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Abstract Proxy Re-Encryption (PRE), introduced by Blaze et. al in
[BBS98], allows a ciphertext encrypted using a key pki to be re-encrypted
by a third party so that it is an encryption of the same message under a new
key pkj , without revealing the message. Post-Compromise Security (PCS)
was first introduced for messaging protocols, and ensures that a ciphertext
remains confidential even when past keys have been corrupted. We define
PCS in the context of PRE, which ensures that an adversary cannot
distinguish which ciphertext a re-encryption was created from even given
the old secret key, potential old ciphertexts and update token used to
perform the re-encryption. We argue that this formal notion accurately
captures the most intuitive form of PCS. We give separating examples
demonstrating how our definition is stronger than existing ones, before
showing that PCS can be met using a combination of existing security
definitions from the literature. In doing so, we show that there are existing
PRE schemes that satisfy PCS. We also show that natural modifications
of more practical PRE schemes can be shown to be PCS without relying
on this combination of existing security definitions. Finally, we discuss the
relationship between PCS with selective versus adaptive key corruptions,
giving a theorem that shows how adaptive security can be met for certain
re-encryption graphs.

1 Introduction

Cloud storage has become increasingly popular in recent years, evolving from
acting as a source of backup data to becoming the default storage for many
applications and systems. For example, popular media streaming platforms such
as Netflix and Spotify allow clients to subscribe to on-demand access for media
files as opposed to storing them locally. This has increased the number of for
devices which no longer need much in-built storage as long as they have an
internet connection.
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Since the cloud is usually a third party, clients must encrypt their files to
ensure data confidentiality. This poses problems when a client wants to change
the key for their encrypted files as a means of satisfying compliance directives or
to enforce access control policies. For the former, NIST recommends regular key
rotation [BBB+12], as does the Payment Card Industry Data Security Standard
[PCI18] and the Open Web Application Security Project (OWASP) [OWA18].
For the latter, an organisation can choose which of its employees can access
specific files by having those files encrypted under those keys. Should access need
to be granted or revoked from someone, the files should be re-encrypted to a new
key accordingly. One trivial solution has the client download, decrypt, encrypt
using the new key, then re-upload the file. However, this can be very expensive,
particularly for modern applications involving large databases, or if the client
has limited processing capability.

The primitive of Proxy Re-Encryption (PRE), introduced by Blaze et al. [BBS98],
presents a more elegant solution. In a PRE scheme, the client creates an update
token ∆i,j using the current secret key ski and a new public key pkj . The server
can then use this token to re-encrypt the ciphertext, transforming it into an
encryption of the same message which can now be decrypted using skj . The most
basic security notion for PRE states that the server performing the re-encryption
learns nothing about the underlying message.

Post-Compromise Security (PCS). The notion of PCS was first used in
[CCG16] for messaging protocols, which is informally defined as follows:

Definition 1 ( [CCG16]). A protocol between Alice and Bob provides Post-
Compromise Security (PCS) if Alice has a security guarantee about communica-
tion with Bob, even if Bob’s secrets have already been compromised.

As this definition gives the bare intuition, the ‘security guarantee’ is left open so
that it can be tailored to the application, as we do in this work. This differs from
forward security, which conveys that the compromise of future states does not
affect the security of past ones. PCS conveys a scheme’s ability to regain security
after a session or party has been compromised, which has clear applications
involving revocation and key rotation (key life-cycles), where having access to
the old key should not affect the security of a re-encrypted ciphertext.

Motivation for PCS PRE. One particular application of post-compromise
PRE of interest is to complement PCS of messages in transit, by giving PCS
security to backed up messages stored in the cloud. The Signal Protocol for
encrypting messages in transit between two devices provides strong, modern,
provable security guarantees including PCS [CCG16]. However, most users expect
to keep their messages when they lose their device or buy a new one; thus, popular
Signal implementations such as WhatsApp back up client messages to public
cloud services.Unfortunately, this backup is encrypted using a static encryption
key. This means that while messages in transit have PCS, these properties are
lost once messages are backed up. If an adversary compromises a device and
obtains the static cloud backup key, they can retain this to compromise future
messages once they are backed up.
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Assuming that all message history is stored locally, the updated message
history could be encrypted under a new key and re-uploaded at regular time
intervals, but this will have a huge cost both in terms of computation and
bandwidth, particularly as much messaging is done via smart-phones. A PRE
scheme with PCS could be used instead, so that the PCS of messages in transit
is extended to message backups.

1.1 Contributions

In this paper we set out the first formalisation of PCS for PRE schemes. In our
model, the adversary cannot distinguish a re-encrypted ciphertext given the old
key, old ciphertexts and the token used to perform the re-encryption. In other
words, we view a compromise as the loss of all previous public and secret states
associated with a given ciphertext, and limit the information that must remain
secret to the current secret key alone. To date there is no security definition that
gives the adversary the update token used in the challenge re-encryption. Our
definition implies unidirectionality (as opposed to treating unidirectional and
bidirectional schemes differently), and that additional randomness beyond that
given in the update token is added upon re-encryption. Since we do not make
as many assumptions on which algorithms are deterministic or on the flow of
re-encryption operations, our security model can be applied to more general PRE
schemes and applications than similar definitions in the literature (see Section 3).

We analyse our model, proving several results that associate PCS with existing
security models for PRE and related primitives such as updatable encryption
[LT18], and provide separating examples that distinguish PCS as a separate
security characteristic in its own right. One of our major contributions is to
show that a PRE scheme that is both source-hiding and secure against honest
re-encryption attacks also has PCS, meaning that some of the PRE schemes
given by Fuchsbauer et al. [FKKP18] immediately satisfy PCS.

However, these schemes were designed with different goals in mind and do not
necessarily lead to the most practical lattice-based PREs with PCS. We therefore
give a new PRE scheme, pcBV-PRE, adapted from BV-PRE – the practical RLWE-
based scheme of Polyakov et al. [PRSV17]. This new scheme leverages the speed
of the original construction with minimal changes, implying efficiency. We prove
that our adaptation achieves PCS and PRE-Indistinguishable against Chosen
Plaintext Attacks (PRE-CPA) security (often referred to as IND-CPA security)
via a tighter reduction than using the combination of properties previously
mentioned, meaning this combination of properties is sufficient, but not necessary
for achieving PCS.

The advantage of this is that we can prove security for more general re-
encryption graphs. Moreover, the lattice-based source-hiding schemes of [FKKP18]
are forced into sub-optimal parameter choices that render their assumptions much
stronger (with respect to the approximation factors of solving worst-case lattice
problems) and much less efficient. Our new scheme is much more efficient since
we leverage the speed of the original construction with minimal changes. Finally,
we show that achieving PCS with adaptive key compromises is possible via
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the transformation of [FKKP18] using adaptively PRE-CPA-secure (commonly
called IND-CPA-secure1) and source-hiding PRE schemes, where sub-exponential
security loss is restricted to certain re-encryption graphs (trees and chains).

Paper structure. We begin by reviewing necessary preliminaries in Section 2
before reviewing related work in Section 3. In Section 4 we define PCS and show
how our definition relates to those already in the literature. We then give an
explicit construction of a PRE scheme satisfying PCS in Section 5. In Section 5,
we give an explicit, efficient construction, pcBV-PRE, by modifying the lattice-
based BV-PRE scheme [PRSV17] to show that our notion of PCS can be satisfied
by natural extensions of current practical PRE schemes. Finally, in Section 6 we
discuss the relationship between selective and adaptive security for PCS using
the work of [FKKP18].

2 Preliminaries

In this section, we give the preliminaries for proxy re-encryption, including some
common security definitions and an explanation of directed re-encryption graphs.
Whilst we stick to the asymmetric setting in the body of this work, we give
symmetric variants for important definitions in Appendix A for easier comparison
with related work in the symmetric setting such as updatable encryption and
key rotation.

Definition 2. A Proxy Re-Encryption (PRE) scheme consists of the following
algorithms:

– Setup(1λ)→ params: Outputs a set of public parameters, including the mes-
sage space and ciphertext space. Note that params is input to every subsequent
algorithm, but we leave it out for compactness of notation. We often omit the
Setup algorithm for the same reason.

– KeyGen(1λ)→ (pk, sk): Generates a public-private key pair.
– Enc(pk,m)→ C: Encrypts a message m using a public key pk, producing a
ciphertext C.2

– Dec(sk, C)→ m′∪ ⊥: Decrypts a ciphertext C to produce either an element
of the message space m′ or an error symbol ⊥.

– ReKeyGen(ski, pkj)→ ∆i,j∪ ⊥: Takes a secret key ski and public key pkj and
outputs an update token ∆i,j, or ⊥ when i = j. This last condition is often
left out of constructions for compactness.

– ReEnc(∆i,j , C) → C ′: Takes a ciphertext C under pki and outputs a new
ciphertext C ′ under pkj.

1we use different terminology to avoid confusion with CPA security for PKE schemes,
which we refer to as PKE-CPA-secure

2Note that some definitions of a PRE scheme have an additional input ` to indicate a
level the ciphertext should be at. In this work, we leave out ` unless discussing schemes
and results that use levelling explicitly.
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A PRE scheme is correct if, for all m ∈M, (pk, sk)
$← KeyGen(1λ), then:

Dec(sk,Enc(pk,m))→ m

and if, for all C ∈ C such that Dec(ski, C)→ m, then:

Dec(skj ,ReEnc(∆i,j , C))→ m

where (pki, ski), (pkj , skj)
$← KeyGen(1λ) and ∆i,j ← ReKeyGen(ski, pkj).

Note that some PRE constructions have a correctness bound – a limit on the
number of re-encryptions that are possible before the resulting ciphertext fails to
decrypt properly. We shall see this in Section 5.

Definition 3. If an update token ∆i,j
$← PRE .ReKeyGen(ski, pkj) computed

using a PRE scheme PRE can be used to derive a token ∆j,i that can re-encrypt
ciphertexts from pkj to pki then we say the scheme PRE is bidirectional. If PRE
is not bidirectional then it is unidirectional.

Directionality is often used in security games to determine the adversary’s
limitations.

We now move on to giving definitions for message confidentiality in PRE.
Indistinguishability against Chosen Plaintext Attacks (IND-CPA-security) is a
well-known notion in public-key encryption which states that given a ciphertext,
an adversary cannot distinguish which of two messages it is an encryption of. In
this work we refer to it as PKE-CPA-security-security, to make the distinction
between this and what is commonly referred to as IND-CPA-security for PRE in
the literature.

PKE-CPAb,PKEA (1λ)

κ = 0

b′ ← A
OKeyGen,O

PKE-CPA
challenge

1 (1λ)

return b′

OPKE-CPA
challenge (i,m0,m1)

if |m0| 6= |m1| : return ⊥

C
$← Enc(pki,mb)

return C

Figure 1: The PKE-CPA game. This is usually called the IND-CPA game, but
we make the distinction here for indistinguishability of chosen-plaintext attacks
for PKE schemes and PRE schemes.

Definition 4. A Public Key Encryption (PKE) scheme PKE is ε-Indistinguishable
against Chosen Plaintext Attacks (ε-PKE-CPA-secure) if for all Probabilistic
Polynomial-Time (PPT) adversaries A:∣∣∣Pr

[
PKE-CPA0,PKE

A (1λ) = 1
]
− Pr

[
PKE-CPA1,PKE

A (1λ) = 1
]∣∣∣ ≤ ε
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where PKE-CPA is defined in Figure 1. If ε is negligible as parameterised by the
security parameter λ, then we say the scheme is Indistinguishable against Chosen
Plaintext Attacks (PKE-CPA-secure).
A PRE scheme PRE is ε-Indistinguishable against Chosen Plaintext Attacks
(PKE-CPA) secure if the PKE scheme given by PKE = {PRE .KeyGen,PRE .Enc,PRE .Dec}
is ε-PKE-CPA-secure.

