is a square matrix of size d− 1

15 parse B as
(
Bd−1 B

r
d

Bl
d bd

)
16 parse c as

(
cd−1
c[d]

)
17 if ld ∈ I: \\x[ld] unknown, y[ld] known
18 A ← Ad−1 + (y[ld]− ad)−1Ar

dA
l
d \\update A,B, c. Dimension decreases by 1

19 B ← Bd−1 + (y[ld]− ad)−1Ar
dB

l
d

20 c ← cd−1 +Br
dy[ld] + (y[ld]− ad)−1Ar

d(c[d] + bdy[ld])
21 else: \\x[ld] known, y[ld] unknown
22 ād ← computeDlog(I ∪ {ld}, d)
23 y[ld]← ād \\compute the value of y[ld]
24 A ← Ad−1 \\update A,B, c. Dimension decreases by 1
25 B ← Bd−1
26 c ← cd−1 +Ar

dx[ld] +Br
dy[ld]

27 for d from 1 up to m: \\all m components of y[L] are known or computed
28 if ld ∈ I: \\inductively: x[{l1 .. ld−1}] is known, use it to recover x[ld]
29 x[ld]← (y[ld]− ad)−1(Al

dx[{l1 .. ld−1}] +Bl
dy[{l1 .. ld−1}] + bdy[ld] + c[d])

30 z[I]← x[I]; z[J ]← y[J ]

31 parse V as
(
VL

VT

)
\\group together rows with indices in L and T

32 ẑ ← V −1
L (z[L]− r[L])

33 return ẑ

Fig. 10. Adversary BI for the proof of Theorem 5 with respect to adversary A and index set I ⊆ [1 .. n].
Functions reduceMatrices and computeDlog are defined in Fig. 9. Implicitly, if BI fails to invert an element at
any point of the execution then it returns ⊥. Empty matrices are ignored in sums and yield empty matrices in
products. Queries to DDH by A are forwarded directly.
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We use Proposition 1 and Proposition 2 to compute the winning probability of B. The proof of both
statements is postponed until the end of this proof.

Proposition 1. Let I ⊆ [1 .. n]. Consider one execution of BI , and let L = {l1, . . . , lm} be the set defined
by the output of the adversary A in such execution. Let Î = {i : li ∈ I}. If both A wins game G(m,n)-gcdh

GGen,high

and EÎ occurs then BI wins game G(m,m)-gdl
GGen,high .

Proposition 2. Let Y ∈ Gn, L ⊆ [1 .. n], K̂ ⊆ [1 .. n−m] and A′, B′ ∈ Zm×np . Then there exists an
Î ⊆ [1 ..m] such that EÎ(Y , L, K̂, A′, B′) = 1.

Let I be the random variable representing the choice of the index set in [1 .. n] by B. Since all input
to A is independent of I (lines 04 to 07), the same holds for the internal variables Y , L = {l1, . . . , lm},
T = [1 .. n] \L = {t1, . . . , tn−m}, A′, and B′ defined in the execution of adversary BJ . Hence we can write:

Adv(m,m)-gdl
GGen,high (B) ≥

∑
J⊆[1 .. n]

Pr[I = J ∧G(m,m)-gdl
GGen,high (BJ)]

≥
∑

J⊆[1 .. n]

2−n Pr[G(m,m)-gdl
GGen,high (BJ)]

≥ 2−n
∑

J⊆[1 .. n]

Pr[E{i:li∈J}(Y , L, {i : ti ∈ J}, A′, B′) ∧G(m,n)-gcdh
GGen,high (A)]

≥ 2−n
∑

Ĵ ⊆ [1 .. m]
K̂ ⊆ [1 .. n −m]

Pr[EĴ(Y , L, K̂, A′, B′) ∧G(m,n)-gcdh
GGen,high (A)]

≥ 2−n
∑

K̂⊆[1 .. n−m]

Pr[G(m,n)-gcdh
GGen,high (A)] = 2−mAdv(m,n)-gcdh

GGen,high (A) .

In computing the previous inequality we employed, in order: the definition of B, the independence of
the uniform random variable I from event G(m,m)-gdl

GGen,high (BJ), Proposition 1, a change of variables from J

to (Ĵ , K̂), Proposition 2, and the fact that the set [1 .. n−m] has 2n−m subsets.
To conclude the proof we count the number of operations carried out by adversary B. The operation

count of B coincides with that of BI for the chosen I. Clearly, all operations of A are executed by BI .
Moreover, the reduction generates n new group elements by uniformly selecting exponents in Zp (lines 06
and 07). Using the square-and-multiply algorithm, this correspond to an upper bound of 2n(log p+ 1)
group operations. Similarly, to expand the DL challenges in line 02 B computes ẐVgr. Computing Ẑ
requires 2mn(log p+1) group operations and computing r requires 2n(log p+1) group operations. Overall,
B needs at most 2n(m+ 2)(log p+ 1) group operations. ut

Proof (Proposition 1). If adversary A wins, then

diag(x[L])y[L] = A′x +B′y + c′ , (8)

where diag(x[L]) denotes the diagonal matrix with the elements of x[L] in the diagonal. Lines 11 and 12
of Fig. 10 define the triple (A,B, c). We show that

diag(x[L])y[L] = Ax[L] +By[L] + c . (9)

Let z (resp. ẑ) be such that Z = gz (resp. Ẑ = gẑ), where Z is defined in line 02 of BI . By definition
z = V ẑ + r. We split this equation componentwise, depending if the component index belongs to any of
the (disjoint) sets L, T ∩ I, or T ∩ J , as in done in line 18 of Fig. 9. Here J = [1 .. n] \ I.

z[L] = VLẑ + r[L] (10)
z[T ∩ I] = VT∩I ẑ + r[T ∩ I]
z[T ∩ J ] = VT∩J ẑ + r[T ∩ J ] .

V is a Vandermonde matrix, hence any m×m submatrix is invertible. In particular, the submatrix VL
containing the m rows indexed by L is invertible. Let x,y be such that X = gx and Y = gy. Recovering ẑ
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from Eq. (10) and recalling how z is distributed between x and y (lines 04 and 05) we can rewrite the
last two equations as

x[T ∩ I] = VT∩IV
−1
L z[L]− VT∩IV −1

L r[L] + r[T ∩ I] (11)
y[T ∩ J ] = VT∩JV

−1
L z[L]− VT∩JV −1

L r[L] + r[T ∩ J ] .

Next, we parse A′ and B′ as in lines 19 and 20 of Fig. 9 and we rewrite Eq. (8):

diag(x[L])y[L] = A′Lx[L] +A′T∩Ix[T ∩ I] +A′T∩Jx[T ∩ J ] + (12)
+B′Lx[L] +B′T∩Iy[T ∩ I] +B′T∩Jy[T ∩ J ] + c′ .

We expand the term A′T∩Ix[T ∩ I] using first Eq. (11), and then the parsing in line 21 of Fig. 9 and the
repartition of z[L] among x[L ∩ I] and y[L ∩ J ]:

A′T∩Ix[T ∩ I] = A′T∩IVT∩IV
−1
L z[L]−A′T∩IVT∩IV −1

L r[L] +A′T∩Ir[T ∩ I]
=
(
MI 0J

)
x[L] +

(
0I MJ

)
y[L]−A′T∩IVT∩IV −1

L r[L] +A′T∩Ir[T ∩ I] . (13)

Following a similar procedure we also obtain:

B′T∩Jy[T ∩ J ] =
(
NI 0J

)
x[L] +

(
0I NJ

)
y[L]−B′T∩JVT∩JV −1

L r[L] +B′T∩Jr[T ∩ J ] . (14)

Finally, we merge Eq. (13) and Eq. (14) into Eq. (12) and rearrange the terms:

diag(x[L])y[L] = (A′L +
(
MI 0J

)
+
(
NI 0J

)
)x[L] +

+ (B′L +
(

0I MJ

)
+
(

0I NJ
)
)y[L] +

+ (A′T∩Jx[T ∩ J ] +B′T∩Iy[T ∩ I]−A′T∩IVT∩IV −1
L r[L] +

+A′T∩Ir[T ∩ I]−B′T∩JVT∩JV −1
L r[L] +B′T∩Jr[T ∩ J ] + c′) .

The bracketed expressions are exactly how A, B, and c are defined, see lines 23 and 24 of Fig. 9 and
line 12 of Fig. 10. This proves Eq. (9).

Next, we prove that all the y[ld] computed in line 23 of Fig. 10 are correct. This basically follows
from how we defined E{i:li∈I} in the first place. We consider the loop in lines 13 to 26: Observe that the
adversary never tries to invert a zero element. In fact, by definition of E{i:li∈I} we obtain that y[d]− ad is
nonzero for ld ∈ I. (Similarly, the adversary does not abort when inverting y[ld]− ad in line 29.) On the
other hand, by definition of E{i:li∈I} we get y[d] = ād for d /∈ I, which is consistent with all computed
DLs of Y .

