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Abstract

We propose a generic construction of linkable ring signature from any compatible ring
signature scheme and one-time signature scheme. Our construction has both theoretical
and practical interest. In theory, our construction gives the first generic transformation
from ring signature to linkable ring signature, which brings at least two main benefits: first,
the transformation achieves the lowest bound of the complexity that constructing linkable
ring signature schemes. Second, ours preserves the anonymity of underlying ring signature
schemes. In practice, our transformation incurs a very small overhead in size and running
time. By instantiating our construction using the ring signature scheme [ESS+18] and
the one-time signature scheme [DKL+18], we obtain a lattice-based linkable ring signature
scheme whose signature size is logarithmic in the number of ring members. This scheme is
practical, especially the signature size is very short: for 230 ring members and security level
of 100-bit, our signature size is only 4MB.

In addition, we give a new proof approach in proving the linkability, which might be of
independent interest towards the proof in the random oracle model.
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1 Introduction
Ring signature (RS) was first proposed by Rivest et al. [RST01], which allows a signer to sign
a message on behalf of a self-formed group. RS can provide not only unforgeability but also
anonymity. Unforgeability requires an adversary cannot forge a signature on behalf of a ring
which he does not know any secret key of ring members. Anonymity requires signatures do
not leak any information about the identity of the signer, which can be categorized into two
types: computational (against probabilistic polynomial adversary) and unconditional (against
unbounded adversary).

As an extension of RS, Liu et al. [LWW04] first proposed the concept of linkable ring
signature (LRS). LRS requires three properties: anonymity, linkability and nonslanderability.
Anonymity is the same as that of RS. Linkability requires that if a signer signs twice, then a
public procedure can link the two signatures to the same signer. Nonslanderability requires a
user should not be entrapped that he has signed twice. Due to the security of LRS, it is widely
used in many privacy-preserving scenarios which require accountable anonymity. For instance,
LRS can be applied in e-voting system [TW05] to ensure that the voters can vote anonymously
and will not repeat their votes. In a more popular setting, cryptocurrency, LRS plays a crucial
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role in providing anonymity of spenders while resisting the double-spending attack, and hence
LRS has received much attention with the rise of Monero [Noe15] and other cryptocurrencies
based on CryptoNote protocol [vS13].

The richer functionality of LRS makes it suited for a wide range of privacy-preserving ap-
plications, but also renders it relatively difficult to realize. Up to now, there are only a handful
LRS schemes compared to numerous standard RS schemes. In light of the state of affairs de-
scribed above, we are motivated to consider the generic construction of LRS, in particularly,
whether LRS can be built from RS in a black-box manner. From a theoretical point of view,
one is interested in the weakest assumptions needed for LRS. From a practical point of view, it
is highly desirable to obtain general methods for constructing LRS rather than designing from
scratch each time.

1.1 Our Contributions
In this paper, we give an affirmative answer to the above questions. The contribution of this
paper is threefold:

• We give a generic construction of LRS from compatible RS and one-time signature (OTS).
The construction achieves a lower bound of the complexity that constructing LRS scheme
since RS is an arguably weaker primitive compared to chameleon hash plus function1

(CH+) which is used as the underlying primitive by a recent generic construction of
LRS [LAZ18]. In particular, the requirement for the underlying RS schemes is mild:
the space of public keys ˆPK has some group structure ( ˆPK,⊙) (e.g. bit-strings with
⊕) and the distribution of public keys generated by the key generation algorithm should
be close to the uniform distribution over ˆPK, which can be satisfied by almost all the
known RS schemes [AOS02, GK15, BDR15, BK10, LLNW16, ESS+18]. Moreover, our
transformation preserves the same anonymity of the underlying RS schemes, which can
simplify the task of constructing unconditionally anonymous LRS schemes. The reason
is that most of RS schemes [RST01, DKNS04, CYH05, CWLY06, BK10, GK15, BDR15,
LLNW16] provide unconditional anonymity but constructing unconditionally anonymous
LRS schemes is stated as an open problem in [LWW04] and settled only by [LASZ14,
TSS+18] recently. Finally, our transformation gives LRS schemes with small overhead in
size and running time as compared to the underlying RS schemes.