2.1 Re-encryption graphs

We often use a directed re-encryption graph (DRG) when discussing the security
of PRE schemes. A DRG tracks queries the adversary A makes during a security
game to represent re-encryptions that A can make locally. Using update tokens,
the adversary can locally re-encrypt challenge ciphertexts. Therefore, if a challenge
ciphertext is an encryption under pki, and there exists a sequence of tokens going
from i to j, then both ski and skj are considered challenge keys. The DRG
consists of nodes vi that represent key pairs, and directed3 edges

→
e i,j which are

added when a OReKeyGen(i, j) query is made. The DRG is often used to enforce
the condition that A cannot query oracles in such a way that reveals a challenge
under a corrupted key, which we call the trivial win condition. This is a standard
condition in all PRE security definitions. If DRG contains a path from vi to vj
and ski is a challenge key, then so is skj . Figure 2 gives a pictorial representation
of this.
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Figure 2: An example directed re-encryption graph, DRG. If a challenge is learned
under pk6 and A has learned tokens ∆6,5 and ∆6,7, then pk5, pk6 are also con-
sidered challenge keys. Therefore, token queries that lead to paths from challenge
keys to corrupted ones such as ∆6,1 or ∆5,2 result in a trivial win. The graph
on the right gives some examples of what tokens the adversary can and cannot
learn next.

Re-encryption graphs often reflect applications. For example, for simply
rotating keys the resulting graph will be a chain, as is assumed in updatable en-
cryption [BLMR13,LT18] and key rotation for authenticated encryption [EPRS17],
whereas some access control hierarchies may lead to trees. Some results such as
those given in [FKKP18] between selective and adaptive security mainly apply
to some types of graph. Throughout this paper, we assume DRGs are acyclic.

3If a scheme is bidirectional, then edges added would be directionless. In this work
we mainly focus on unidirectional schemes.
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2.2 Common oracles

Most definitions use the same oracles, which we define in Figure 3 for compactness.
The main variations between definitions are how the challenge oracle Ochallenge is
defined, and sometimes whether OReEnc affects the DRG. We therefore define these
in each individual game. Games often keep track of lists updated by the oracles,
namely a list of challenge keys Kchal, corrupted keys Kcorrupted, oracle-generated
ciphertexts Chonest, challenge ciphertexts Cchal and oracle-generated tokens Thonest.

OKeyGen(1
λ)

κ = κ+ 1

(pkκ, skκ)
$← KeyGen(1λ)

DRG.add (vκ)

return pkκ

OCorrupt(i)

Kcorrupted.add (ski)

return ski

OEnc(i,m)

C
$← Enc(pki,m)

Chonest.add (i, C)

Cmsg[(i, C)] = m

return C

OReKeyGen(i, j)

if DRG ∪→e i,j is cyclic:
return ⊥

∆i,j
$← ReKeyGen(ski, pkj)

Thonest.add (i, j,∆i,j)

DRG.add (
→
e i,j)

return ∆i,j

Figure 3: Common oracles used in security games for PRE. κ is the number of
keys in the game. Boxed values indicate steps to update lists that may not be
used depending on the game. The lists a particular game uses are indicated in
the game’s setup phase.

OKeyGen(1
λ) increments the number of keys κ, generates a new key pair and

adds a new vertex to DRG to represent this key pair before returning the public
key. OCorrupt(i) adds ski to the set of corrupted keys Kcorrupted and returns it
to the adversary. OEnc(i,m) encrypts the message under pki, appends the list
of honestly-created ciphertexts Chonest with (i, C) and returns the ciphertext.
Sometimes we also need to consider a lookup table which can give the message
used to create an honestly-generated ciphertext, to use proof techniques where
challenge ciphertexts are replaced with fresh encryptions when the key is unknown.
In this case, Cmsg is used. OReKeyGen(i, j) creates the update token, appends the
list of honestly-generated update tokens Thonest with (i, j,∆i,j), adds the edge
→
e i,j to DRG and returns the update token.

In our syntax, the restrictions on what tokens the adversary is allowed to
learn is not enforced by oracles (as in other work), but instead by the list of
challenge keys Kchal being updated using the graph DRG at the end of the game.
Since the adversary can locally re-encrypt the challenge ciphertext using any
relevant update tokens it has learned, we therefore use the following function to
update the set of challenge keys:
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UpdateChallengeKeys(Kchal,DRG)

∀i such that ski ∈ Kchal :

∀j such that ∃ a path from vi to vj in DRG :

Kchal.add skj

return Kchal

We enforce the trivial win condition by calling UpdateChallengeKeys at the
end of the game, and checking that no challenge keys have been corrupted
(Kchal ∩ Kcorrupted = ∅).

3 Related work

3.1 Confidentiality definitions

The basic security definition for PRE was first given in [BBS98] for bidirectional
schemes. Informally, it states the scheme should still be PKE-CPA-secure when
given the additional functionality of re-encryption. This means the proxy should
not learn the message during the re-encryption process. Unidirectional PRE
schemes were introduced by Ateniese et al. [AFGH06] together with an equivalent
security definition. Similar definitions conveying this notion appear in all work
on PRE. We refer to such notions as PRE-CPA.

PRE-CPAb,PREA (1λ)

Kchal,Kcorrupted, Thonest,DRG = ∅
κ = 0, called = false

state← AOKeyGen,OCorrupt,OEnc

0 (1λ)

b′ ← A
OReKeyGen,O

PRE-CPA
ReEnc ,OPRE-CPA

challenge

1 (1λ, state)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kchal ∩ Kcorrupted 6= ∅ : return 0

return b′

OPRE-CPA
ReEnc (C, i, j, [∆i,j ])

if ∆i,j given AND (i, j,∆i,j) /∈ Thonest :

return ⊥
if ∆i,j not given :

∆i,j
$← ReKeyGen(ski, pkj)

DRG.add →e i,j

C′
$← ReEnc(∆i,j , C)

return C′

OPRE-CPA
challenge (i,m0,m1)

if called = true OR |m0| 6= |m1| :
return ⊥

C
$← Enc(pki,mb)

Kchal.add ski

called← true

return C

Figure 4: The PRE-CPA game – an extension of PKE-CPA which accounts for
re-encryption. OKeyGen,OEnc,OReKeyGen are as defined in Figure 3.
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Definition 5. A PRE scheme PRE is said to be (selectively) ε-PRE-Indistinguishable
against Chosen Plaintext Attacks-secure (ε-PRE-CPA-secure) if for all PPT ad-
versaries A = (A0,A1):∣∣Pr

[
PRE-CPA0

A(1λ) = 1
]
− Pr

[
PRE-CPA1

A(1λ) = 1
]∣∣ ≤ ε,

where PRE-CPA is defined in Figure 4.
If ε is negligible as parameterised by the security parameter, then we say the

scheme is (selectively) PRE-Indistinguishable against Chosen Plaintext Attacks-
secure (PRE-CPA-secure).

Whilst the above definition is based on the one given in [FKKP18], our
formulation is slightly different as we account for there being multiple possible
tokens per key pair, meaning OReEnc allows A to input an honestly-generated
update token as opposed to only having indexes as input. Note that the DRG is
created by adding an edge whenever OReEnc is called.

It was an open problem for many years to create a PRE scheme which is
both unidirectional and multi-hop (can be re-encrypted more than once), with
single-hop (can only be re-encrypted once) constructions emerging as the means
of providing unidirectionality in the meantime. Multi-hop schemes are necessary
for both key rotation and dynamic access control. Unidirectional schemes are
necessary for applications where the trust relationship between Alice and Bob is
not symmetrical, such as if Bob is more senior to Alice and therefore has access
to more sensitive files. Whilst most existing literature considers directionality
as a class of PRE schemes, it was been defined explicitly as a formal security
definition in [Lee17]. The first constructions for PRE-CPA secure unidirectional,
multi-hop PRE schemes were given using program obfuscation [HRSV07,CCV12],
until Gentry [Gen09] gave a generic construction using Fully Homomorphic
Encryption (FHE).

Much of the research on PRE in recent years has focused on CCA security. A
definition of IND-CCA security for PRE first appears in [CH07] for bidirectional
single-hop (ciphertexts can only be re-encrypted once) schemes. This allows the
adversary to adaptively corrupt secret keys. A definition of IND-CCA security
for unidirectional schemes is given in [LV08].

Honest Re-encryption Attacks. Recently, a stronger notion than PRE-CPA
security has been introduced which allows the adversary to re-encrypt non-
challenge ciphertexts to any key, as long as the ciphertexts were honestly generated.
Cohen formalised these as Honest Re-encryption Attacks (HRA) [Coh17] but
the same idea is also used elsewhere [LT18]. This motivates Indistinguishable
against Honest Re-encryption Attacks (IND-HRA)-security [Coh17]. We base our
formulation on IND-ENC-security [LT18], HRA-security [Coh17] and IND-CPA-
security [PRSV17].

Definition 6. A PRE scheme PRE is said to be (selectively) ε-Indistinguishable
against Honest Re-encryption Attacks-secure (ε-IND-HRA-secure) if for all PPT
adversaries A = (A0,A1):∣∣Pr

[
IND-HRA0

A(1λ) = 1
]
− Pr

[
IND-HRA1

A(1λ) = 1
]∣∣ ≤ ε,
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IND-HRAb,PREA (1λ)

Kchal,Kcorrupted, Chonest, Cchal, Thonest,DRG = ∅
κ = 0, called = false

state← AOKeyGen,OCorrupt,OEnc

0 (1λ)

b′ ← A
OReKeyGen,O

IND-HRA
ReEnc ,OIND-HRA

challenge

1 (1λ, state)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kchal ∩ Kcorrupted 6= ∅ : return 0

return b′

OIND-HRA
ReEnc (C, i, j, [∆i,j ])

if (i, C) 6∈ Chonest :

return ⊥
if ∆i,j given AND (i, j,∆i,j) /∈ Thonest :

return ⊥
if ∆i,j not given :

∆i,j
$← ReKeyGen(ski, pkj)

C′
$← ReEnc(∆i,j , C)

Chonest.add (j, C′)

if (i, C) ∈ Cchal :

Cchal.add (j, C′),Kchal.add (skj)

return C′

OIND-HRA
challenge (i,m0,m1)

if |m0| 6= |m1| OR called = true :

return ⊥

C
$← ReEnc(pki,mb)

Chonest.add (i, C)

Cchal.add (i, C) Kchal.add (ski)

called← true

return C

Figure 5: The IND-HRA game. Like the HRA model [Coh17], it allows re-
encryptions of non-challenge ciphertexts to compromised keys using OReEnc.

where IND-HRAb,PREA is defined in Figure 5.
If ε is negligible as parameterised by the security parameter, then we say the

scheme is (selectively) Indistinguishable against Honest Re-encryption Attacks-
secure (IND-HRA-secure).

We discuss security with respect to adaptive key corruptions in Section 6.

Theorem 1. IND-HRA =⇒ PRE-CPA =⇒ PKE-CPA.

As each game builds directly on the last but giving the adversary access
to more information, the proof of this theorem follows trivially. Cohen also
defines re-encryption simulatability [Coh17] and demonstrates that PRE-CPA-
secure schemes which have this property are IND-HRA-secure. We leave out the
definition of re-encryption simulatability for brevity.

3.2 Ciphertext re-randomisation

Thus far we have not considered key revocation explicitly. In this case, stronger
definitions requiring re-encryption to re-randomise the ciphertext are required, as
is demonstrated in the key encapsulation approach discussed in Section 1. Whilst
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this method grants the benefits of hybrid encryption, key-scraping attacks are
possible: a malicious user simply retains the message encryption key k and can
derive the message regardless of how many times the ciphertext is re-encrypted.
It may be unrealistic for a malicious revoked user to download all the plaintexts
due to storage constraints, as is the case for subscriber-based streaming platforms.
However, as symmetric keys are typically much shorter than the plaintexts, it is
more realistic that a malicious subscriber could retain the message key. Although
constructions based on this model can be shown to meet the typical confidentiality
definitions for PRE shown in Section 3.1, they are not appropriate for PCS.

There is little work on requiring re-encryption to also re-randomise. In [CH07],
Canetti and Hohenberger discuss a notion for re-randomising ciphertexts (which
they call unlinkability) only in the context of creating a CCA definition. Other
notions of re-randomisation exist in the related areas of key rotation and updatable
encryption. These differ from proxy re-encryption in that they are symmetric
schemes, updates happen sequentially from ki to ki+1, and they name full re-
randomisation as a necessary security goal. The fact the schemes are symmetric
gives the impresion that they must be faster than asymmetric schemes. However,
both constructions rely on homomorphic properties of field groups used in public
key cryptography(and to date there exists no scheme that doesn’t rely on these)
and it is difficult to see how to construct a scheme that re-encrypts a ciphertext
that doesn’t rely on such public-key-like primitives. It would therefore be wrong to
assume that symmetric primitives similar to PRE must be faster. Our public-key
constructions should therefore not be considered inefficient in comparison to all
symmetric constructions.