We show next that the computation of x in the loop of lines 27 to 29 of BI remains consistent
with X = gx. Let xd = x[{l1, . . . , ld}] and yd = y[{l1, . . . , ld}] for any d ∈ [1 ..m]. We show by induction
that at the start of the d-indexed iteration of the loop in lines 13 to 26 the following holds:

diag(yd)xd = Axd +Byd + c . (15)

The case d = m is Eq. (9). Suppose that our statement holds for some d ∈ [2 ..m]. We rewrite Eq. (15):
First by isolating the first d− 1 equations from the last one; Then by parsing A, B, and c as in lines 14
to 16 of BI .

diag(yd−1)xd−1 = Ad−1xd−1 +Ar
dx[ld] +Bd−1yd−1 +Br

dy[ld] + cd−1 (16)
y[ld]x[ld] = Al

dxd−1 + adx[ld] +Bl
dyd−1 + bdy[ld] + c[d] . (17)

We consider now two cases, depending on whether ld belongs to I. If so, we can rewrite Eq. (17) as

x[ld] = (y[ld]− ad)−1(Al
dxd−1 +Bl

dyd−1 + bdy[ld] + c[d]) . (18)

By replacing x[ld] in Eq. (16) as per Eq. (18) we get:

diag(yd−1)xd−1 = (Ad−1 + (y[ld]− ad)−1Ar
dA

l
d)xd−1 +

+ (Bd−1 + (y[ld]− ad)−1Ar
dB

l
d)yd−1 +

+ (cd−1 +Br
dy[ld] + (y[ld]− ad)−1Ar

d(c[d] + bdy[ld])) .
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The terms in brackets are exactly how A, B, and c are defined for the next iteration of the loop, indexed
by d− 1 (see lines 18 to 20 of BI). This proves Eq. (15) for d− 1 in the case d ∈ I.

On the other hand, for the case d /∈ I we can simply rewrite Eq. (16) as:

diag(yd−1)xd−1 = (Ad−1)xd−1 +
+ (Bd−1)yd−1 +
+ (cd−1 +Ar

dx[ld] +Br
dy[ld]) .

Again, the terms in brackets are exactly how A, B, and c are defined for the next iteration of the loop,
which is indexed by d− 1 (see lines 24 to 26 of BI). This proves Eq. (15) for d− 1 in the case d /∈ I, and
consequently our inductive step.

Note that the extraction of the values x[ld] for d ∈ I in line 29 of BI is correct. This is in fact Eq. (18).
Lastly, we observe that the computed ẑ in line 32 of BI corresponds to the discrete logarithms of Ẑ. This
is Eq. (10). ut

Proof (Proposition 2). We prove the proposition by constructively showing the existence of Î. To find Î
we proceed as follows.
1. Set Î ← [1 ..m].
2. Run the membership test of Fig. 9 with respect to Î on (Y , L, K̂, A′, B′).
3. If the test returns 1, then Î is the sought set.
4. Else, let d be the loop index (line 06) at which “return 0” is triggered: Set Î ← Î \ {d}.
5. Repeat steps 2 to 5.
We claim that this algorithm terminates. To this end, it is sufficient to prove that every time steps 2 to 5
repeat the index d appearing in step 4 strictly decreases. Since d ≥ 1, this proves our claim.

Let d be any index triggering “return 0” as per step 4, and assume that, after repeating steps 2 to 5, d∗
is any index again triggering “return 0”. (If the membership test returns 1 there is nothing to prove.) We
want to prove that d∗ < d. Similarly, let Î , Î∗ ⊆ [1 ..m] be the sets with respect to which the membership
test in step 2 is run, I and I∗ the corresponding set as defined in line 04, J = [1 .. n] \ I, J∗ = [1 .. n] \ I∗,
A and A∗ the corresponding matrices as the A defined in line 05, and for every i ∈ [1 ..m] let ai (resp. a∗i )
and āi (resp. ā∗i ) be the elements defined in lines 07 and 12 by running the membership test with respect
to Î (resp. Î∗).

First we show that d∗ ≤ d. For this it is sufficient to show that ai = a∗i and āi = ā∗i for all i > d:
In this case, the conditions triggering a “return 0” for indices i < d remain unchanged when using Î∗
instead of Î. Combined with the fact that since I = I∗ ∪ {ld} it follows that the conditions in line 08 do
not change for all i > d, we obtain that d∗ ≤ d.

To show that ai = a∗i we consider how A is updated by the loops of the membership test. This is
shown by induction on i ∈ [d ..m] by proving that, at the i-th iteration of the loop, matrices A and
A∗ only differ in the d-th column. We start with the base case i = m. In this case, the matrices are
defined by running reduceMatrices, specifically in line 23 of Fig. 10. Since the input K̂ only defines
elements not in L, we know that T ∩ I = T ∩ I∗ and T ∩ J = T ∩ J∗, and hence all matrix multiplications
in reduceMatrices are the same. The only difference between case Î and Î∗ is the column grouping done
in lines 21 and 22 of Fig. 9.

A−A∗ =
(
M{d} 0[1 ..m]\{d} ) + (N{d} 0[1 ..m]\{d} ) .

This establishes the claim for i = m.
Next we prove the inductive step, assuming the case i > d verified. We need to consider two cases: If

li /∈ I (equivalent to li /∈ I∗ for i 6= d) then the matrix is updated in line 10 by simply dropping the i-th
row and column, which means that the updated A and A∗ still differ only in the d-th column. If li ∈ I
(equivalent to li ∈ I∗ for i 6= d) then the matrix is updated in line 10. Since ai = a′i, by the induction
hypothesis, we see that y[li]− ai = y[li]− a∗i . Next, consider the terms Ar

iA
l
i and A∗ri A∗li . Since i 6= d,

by the induction hypothesis Ar
i = A∗ri . Similarly, the row vector Al

i differs from A∗li only at the d-th
entry. It follows that Ar

iA
l
i differs from A∗ri A

∗l
i only in the d-th column. Consequently, the updated A

and A∗ differs only in the d-th column. Repeating the same argument replacing Î and Î∗ with Î ∪ {li}
and Î ∪ {li} shows that āi = ā∗i .

Finally, we prove that d 6= d∗. We reach our goal by showing that ad = ā∗d: Since ld ∈ I and, by
definition of d, in the case Î the membership test returns 0 at the d-th iteration of the loop, we know
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that y[ld] = ad. If ad = ā∗d, since ld /∈ I∗ then the loop does not stop at the d-th iteration of the loop:
In fact the condition y[ld] 6= ā∗d in line 13 is not triggered since y[ld] = ad = ā∗d. It remains to prove
that ad = ā∗d. Consider the definition of computeDlog in Fig. 9. As the code comments highlight, the
function traces the behavior of the membership test main loop. The function is run under input I ∪ {ld}.
Since its input coincides with I∗ and the loop is the same, the elements ad and ā∗d must coincide. ut

Remark 3. Note that using Corollary 3 with qDDH = 0 yields a generic lower bound on the hardness of
the “standard” multi-instance CDH problem.

Further, oracle DDH plays a modest role in the proof of Theorem 5. One could define a “polycheck CDH”
problem in the same fashion as it is done for discrete logarithm in Section 5 (in short, (m,n)-d-PolyCDH).
It is then immediate to extend Theorem 5 to show the equivalence of games (m,n)-d-PolyCDH[GGen, high]
and (m,n)-d-PolyDL[GGen, high] in the algebraic group model with the same loss of 2m. Hence, the ad-
vantage of any adversary against game (m,n)-d-PolyCDH[GGengg, high] can be bounded as in Corollary 3
with an additional multiplicative factor of (d/2)m.

6.2 Generic Hardness of Medium-Granularity (m, n)-GapCDH

We present an explicit bound on the concrete security of m-out-of-n gap computational Diffie-Hellman in
the generic group model in the medium-granularity setting. The main result of this section is similar to
that in Section 6.1. Analogously to Section 5.3, the bound follows from observing that we can simulate the
medium-granularity game starting from the high-granularity one. Then, we can apply Corollary 3 after
counting the additional group queries by the simulation. For more details, we refer to Appendix G.1.

Corollary 4. Let GGengg be a group-generating algorithm that generates generic groups of at least size p,
and let m, n be two positive integers such that m ≤ n ≤ p. Then for every generic adversary A against
(m,n)-GapCDH[GGengg, med] that makes at most q queries to the group-operation oracle and qDDH queries
to oracle DDH:

Adv(m,n)-gdl
GGengg,med(A) ≤

(
2e(q + 6(qDDH + 5mn) log p)2

mp

)m
≈
(
q2

mp

)m
.

Similarly to the previous concrete bounds, this result is optimal, namely there exists a generic
adversary against (m,n)-GapCDH[GGengg, med] which needs 2

√
2mp group operations and achieves

success probability 1. In fact, we can build an adversary against (m,n)-GapCDH[GGengg, med] starting
from an adversary against (2m, 2m)-DL[GGengg, high] that requires about the same amount of oracle
queries, analogous to the approach of Section 5.3. Summing up, we obtain that for large p the fastest
generic adversary achieving overwhelming success probability in game (m,n)-GapCDH[GGengg, med]
requires

√
mp/(2e) ≤ q ≤ 2

√
2mp group operations.

6.3 Generic Hardness of Low-Granularity (m, n)-GapCDH

In this section we present an explicit bound on the concrete security of m-out-of-n gap computational
Diffie-Hellman in the generic group model in the low-granularity setting. The bound is stated in the
following theorem and is computed directly. The proof follows that of Theorem 4 and can be found in
Appendix G.2.