• We develop a new proof approach to reduce the linkability of LRS to the unforgeability
of RS. The new proof approach might be of independent interest towards the proof in the
random oracle model.

• By instantiating our generic transformation based on the RS scheme in [ESS+18] and the
OTS scheme Dilithium2 [DKL+18] , we obtain a lattice-based LRS scheme whose signature
size is logarithmic in the number of ring members. The signature size of our scheme is
very short even for a large ring, for 230 ring members and security level of 100-bit, our
signature size is only 4MB comparing to 166MB3 in the prior shortest lattice-based LRS
scheme [YAL+17]. In addition, the experimental results demonstrate the concrete scheme
is practical.

1CH+ is a similar concept of chameleon hash function but there exists public parameters and only the hash
value is needed when computing the new randomness

2Dilithium is a signature scheme, we use it as a OTS scheme
3The signature size is from [LLNW16], the RS scheme in [LLNW16] is the major component of [YAL+17] and

they have the same asymptotic size.
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1.2 Technique Overview
To describe our construction, it is instructive to recall the generic construction of LRS [LAZ18],
which is called Raptor. In [LAZ18], they introduced the concept of CH+ and gave a generic
construction of LRS based on CH+ and OTS. In the key generation procedure, the signer
generates a hash key hk and its trapdoor td, and a pair of public key and secret key (ovk, osk)
of OTS. Then, the user computes the public key pk by masking hk with the hash value H(ovk),
and sets the secret key sk = (td, ovk, osk). In the signing procedure, the signer first reconstructs
a new set of hash keys {hk′i = pki ⊕ H(ovks)}i∈[N ], where N is the number of ring members
and s is the index of the signer, then runs the signing algorithm of RS on the set of public keys
{hk′i}i∈[N ] to get signature σ̂. Finally, the signer runs the signing algorithm of OTS to sign the
message (σ̂, {hk′i}i∈[N ], ovks) with the secret key osks and get the signature σ̃. The signature
σ is set as (σ̂, σ̃, ovk). In the security proof, the anonymity and linkability are reduced to
the associated properties of CH+ and the nonslanderability is reduced to the unforgeability of
OTS. However, there is a gap in the proof of linkability. The linkability is based on the collision-
resistance of CH+, but the proof fails to embed the challenge hkc of collision-resistance into the
output of the linkability game. See Appendix A for details on these issues.

Inspired by the idea in [LAZ18], we give a generic construction of LRS from RS directly,
rather than from CH+. The security proof of our scheme is not trivial, especially it is difficult
to reduce the linkability of LRS to the unforgeability of RS. The reason is that in the security
definition of unforgeability, a valid signature forgery must be generated on the ring which the
adversary does not have the related secret keys, but this condition is hard to achieve by the
forgery contained in the output of linkability game for our construction. We resolve it by
developing a new proof approach.

Construction Sketch. In the key generation procedure, the signer firstly generates the pub-
lic/secret key pair (p̂k, ŝk) and (ovk, osk) of LRS and OTS respectively. Then, he computes
the public key pk = p̂k ⊙ H(ovk) and sets the secret key sk = (ŝk, osk, ovk). In the signing
procedure, if the signer signs a message m on the ring T = {pki}i∈[N ], he firstly reconstruct a
new ring T̂ ′ = {p̂k′i}i∈[N ], where p̂k′i is equal to pki combined with the same value H(ovks). It
is easy to see that p̂ki = p̂k′i only when i = s and hence the signer knows the related secret key
ŝks of ˆpk′s. Then, he runs RS.Sign with ŝks and T̂ ′ to get the signature σ̂. Finally, the signer
runs OTS.Sign on the message (σ̂, T, ovks) by the secret key osks, then he gets the signature σ̃
and sets σ = (σ̂, σ̃, ovks), where ovks acts as the linkability tag.
Proof Sketch. We will omit the proofs of anonymity and nonslanderability and just sketch the
new proof approach here. As described above, the linkability of our construction is reduced
to the unforgeability of underlying RS schemes. For the sake of contradiction, suppose that
there exists an adversary A that break linkability of our LRS scheme. Then, we construct an
adversary B that break unforgeability of underlying RS scheme by using A. If A succeeds, that
is A outputs N + 1 unlinked valid signatures for the same ring whose size is N , then at least
one of the signatures, denoted as σ∗, contains the linkability tag which is not used in the key
generation procedure. We set σ̂∗ contained in σ∗ as the output of B. The core problem that we
face in reduction is how to simulate the public key for A to make σ̂∗ is generated on the ring T̂ ′