[EPRS17] defines UP-REENC security, which does not give the adversary
the token used to create the challenge re-encryption. Their construction, ReCrypt
allows an adversary who has learned the update token to reverse the re-encryption
of the challenge ciphertext and therefore does not cover full compromise of the
user who generated the update token. Other related work models PCS by giving a
bound on the amount of information the adversary retains about a the ciphertext
prior to re-encryption [Lee17,MS17]. Such definitions do not account for the
possibility of revoked users storing parts of the original ciphertexts colluding,
and lead to more complicated, less intuitive proofs than our approach. We create
a stronger definition in which schemes must be unidirectional, and the adversary
knows the update token used to create the challenge re-encryption.

A particular work of note is [LT18], where Lehmann and Tackmann define of
PCS for updatable encryption schemes as IND-UPD. An updatable encryption
scheme can be bidirectional and still be IND-UPD, as bidirectionality invokes
the additional winning condition that the adversary cannot have learned any
update tokens used to create a challenge ciphertext. We give an asymmetric
version of IND-UPD in Appendix B, but give the main points briefly here. In
the pkIND-UPD game, key updates happen sequentially. The challenge oracle
outputs a re-encrypted ciphertext and the adversary must guess which ciphertext
it is a re-encryption of. Challenge ciphertexts are updated whenever a new key is
generated, but only given to the adversary if the oracle OpkIU

LearnChal is called. One of
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the winning conditions is given in OpkIU
ReEnc is that when ReEnc is deterministic, the

adversary cannot have re-encrypted either of the potential challenge ciphertexts
C̄0, C̄1. Another notable condition is that the adversary cannot learn the update
token going towards the key that the challenge is given under, which is enforced
as a condition in OpkIU

LearnTok. The final constraint is related to directionality, that
if the scheme is bidirectional then A cannot have learned any tokens leading
from corrupted keys to challenge keys. We will address these points when we
come to build our own definition in Section 4. We provide separating examples
to pkIND-UPD in Section 4.3 to demonstrate that our notion is stronger.

3.3 Adaptive security and Source-hiding

Fuchsbauer et al. present relations between selective and adaptive security
in [FKKP18]. They expand on Cohen’s work, defining weak key privacy and
source-hiding and show how these can reduce security against adaptive HRAs to
security against CPA, with sub-exponential loss for some re-encryption graphs.
In particular, they show quasi-polynomial loss in security when lifting to adaptive
corruption for trees and chains, and exponential loss otherwise.

Informally, in a source-hiding scheme it is possible to create a fresh encryption
of a message that is indistinguishable from a re-encrypted ciphertext that is
an encryption of the same message. This means re-encrypted ciphertexts reveal
no history as to the keys they were previously encrypted under, or similarities
between components of previous ciphertexts. We give a formal description of
the game defining the source-hiding property in Figure 6. Our formulation
generalises the original definition in [FKKP18] by allowing the adversary to
receive κ keypairs rather than 1. Moreover, as before, we allow the adversary to
query multiple re-key tokens between any key pairs of their choice.

SHb,PREA (1λ, 1κ, 1L)

{(pkι, skι)
$← KeyGen(1λ)}ι∈[κ]

Thonest = ∅

b′ ← AOSH
challenge,OReKeyGen(1λ, {(pkι, skι)}ι∈[κ])

return b′

OSH
challenge(i, j,∆

∗
i,j ,m

∗, `∗)

if [(i, j,∆∗i,j) 6∈ Thonest OR `∗ + 1 > L] :

return ⊥
C∗ ← Enc(pki,m

∗, `∗)

C(0) $← ReEnc(∆∗, C∗)

C(1) $← Enc(pkj ,m
∗, `∗ + 1)

return (C∗, C(b))

Figure 6: Experiments for the source-hiding property. Here, ` denotes a level
for the ciphertext to be encrypted at – essentially the number of times C has
been re-encrypted. This is important for noisy PRE schemes, but ignored for
PRE schemes without levelling. L is the number of times a ciphertext can be
re-encrypted without breaking the correctness conditions (the correctness bound).
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Definition 7. A PRE scheme PRE is said to be ε-source-hiding (ε-SH) if for
all PPT adversaries A = (A0,A1):∣∣∣Pr

[
SH0,PRE
A (1λ, 1κ, 1L) = 1

]
− Pr

[
SH1,PRE
A (1λ, 1κ, 1L) = 1

]∣∣∣ ≤ ε
where SHb,PREA is defined in Figure 6.

If ε is negligible as parameterised by the security parameter, then we say the
scheme is source-hiding (SH).

4 Strong PCS for PRE

In this section, we create a definition for strong PCS for public-key PRE schemes.
We begin by justifying our motivation, explaining why we believe existing defini-
tions are insufficient for PCS.

We have two main motivations for creating a new definition for PCS in the
context of PRE. The first is that there is currently no definition that implies
unidirectionality and ciphertext re-randomisation. We believe that the distinction
of whether a PRE scheme is unidirectional or bidirectional is vital in the post-
compromise scenario to model the corruption of used update tokens, and hence
we define PCS to explicitly mean that schemes meeting the definition must be
unidirectional. The second motivation is a matter of existing definitions inherently
assuming which of the algorithms in the PRE scheme are probabilistic. We explain
how this introduces problems when considering a post-compromise scenario. We
now go into both of these motivations in more detail.

Explicit unidirectionality. We use the most relevant definition in existing
literature to make our case. IND-UPD [LT18] places restrictions based on inferable
information, as defined by the [LT18] notions of directionality:

– When skj cannot be derived from ski and ∆i,j (LT-unidirectional)4
– When skj can be derived from ski and ∆i,j (LT-bidirectional).

In the LT-unidirectional case, the adversary can acquire re-encryption tokens
from a corrupted key to a challenge key, but not the other way around. In the
LT-bidirectional case, the adversary is additionally prevented, by definition, from
learning tokens from challenge keys to corrupted keys or vice versa. This means
that for bidirectional schemes, the adversary queries tokens in such a way that
the resulting re-encryption graphs form disjoint sub-graphs – one containing
corrupted keys and the other containing challenge keys. Proving security is
therefore reduced to proving that unrelated, randomly-generated keys cannot
be used to infer information about an encrypted message. We consider this too
restrictive for the intuition of PCS.

4The general understanding of unidirectionality is not so strong - the new key does
not necessarily have to be derivable, but the token and old key should lead to the
message being learned.
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Since the derivability of the new secret key is implicit information to the
game, meeting the definition itself says nothing about directionality and therefore
the extent to which update token compromise is of concern. We believe that it is
better to have directionality be explicit as it allows practitioners to understand
the security of a scheme more clearly.

Assuming probabilistic algorithms. There appear to be only two existing
security definitions which explicitly consider re-randomisation [EPRS17,LT18].
The [EPRS17] definition of a key rotation scheme assumes that ReKeyGen is
randomised but ReEnc is deterministic. This leads to a necessary condition that
the update token used to create the challenge re-encryption cannot be learned
by the adversary, otherwise the adversary could use it to re-encrypt the input
ciphertexts locally and compare this to the challenge to win the game. The
adversary is allowed to learn other tokens going from corrupted to challenge
keys using an oracle OReKeyGen, but not the exact token used to perform the re-
encryption. This means UP-REENC [EPRS17] does not model compromise of the
update token used. For this reason, it is important that new randomness is also
introduced in ReEnc to prevent trivial downgrading of the challenge ciphertext if
the adversary compromises the update token used.

In the [LT18] definition of an updatable encryption scheme, the opposite
assumption is made – that ReEnc is randomised and ReKeyGen is deterministic.
This means that for keys ski, pkj , there is only one update token ∆i,j . This is
reflected in their IND-UPD security game (and pkIND-UPD) by having all tokens
generated at the start of the game and later having oracles reveal tokens to the
adversary. This is less fitting for schemes where ReKeyGen is randomised and
there are multiple tokens per key pair5. More importantly, such an assumption
implicitly rules out the possibility that secret keys are masked in the update token,
which is important for PCS. The BV-PRE scheme is an example of this, where
knowledge of the key ‘pkj ’ together with ∆i,j can be used to derive ski. Another
example are ElGamal-based symmetric PRE schemes (e.g. [BBS98,LT18]) where
update tokens have the form ∆i,j = skj/ski. Clearly, given the update token,
compromise of the old key leads to compromise of the new key. Introducing some
randomness gives a means of masking the new key. It also means that the client
does not need to fully rely on the proxy to be assured of new randomness, which
is more appropriate for some trust scenarios.

For constructions where randomness is added in both ReKeyGen and ReEnc,
neither definition is suitable. It is therefore of interest to create a security notion
for PCS which factors in the possibility that both the ReKeyGen and ReEnc
algorithms are probabilistic.

4.1 Post-Compromise Security

We model Post-Compromise Security (PCS) using an adversary A who chooses
two ciphertexts (whose decryption key can be known) and a re-encryption token,

5 Interestingly, other works such as [FKKP18] take a similar approach to the
adversary learning update tokens, despite their assuming randomised tokens.
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and receives a challenge ciphertext which is a re-encryption of one of the original
ciphertexts created using the specified token. A attempts to distinguish which
ciphertext was re-encrypted. This models the compromise of all key-related
material prior to the challenge re-encryption.

Unlike some previous definitions, we allow A to corrupt the secret key with
which the update token was generated. As in IND-HRA security, we also allow A
to re-encrypt honestly(oracle)-generated non-challenge ciphertexts to corrupted
keys. Challenges are obtained via the challenge oracle OPC

challenge which will only
accept as input honestly-generated ciphertexts of the same length, and honestly-
generated update tokens. The challenger maintains lists to enforce this: Chonest
and Thonest respectively.

Here we present a formal definition PCS for general PRE. The first stage
adversary A0 can access a key corruption oracle OCorrupt and the second stage
adversary A1 can access the challenge oracle OPC

challenge and re-encryption oracle
OReKeyGen. As in previous definitions, Kcorrupted and Cchal are also maintained,
which record corrupted keys and challenge ciphertexts, respectively and used to
enforce the trivial win condition at the end of the game.

PostCompb,PREA (1λ)

Kchal,Kcorrupted, Chonest, Cchal, Cmsg, Thonest,DRG = ∅
κ = 0, called = false

state← AOKeyGen,OCorrupt,OEnc

0 (1λ)

b′ ← A
OReKeyGen,O

PC
ReEnc,O

PC
challenge

1 (1λ, state)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kchal ∩ Kcorrupted 6= ∅ : return 0

return b′

OPC
ReEnc(C, i, j, [∆i,j ])

if ∆i,j given :

if (i, j,∆i,j) /∈ Thonest : return ⊥
else : ∆i,j ← ReKeyGen(ski, pkj)

if (i, C) 6∈ Chonest : return ⊥

C′
$← ReEnc(∆i,j , C)

Chonest.add (j, C′)

Cmsg[(j, C
′)] = Cmsg[(i, C)]

if (i, C) ∈ Cchal :

Cchal.add (j, C′),Kchal.add (skj)

return C′

OPC
challenge(C0, C1, i, j,∆i,j)

if |C0| 6= |C1| OR called = true : return ⊥
if (i, C0), (i, C1) 6∈ Chonest OR (i, j,∆i,j) 6∈ Thonest : return ⊥

C′
$← ReEnc(∆i,j , Cb)

Cmsg[(j, C
′)] = Cmsg[(i, Cb)]

Chonest.add (j, C′), Cchal.add (j, C′),Kchal.add (skj)

called← true

return C′

Figure 7: The PostComp game. This reflects full compromise of the old secret key
and update token used to perform the re-encryption.
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Definition 8. A PRE scheme PRE is said to have (selective) ε-Post-Compromise
Security (ε-PCS) if for all PPT adversaries A = (A0,A1):∣∣Pr

[
PostComp0A(1λ) = 1

]
− Pr

[
PostComp1A(1λ) = 1

]∣∣ ≤ ε,
where PostCompAb,PRE is defined in Figure 7.