Theorem 6. Let GGengg be a group-generating algorithm that generates generic groups of at least size p,
and let m, n, q, qDDH and qi, i ∈ [1 .. n], be integers such that 1 ≤ m ≤ n, q = q1 + . . .+ qn, and qi is
large (qi ≥ 60 log p and 4q2

i ≥ qDDH). Then for every generic adversary A against the low-granularity
m-out-of-n multi-instance computational Diffie-Hellman problem that makes at most qi queries to the i-th
group-operation oracle and qDDH queries to the gap oracle:

Adv(m,n)-gcdh
GGengg,low (A) ≤

(
4eq2

m2p

)m
.

Since the number of group operations performed by a (m,n)-GapCDH adversary is typically large, we
reckon the requirements qi ≥ 60 log p and 4q2

i ≥ qDDH are rather mild.
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We argue that this result is optimal. In fact, the well-known baby-step giant-step algorithm solves
(1, 1)-DL with success probability 1 in 2√p group operations. We can build a generic adversary against
(m,n)-GapCDH[GGengg, low] by independently running the single-instance adversary on the first m
instances. This adversary needs a total of 2m√p group operations to achieve success probability 1.
Summing up, for large p the fastest generic adversary achieving overwhelming success probability in
game (m,n)-GapCDH[GGengg, low] requires m

√
p/(8e) ≤ q ≤ 2m√p group operations.
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Games Gn-mu-cca
KEM (A), Gn-mu-ecca

KEM (A)
00 C∗[·]← ∅
01 b←$ {0, 1}
02 par ←$ Par
03 for i ∈ [1 .. n]:
04 (pk[i], sk[i])←$ Gen(par)
05 b′ ←$ AEnc,Dec(par ,pk)
06 if b = b′: return 1
07 else: return 0

Oracle Enc(i)
08 (K∗1 , c∗)←$ Enc(par ,pk[i])
09 K∗0 ←$ KS(par)
10 C∗[i]← C∗[i] ∪ {c∗}
11 return (K∗b , c∗) \\n-MU-CCA
12 return (K∗b ,K∗1−b, c

∗) \\n-MU-ECCA

Oracle Dec(i, c)
13 if c ∈ C∗[i]: return ⊥
14 K ← Dec(par , sk[i], c)
15 return K

Fig. 11. Games Gn-mu-cca
KEM and Gn-mu-ecca

KEM modeling indistinguishability of encapsulated keys from random in the
multi-user setting.

A Comparison Between Multi-User and Multi-Instance Security

In this section we compare the multi-user security notion introduced by Bellare et al. [5] to our 1-out-of-n
multi-instance security, as defined in Section 3.1. Namely, we show that:
1. multi-user security tightly implies 1-out-of-n multi-instance security, and
2. 1-out-of-n multi-instance security implies multi-user security with a tightness loss of n.
The discussion that follows relates to CCA, however the same conclusions hold for CPA.

Both security notions aim to capture the hardness of breaking a cryptographic scheme in the presence
of multiple users. The main difference between the two notions are the challenge bits: While 1-out-of-n
security assigns to each public key its own challenge bit bi, in the multi-user setting there exists a singe
challenge bit b shared among all users. Another less determining difference is the output of the adversary:
In the multi-user setting the adversary must simply output its guess of the shared bit b, while in our
1-out-of-n multi-instance setting the adversary outputs a set L containing the indices of the compromised
users and the xor of their bits. If L = {i}, it means that the adversary returns the challenge bit for the
i-th user. However, a successful adversary could return a set of size |L| > 1.

More formally, we present as game Gn-mu-cca
KEM (A) in Fig. 11 the CCA security definition for a key-

encapsulation scheme KEM in the multi-user setting [13, Section 3.1]. We briefly describe the main
differences between this security game and game G(1,n)-cca

KEM from Fig. 1. Firstly, the game generates a
single challenge bit in line 01 (cf. line 01, Fig. 1). Secondly, the output of the game, specified in lines 06
and 07, is 1 if and only if the adversary guesses the challenge bit correctly (cf. lines 07 to 09, Fig. 1). The
advantage function is computed as in the multi-instance case with respect to game Gn-mu-cca

KEM .
It is immediate to conclude that our KEM (1, n)-CCA implies multi-user security with a tightness

loss of at most n. In fact, single-user security implies multi-user security with a tightness loss of n [13,
Lemma 2] and (1, n)-CCA tightly implies single-user security, i.e., (1, 1)-CCA (Theorem 1, item 1).

To prove the other direction, we introduce a security notion, which we call “extended” multi-user CCA
(n-MU-ECCA), that is equivalent to multi-user security. This notion is defined in Fig. 11 as Gn-mu-ecca

KEM ,
and the advantage is computed as for standard multi-user security with respect to game Gn-mu-ecca

KEM . The
only difference between n-MU-CCA and n-MU-ECCA is that while in game Gn-mu-cca

KEM an adversary gets
only a single key, either real or random, in game Gn-mu-ecca

KEM the adversary gets always both real and
random keys, however the order of the two depends on the challenge bit.

The two notions are equivalent for every n. Clearly, n-MU-ECCA implies n-MU-CCA with no loss.
We prove the other direction next.

Lemma 6. Let n be a positive integer. Then for every adversary A against game Gn-mu-ecca
KEM there exists

an adversary B against game Gn-mu-cca
KEM such that:

Advn-mu-cca
KEM (B) ≥ 1

2Advn-mu-ecca
KEM (A) .

Moreover, B makes the same number of calls to its decryption oracle as A to its own.

Proof. The reduction works as follows. Adversary B forwards the received public keys and parameters
to A. Then, it generates a bit d. For any call to the encapsulation oracle of A on input i, adversary B
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calls Enc(i), obtaining (K1, c). Then, it generates K0 ←$ KS(par) and returns (Kd,K1−d, c) to A. Queries
to the decapsulation oracle are simply forwarded. Finally, let d′ be the output of A. Adversary B outputs 1
if and only if d = d′.

We compute the success probability of A. Let b be the challenge bit implicitly used by game Gn-mu-cca
KEM .

Then:

Advn-mu-cca
KEM (B) = 2 Pr[Gn-mu-cca

KEM (B)]− 1
= 2 Pr[{b = 0 ∧ d 6= d′} ∪ {b = 1 ∧ d = d′}]− 1
= 2(Pr[d 6= d′|d = 0] Pr[d = 0] + Pr[d = d′|d = 1] Pr[d = 1])− 1
= Pr[d 6= d′|d = 0] + Pr[d = d′|d = 1]− 1 .

We compute the two probabilities above. Firstly, Pr[d 6= d′|d = 0] = 1/2. In fact, if d = 0 then
adversary A receives two random keys, which means that bit d is statistically hidden from A. Secondly,
Pr[d = d′|d = 1] = 1/2Advn-mu-ecca

KEM (A)+1/2. In fact, if d = 1 then B always receives the real encapsulation
key. Then, B correctly simulates game Advn-mu-ecca

KEM to A under challenge bit d. The probability that d′ = d,
that is, the probability that A wins game Advn-mu-ecca

KEM , is Pr[Gn-mu-ecca
KEM ] = 1/2Advn-mu-ecca

KEM (A) + 1/2.
Combining the previous observations we get:

Advn-mu-cca
KEM (B) = Pr[d 6= d′|d = 0] + Pr[d = d′|d = 1]− 1

= 1
2 +

(
1
2Advn-mu-ecca

KEM (A) + 1
2

)
− 1 = 1

2Advn-mu-ecca
KEM . ut

Finally, we show that extended multi-user security tightly implies 1-out-of-n multi-instance. This
shows, in particular, that multi-user security tightly implies 1-out-of-n multi-instance.

Lemma 7. Let n be a positive integer. Then for every adversary A against game G(1,n)-cca
KEM there exists

an adversary B against game Gn-mu-ecca
KEM such that:

Advn-mu-ecca
KEM (B) ≥ 1

8Adv(1,n)-cca
KEM (A) .

Moreover, B makes the same number of calls to its decryption oracle as A to its own.

Proof. The case n = 1 is immediate, since the two definitions are syntactically the same. Call s the
random variable corresponding to the size of the set L output of A while running game G(1,n)-cca

KEM .
We partition the probability space (randomness of G(1,n)-cca

KEM ) in the two events E1 = {s = n} and
E2 = {s 6= n}. We call pi = Pr[Ei] for i ∈ {1, 2}. Then, we use these events to define the conditional
advantage ai = 2 Pr[G(1,n)-cca

KEM (A)|Ei]− 1 depending on the given adversary A.
We can rewrite the advantage of A against game G(1,n)-cca

KEM as:

Adv(1,n)-cca
KEM (A) = 2

2∑
c=1

Pr[G(1,n)-cca
KEM (A)|Ei] Pr[Ei]− 1 = a1p1 + a2p2 .

We can conclude that there exists an index c such that acpc ≥ 1/2Adv(1,n)-cca
KEM (A). We present a different

reduction for each possible value of c.