If ε is negligible as parameterised by the security parameter, then we say the
scheme has (selective) Post-Compromise Security (PCS).

We give a definition of PCS for symmetric PRE schemes in Appendix A, and
for adaptive key corruptions in Section 6.

4.2 Basic observations

In the following lemma, we show that it is necessary for PCS to have randomness
incorporated into re-encryption.

Lemma 1. No PRE scheme where ReEnc is deterministic has PCS.

Proof. If ReEnc is deterministic then A can submit (C0, C1, i, j,∆i,j) to Ochallenge

to learn challenge C ′. Then A can locally compute C ′0 ← ReEnc(∆i,j , C0) and
compare this with C ′ – if they match then output b′ = 0, otherwise output b′ = 1.

Lemma 2. PCS =⇒ unidirectional.

Proof. We show that if a scheme is bidirectional then it cannot have PCS.
Bidirectionality implies that an update token ∆i,j , can be used to derive ∆j,i.
The adversary A proceeds as follows: A first corrupts a key ski, then creates
two ciphertexts C0 ← OEnc(i,m0), C1 ← OEnc(i,m1) and update token ∆i,j ←
OReKeyGen(i, j), before submitting (C0, C1, i, j,∆i,j) to the challenge oracle. A
then computes ∆j,i from ∆i,j , and uses this to compute C ′′ ← ReEnc(∆j,i, C

′)
where C ′ is the received challenge re-encryption to obtain the challenge ciphertext
under key pki, before decrypting using ski to win the game.

This means an easy way to disprove PCS for existing schemes is to show bidirec-
tionality.

4.3 Separating examples

We now demonstrate the relationship between PCS and existing security notions
and constructions by means of a number of separating examples.

Lemma 3. pkIND-UPD-security 6=⇒ PCS.

Proof. Let PRE be a pkIND-UPD-secure PRE scheme where ReEnc is determin-
istic. By Lemma 1, this scheme is not post-compromise secure.

Lemma 4. Let PRE be a PRE scheme where ReKeyGen is deterministic. If
PRE has PCS, then it is pkIND-UPD-secure.
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Proof sketch. The PostComp adversary A can simulate the pkIND-UPD game. It
begins by generating enough keys to cover the number of epochs in pkIND-UPD.
Before the challenge is issued, ONext can be easily simulated by generating a new
keypair, corrupting the old secret key and creating an update token between
the old key and the new. The adversary replaces the challenge ciphertext with
the output from OPC

challenge(C0, C1, ẽ − 1, ẽ). The PostComp adversary A0 must
guess the remaining keys which the pkIND-UPD will corrupt, which will result
in a sub-exponential loss of security as the challenge graph will be a chain. The
simulator can update both challenge and honest ciphertexts using OReEnc, and
corrupting tokens can be simulated with calls to OReKeyGen. Re-encrypting a
challenge ciphertext directly to the requested key as opposed to going through
all previous keys in the chain first will go unnoticed, as if the number of times a
ciphertext has been re-encrypted could be detected then this could be use to win
the PostComp game.

Lemma 5. IND-HRA-security 6=⇒ PCS.

Proof. Let PRE = (KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a PRE-CPA-secure
PRE scheme, and let (symKeyGen, symEnc, symDec) be an IND-CPA-secure sym-
metric encryption scheme. We now define a PRE scheme using the key encapsu-
lation method as follows:
– KeyGen(1λ)→ (pk, sk) : (pk, sk)← KeyGen(1λ)

– Enc(pk,m)→ (c0, c1) : k
$← symKeyGen(1λ), c0 ← Enc(pk, k), c1 ← symEnc(k,m)

– Dec(sk, c)→ m′ : k′ ← Dec(sk, c0),m′ ← symDec(k′, c1)
– ReKeyGen(ski, pkj)→ ∆i,j : ∆i,j ← ReKeyGen(ski, pkj)

– ReEnc(∆i,j , c)→ (c′0, c
′
1) : c′0 ← ReEnc(∆i,j , c0), c′1 = c1

This scheme is also IND-HRA, but is not PCS. An adversary A can submit
two ciphertexts to the challenge oracle, and compare the second part of the
challenge re-encryption with the submitted ciphertexts to win the game.

Lemma 6. PCS 6=⇒ IND-HRA-security.

Proof. Let PRE = (KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a PRE scheme that
is IND-HRA-secure and has PCS. We use it to construct the following PRE
scheme:
– KeyGen(1λ) : (pk, sk)← KeyGen(1λ)
– Enc(pk,m) : C ← (m,Enc(pk,m))
– Dec(sk, C) : m′ ← Dec(sk, C1)
– ReKeyGen(ski, pkj) : ∆i,j ← ReKeyGen(ski, pkj)

– ReEnc(∆i,j , C) : C ′0 ← Enc(pkj , 0), C ′1 ← ReEnc(∆i,j , C1)

Clearly this scheme is not IND-HRA secure, as fresh ciphertexts contain the
plaintext. However the scheme has PCS, as re-encryptions C ′1 will be unrelated
to C1, since PRE has PCS, and the creation of C ′0 is independent of both C0

and ∆i,j .

Since PCS does not imply any security notion concerning confidentiality of
the message, confidentiality definitions must be proven separately for in order to
demonstrate that a PRE scheme is useful in practice.
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4.4 PCS via source-hiding and IND-HRA

In this section we show that a PRE scheme that is both source-hiding and
IND-HRA-secure also has PCS.

Theorem 2 (main). Let PRE be a PRE scheme that satisfies ε1-IND-HRA-
security and is ε2-SH. Let A, B and C be PPT algorithms that are attempting to
succeed in the PostCompPREA , SHPREB and IND-HRAPREC security games, respect-
ively. Let A have advantage ε in PostCompPREA . Then:

ε ≤ 2ε2 + ε1 < negl(λ) ,

for a negligible function negl(λ), and thus PRE has PCS.

Proof. We prove this theorem using a sequence of game hops, breaking the proof
down into a number of lemmas. Let PostCompPRE,bA refer to the experiment in
Figure 7, where the choice of b is made explicit. We prove this theorem using a
sequence of hybrid steps, we start with the execution of PRE in PostCompPRE,0A .
We show that via a sequence of reductions that this situation is computationally
indistinguishable from the case where A witnesses the execution in b = 1.

Firstly, we define a new oracle:

Ochallenge(C0, C1, i, j,∆i,j)

if |C0| 6= |C1| OR called = true : return ⊥
if (i, C0), (i, C1) 6∈ Chonest OR (i, j,∆i,j) 6∈ Thonest : return ⊥
(m0,m1)← (Cmsg[(i, C0)], Cmsg[(i, C1)])

if (i, j,∆i,j) 6∈ Thonest OR skj ∈ Kcorrupted : return ⊥

C′
$← Enc(pkj ,mb)

Cmsg[(j, C
′)] = mb

Chonest.add (j, C′), Cchal.add (j, C′),Kchal.add (skj)

called← true

return C′

Let Ochallenge,b and Ochallenge,b be the executions of the oracles where the choice
of b ∈ {0, 1} is made explicit.

– Game0: This is the original PRE construction in PostCompPRE,0A .
– Game1: Replace outputs from the oracle Ochallenge,0 with outputs from the

oracle Ochallenge,0.
– Game2: Replace Ochallenge,0 with Ochallenge,1.
– Game3: Replace Ochallenge,1 with Ochallenge,1.

It is not hard to see that Game3 is identical to the execution in the case
of PostCompPRE,1A . Therefore, if we can bound the advantage in distinguishing
the game transitions above by a negligible function, then the probability of
distinguishing in PostCompPRE,bA is also negligible.
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Lemma 7. The advantage in distinguishing Game0 and Game1 is bounded by ε2.

Proof. This proof holds in the case where PRE has a maximum of κ = poly(λ)
nodes. B receives key pairs (pkι, skι)ι∈[κ] and re-encryption tokens {∆i,j}(i,j)∈[κ]2
for PRE . Let Ochallenge be the challenge oracle that B has access to in SHPRE,cB .

Then B instantiates the oracles OKeyGen, OCorrupt, OEnc, OReKeyGen, OReEnc in
the same way as in PostCompPRE,bA . Let Chonest and Cmsg be the sets that B keeps
track of the queries made to OEnc and OReEnc. For a query (C∗0 , C

∗
1 , (i

∗, j∗), ∆∗i,j)
made to the oracle Ochallenge,0 by A, then B does the following:

– if |C∗0 | 6= |C∗1 | : return ⊥;
– if (i∗, C∗0 ), (i∗, C∗1 ) 6∈ Chonest : return ⊥;
– if (i∗, j∗, ∆∗i∗,j∗) 6∈ Thonest : return ⊥;
– if skj ∈ Kcorrupted : return ⊥;
– (m∗0,m

∗
1)← Cmsg;

– C†0
$← Ochallenge(1

λ, (i∗, j∗), (m∗0, C
∗
0 ));

– Chonest.add (j, C†0 ; Cmsg[(j, C
†
0)] = m∗0; Cchal.add (j, C†0);

– return C†0 .

In the case of c = 0, then C†0
$← ReEnc(∆i,j , C

∗
0 ). In the case of c = 1, then

Ochallenge returns C
†
0

$← Enc(pkj∗ ,m
∗
0). Consequently, when c = 0 then B simulates

Ochallenge,0; for c = 1 then B simulates Ochallenge,0.6 Now, let Pr
[
0

$← A[Gamed]
]

=

εd be the probability that A outputs b′ = 0 for d ∈ {0, 1}. Then:

|Pr
[
0

$← A[Game0]
]
− Pr

[
0

$← A[Game1]
]
| = |δ0 − δ1| = δ

represents the differences in the probabilities in the two games. Then, let ε0 be
the probability that A outputs 0 in the simulation of B. If ε0 ≈ δ0 then B outputs
c′ = 0 to SHPRE,cB . Otherwise, if ε0 ≈ δ1 then B outputs c′ = 1.

Notice that if δ is noticeably large, then B can win the SHPRE,cB with the
same advantage. In other words, B can run sequential subroutines using the
adversary A and build up a probability distribution based on the answers of A.
If the answers correlate more to the probability inferred by δ0 then B answers 0,
and otherwise 1.

Therefore, δ < AdvSH; where AdvSH is the advantage of B in SH. By the
assumption that PRE is ε2-SH, then we have that δ < ε2.

Lemma 8. The advantage in distinguishing Game1 and Game2 is bounded by ε1.

6Note that A has no access to Cmsg and thus the use of this set has no impact on
the simulation of Ochallenge,0.
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Proof. Let Ochallenge be the challenge oracle Ochallenge that B has access to in
IND-HRAPRE,bB (1λ). Firstly, B simulates the oracles OKeyGen, OCorrupt, OEnc, OReKeyGen,
OReEnc using the oracles in IND-HRAPRE,cB (1λ). Then, for a query (C∗0 , C

∗
1 , (i

∗, j∗), ∆∗i,j)

made to Ochallenge,b by A, B does the following:

– if |C∗0 | 6= |C∗1 | : return ⊥;
– if (i∗, C∗0 ), (i∗, C∗1 ) 6∈ Chonest : return ⊥;
– if (i∗, j∗, ∆∗i∗,j∗) 6∈ Thonest : return ⊥;
– if skj ∈ Kcorrupted : return ⊥;
– (m∗0,m

∗
1)← Cmsg;

– C†
$← Ochallenge(m

∗
0,m

∗
1, j
∗);

– Cmsg[(j, C
†)] = m∗b ;

– return C†.

When b = 0, then C† $← Enc(pkj ,m
∗
0); otherwise, if b = 1, then C† $← Enc(pkj ,m

∗
1).

It is now simply the case that B simulates Ochallenge,b depending on the value of b.
Thus, B simply outputs b′ = bA where bA ← A is output by A. As a result, let
δ be the advantage of A in distinguishing the scenarios in both games. Then δ
is bounded by the advantage that B has in IND-HRAPRE,bB . By the assumption
that PRE satisfies ε1-IND-HRA security, then δ < ε1 and the lemma follows.

Lemma 9. The advantage in distinguishing Game2 and Game3 is bounded by ε2.