Case c = 1. We study the adversary A′ that runs A and change its output as follows: If the (detectable)
event E1 occurs, then A′ forwards the output of A; otherwise, A returns L = [1 .. n] and a random bit b′.
Therefore, if event E1 does not occur, then adversary A′ breaks (1, n)-CCA (and also (n, n)-CCA) with
probability 1/2. Computing the advantage as an adversary against (n, n)-CCA we obtain:

Adv(n,n)-cca
KEM (A′) = 2 Pr[G(n,n)-cca

KEM (A′)]− 1

= 2(Pr[G(1,n)-cca
KEM (A′) ∧ s = n] + Pr[G(1,n)-cca

KEM (A′) ∧ s 6= n])− 1

= 2(Pr[G(1,n)-cca
KEM (A)|E1] Pr[E1] + 1/2(1− Pr[E1]))− 1

= (2 Pr[G(1,n)-cca
KEM (A)|E1]− 1) Pr[E1] = a1p1 ≥ 1/2Adv(1,n)-cca

KEM (A) .
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Then we can use Theorem 1 to build from A′ an adversary against (1, 1)-CCA with the same advantage.
The proof of case c = 1 follows, since any single-instance adversary can be trivially used as a multi-user
adversary with the same advantage.

Case c = 2. Similar to the previous case, we build an adversary A′ that outputs L = {1}, b′ ←$ {0, 1}
when E2 does not occur. With the same argument as before, we know that A′ only outputs sets L such
that |L| 6= n > 1, and A′ has advantage:

Adv(1,n)-cca
KEM (A′) ≥ 1

2Adv(1,n)-cca
KEM (A) .

We present our reduction next. Adversary B receives parameters par and public keys pk from
game Gn-mu-ecca

KEM . A uniformly picks a set S ⊆ [1 .. n] of size dn/2e. Then, for every i ∈ S, B generates a key
pair (pk[i], sk[i]), overwriting the challenge public key pk[i] previously received. Public keys pk are sent
to A′ along with the parameters par . Then, it generates bits d←$ {0, 1}n to simulate Enc queries to A′,
used as follows depending on input index i ∈ [1 .. n]: If i ∈ S, then B computes (K1, c) ←$ Enc(pk[i]),
K0 ←$ KS(par) and returns (Kd[i], c). Else, B calls its own oracle as Enc(i), obtaining keys K0,K1 and
ciphertext c. The output of the simulated encapsulation oracle is then (Kd[i], c). Decapsulation queries are
handled with sk[i] when i ∈ S or forwarded otherwise. Finally, given the output (L, b′) of A′, B returns
the bit b′ ⊕

⊕
i∈L d[i].

First, note that A′ sees a correct simulation of game G(1,n)-cca
KEM . In fact, calling b the challenge bit

implicitly used in game Gn-mu-ecca
KEM , the reduction simulates user i under challenge bit bi = d[i] if i ∈ S

or bi = b⊕ d[i] if i /∈ S, both of which are uniformly chosen.
Finally, if adversary A′ wins against game G(1,n)-cca

KEM , then adversary B wins against game Gn-mu-ecca
KEM

with probability at least 1/4. In fact, the victory condition for A′ is:

b′ =
⊕
i∈L

bi =
⊕
i∈L∩S

d[i]⊕
⊕
i∈L\S

(b⊕ d[i]) =
⊕
i∈L\S

b⊕
⊕
i∈L

d[i] .

Note that if the event E = {|L \ S| is odd} occurs, then adversary B outputs the bit b, and otherwise
the output bit is 0, independent of b. Event E is, moreover, hidden to A′, since S is hidden to A′. If we
prove that Pr[E] ≥ 1/4, we conclude that, as in the theorem statement:

Advn-mu-cca
KEM (B) ≥ 1/4Adv(1,n)-cca

KEM (A′) ≥ 1/8Adv(1,n)-cca
KEM (A) .

To conclude, we show that Pr[E] ≥ 1/4. We rephrase the problem as follows: We start with dn/2e
red balls (simulated keys) and n− dn/2e black balls (real keys), and we uniformly distribute them into
a sequence of n balls. What is the probability that there are an odd number of black balls among the
first 0 < k < n (k = |L|) balls of the sequence (event E)?

We split the probability space depending on the color of the first (f) and last (l) balls in the sequence.
Assume both f = black and l = red, event which occurs with probability dn/2e

n · n−dn/2e
n−1 . Then there

are n− 2 balls left to distribute, dn/2e − 1 red and n− dn/2e − 1 black. Event E occurs if and only if
there are an even number of black balls among the first 0 ≤ k − 1 ≤ n− 2 redistributed balls: We call
this probability p. Similarly, if f = red and l = black (occurring with probability n−dn/2e

n · dn/2e
n−1 ) then

E occurs if and only if there are an odd number of black balls among the first k − 1 redistributed balls,
that is, with probability 1− p. Ignoring the remaining two cases for f and l we conclude:

Pr[E] ≥ dn/2e
n

n− dn/2e
n− 1 p+ n− dn/2e

n

dn/2e
n− 1 (1− p) = dn/2e

n

n− dn/2e
n− 1 ≥ 1

4 ,

where the last inequality follows from the fact that dn/2e/n ≥ 1/2 and (n− dn/2e)/(n− 1) ≥ 1/2 for
all n > 1. ut

B Omitted Proof of Section 3.2

In this section we describe the steps needed to prove Theorem 1.
We give an overview of the proof referencing to Fig. 2. We show in Lemma 8 how to build an adversary

against (m,n′) starting from an adversary against (m,n) with n′ < n. In the diagram, this is needed to
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move leftwards with respect to the dot representing the adversary against (m,n)-CPA, and is the source
of the multiplicative loss `. Lemma 9 shows how to move up slantwise along the diagonal of slope m/n.
This is the source of the exponential loss k. We show the only tight security relations in the graph in
Lemma 10. This is needed move to any point of the green section (advantage ε/2 and ε). Finally, we
prove Theorem 1 by combining the previous three lemmas to reach every point of Fig. 2.

The next lemma describes how to move leftwards from (m,n) in Fig. 2.

Lemma 8. Let m, n, n′ be positive integers such that m ≤ n′ < n, and let KEM be any KEM scheme.
Then for every adversary A against game G(m,n)-cpa

KEM there exists an adversary B against game G(m,n′)-cpa
KEM

with roughly the same running time as A such that

Adv(m,n′)-cpa
KEM (B) ≥

(
n′

m

)(
n

m

)−1
Adv(m,n)-cpa

KEM (A) .

An analogous statement holds between (m,n)-CCA and (m,n− 1)-CCA, where adversary B queries the
decryption oracle at most as often as A.

Proof. Let A be an adversary against G(m,n)-cpa
KEM . To prove the statement it suffices to show that if n > m

there exists an adversary B′ against game G(m,n−1)-cpa
KEM with roughly the same running time as A such

that
Adv(m,n−1)-cpa

KEM (B′) ≥ n−m
n
·Adv(m,n)-cpa

KEM (A) .

In fact, by applying this result n− n′ times we obtain:

n−m
n

. . .
n− (n− n′ − 1)−m
n− (n− n′ − 1) = (n−m)!

(n′ −m)!
n′!
n! =

(
n′

m

)(
n

m

)−1
.

In the rest of the proof we show the existence of B′. Define ε = Pr[G(m,n)-cpa
KEM (A)], ε1 = Pr[G(m,n)-cpa

KEM |
|L′| = m], and ε2 = Pr[G(m,n)-cpa

KEM | |L′| ≥ m+ 1]. Moreover, call p be the probability that, while running
game G(m,n)-cpa

KEM , adversary A outputs a set L′ of size m Without loss of generality, we assume both
that adversary A always outputs a set L′ of size at least m and that ε2 ≥ 1/2. In fact, any adversary
against game G(m,n)-cpa

KEM can be modified to satisfy both conditions without decreasing its advantage:
If (L′, b′) is the output of A, the two assumptions are achieved by outputting ([1 ..m], 0) every time that
respectively |L′| < m or |L′| > m. Under these restrictions, by the law of total probability we get:

ε = pε1 + (1− p)ε2 . (19)

Adversary B′ works as follows. It receives the keys pk ′1, . . . , pk ′n−1 and parameters par as input and
generates a key pair (pk ′n, sk ′n) and a uniform bit B. Then the order of the keys is rerandomized, obtaining
keys pk1, . . . , pkn. Adversary A is run on input pk1, . . . , pkn and par . If A calls the oracle Enc under the
index corresponding to pk ′n, then B′ computes c running Enc(pk ′n,mB). Otherwise B′ forwards the query
to its oracle Enc for the corresponding index. Similarly, in the CCA case any decryption query for the
simulated index is performed using sk ′n and for all other indices the query is forwarded to the oracle Dec.
Eventually A outputs a set L̄′ and a bit b′. Let L′ be the set L̄′ after reverting key index rerandomization.
We define L = L′ \ {n}. Moreover, depending if n ∈ L′, we define either b = b′ ⊕B or b = b′. The output
of B′ is (L, b).