Proof. The simulation for A by B is the same as in Lemma 7 except in reverse.
That is, Game2 corresponds to the case where c = 1 and Game3 to the case where
c = 0. The rest of the details are covered by the previous simulation and so we
refer the reader to this proof for the full details.

Lemma 10. The advantage of A in distinguishing the executions of PostCompPRE,bA

in Game3 is 0 for b $← {0, 1}.

Proof. In Game3, the sampling of b is independent of the values that are returned.
In particular, the ciphertext C† returned by Ochallenge,b is always a re-encryption
of the right input ciphertext C∗1 . Therefore, there is no plausible advantage that
A has to gain in distinguishing the two games and the lemma follows.

To complete the proof of the theorem, we note that the advantage, ε, that
A has in distinguishing PostCompPRE,bA for b $← {0, 1} is bounded by 2ε2 + ε1.
Providing that there is negligible function s.t. ε1, ε2 < negl(λ), then we have that
ε < negl(λ) and the proof of Theorem 2 is complete.

Theorem 3 (main). Let PRE be a PRE scheme which is both PKE-CPA-secure
and source-hiding. Then PRE also has PCS.

Proof. It has been shown that PKE-CPA-security and source-hiding imply
IND-HRA-security [FKKP18, Theorem 6]. This, together with Theorem 2,
gives us the result. A more precise security bound can be deduced from the
results of [FKKP18].
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Existing PRE schemes that satisfy PCS. Using the result of Theorem 2,
we can show that a number of existing PRE schemes satisfy PCS immediately.
This is advantageous since it shows that PCS is not a vacuous security model in
the sense that it is achievable via well-known techniques.

Specifically, considering both Theorem 2 and [Coh17, Theorem 5] any PRE
scheme that satisfies PRE-CPA-security along with re-encryption simulatability
(a more general property implied by source-hiding) is immediately a scheme that
satisfies PCS. Therefore, the schemes of [FKKP18, Construction 2, Construction
4, Construction 7.b] all satisfy PCS. Constructions 2 and 4 of [FKKP18] are
based on assumptions over groups with bilinear maps; whereas Construction
7.b is based on the hardness of the decision learning with errors problem with
sub-exponential noise-to-modulus ratio.

5 An Efficient Construction from Lattices

We introduce a natural construction with PCS, based on BV-PRE – the ring-LWE
(RLWE) construction given in [PRSV17]. Whilst Theorem 3 shows that source-
hiding can lead to PCS, the existing constructions with this property [FKKP18]
make sub-optimal parameter choices that significantly impact the schemes’ prac-
ticality. Our construction has PCS but is not source-hiding, implying that source-
hiding is not necessary for PCS. This means that our construction can make much
better parameter choices in terms of efficiency. Our construction also doesn’t rely
on strong assumptions or heavy techniques such as obfuscation [HRSV07,CCV12].
We also achieve transparency, which means decryption is the same regardless of
how many times the ciphertext has been re-encrypted, and the cost of decryption
does not grow for repeatedly re-encrypted ciphertexts. If extra computation is
needed to decrypt a re-encrypted ciphertext, then this may outweigh the benefits
of outsourcing re-encryption. Heavier computation may go against the reasons
for outsourcing re-encryption to begin with.

Our construction makes some adaptations to BV-PRE to fit the workflow
of PRE; making use of the key resampling technique of [BV11] to re-randomise
the ciphertext. Any scheme that permits similar re-randomisation can be proven
secure using related methods. We begin this section by covering some necessary
preliminaries for lattices.

5.1 Lattice preliminaries

We let q ∈ Z denote some modulus and n denote a ring dimension. We represent
the set of integers modulo q as Zq = {b−q/2c, . . . , 0, . . . , bq/2c}. We will be
working over power-of-two cyclotomic rings of the form Rq = Zq[x]/(xn + 1)
where n is a power of two. Next we discuss the various distributions that will
be used. We use the notation s $← D to denote that the element s is sampled
according to distribution D. If D is a set, then we assume s $← D means that s is
sampled uniformly from the set D. We denote the discrete Gaussian distribution
over Zq as χσ. The distribution χσ has its support restricted to Zq and a
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probability mass function proportional to that of a Gaussian distribution with
variance σ2. We sometimes write χe where we use a subscript e to denote an
“error” distribution, but the underlying variance is still denoted by σ. Slightly
abusing notation, we can sample a polynomial s $← χe by sampling each of the
coefficients of s according to the distribution χe. We say a distribution D is
(B, δ)-bounded if Pr

(
|x| > B : x

$← D
)
≤ δ.

Ring-RLWE (RLWE) assumption: Let s be some secret polynomial in Rq.
Samples from the RLWEn,q,χe(s) distribution take the form (a, b = as + e) ∈
Rq×Rq where a

$← Rq, e
$← χe. Note that χe is referred to as the error distribution.

The (normal form) RLWEn,q,χe problem is to distinguish between an oracle that

outputs samples from RLWEn,q,χe
(s) where s $← χe and an oracle that outputs

uniform elements in Rq ×Rq. The RLWEn,q,χe assumption states that no PPT
algorithm can solve the RLWEn,q,χe problem with a non-negligible advantage.
Note that if we take σ ≥ ω(log n) and σ/q = 1/poly(n), the RLWEn,q,χe

problem
is at least as hard as solving standard worst-case lattice problems over ideal lattices
up to polynomial approximation factors using quantum algorithms [LPR10].

5.2 Adapting BV-PRE for PCS

The underlying scheme, BV-PRE [PRSV17], is based on the BV-encryption
scheme [BV11], which is based on RLWE. This scheme is parameterised by
ciphertext modulus q, plaintext modulus p ≥ 2, ring dimension n, polynomial
ring Rq = Zq[n]/〈xn + 1〉 and relinearisation window r. BV-PRE is not fully
public-key, relying on an additional ‘public’ key ‘pk’B for the target key sB to
generate update tokens. However, this key together with the token can be used to
derive the old secret key. We get around this problem using the key resampling
technique ReSample [BV11] which takes a public key pkB and outputs a fresh
public key pk′B with the same underlying secret. We also use same relinearisation
technique as [PRSV17] to reduce error growth. We refer readers interested in the
full BV-PRE and re-sampling construction to Appendix C.

We give our construction, pcBV-PRE, in Figure 8. It builds on BV-PRE in
that randomness is also added by the proxy in the ReEnc operation. Recall that
this is necessary for a scheme to have PCS, as otherwise an adversary could re-
encrypt locally to obtain the same re-encryption. This additional randomness has
minor implications for how this affects the correctness requirement for multiple
re-encryptions over that given in [PRSV17]. Note also that pcBV-PRE inherits
the PRE-CPA-security proven in [PRSV17]. This is proven by following the
same exact steps from the proof in [PRSV17], so we omit considerations of
PRE-CPA-security for brevity.

5.3 Security proofs

For brevity, we defer the correctness analysis of pcBV-PRE to Appendix C.
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KeyGen(1λ)

a
$← Uq,

s, e
$← χe

b = a · s+ pe

sk = s

pk = (a, b)

return (pk, sk)

Enc(pk,m)

(a, b)← pk

v, e0, e1
$← χe

c0 = b · v + pe0 +m

c1 = a · v + pe1

return c = (c0, c1)

Dec(sk, c)

s← sk

m′ = c0 − s · c1 mod p

return m′

ReKeyGen(skA, pkB)

for i ∈ {0, 1, . . . , blog2(q)/rc} :

(βi, θi)
$← ReSample(pkB)

γi = θi − skA · (2
r)i

∆A→B = {(βi, γi)}blog2(q)/rci=0

return ∆A→B

ReEnc(∆A→B , pkB , c)

{(βi, γi)}blog2(q)/rci=0 ← ∆A→B

(c0, c1)← c

(βproxy, θproxy)← ReSample(pkB)

c′0 = c0 +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi) + θproxy

c′1 =

blog2(q)/rc∑
i=0

(c
(i)
1 · βi) + βproxy

return c′ = (c′0, c
′
1)

Figure 8: pcBV-PRE. This adapts the BV-PRE scheme [PRSV17] to be fully
public-key, and minimises computation and bandwidth for the user for the
re-encryption process. The key resampling algorithm ReSample is described in
Appendix C.

Post-Compromise Security. We firstly show that pcBV-PRE is satisfies PCS
with a direct proof. In other words, we do not leverage the proof of Theorem 2
to prove PCS via source-hiding security. This is because pcBV-PRE as written
does not satisfy source-hiding security, see Section 6.3 for more details.

Theorem 4. pcBV-PRE has Post-Compromise Security. In other words, for any
adversary A to the PostComp game,∣∣∣Pr

[
PostComp0,PREA (1λ) = 1

]
− Pr

[
PostComp1,PREA (1λ) = 1

]∣∣∣ ≤ ε,
for some ε = negl(λ) under the RLWEn,q,χe

assumption.

Proof Overview. The overall structure of the proof is essentially the same as
the PRE-CPA-security (IND-CPA-security in their terminology) proof of the
BV-PRE in [PRSV17]. We only give a brief informal argument here and refer
the reader to the Appendix C for a full proof. The proof follows a sequence of
game hops beginning with the PostCompb,PRE security game where b $← {0, 1}.
In this game, the adversary is challenged to guess the bit b. Suppose that there
are N honest entities that are not corrupted by the adversary. Then we begin by
making N game hops. Each game hop replaces:

1. the public key of a single honest entity with a uniform random value.
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2. the re-encryption keys created using the honest entity’s public key with
uniform random values.

In the final game hop, the challenge ciphertext given to the adversary is a
uniformly sampled value and thus the adversary has no advantage in this game.
This implies that PostComp0,PRE and PostComp1,PRE are indistinguishable.

PRE-CPA security. We secondly show that pcBV-PRE is a PRE-CPA-secure
PRE scheme. This is a much simpler proof since it follows a similar argument
to that of Theorem 4, and the fact that the same security notion was shown
in [PRSV17, Theorem 2].

Theorem 5. pcBV-PRE is PRE-CPA secure.

Proof. The proof of this property follows a very similar argument to that of
Theorem 4. Firstly, we employ the hybrid argument of Theorem 4 up to the
hybrid before the final game hop is made. At this point in the security proof, the
public key of all honest entities are replaced with uniform values and similarly for
the re-encryption keys. The PRE-CPA requirement requires that the challenge
ciphertext is encrypted with respect to an honest entity. Therefore, any call to
OReKeyGen is answered with a uniform response, and this is the same for responses
from OReEnc.

In this case, pcBV-PRE is almost identical to the original BV-PRE scheme,
since the KeyGen, Enc and Dec algorithms are defined in the exactly the same way.
Moreover, the outputs of the additional algorithms are uniform using the hybrid
approach above. Therefore, we can leverage the proof of [PRSV17, Theorem 2]
showing that BV-PRE is PRE-CPA-secure (incpa! (incpa!) in their terminology).
Notice that this is possible since the oracles above can be instantiated with uniform
responses, and the other oracles can be handled as in the reduction of [PRSV17].
This completes the proof. ut

6 From selective to adaptive security

Thus far, we have discussed selective security, where the adversary first corrupts
keys, then learns challenges in two distinct stages. In the adaptive model, a
single-stage adversary can corrupt secret keys at any point and therefore choose
which keys to corrupt as a result of received challenges. As long as the trivial
win condition holds, the adversary can adaptively decide which keys should be
corrupted depending on the output of other oracle queries.

To lift to this stronger model, we need notions of key privacy. The intuition
behind this is that we can replace some challenge-related queries with counterparts
under different keys and relate this to key privacy.

6.1 Weak Key Privacy

In this section, we give the formal definitions for the related notions of key privacy.
key privacy (sometimes called key anonymity), was first introduced for PKE
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in [BBDP01]. Informally it means that an adversary is unable to determine which
public key was used to encrypt a ciphertext. A strong version for PRE schemes
for update tokens appears in [ABH09] which is referred to as strong key privacy
in [FKKP18], and states that an adversary is unable to distinguish between an
update token between two uncorrupted keys and a random element of the token
space. Note that this is strictly stronger than key inference where the hidden
secret keys must be computed, as is is the concern in collusion attacks. We refer
the interested reader to [ABH09] for further details.