First, observe that A sees a correct simulation of the game G(m,n)-cpa
KEM . We try to compute the success

probability of B′ by considering two distinct cases. Suppose that, while running B′, we get |L′| ≥ m+ 1.
Then, by definition, |L| ≥ m. It follows that:

Pr[G(m,n−1)-cpa
KEM (B′) | |L′| ≥ m+ 1] = Pr[G(m,n)-cpa

KEM (A) | |L′| ≥ m+ 1] = ε2 . (20)

Suppose now that |L′| = m. Note that, since the key indices are rerandomized, the condition n /∈ L′ is
hidden from the adversary. Moreover, if m ∈ L′ then the bit output of B′ is independent of the rest of the
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game. We make use of this fact as follows:

Pr[G(m,n−1)-cpa
KEM (B′) | |L′| = m] = Pr[G(m,n)-cpa

KEM (A) ∧ n /∈ L′ | |L′| = m] + 1
2 Pr[n ∈ L′ | |L′| = m]

= Pr[G(m,n)-cpa
KEM (A) | |L′| = m] · Pr[n /∈ L′ | |L′| = m] + 1

2
m

n

= n−m
n

ε1 + m

2n . (21)

Combining, in order, the law of total probability, Eq. (21), Eq. (20), Eq. (19), and that ε2 ≥ 1/2, we
can write:

Adv(m,n−1)-cpa
KEM (B′) = 2 Pr[G(m,n−1)-cpa

KEM (B′)]− 1

= 2
(
p

(
n−m
n

ε1 + m

2n

)
+ (1− p)ε2

)
− 1

= 2pn−m
n

ε1 + p
m

n
+ 2(1− p)

(
n−m
n

+ m

n

)
ε2 −

(
n−m
n

+ m

n

)
≥ n−m

n

(
2(p · ε1 + (1− p) · ε2)− 1

)
= n−m

n
(2ε− 1) = n−m

n
Adv(m,n)-cpa

KEM (A) .

To conclude we study the CCA case. The same argument from CPA can be extended to CCA by
simply either forwarding each encryption queries to the corresponding index or simulating the decryption
oracle with the known secret keys. The final decryption query count for adversary B′ is then at most the
query count of each of the two executions of A. The same holds for B ut

The next lemma describes how to move up slantwise along the diagonal with slope m/n from (m,n)
in Fig. 2.

Lemma 9. Let m, n, k be positive integers such that m ≤ n, and let KEM be any KEM scheme. Then
for every adversary A against game G(m,n)-cpa

KEM there exists an adversary B against game G(km,kn)-cpa
KEM

with roughly k times the running time of A such that

Adv(km,kn)-cpa
KEM (B) ≥

(
Adv(m,n)-cpa

KEM (A)
)k

.

An analogous statement holds between (km, kn)-CCA and (m,n)-CCA, where additionally adversary B
queries the decryption oracle at most k times more than A.

Proof. Let A be an adversary against G(m,n)-cpa
KEM . Without loss of generality we assume that A always

outputs a set L of size at least m. Moreover, we assume that Pr[G(m,n)-cpa
KEM (A) | par ] ≥ 1/2 for every

possible parameter par . Otherwise, we can flip the output bit of the adversary for parameter par .
Adversary B works as follows: On input of a (km, kn)-CPA challenge (par ,pk) for i ∈ [1 .. n], B sets

pkj [i]← pk[i+(j−1)n] for j ∈ [1 .. k]. (In this way, no vector pkj shares an index with another vector pkj′

for j 6= j′.) Then it runs k independent copies Aj of adversary A on input (par ,pkj), answering queries
to Enc by using its own challenge oracle. Denote the output of Aj by (Lj , b′j). Adversary B sets

b′ ←
k⊕
j=1

b′j and L←
k⋃
j=1

(Lj + jn) ,

where Lj + jn is the set containing all elements of L shifted by the addend jn, and returns (L, b′).
We now analyze B’s advantage in winning game G(km,kn)-cpa

KEM . Let b =
⊕

i∈L b[i], where b is the vector
of challenge bits sampled in the game. B provides each Aj with a perfect simulation of the (m,n)-CPA
game with respect to challenge bits bj [i] = b[i+ jn]. Since the indices used by each Aj are not shares by
other copies, we know that

|L| =
k∑
j=1
|Lj | ≥ km .
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We argue next that, for the fixed parameters par :

2 Pr[b = b′ | par ]− 1 = (2 Pr[G(m,n)-cpa
KEM (A) | par ]− 1)k .

The proof follows by induction on k. In the case k = 1 the reduction simply forwards everything, and
in particular Pr[b = b′ | par ] = Pr[G(m,n)-cpa

KEM (A) | par ]. As inductive step, we prove the case k + 1. We
implicitly split our reduction in two parts: The first computes the xor of the first k bits, and the second
computes the k + 1-th bit. Then b is the xor of the output of the two parts. We introduce three new
symbols: b[1 .. k] =

⊕k
i=1 b

′
j , b[1 .. k] =

⊕
i∈L∩[kn+1 .. (k+1)n] b[i], and bk+1 =

⊕
i∈L∩[kn+1 .. (k+1)n] b[i]. The

probabilities that the bits computed by the two parts of the reduction are correct are then respectively
p[1 .. k] = Pr[b′[1 .. k] = b[1 .. k]] and pk+1 = Pr[b′k+1 = bk+1] = Pr[G(m,n)-cpa

KEM (A) | par ]. In particular, since
by definition b = b[1 .. k] ⊕ bk+1:

Pr[b = b′ | par ] = Pr[b′[1 .. k] = b[1 .. k], b
′
k+1 = bk+1 | par ] + Pr[b′[1 .. k] 6= b[1 .. k], b

′
k+1 6= bk+1 | par ]

= p[1 .. k]pk+1 + (1− p[1 .. k])(1− pk+1)
= 2p[1 .. k]pk+1 − p[1 .. k] − pk+1 + 1 .

By our induction hypothesis we know that 2p[1 .. k] − 1 = (2 Pr[G(m,n)-cpa
KEM (A) | par ]− 1)k. Replacing

values for p[1 .. k] and pk+1 in the following expression we get:

2 Pr[b = b′ | par ]− 1 = 4p[1 .. k]pk+1 − 2p[1 .. k] − 2pk+1 + 1
= (2p[1 .. k] − 1)(2pk+1 − 1)

= (2 Pr[G(m,n)-cpa
KEM (A) | par ]− 1)k+1 ,

where we used the independence of the k instances Aj of A, and the fact that Adv(m,n)-cpa
KEM (Aj) =

Adv(m,n)-cpa
KEM (A). By using the previous formula and the law of total probability, we can write:

Adv(km,kn)-cpa
KEM (B′) = 2 Pr[b = b′]− 1 = 2

∑
par∈[Par]

Pr[b = b′ | par ] Pr[par ]− 1

=
∑

par∈[Par]

(
2 Pr[G(m,n)-cpa

KEM (A) | par ]− 1
)k Pr[par ]

≥
( ∑

par∈[Par]

(
2 Pr[G(m,n)-cpa

KEM (A) | par ]− 1
)

Pr[par ]
)k

=
(

2
( ∑

par∈[Par]

Pr[G(m,n)-cpa
KEM (A) | par ] Pr[par ]

)
− 1
)k

=
(

Adv(m,n)-cpa
KEM (A)

)k
,

where the inequality step is consequence of the convexity of the map x 7→ xk for x in the positive real
numbers (recall we assume Pr[G(m,n)-cpa

KEM (A) | par ] ≥ 1/2). To conclude, we study the CCA case. The
same argument from CPA can be extended to CCA by simply forwarding each encryption queries to the
corresponding index. The number of decryption queries by adversary B′ is the total amount of queries by
each of the two executions of A. The bound on decryption queries of B is then k times that of A. ut

The next lemma describes how to move to any point in the green section (advantage ε/2 and ε)
from (m,n) in Fig. 2.

Lemma 10. Let m, n, m′, n′ be positive integers such that m′ < m ≤ n, m′ ≤ n′ and m′n ≤ mn′,
and let KEM be any KEM scheme. Then for every adversary A against game G(m,n)-cpa

KEM there exists an
adversary B against game G(m′,n′)-cpa

KEM with roughly the same running time as A such that

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2Adv(m,n)-cpa
KEM (A) .

Additionally, if we also know that n′ − m′ ≥ n − m then the reduction does not lose the factor 1/2.
An analogous statement holds between (m′, n′)-CCA and (m,n)-CCA, where adversary B queries the
decryption oracle at most as often as A.
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Proof. Let A be an adversary against G(m,n)-cpa
KEM . If n′ ≥ n the result is trivial: Adversary B ignores the

additional n′ − n user and uses A to break m instances of the first n users. Since m′ < m, it follows
that Adv(m′,n′)-cpa

KEM (B) = Adv(m,n)-cpa
KEM (A). If n′ −m′ ≥ n−m then the result is again trivial: adversary B

simulates n′ − n users to A. Then, if successful, A returns a list L such that |L| ≥ m. L contains at
least m′ indices that were not simulated. In fact, there are at most n′ − n simulated users, and in the
worst case there are m− n′ + n ≥ m′ non-simulated users remaining in L.

We prove the remaining case. Let n′ < n. B works as follows. B receives keys pk ′1, . . . , pk ′n′ and
parameters par as input, then generates key pairs (pk ′n′+1, sk ′n′+1) to (pk ′n, sk ′n) and corresponding
uniform bits Bn′+1, . . . , Bn. The order of the keys is rerandomized, which yields keys pk1, . . . , pkn′ .
Adversary A is run on input pk1, . . . , pkn and par . If A calls the oracle Enc under the index corresponding
to a key with known key pair (pk, sk), then B computes c running Enc(pk,mB), where B is the bit
corresponding to the key. Otherwise B forwards the query to its oracle Enc for the corresponding index.
Similarly, any decryption query for the simulated index is performed using sk and for all other indices the
query is forwarded to the oracle Dec. Eventually A outputs a set L̄′ and a bit b′. Let L′ be the set L̄′
after reverting key index rerandomization. We define L = L′ \ [n′ + 1 .. n]. Moreover, we define

b = b′ ⊕
⊕

i∈L′∩[n′+1 .. n]

Bi .

The output of B is (L, b).
Observe that if A wins then B wins if and only if |L| ≥ m. In the rest of the proof we leverage the

fact that the rerandomization hides the position of forwarded indices and simulated ones.
To compute Pr[|L| ≥ m′] we consider the following equivalent problem: From a set containing n′

red balls (forwarded users) and n − n′ black balls (simulated users) we sample m elements without
replacement. We want to prove that, calling X the number of red balls among the sampled elements,

Pr[X ≥ m′] ≥ 1
2 .

Since by construction Pr[|L| ≥ m′] = Pr[X ≥ m′], proving the previous statement concludes the proof.
The random variable X follows a hypergeometric distribution of parameters (n,m, n′). To show that

Pr[X ≥ m′] ≥ 1
2 it is sufficient to show that m′ is smaller than the median of this distribution. The latter

follows from [21, Corollary 2.3], where R = n′, B = n′ − n, the two weights are the same, r + b = m (and
therefore r = n′ ·m/n ≥ m′). ut

Finally, we combine the previous results to prove Theorem 1.

Proof (Theorem 1). Part 1 is Lemma 10.
To prove part 2, first we apply part 1 to prove that there exists B′ such that:

Adv(m′,dnm′/me)-cpa
KEM (B′) ≥ 1

2Adv(m,n)-cpa
KEM (A) .

Then, since dnm′/me > n′, we can apply Lemma 8. We obtain an adversary B from B′ such that:

Adv(m′,n′)-cpa
KEM (B) ≥

(
n′

m′

)(
dnm′/me

m′

)−1
Adv(m′,dnm′/me)-cpa

KEM (B′)

≥ 1
2

(
n′

m′

)(
dnm′/me

m′

)−1
Adv(m,n)-cpa

KEM (A) .

Part 3 is proven by applying first Lemma 9 with k = dm′/me. If m divides m′, the result follows
directly. Otherwise, there exists B′ such that

Adv(km,kn)-cpa
KEM (B′) ≥

(
Adv(m,n)-cpa

KEM (A)
)k

.

Then, since km > m′ and m′(kn) ≥ (km)n′ we use part 1 to build B such that:

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2Adv(km,kn)-cpa
KEM (B′) ≥ 1

2

(
Adv(m,n)-cpa

KEM (A)
)k

.
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Finally, part 4 is obtained by again applying first Lemma 9 with k = dm′/me. Namely, there exists B′
such that

Adv(km,kn)-cpa
KEM (B′) ≥

(
Adv(m,n)-cpa

KEM (A)
)k

.

Then, since km > m′ and m′(kn) < (km)n′ we use part 2 to build B such that:

Adv(m′,n′)-cpa
KEM (B) ≥ 1

2

(
n′

m′

)(
d(kn)m′/(km)e

m′

)−1
Adv(km,kn)-cpa

KEM (B′)

≥ 1
2

(
n′

m′

)(
dnm′/me

m′

)−1 (
Adv(m,n)-cpa

KEM (A)
)k

.

The same proof applies to the CCA case and yields the number of calls to the decryption oracle
indicated in the statement. ut

C A Scheme with Scaling Factor Below One

In this section we build a (toy) public-key encryption scheme PKE and we argue that its CPA scaling
factor is upper bounded by m/n. The same construction can be applied for key-encapsulation mechanisms,
but we use PKE for clarity.

We start from a perfectly secure scheme PKE′′ = (Enc′′,Dec′′). (We leave parameter generation and
key generation implicit, since they are not going to change in the following constructions.) We fix a
probability p ∈ [0, 1] and we build a scheme PKE′ by defining:

Enc′(pk,m) =
{

(0,Enc′′(pk,m)) with probability p
(1,m) with probability 1− p

.

The corresponding decryption procedure is immediate. Then we introduce two hash functions, namely H
and F , and a large integer k, which are used in the next step. Importantly, F is a hard-to-compute
function, which means that the running time of any adversary is dominated by the number of times F is
computed. k is large in the sense that the adversaries we consider are not able to compute function F
more than k times.10 Scheme PKE is defined by:

Enc(pk,m) =
(
Enc′(pk,m)⊕H(pk, F (1)),
Enc′(pk,m)⊕H(pk, F (2)),
. . . ,

Enc′(pk,m)⊕H(pk, F (k))
)
.

Decryption corresponds to running Dec′ of the first component after xoring out H(pk, F (1)).
We want to prove that, for m 6= n:

SF(m,n)-cpa
PKE =

MinTime(m,n)-cpa
PKE

MinTime(1,1)-cpa
PKE

≤ m

n
. (22)

To this end, we upper bound first the advantage of a single-instance adversary that makes a single
encryption query. We model H and F as a random oracles. This is used to recover a lower bound on
the time q (i.e., number of queries to F ) needed to win with at least probability 1 − α. Then we give
an explicit adversary against m-out-of-n multi-instance which runs in time q′ = mq/n and has success
probability at least 1− α. If both facts hold for overwhelming probability 1− α, then Eq. (22) is verified.

Let A be an adversary against single-instance CPA that makes at most q queries to F . Let c =
(c′1 ⊕ h1, . . . , c

′
k ⊕ hk) be the ciphertext obtained by running A on the CPA game, where c′i is a ciphertext

of PKE′ and hi is in the range of H. Each entry c′i is statistically hidden unless H has been queried
on input (pk, F (i)). Ignoring the probability of guessing F (i), this means that A knows at most q
10 This would make encryption unfeasible, since it calls F exactly k times. We can assume each user knows a

trapdoor to compute H(pk, F (·)).
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ciphertexts c′i, and the rest is hidden. Since PKE′′ is assumed to be a perfect encryption scheme, an
adversary can recover the original message from c′i only with probability 1− p. The probability that A
wins is then at most

Pr[G(1,1)-cpa
PKE (A)] ≤ 1− (1− (1− p))q = 1− pq .

In particular, if an adversary has advantage 1− α, then it makes at most q = logα/ log p queries.
Next, we construct an adversary A against (m,n)-CPA that makes q′ = m

n q = m logα
n log p queries such

that Pr[G(m,n)-cpa
PKE (A)] ≥ 1 − α for 1 − α overwhelming, that is, α close to 0. Adversary A simply

computes F (1), . . . , F (q′) and uses them to check whether encrypting with Enc′ returned the message in
all first q′ components of the ciphertexts it receives.

Adversary A wins if, for at least m users, at least one of the first q′ components were not encrypted
with Enc. Explicitly:

Pr[G(m,n)-cpa
PKE (A)] ≥

n∑
i=m

(
n

i

)(
1− pq

′)i(1− (1− pq
′
)
)(n−i)

= 1−
m−1∑
i=0

(
n

i

)(
1− pq

′)i
pq
′(n−i)

= 1−
m−1∑
i=0

(
n

i

)
(1− αm/n)iα(n−i)m/n

We use the previous inequality to show that Pr[G(m,n)-cpa
PKE (A)] ≥ 1− α:

1− α ≤ 1−
m−1∑
i=0

(
n

i

)
(1− αm/n)iα(n−i)m/n

α ≥
m−1∑
i=0

(
n

i

)
(1− αm/n)iα(n−i)m/n (23)

1 ≥ f(α) :=
m−1∑
i=0

(
n

i

)
(1− αm/n)iα(n−i)m/n−1

We argue that f(0) = 0. In this case, since the function f is, by construction, continuous, Eq. (23) is
true for α close to 0. To prove f(0) = 0, we argue that (n− i)m/n− 1 > 0. The rest follows by directly
replacing values in the definition of f . Note that, since i ≤ m− 1:

(n− i)m/n− 1 ≥ (n−m+ 1)m/n− 1

Moreover, since n 6= m, if m 6= 1:

(n−m+ 1)m
n
− 1 = (m− 1)(n−m)

n
> 0 .

If m = 1, then Eq. (23) becomes α ≥ α.

D Omitted Proof of Section 4

Proof (Theorem 2). Since the proofs for the three granularity variants differ only in the way adversary B
sets up the parameters and public keys to be used by A, we only give the full proof for the KEM
variant HEG[GGen, high]. At the end of the proof we sketch how B has to be modified for the cases of
medium and low granularity.

For simplicity, in this proof we assume that adversary A for every i ∈ [1 .. n] poses at most one query
to oracle Enc(i). However, using the random self-reducibility of the computational Diffie-Hellman problem
the proof can be easily adapted to adversaries posing several queries of the form Enc(i).
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Consider adversary A playing game G(m,n)-cca
HEG[GGen,high] of Fig. 1. For i ∈ [1 .. n] we denote by c∗[i] the

ciphertext generated in line 10 as part of the challenge, which the adversary receives as response to its
query Enc(i). By definition of HEG[GGen, high], the ciphertext c∗[i] is an element of the group specified
by the parameters, and its decapsulation with respect to secret key sk[i] = x[i] is Dec(par , sk[i], c∗[i]) =
RO(pk[i], c∗[i], c∗[i]x[i]), where RO denotes the random oracle modeling the hash function H. Let Q
denote the event

Q =
{
A queries for RO(pk[i], c∗[i], c∗[i]x[i]) for all i ∈ L

}
,

where L is the list of indices output by the adversary at the end of the game. Note that, since hash
function H is modeled as a random oracle, Dec(par , sk[i], c∗[i]) is distributed uniformly on KS(par).
Hence oracle Enc on input i returns a pair (K∗, c∗) consisting of the ciphertext c∗ and an element K∗
of KS(par), which is uniformly distributed both in the case that the corresponding challenge bit b[i]
equals 0 or that it equals 1. So A only receives input which depends on b[i] if it queries both Enc(i) and
RO(pk[i], c∗[i], c∗[i]x[i]).