In their work relating selective and adaptive security, Fuchsbauer et al.
[FKKP18] define weak key privacy and show that this is sufficient for adaptive
security. We now define this formally.

weakKPb,PREA (1λ, 1κ)

(pk0, sk0), . . . (pkκ, skκ)
$← KeyGen(1λ)

for i ∈ {1, . . . , κ} :

∆
(0)
0,1 ← ReKeyGen(sk0, pki)

∆
(1)
0,1 ← ReKeyGenwKP(pki)

b′ ← A(1λ, pk0, . . . , pkκ,∆
(b)
0,1, . . . ,∆

(b)
0,κ)

return b′

ReKeyGenwKP(pki)

(pk′0, sk
′
0)

$← KeyGen(1λ)

∆
(1)
0,i ← ReKeyGen(sk′0, pki)

return ∆
(1)
0,i

Figure 9: The weak key privacy game. Given an update token, an adversary
cannot distinguish the source public key.

Definition 9. A PRE scheme PRE is said to have (ε, κ)-weak key privacy if
for all PPT adversaries A:∣∣Pr

[
weakKP0

A(1λ, 1κ) = 1
]
− Pr

[
weakKP1

A(1λ, 1κ) = 1
]∣∣ ≤ ε,

where weakKPb,PREA is defined in Figure 9.
If ε is negligible as parameterised by the security parameter, then we say the

scheme has κ-weak key privacy. If this holds for all polynomial κ with respect to
the security parameter, then the scheme has weak key privacy.

6.2 Adaptive Post-Compromise Security

In this section, discuss PCS with adaptive key corruptions. We give the full
adaptive game for adaptive PCS in Appendix E.

In general, selective security can been shown to imply adaptive security at
an exponential loss, where the adversary in the selective game must first guess
which keys the adaptive adversary will corrupt. This is known as complexity
leveraging. A general framework for showing relations between selective and
adaptive security for general definitions is given in [JKK+17]. Jafargholi et al.
achieve this by constructing a variant of the selective game, then using pebbling
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games and a series of hybrids to the adaptive game to demonstrate the loss in
security between each hybrid. Using pebbling games can give a smaller loss of
security. A similar approach specific to PRE is used in [FKKP18], limited to
when the adversary creates directed re-encryption graphs which are acyclic and
have only one source node. An even tighter reduction is given which results in
quasi-polynomial loss between selective and adaptive HRA security for PRE
schemes with ciphertext indistinguishability and weak key privacy, limited to
some types of directed re-encryption graph, namely trees and chains.

Selective PRE-CPA security combined with weak key privacy gives adaptive
PRE-CPA security, where the loss of security depends on the number of keys κ
generated during the game, and the space and time complexities of the DRG.
More precisely, the loss of security is approximately τ ·κσ, where σ is the maximum
number of pebbles and τ is the maximum number of moves for a valid pebbling
strategy for a considered class of re-encryption graphs DRG [FKKP18, Theorem
1, Theorem 5]. This means that the loss is exponential for general re-encryption
graphs, but quasi-polynomial for trees and chains.

Theorem 6 (main). Let PRE be a PRE scheme which is ε1-selectively PRE-CPA
secure, ε2-source-hiding and ε3-weakly key private. Let QE be the number of
encryption oracle queries made by the adversary, QRE be the number of re-
encryption oracle queries, εSH be the advantage of winning the source-hiding
game, and εPKECPA be the advantage of winning the PKE-CPA game. Then it is
ε-adaptively PCS secure with a security loss of ≈ τ · κσ for directed re-encryption
graphs DRG with degree κ, space complexity σ and time complexity τ , where

ε ≤ 2κ(κ− 1)(QE +QRE)QRE · εSH + κσ+δ+1(εPKECPA + 2τ · ε3) (1)

restricted to graphs DRG which are acyclic, have at most κ nodes, degree δ and
depth d.

The proof of this follows from Theorem 3 and uses the same strategies as
those used to prove [FKKP18, Theorem 5].

6.3 Achieving adaptive security of pcBV-PRE

Our construction pcBV-PRE is not source-hiding. This is because fresh encryptions
will have different noise magnitudes compared with re-encryptions. One method
of overcoming this is using a noise ‘blurring’ approach [CCL+14], this was noted
by [FKKP18, Construction 7.b]. This would involve ‘blurring’ or ‘drowning’
the noise in fresh encryptions so that it was distributed in the same way as
re-encryptions. To do this, we would modify the ciphertext pairs in the Enc and
ReEnc algorithms so that we would add fresh noise to them. This fresh noise
would be taken from an error distribution such that it ‘blurred’ out all the old
noise that was introduced from the encryption and re-encryption operations.

The advantage of doing this, is that on decryption the noise will not reveal
anything about the method of encryption/re-encryption that was used, or the keys
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the ciphertext was previously encrypted under. This is vital since in the source-
hiding security property, the adversary receives all of the available decryption
keys and thus can decrypt any ciphertext that they want.

With this in mind, there are a number of reasons why proving source-hiding
is actually a hindrance. Using the same approach as [FKKP18] requires at least
a sub-exponential noise-to-modulus ratio which considerably harms performance
and security. This is because the LWE assumption (and respectively RLWE in
our case) that is used becomes much stronger, since the approximation factors of
the related ideal lattice problems become sub-exponential rather than polynomial
in n. In particular, there are quantum polynomial time algorithms solving ideal
lattice problems with approximation factor exp(Õ(

√
n)) [BS16,CDPR16,CDW17]

providing evidence that we cannot simply use an arbitrary noise-to-modulus ratio
while retaining the same security guarantees. Moreover, the increase in modulus
that is required makes standard operations much slower. As a by-product, the
scheme of [FKKP18] allows only a constant number of re-encryptions.

The intention with our construction was to give a practical PCS PRE scheme
with minimal restrictions and from weak assumptions. Since pcBV-PRE is very
close to the original (BV-PRE) [PRSV17] which is comparatively fast (see
[PRSV17] for exact figures) and our construction only adds extra sampling, loss
of efficiency is minimal. If we wanted to incorporate source-hiding, this would
result in a scheme that was impractical, based on much stronger assumptions and
also heavily restricted in the number of re-encryptions that can occur. Therefore,
we choose not give an explicit formulation.

We prove that pcBV-PRE has weak key privacy in Appendix F. Therefore, it
should be noted that a source-hiding version of pcBV-PRE would achieve adaptive
security (for the restricted graphs of [FKKP18]) by the proof of Theorem 2 and
the fact that pcBV-PRE is PRE-CPA secure 5. This result was explicitly shown
in [FKKP18, Lemma 7].

7 Conclusions and Future work

In this paper, we have presented the strongest notion of Post-Compromise Security
for PRE to date. By strongest, we mean that existing PCS notions are implied
by our notion of security, and separating examples showing that the opposite
implication does not follow exist. We have also shown that PCS can be achieved
via a number of existing PRE security notions which immediately shows that
there are existing PRE schemes that satisfy PCS [FKKP18]. Finally, we give a
practical construction of a PCS secure PRE scheme with transparency which
is based on lattices and discussed the possibility of achieving adaptive security
for restricted re-encryption graphs. We leave as future work the possibility of
proving tighter bounds between security notions, and further investigating the
relationship between selective and adaptive security for more generic graphs.
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A Definitions for symmetric PRE

Here we give definitions for the symmetric setting for easier comparison with
other re-encryption schemes defined with symmetric keys. We leave out some
security games where the change is analogous, but explicitly give those which
contains lists to clarify how those lists are updated.

Definition 10. A symmetric Proxy Re-Encryption (symPRE) scheme consists
of the following algorithms:

– sym.Setup(1λ)→ params: Outputs a set of public parameters, including the
message space and ciphertext space. Note that params is input to every
subsequent algorithm, but we leave it out for compactness of notation. We
often omit the Setup algorithm for the same reason.

– sym.KeyGen(1λ)→ k: Generates a secret key
– sym.Enc(k,m, `) → C: Encrypts a message m using a key k, producing a
ciphertext at level `. We often leave out ` for compactness.

– sym.Dec(k,C) → m′∪ ⊥: Decrypts a ciphertext C to produce either an
element of the message space m′ or the error symbol

– sym.ReKeyGen(ki, kj)→ ∆i,j∪ ⊥: Takes current key ki and next key kj and
outputs an update token ∆i,j, or ⊥ when i = j. This last condition is often
left out of constructions for compactness.

– sym.ReEnc(∆i,j , C)→ C ′: Takes a ciphertext C under ki and outputs a new
ciphertext C’ under kj.

A symmetric PRE scheme is correct if for all m ∈M, k
$← sym.KeyGen(1λ):

sym.Dec(k,Enc(k,m))→ m

and if for all C ∈ C such that sym.Dec(ki, C)→ m:

sym.Dec(kj , sym.ReEnc(∆i,j , C))→ m

where ki, kj ,
$← sym.KeyGen(1λ) and ∆i,j ← sym.ReKeyGen(ki, kj).

Sym-CPAb,SEA (1λ)

κ = 0

b′ ← AOKeyGen,Ochallenge

1 (1λ)

return b′ = b

OKeyGen(1
λ)

κ = κ+ 1

kκ
$← KeyGen(1λ)

Ochallenge(i,m0,m1)

if OR |m0| 6= |m1| : return ⊥

C
$← Enc(ki,mb)

return C

Figure 10: The Sym-CPA, the symmetric variant of the PKE-CPA game.
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Definition 11. An encryption scheme SE is ε-Indistinguishable against Chosen
Plaintext Attacks (ε-sym-CPA-secure) if for all PPT adversaries A:∣∣∣Pr

[
Sym-CPA0,SE

A (1λ) = 1
]
− Pr

[
Sym-CPA1,SE

A (1λ) = 1
]∣∣∣ ≤ ε,

where Sym-CPA is defined in Figure 10. If ε is negligible as parameterised by the
security parameter λ, then we say the scheme isIndistinguishable against Chosen
Plaintext Attacks (sym-CPA-secure).
A symmetric PRE scheme symPRE is (ε-sym-CPA-secure) if the encryption
scheme given by symPKE = {symPRE .KeyGen, symPRE .Enc, symPRE .Dec} is
ε-Sym-CPA secure.

SHb,PREA (1λ, 1κ)

(pkι, skι)ι∈[κ]
$← KeyGen(1λ)

{∆i,j
$← ReKeyGen(ski, pkj)}(i,j)∈[κ]2

b′ ← AOchallenge(1λ, (pkι, skι)ι∈[κ], {∆i,j}(i,j)∈[κ]2)

return b′ = b

Ochallenge((i, j),m
∗, `∗))

if `∗ > L− 1 : return ⊥
C ← Enc(pki,m

∗, `∗)

if b = 0 :

C(b) $← ReEnc(∆i,j , C)

elseif b = 1 :

C(b) $← Enc(pkj ,m
∗, `∗ + 1)

return (C,C(b))

Figure 11: Experiments for the symmetric source-hiding property. L is the number
of times a ciphertext can be re-encrypted without breaking the correctness
conditions.

OKeyGen(1
λ)

κ = κ+ 1

kκ
$← KeyGen(1λ)

DRG.add (vκ)

OCorrupt(i)

Kcorrupted.add (ki)

return ki

OEnc(i,m)

C
$← Enc(ki,m)

Chonest.add (i, C)

Cmsg[(i, C)] = m

return C

OReKeyGen(i, j)

∆i,j
$← ReKeyGen(ki, kj)

Thonest.add (i, j,∆i,j)

DRG.add (
→
e i,j)

return ∆i,j

Figure 12: Common oracles used in security games for symmetric PRE.

Definition 12. A symmetric PRE scheme ∫PRE is said to be ε-post-compromise
secure (ε-PCS) if for all PPT adversaries A = (A0,A1):∣∣∣Pr

[
sSymPostComp0,∫PREA (1λ) = 1

]
− Pr

[
sSymPostComp1,∫PREA (1λ) = 1

]∣∣∣ ≤ ε,
where sSymPostCompAb,PRE is defined in Figure 13.

If ε is negligible as parameterised by the security parameter, then we say the
scheme is post-compromise secure (PCS).

32



sSymPostCompb,PREA (1λ)

Kchal,Kcorrupted, Chonest, Cchal, Cmsg, Thonest,DRG = ∅
κ = 0, called = false

state← AOKeyGen,OEnc,OCorrupt

0 (1λ)

b′ ← AOReKeyGen,OReEnc,Ochallenge

1 (1λ, state)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kchal ∩ Kcorrupted 6= ∅ : return ⊥
return b′ = b

OReEnc(C, i, j, [∆i,j ])

if ∆i,j given :

if (i, j,∆i,j) /∈ Thonest : return ⊥
else : ∆i,j ← ReKeyGen(ki, kj)

if (i, C) 6∈ Chonest : return ⊥

C′
$← ReEnc(∆i,j , C)

Chonest.add (j, C′)

Cmsg[(j, C
′)] = Cmsg[(i, C)]

if (i, C) ∈ Cchal :

Cchal.add (j, C′),Kchal.add (kj)

return C′

Ochallenge(C0, C1, i, j,∆i,j)

if |C0| 6= |C1| OR called = true : return ⊥
if (i, C0), (i, C1) 6∈ Chonest OR (i, j,∆i,j) 6∈ Thonest : return ⊥

C′
$← ReEnc(∆i,j , Cb)

Cmsg[(j, C
′)] = Cmsg[(i, Cb)]

Chonest.add (j, C′), Cchal.add (j, C′),Kchal.add (kj)

called← true

return C′

Figure 13: The symmetric variant of PostComp game.

We give the equivalent lemma to Lemma 5 for symmetic PRE.

Lemma 11. IND-UPD 6=⇒ symmetric PCS.

Proof. We present the following counterexample for symmetric PRE, showing
that IND-UPD 6=⇒ symmetric PCS. RISE [LT18] is proven to be IND-UPD.
Here we adapt RISE for general proxy re-encryption as this fits more with our
notation, but we observe that the original construction defined as an updatable
encryption scheme is also sufficient for the proof.

– RISE′.KeyGen(1λ) : x
$← Z∗q , (pk, sk) =, (x, gx)

– RISE′.Enc(pk,m) : r
$← Z∗q , C ← (pkr, gr ·m)

– RISE′.Dec(sk,m) : m′ ← C1 · C−1/sk0

– RISE′.ReKeyGen(ski, skj) : ∆i,j = (skj/ski, pkj) = (xj/xi, g
xj )

– RISE′.ReEnc(∆i,j , C) : (∆, y′) = ∆i,j , r
′ $← Z∗q , C ′ ← (C∆0 · y′

r′
, C1 · gr

′
)

Given ∆i,j = (xj/xi, g
xj ), and xi, A can compute xj and use this to decrypt

the challenge ciphertext. This is because RISE is not unidirectional it is not
compromise secure by Lemma 2.
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B Asymmetric IND-UPD

IND-UPD [LT18, definition 3] is a post-compromise security notion for updatable
encryption schemes, which are a variant of symmetric PCS schemes. The main
difference in updatable encryption is that key updates happen sequentially,
meaning the re-encryption graph is always a chain. Another notable difference
between updatable encryption schemes and PRE schemes is that they contain an
algorithm Next, which generates a new key and an update token from the old
key to the new one as opposed to definiting these functions separately.

Here we adapt IND-UPD for the public-key setting.

Definition 13. A PRE scheme PRE is said to be (selectively) ε-pkIND-UPD-
secure if for all PPT adversaries A = (A0,A1):∣∣Pr

[
pkIND-UPD0

A(1λ) = 1
]
− Pr

[
pkIND-UPD1

A(1λ) = 1
]∣∣ ≤ ε,

where pkIND-UPDAb,PRE is defined in Figure 14.
If ε is negligible as parameterised by the security parameter, then we say the

scheme is (selectively) pkIND-UPD-secure.

C BV-PRE

Here we give the BV-PRE scheme [PRSV17] as well as the full proof of Theorem 4.
This scheme is not fully public-key as it uses additional ‘public’ key ‘pk’B for the
target key, which cannot be made public without exposing skA to anyone with
the update token.

Key Resampling. The key resampling technique [BV11], can be found in
Figure 16. We use this in our construction in Figure 8 to obtain PCS.

C.1 Correctness of our modified BV-PRE scheme

Much of the analysis used to argue correctness from [PRSV17] holds for our
modified scheme in Figure 8. Therefore, we keep the discussion fairly brief and
refer to [PRSV17] for full details.

Recall from [PRSV17] that on input ciphertext (c0, c1) and secret key s, the
decryption algorithm computes c0− c1s and then performs a reduction modulo p.
In the case that (c0, c1) is a ciphertext produced by the Enc algorithm, we have
that c0 − c1s = p(ev + e0 + e1s) + m mod q and that decryption is successful
when p(ev + e0 + e1s) + m (i.e. the error plus the message) does not wrap
around modulo q. However, the correctness condition of decryption is different
when considering ciphertexts output by the ReEnc algorithm. To see how, let
(c′0, c

′
1)

$← ReEnc(∆A→B , (c0, c1)). Using notation consistent with Figure 16, we
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pkIND-UPDb,PREA (1λ)

e = 0,DRG = (v0)

(sk0, pk0)
$← KeyGen(1λ)

Kcorrupted, Chonest,Kchal = ∅
called = 0

state← AONext,OEnc,OCorrupt,O
pkIU
LearnTok

,O
pkIU
ReEnc

0 (1λ, pk0)

b′ ← A
ONext,OEnc,OCorrupt,O

pkIU
LearnTok

,O
pkIU
LearnChal

,O
pkIU
ReEnc

,O
pkIU
challenge

1 (1λ, state)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kchal ∩ Kcorrupted 6= ∅ : return 0

return b′

ONext()

e← e+ 1

DRG.add (ve)

(pke, ske)
$← KeyGen(1λ)

∆e−1,e ← ReKeyGen(ske−1, pke, )

if called = 1 :

C∗e ← ReEnc(∆e−1,e, C
∗
e−1)

return pke

OpkIU
LearnTok(i)

if i = ē : return ⊥
if PRE is unidirectional :

DRG.add (
→
e i−1,i) // directed edge

elseif PRE is bidirectional :

DRG.add (ei,i−1) // undirected edge
return ∆i−1,i

OpkIU
LearnChal()

Kchal.add (ske)

return C∗e

OpkIU
ReEnc(C)

if (e− 1, C) 6∈ Chonest : return ⊥
if ReEnc is deterministic, called = 1 AND e = ē :

if C = C̄0 OR C = C̄1 : return ⊥

C′
$← ReEnc(∆e−1,e, C)

Chonest.add (e, C′)

return C′

OpkIU
challenge(C0, C1)

if called = 1 OR |C0| 6= |C1| : return ⊥
if (e, C0), (e, C1) 6∈ Chonest : return ⊥
e←= e+ 1

DRG.add (ve)

(pke, ske)
$← KeyGen(1λ)

ē = e, C̄0 = C0, C̄1 = C1

∆e−1,e ← ReKeyGen(ske−1, pke)

C∗e ← ReEnc(∆e−1,e, Cb)

Kchal.add (ske)

return (pke, C
∗
e )

Figure 14: The pkIND-UPD game, based on IND-UPD [LT18] adapted to the
public-key setting.
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Setup(1λ)

Choose positive integers q, n
Choose plaintext modulus p
Choose key switching window r

return pp = (q, n, p.r)

KeyGen(1λ)

a
$← Uq

s, e
$← χe

b = a · s+ pe

sk = s, pk = (a, b)

return (sk, pk)

Enc(pk,m)

(a, b)← pk

v, e0, e1
$← χe

c0 = b · v + pe0 +m

c1 = a · v + pe1

return c = (c0, c1)

Dec(sk, c)

s← sk, (c0, c1)← c

m′ = c0 − s · c1 mod p

return m′

Preprocess(1λ, skB)

sb ← skb

for i ∈ {0, 1, . . . , blog2(q)/rc} :

βi
$← Uq

ei
$← χe

θi = βi · sB + pei

return ‘pk’B = {(βi, θi)}blog2(q)/rci=0

ReKeyGen(skA, ‘pk’B)

sA ← skA, {(βi, θi)}
blog2(q)/rc
i=0 ← ‘pk’B

for i ∈ {0, 1, . . . , blog2(q)/rc} :

γi = θi − sA · (2r)i

∆A→B = {(βi, γi)}blog2(q)/rci=0

return ∆A,B

ReEnc(∆A,B , c)

{(βi, γi)}blog2(q)/rci=0 ← ∆A,B

(c0, c1)← c

c′0 = c0 +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi)

c′1 =

blog2(q)/rc∑
i=0

(c
(i)
1 · βi)

return c′ = (c′0, c
′
1)

Figure 15: BV-PRE [PRSV17] where Uq is the discrete uniform distribution over
Rq and χe is a Be-bounded discrete Gaussian error distribution.

have that

c′0 − c′1sB = c0 +

blog(q)/rc∑
i=0

c
(i)
1

(
θi − sA(2r)i − sBβi

)
+ (θproxy − βproxysB)

= c0 − c1sA +

blog(q)/rc∑
i=0

c
(i)
1 (θi − sBβi) + (θproxy − βproxysB)

= c0 − c1sA +

blog(q)/rc∑
i=0

c
(i)
1 · p(evi + e′isB + e′′i ) + p(eproxyvproxy + e′proxysB + e′′proxy),

where all arithmetic is done over the integers modulo q. This shows that the error
grows by an additive term of pE on each re-encryption where

E =

blog(q)/rc∑
i=0

c
(i)
1 · (evi + e′isB + e′′i ) + (eproxyvproxy + e′proxysB + e′′proxy).
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ReSample(pk)

(a, b)← pk

v, e′
$← χe

e′′
$← χe

ā = av + pe′

b̄ = bv + pe′′

return pk = (ā, b̄)

Figure 16: Key resampling technique [BV11].

Assume that χe is (B, δ)-bounded for some small δ (we quantify these values
later). Then we have that the noise grows by at most

p||E||∞ ≤ pn(2r − 1)(blog(q)/rc+ 1)(2B2n+B) + p(2B2n+B) =: G(n, q, r, B)
(2)

on each re-encryption taking into consideration the multiplication of degree
n− 1 polynomials. Therefore, after ` re-encryptions, the noise has grown by an
additive term of size `G. Therefore, the condition for successful decryption after
` re-encryptions is

p(2Bn +B) + `G(n, q, r, B) + p/2 ≤ q/2 (3)

where G is define in Equation (2). Note that if our error distribution has σ >
ω(log n), then we can set B = σ

√
n and δ = 2−n+1 [MR07,LATV13]. In order to

choose parameters of the system, one needs to ensure that Equation 3 is satisfied.
Note that this analysis is a worst-case one. It is shown in [PRSV17] that the
central limit theorem can be used to essentially alter the form of B and change
all occurrences of n into occurrences of

√
n in Equation (3) by allowing for a

tunable failure probability. We omit this more practical method of correctness
analysis for brevity.

C.2 Full proof of Theorem 4

Proof. Let N be the number of honest parties and M be the total number of
parties where M is polynomially bounded. First of all, we label the nodes in
our DRG using a topological ordering (from sinks to sources) such that there
are no edges from i to k if i < k. In doing so, we have that the honest and
corrupt entities have labels in the set ΓH = {1, . . . , N} and ΓC = {N+1, . . . ,M}
respectively. For i = 1, . . . ,M , we denote the secret and public keys of node i as

ski = si, pki = (ai, bi = ai · si + ei) (4)

where ai
$← Rq and si, ei

$← χe. Also, for j = 1, . . . , Qi where Qi is a polynomial
bounding the number of queries to ReSample(pki), we denote the output of the
jth call of the form ReSample(pki) as the pair

a′i,j = aivi,j + pe′i,j , b′i,j = bivi,j + pe′′i,j (5)
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where vi,j , e′i,j , e′′i,j
$← χe. We now state our main hybrid games between the

adversary A and challenger C:

– Game0: Run the PostCompb,PRE security game where the bit b $← {0, 1}
uniformly. Denoting the adversary A’s output in the PostCompb,PRE as b′,
the output of Game0 is 1 if b′ = b and 0 otherwise.

– Gamei for i = 1, . . . , N : Same as Gamei−1 except that the challenger C
replaces ski, pki and all terms a′i,·, b′i,· in (5) by random uniform values.

– GameN+1: C behaves the same as GameN except that all challenge ciphertexts
output by the challenge oracle are replaced by uniform random values.