Assume that event Q does not occur. In this case there exists an index j ∈ L such that A does not
query for RO(pk[j], c∗[j], c∗[j]x[j]). This implies that all inputs to A—and hence also A’s output b′—are
independent of challenge bit b[j]. Thus, when conditioning on ¬Q, the bit b′ is independent of

⊕
i∈L b[i],

which implies Pr[G(m,n)-cca
HEG[GGen,high](A) | ¬Q] = 1/2. We obtain

Adv(m,n)-cca
HEG[GGen,high](A) = 2 Pr[G(m,n)-cca

HEG[GGen,high](A)]− 1

= 2 Pr[G(m,n)-cca
HEG[GGen,high](A) | Q] Pr[Q] + 2 Pr[G(m,n)-cca

HEG[GGen,high](A) | ¬Q] Pr[¬Q]− 1

≤ 2 Pr[Q] + (1− Pr[Q])− 1 = Pr[Q] . (24)

We conclude the proof by constructing an adversary B against the m-out-of-n multi-instance gap
computational Diffie-Hellman game G(m,n)-gcdh

GGen,high of Fig. 4 in high granularity that provides A with a
perfect simulation of game G(m,n)-cca

HEG[GGen,high] and successfully computes a solution to its (m,n)-GapCDH
challenge if event Q occurs. The description of B is in Fig. 12. Adversary B on input of a (m,n)-GapCDH
challenge (G,X,Y ) sets par ← G[1] and uses pk[i] = X[i] as the i-th public key. Then it runs A on
input (par ,pk). Note that since we consider (m,n)-GapCDH in high granularity all group elements X[i]
belong to the same group G[1] = G[i]. Hence pk has the correct distribution.

Adversary B provides A with a perfect simulation of the oracles Enc, Dec, RO by keeping track of
three tables: TDec stores decapsulations corresponding to ciphertexts, TRO stores hash values, and TDDH
stores Diffie-Hellman tuples, which it is able to identify using oracle DDH. The challenge ciphertext with
respect to index i is set to c∗[i] = Y [i]. Hence if A queries for RO(pk[i], c∗[i], c∗[i]x[i]), then the last two
elements of the input to RO are the i-th partial solution g[i]x[i]y[i] to its (m,n)-GapCDH challenge. B
identifies these tuples and stores them in a vector Z′. When A at the end of game G(m,n)-cca

HEG[GGen,high] outputs
a list L and a bit b′, adversary B′ returns L and Z′. If Q occurs then Z′ contains all partial solutions to
its (m,n)-GapCDH challenge corresponding to the indices in L. By Eq. (24) we obtain

Adv(m,n)-cca
HEG[GGen,high](A) ≤ Adv(m,n)-gcdh

GGen,high (B) .

B runs adversary A once, uses its oracle DDH at most once per call to oracle RO, and performs some
minor bookkeeping.

We conclude by sketching how B has to be modified for the cases of medium and low granularity.
In the case of medium granularity B’s challenge is of the form (G,X,Y ), where all G[i] describe the
same group G of order p but with respect to different generators g[i]. In this case B sets par ← (G, p)
and pk[i] ← (g[i],X[i]). In the case of low granularity G consists of n independently sampled group
descriptions. In this case B sets par ← ⊥ and pk[i] ← (G[i],X[i]). It is easy to verify that in both
cases the parameters and public keys are of the correct form. The rest of the proofs is analogous to the
high-granularity case. ut

E Efficiency of Hashed ElGamal in Different Parameter Settings

Below we illustrate how the scaling factors computed in Section 4.3 could be taken into account when
choosing parameters for the Hashed-ElGamal KEM in the elliptic-curve setting dependent on m. In
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Adversary BDDH(G,X,Y )
00 initialize empty tables TDec, TRO, TDDH
01 K∗[·]← ⊥; c∗[·]← ⊥
02 Z′[·]← ⊥
03 b←$ {0, 1}n

04 par ← G[1]
05 pk← X
06 (L, b′)←$ ASimEnc,SimDec,RO(par ,pk)
07 return (L,Z′)
Oracle SimEnc(i)
08 if b[i] = 1:
09 K∗[i]← SimDec(i,Y [i])
10 else: K∗[i]←$ KS(par)
11 c∗[i]← Y [i]
12 return (K∗[i], c∗[i])

Oracle SimDec(i, c)
13 if c = c∗[i]:
14 return ⊥
15 if TDec[i, c] = ⊥:
16 Ẑ ← TDDH[i,X[i], c]
17 if Ẑ 6= ⊥:
18 TDec[i, c]← TRO[pk[i], c, Ẑ]
19 else: TDec[i, c]←$ KS(par)
20 return TDec[i, c]
Oracle RO(pk[i], Ŷ , Ẑ)
21 if TRO[pk[i], Ŷ , Ẑ] 6= ⊥:
22 return TRO[pk[i], Ŷ , Ẑ]
23 TRO[pk[i], Ŷ , Ẑ]←$ KS(par)
24 if DDH(i,X[i], Ŷ , Ẑ) = 1:
25 TDDH[i,X[i], Ŷ ]← Ẑ
26 if Ŷ = Y [i]:
27 Z′[i]← Ẑ
28 if TDec[i, Ŷ ] 6= ⊥:
29 TRO[pk[i], Ŷ , Ẑ]← TDec[i, Ŷ ]
30 return TRO[pk[i], Ŷ , Ẑ]

Fig. 12. Adversary B against game G(m,n)-gcdh
GGen,high . For simplicity we assume that all RO queries are of the form

(pk[i], Ŷ , Ẑ), where Ŷ , Ẑ are elements of par = G[1].

practice HEG is typically instantiated with one out of a few standardized elliptic curves, which corresponds
to the high granularity case. As seen in Section 4.3, this leads to a non-optimal scaling factor of

√
m.

This motivates the question of whether it would be more efficient to compensate for this shortcoming by
increasing the security parameter (i.e., the size of the used curve) or by switching to the low granularity
variant with scaling factor m.

For concreteness, assume that 128 is the targeted single-instance security level of the KEM, i.e.,
breaking the (1, 1)-CCA security of HEG takes time 2128. For an optimally scaling KEM and a maximal
number of m users this implies that the best attack against (m,m)-CCA should take at least time 2128 ·m.
Starting from this targeted multi-instance security level, we can compute the required group size p and
corresponding key sizes of Hashed ElGamal for high and low granularity as follows: For high granularity
we obtain

2128 ·m ≈ √pm .

Solving for p yields p ≈ 2256 ·m leading to ciphertext and public-key sizes of 256 + logm bits. On the
other hand, for low granularity we get

2128 ·m ≈ √p ·m ,

which leads to group sizes of 256 bits. However, in the low-granularity variant public keys not only consist
of a single group element but also of the full group description, which for elliptic curves consists of 4
additional integers of bit length 256. Summing up, in order achieve full m-out-of-m multi-instance security
starting from a single-instance security level of 128 bits we arrive at ciphertext and public-key sizes of

|c| =
{

256 + logm gran = high
256 gran = low

and |pk| =
{

256 + logm gran = high
1280 gran = low

,

respectively. This shows that compensating for the non-optimal scaling of the high granularity variant
of HEG leads to larger ciphertext sizes but substantially smaller keys compared to HEG[GGenE(F`), low].
(For comparison, if we assign 220 keys to each inhabitant of Earth we get logm ≈ 53.) Additionally, this
variant profits from faster key-generation since no elliptic curves have to be generated as part of the
public key. The situation for efficiency of encapsulation and decapsulation is less clear: Formally, the
larger group size in the high-granularity setting leads to slower group operations. On the other hand, the
use of a fixed group allows for optimized implementations.
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Adversary A((G, p, g),X)
00 x[·]← ⊥ \\list containing computed DLs
01 T [·]← ⊥ \\list containing elements with known DL
02 H ← g
03 T [H]← 1
04 for i ∈ [2 ..√mp]:
05 H ← H · g \\baby step
06 T [H]← i
07 step ← H \\H is g

√
mp

08 for j ∈ [1 ..m]: \\break the first m challenges
09 H ← X[j]
10 i← 0
11 while T [H] = ⊥:
12 H ← H · step \\giant step
13 i← i+ 1
14 x[j]← T [H]− i√mp
15 return x

Fig. 13. Baby-step giant-step algorithm for m DL instances. We redefine square root and division to round up to
the next integer.

F Adversary Against (m, m)-DL in High Granularity

In this section we recall the baby-step giant-step algorithm for multiple instances and explicitly upper
bound the number of group operations it needs to succeed by 2√mp.