Note that Game0 challenges an adversary to distinguish between the cases when
it plays either PostComp0,PRE(1λ) and PostComp1,PRE(1λ). Therefore, we aim
to show that there is no PPT adversary that wins Game0 with probability a
non-negligible amount more than 1/2. The adversary information theoretically
has no advantage in GameN+1 i.e.

Pr
[
1

$← GameN+1(A)
]
− 1/2 = 0.

This means that we can prove security by showing that Game0 is computationally
indistinguishable from GameN+1 according to the RLWE assumption. We do so
by proving the following two lemmas:

Lemma 12. Gamei−1 is computationally indistinguishable from Gamei for i =
1, . . . , N under the RLWE assumption. In particular, let Qi be the number of
times ReSample(pki) is called during the PostComp game. Then for any PPT
adversary A, there exists a RLWE distinguisher D such that∣∣∣Pr
[
1

$← Gamek−1i−1 (A)
]
− Pr

[
1

$← Gameki−1(A)
]∣∣∣ ≤ (1+Qi)AdvRLWEφ,q,χe

(D).

Proof. Let Qi be the polynomially bounded number of times that ReSample(pki)
is called. We define a sequence of sub-hybrids between Gamei−1 and Gamei:

– Game0i−1: The same as Gamei−1 apart from the fact that the challenger
replaces the public key pki with a uniform random value.

– Gameki−1 for k = 1, . . . , Pi: The same as Gamek−1i−1 apart from that the kth
call to ReSample(pki) is replaced by a uniform random value.

Firstly, since node i is not corrupted by the PostComp adversary A, a RLWE ad-
versary D can embed a RLWE challenge into pki to simulate Gamei−1 or Game0i−1
depending on whether its input challenge was uniform or not. In particular, since
all calls to the resample algorithm are uniform for public keys associated to nodes
with label ≤ i − 1, the ReKeyGen oracle outputs uniform random values when
A asks for a re-encryption key with source node i. Therefore, D simply returns
uniform values on these particular ReKeyGen queries. If Gamei−1 and Game0i−1
are distinguishable, then D can solve the RLWE problem. Therefore,∣∣∣Pr

[
1

$← Gamei−1(A)
]
− Pr

[
1

$← Game0i−1(A)
]∣∣∣ ≤ AdvRLWEφ,q,χe

(D).
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Secondly, a RLWE adversary D can simulate either Gamek−1i−1 or Gameki−1 by
performing the following:

1. Query the RLWE oracle twice obtain (a, d1), (b, d2) and set pki = (a, b).
2. Answer the kth instance of the query ReSample(pki) as the pair (d1, d2)

3. Answer all other queries as in Gamek−1i−1

Once again, if Gamek−1i−1 and Gameki−1 are distinguishable, then D can solve the
RLWE problem. Therefore,∣∣∣Pr

[
1

$← Gamek−1i−1 (A)
]
− Pr

[
1

$← Gameki−1(A)
]∣∣∣ ≤ AdvRLWEφ,q,χe

(D).

Using the triangle inequality implies that∣∣∣∣Pr
[
PostCompPREA (1λ) = 1

]
− 1

2

∣∣∣∣ ≤ ε (ρ ·Qrk +Qre +N))·AdvRLWEφ,q,χe
(D).

and applying the RLWE assumption completes the proof of this lemma. ut

Lemma 13. For any adversary A, Pr
[
1

$← GameN (A)
]

= Pr
[
1

$← GameN+1(A)
]
.

Proof. In both GameN and GameN+1, the adversary submits two ciphertexts
C0 = (c0,0, c0,1) and C1 = (c1,0, c1,1) when it queries the challenge oracle. In
GameN , the challenger responds by setting c0 = c0(b) and c1 = c1(b) for uniformly

chosen b $← {0, 1} and returning the challenge ciphertext given by

c′0 = c0 + θ∗ +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi), c′1 = β∗ +

blog2(q)/rc∑
i=0

(c
(i)
1 · βi),

where
∑blog2(q)/rc
i=0 2ric

(i)
1 = c1. In particular, β∗ and θ∗ are the result of calling

ReSample() in GameN on an honest public key and are therefore uniform random
values that are used once and never revealed to A. Therefore, c′0 and c′1 are
independent uniform random values in GameN which is the exact case in GameN+1.
This argument holds for each of A’s challenge oracle queries. This concludes the
proof of this lemma. ut

After noting that
∑N
i=1Qi = ρQrk +Qre and using the triangle inequality, we

see that for all PPT adversaries A:∣∣∣∣Pr
[
1

$← Game0(A)
]
− 1

2

∣∣∣∣ ≤ ε,
for negligible ε according to the RLWE assumption. This inequality implies
that the games PostComp0,PRE and PostComp1,PRE are ε-indistinguishable as
required. This concludes the proof of the theorem. ut
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adIND-HRAb,PREA (1λ)

Kcorrupted,Kchal, Cchal, Thonest,DRG = ∅
κ = 0, called← false

b
$← {0, 1}

b′ ← AOKeyGen,OEnc,OCorrupt,OReEnc,OReEnc,Ochallenge(1λ)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kcorrupted ∩ Kchal 6= ∅ :

return 0

else return b′

OReEnc(C, i, j, [∆i,j ])

if ∆i,j given AND (i, j,∆i,j) /∈ Thonest :
return ⊥

if ∆i,jnot given :

∆i,j
$← ReKeyGen(ski, pkj)

C′
$← ReEnc(∆i,j , C)

if (i, C) ∈ Cchal :
Cchal.add (j, C′),Kchal.add skj

return C′

Ochallenge(m0,m1, i)

if |m0| 6= |m1| OR called = true :

return ⊥

C
$← ReEnc(pki,mb)

Cchal.add (i, C)

Kchal.add ski

called← true

return C

Figure 17: The adIND-HRA game. Like the HRA model [Coh17], it allows re-
encryptions of non-challenge ciphertexts to compromised keys using OReEnc. It
allows adaptive corruption of keys subject to the trivial win condition that no
key which a challenge ciphertext has been learned under can be corrupted.

D Adaptive HRA security

Here we give an extension of selective IND-HRA security as described in Sec-
tion 3.1, which allows the adversary to adaptively corrupt keys in response after
receiving challenges.

Definition 14. A PRE scheme PRE is said to be ε-Adaptively Indistinguish-
able Honest Re-encryption Plaintext Attacks-secure (ε-adIND-HRA-secure) if
for all PPT adversaries A = (A0,A1):∣∣∣Pr

[
adIND-HRA0,PRE

A (1λ) = 1
]
− Pr

[
adIND-HRA1,PRE

A (1λ) = 1
]∣∣∣ ≤ ε, (6)

where adIND-HRAPREA is given in Figure 17. If ε is negligible as parameterised by
the security parameter, then we say the scheme is Adaptively Indistinguishable
Honest Re-encryption Plaintext Attacks-secure (adIND-HRA-secure).

In the adIND-HRA game (Figure 17), A can adaptively corrupt keys subject
to the trivial win condition that they cannot have corrupted a key with which
a challenge ciphertext can be decrypted. In order to keep track of the status of
keys, the lists Cchal,Kchal and Kcorrupted are used as well as a directed re-encryption
graph DRG which tracks update token queries. Cchal contains outputs of the
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challenge oracle Ochallenge as well as outputs of OReEnc when given a challenge as
input. Kcorrupted contains the outputs of OCorrupt queries. DRG consists of nodes
vi that represent key pairs, and edges

→
e i,j which are added when OReKeyGen(i, j)

is queried. Using update tokens, the adversary can locally re-encrypt challenge
ciphertexts. Therefore, if a challenge ciphertext is and encryption under pki,
and there exists a sequence of tokens going from i to j, then both ski and skj
are considered challenge keys. Represented using the graph DRG, if there is a
path from vi to vj and ski is a challenge key, then so is skj . At the end of the
game, DRG is used to update the list of challenge keys. Then the trivial winning
condition translates Kchal ∩ Kcorrupted being empty.

E Adaptive Post-Compromise Security

Here we give the explicit definition for adaptive PCS.

Definition 15. A PRE scheme PRE is said to have ε-Adaptive Post-Compromise
Security (ε-adPCS) if for all PPT adversaries A = (A0,A1):∣∣Pr

[
ad-PostComp0A(1λ) = 1

]
− Pr

[
ad-PostComp1A(1λ) = 1

]∣∣ ≤ ε,
where ad-PostCompAb,PRE is defined in Figure 18. If ε is negligible as para-
meterised by the security parameter, then we say the scheme has Adaptive
Post-Compromise Security (adPCS).

F Weak key privacy of our construction

Theorem 7. The scheme given in Figure 8 has weak key privacy.

Proof. Once again, the proof replaces the public key and ReSample outputs
associated to identity labels i = 1, . . . , κ by uniform values one by one. This
is permissible due to the RLWE assumption. Define the following sequence of
games:

– Game0: The weakKPb,PREA (1λ, 1κ) game.
– Game′i for i = 1, . . . , κ: The same as Gamei−1 apart from the fact that pki is

replaced with a uniform value.
– Gamei for i = 1, . . . , κ: The same as Game′i except that the output of calls to

ReKeyGen(·, pki) are replaced by a uniform value.

The transitions or game hops occur in the order Game0 → Game′1 → Game1 →
· · · → Game′κ → Gameκ. We first note that the secret keys sk1, . . . , skκ are never
used in any of the games so we ignore these throughout this proof. Gamei−1 can
be seen to be indistinguishable from Game′i by acknowledging that the difference
between these games is that a single RLWE public key is replaced by a uniform
value. Next we need to argue that Game′i is indistinguishable from Gamei. To do so,
we consider a sequence of hybrids between Game′i and Gamei denoted as Game′i,j
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ad-PostCompb,PREA (1λ)

Kcorrupted,Kchal, Chonest, Cchal, Thonest,DRG = ∅
κ = 0, called = false

b′ ← AOKeyGen,OEnc,OCorrupt,OReKeyGenO
aPC
ReEnc,O

aPC
challenge(1λ)

Kchal ← UpdateChallengeKeys(Kchal,DRG)

if Kcorrupted ∩ Kchal 6= ∅ :

return ⊥
else return b′

OaPC
ReEnc(C, i, j, [∆i,j ])

if |C0| 6= |C1| OR called = true : return ⊥
if (i, C0), (i, C1) 6∈ Chonest : return ⊥
if (i, j,∆i,j) 6∈ Thonest : return ⊥

if not given : ∆i,j
$← ReKeyGen(ski, pkj)

C′
$← ReEnc(∆i,j , C)

if (i, C) ∈ Chonest : Chonest.add (j, C′)

if (i, C) ∈ Cchal :

Cchal.add (j, C′)

Kchal.add (skj)

return C′

OaPC
challenge(C0, C1, i, j,∆i,j)

if |C0| 6= |C1| : return ⊥
if (i, C0), (i, C1) 6∈ Chonest : return ⊥
if (i, j,∆i,j) 6∈ Thonest : return ⊥

C′
$← ReEnc(∆i,j , Cb)

Chonest.add (j, C′), Cchal.add (j, C′),Kchal.add (skj)

called← false

return C′

Figure 18: The adaptive post compromise game PostComp. This is stronger than
the selective version as the adversary can choose to corrupt keys as a result of
challenge queries, subject to the trivial win condition.

where j = 0 . . . dlog2(q)/re. Essentially, in Game′i,j , the first j calls of the form
ReSample(pki) are replaced by uniform random values. Recall that for both these
games, the public key pki = (a1, a2) is a uniform random value itself. Therefore,
the difference between Game′i,j and Game′i,j+1 is that the (j+1)th call to ReSample
denoted by (b1, b2) either has the form (a1v + e′, a2v + e′′) or takes the form of a
uniform random value. Considering the pairs (a1, b1) and (a2, b2), an adversary
cannot distinguish between Game′i,j and Game′i,j+1 with non-negligible advantage
according to the RLWE assumption. This holds for j = 0, . . . , dlog2(q)/re − 1.
Since we have Game′i,0 = Game′i and Game′i,dlog2(q)/re = Gamei, we can conclude
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that Game′i is indistinguishable from Gamei by using the RLWE assumption
multiple times. Iterating through i = 0 to κ completes the proof. ut
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