The algorithm (and its extension in the multi-instance setting) is well known in the literature. See for
example [14, Section 9.2.4]. Here we give a concrete bound and a proof for completeness.

Theorem 7 formally states our result, where for concreteness the group is modeled as a generic
group. The idea is as follows: In the baby-step phase, the adversary precomputes and stores the √mp ele-
ments g1, g2, g3, . . . , g

√
mp. In the giant-step phase, for each of the m DL challenges X it computes Xg

√
mp,

Xg2√mp, Xg3√mp, . . . until it obtains one of the precomputed element. This latter phase stops be-
fore

√
p/m computations, since after

√
p/m steps of size √mp the adversary loops through the whole

group. The total number of operations is then √mp+m
√
p/m = 2√mp.

Theorem 7. Let GGengg be a group-generating algorithm that generates generic groups of prime size p,
and let m be a positive integer. Then the baby-step giant-step algorithm, described as generic adversary A
in Fig. 13, breaks (m,m)-DL[GGengg, high] with probability 1 and makes q < 2√mp queries to the
group-operation oracle.

Proof. Consider adversary A described in Fig. 13.
Adversary A can be divided in two main phases. In the fist phase (lines 04 to 06), also called

precomputation phase, it computes a list T containing the group elements g1, g2, . . . , g
√
mp by multiplying

each successive element by g, starting with g. (For the duration of the proof, we assume the square root
function to round up its output to the nearest integer.) Next, A sets the variable step to the last computed
element of T , that is, g

√
mp. In the second phase (lines 08 to 14), also called search phase, A recovers

each single DL from the challenges using the previous list. For each challenge entry X, A multiplies X by
step until it obtains an element in T . Then it compute the DL as in line 14.

First we prove that adversary Fig. 13 succeeds with probability 1. Calling X = gx a challenge entry,
A computes, in the second step, values of the form X ′ = gx+i√mp, where i is the loop index. If X ′ belongs
to list T , then we know that X ′ = gT [X′] by definition of T . This means that x+ i

√
mp = T [X ′], which

corresponds to the expression used to extract the DL in line 14.
Finally, we show that the algorithm makes q < 2√mp queries. (And, in particular, that it terminates).

The precomputation phase needs exactly √mp− 1 calls to the group-operation oracle (line 05). To count
the number of group operations needed in the search phase, we give an upper bound on the number
of iterations of the loop in lines 11 and 12. Let X = gx, x ∈ [1 .. p], be the challenge used in the loop.
Applying integer division between p− x and √mp, there exist two integer d, r such that 0 ≤ r < √mp
and p − x = d

√
mp + r. Then, by 0 ≤ r <

√
mp we can deduce that p < x + (d + 1)√mp ≤ p +√mp,
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which implies that Xg(d+1)√mp belongs to T . Next, we assume x >
√
mp: Otherwise, the loop runs

zero steps. Moreover, assuming x >
√
mp (otherwise the loop runs either zero or, for x = 0, one

steps) we get d = (p− x− r)/√mp < p/
√
mp− 1. (Note that we can assume p/√mp > 1: Otherwise the

precomputation phase contains all group elements, and the number of queries of A is exactly p−1 < √mp.)
Since A needs d+ 1 iterations of the while loop to compute Xg(d+1)√mp, we conclude that each while
loop runs less than p/

√
mp > 0 times. Summing up the queries including precomputation and all m

challenges we get:
q < (√mp− 1) +m(p/√mp) = √mp+mp/

√
mp− 1 .

The bound in the statement follows since dxe+ x2/ dxe − 1 ≤ dxe+ x− 1 < 2x for x > 0. ut

G Omitted Proofs of Section 6

G.1 Medium-Granularity (m, n)-GapCDH

In order to prove Corollary 4 we first present a simple reduction that describes how any adversary
against (m,n)-GapCDH[GGen, med] can be used to break (m,n)-GapCDH[GGen, high]. Then we apply
Corollary 3 to derive the concrete bound. We state the existence of a reduction from (m,n)-GapCDH in
the medium-granularity setting to (m,n)-GapCDH in the high-granularity setting.

Lemma 11. Let GGen be a group-generating algorithm that generates groups of at least size p, and
let m, n be positive integers with m ≤ n. Then for every adversary A against (m,n)-GapCDH[GGen, med]
there exists an adversary B against (m,n)-GapCDH[GGen, high] such that

Adv(m,n)-gcdh
GGen,high (B) ≥ Adv(m,n)-gcdh

GGen,med (A) .

Moreover, calling qDDH the number of queries of A to DDH, adversary B makes at most 2(4n+qDDH)(log p+
1) group operations in addition to those made by A, and the same amount of queries to DDH.

Proof. Adversary B works as follows. B receives a group description G = (G, p, g) and some n-size
vectors X = gx, Y = gy. It generates a uniform vector, r ←$ (Zp \ 0)n, and computes g′ ← gr;
X′[·]←X[·]r[·]; Y ′[·]← Y [·]r[·]. The computed elements correspond to the new group generators and
the new challenges for A. Queries to DDH on input of index i and group elements X̂, Ŷ , Ẑ are answered
as follows. B queries its own oracle on input X̂, Ŷ 1/r[i], Ẑ and forwards the output to A.

We prove that the oracle simulation is correct. Let x̂, ŷ, ẑ be such that X̂ = gx̂, Ŷ = gŷ, and Ẑ = gẑ

respectively. Since g′[i] = gr[i], A needs to receive output 1 if and only if(
gr[i]

) x̂
r[i]

ŷ
r[i] =

(
gr[i]

) ẑ
r[i]

,

or, equivalently, gx̂ŷ/r[i] = gx̂. This corresponds to a DDH query with respect to group generator g and
input X̂, Ŷ 1/r[i], Ẑ.

Next, we show that if A is successful then B is. If A is successful, then its output is a vector W ′

and a set L = {l1, . . . , lm, . . .} such that W ′[li] = (g′[li])x[li]y[li] for every i. If B sets W [·]←W ′[·]1/r[·]

then W [li] = gx[li]y[li] for every i. (L,W ) is the final output of B, which wins the high granularity game.
To conclude the proof, we count the additional group queries made by B. The group-operation oracle

is used when creating the new generators (n), challenges (2n), answering DDH queries (qDDH), and
computing the output entries (at most n). By using square-and-multiply we can upper bound the amount
of queries by 2(4n+ qDDH)(log p+ 1). ut

Proof (Corollary 4). Combining Lemma 11, and Corollary 3, and observing that the reduction makes
additional 2(4n+ qDDH)(log p+ 1) + 2n(m+ 2)(log p+ 1) group operations:

Adv(m,n)-gdl
GGengg,med(A) ≤ Adv(m,n)-gcdh

GGengg,high(B) ≤ 2mAdv(m,m)-gdl
GGengg,high(C)

≤
(

2
p

)m
+ 1

2

(
e(q + 2(qDDH + n(m+ 6))(log p+ 1) +m+ 1)2 + 2eqDDH

mp

)m
.

The previous expression can be simplified by noticing that, for the parameters we consider, 2n(m +
6)(log p+ 1) +m+ 1 ≤ 30mn log p, e(2qDDH)2 ≥ 2eqDDH, 2qDDH(log p+ 1) ≤ 6qDDH log p, and 2 m

√
2 ≤

4 ≤ (30mn log p)2/m. ut
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G.2 Low-Granularity (m, n)-GapCDH

Proof (Theorem 6). Let A be a generic adversary against (m,n)-GapCDH[GGengg, low], and let W be
the random variable representing the (unique) solution vector to all challenges. We model the n groups
generated by PGen[low] as independent generic groups of size p, where p[i] ≥ p for every i ∈ [1 .. n].
Adversary A does not know the solution W [i] of the i-th challenge unless it is returned by the i-th
group-operation oracle. By Corollary 3, for m = n = 1 we know that:

Pr
[
A computes W [i]

]
≤ 2e(qi + 12 log p)2 + 4eqDDH

p
≤ 4eq

2
i

p
, (25)

where the last inequality follows since qi is large: qi ≥ 60 log p, which implies (qi + 12 log p) ≤ 3/2q2
i ,

and 4q2
i ≥ qDDH. Adversary A wins exclusively if it can identify at least m CDH solutions. Let L =

{l1, . . . , lm, . . .} be the solution indices returned by A. For the purpose of the proof, we define the set
of indices S = {i1, . . . , im} such that qi1 ≥ . . . ≥ qim ≥ qi for every i ∈ [1 .. n] \ S. We can bound the
winning probability as:

Pr[G(m,n)-gcdh
GGengg,low (A)] ≤ Pr

[
A computes W [{l1, . . . , lm}]

]
≤

m∏
i=1

Pr
[
A computes W [li]

]
≤
∏
i∈S

(
4q

2
i

p

)
≤
(

4e
p

(
1
m

∑
i∈S

qi

)2)m
≤
(

4eq2

m2p

)m
.

To prove this bound we used, in order, the definition of G(m,n)-gcdh
GGengg,low , the independence of each generic

group, Eq. (25) and the fact that, after reordering, qij ≤ qlj for every possible L and j ∈ [1 ..m], and the
inequality of arithmetic and geometric means, that is, for every nonnegative xi such that x1 + . . .+xm = x:

m∏
i=1

xi ≤
( x
m

)m
. ut
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