which B does not know the secret keys. At a high level, we resolve this problem by fixing every
p̂k′ ∈ T̂ ′ for B in advance instead of making it generated by A. More specifically, we assume
A and B have access to the joining oracle Ojoin and Ôjoin respectively, where Ojoin and Ôjoin
output public keys of LRS and RS at random. For every query to Ojoin made by A, B should
query Ôjoin twice to get two public keys p̂k, ˆpk′′. p̂k is used to simulate the response of Ojoin,
and ˆpk′′ is used to fix the elements in T̂ ′. By the programmability of H, we generate pk in two
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different ways using p̂k, ˆpk′′ respectively:

pk = p̂k ⊙ h = ˆpk′′ ⊙ h′

where h′ is chosen randomly and programmed as the output of the Ith H-query, h is computed
by the above equation and programmed as the output of the H-query whose input is related
ovk. If the input of the Ith H-query is ovks, then the forgery of RS contained in the output of
A is generated on the public keys output by Ôjoin which B does not know the secret keys. The
real execution of Ojoin is depicted in Fig.1 and the simulation of Ojoin is depicted in Fig.2.

Ôjoin pki = p̂ki ⊙H(ovki)

Ojoin

pkiquery i query i p̂ki

Figure 1: real Ojoin

Ôjoin pki = p̂ki ⊙ hi

pki = ˆpk′′i ⊙ h′ hi = pki ⊙ p̂ki

program h′ = H(ovkI) program hi = H(ovki)

Ojoin

hi

pki

Ith query of H

query i query i p̂ki

ˆpk′′i

pki

choose h′ randomly

Figure 2: Simulation of Ojoin

1.3 Related Work
Ring Signature. Abe et al. [AOS02] showed how to construct a RS scheme from a three-
move sigma protocol based signature scheme and presented the first RS scheme under the
discrete-logarithm assumption whose public keys are group elements. Groth and Kohlweiss
[GK15] proposed a RS scheme whose signature size grows logarithmically in the number of
ring members from a sigma protocol for a homomorphic commitment. They instantiated their
scheme with Pedersen commitment and set the public keys as the commitments to 0. Bose et
al. [BDR15] gave a generic technique to convert a compatible signature scheme to a RS scheme
whose signature size is independent of the number of ring members and instantiated it from
Full Boneh-Boyen signature. Brakerski and Kalai [BK10] proposed the first lattice-based RS
scheme from ring trapdoor functions whose public keys are matrices over a group. Libert et al.



[LLNW16] proposed the first lattice-based RS scheme with logarithmic size in the number of
ring members which is from zero-knowledge arguments for lattice-based accumulators and the
public keys of their scheme are binary strings. We show that all of the above RS schemes satisfy
the requirements of our transformation, and hence they can be extended to the LRS schemes
directly by using our generic construction.

Linkable Ring Signature. Besides [LAZ18], there are two works tried to build a generic
framework of LRS. Tsang and Wei [TW05] extended the generic RS constructions in [DKNS04]
to their linkable version, but their schemes are under a weak security model which does not
consider the nonslanderability. Franklin and Zhang [FZ12] proposed a general and unified
framework for constructing unique ring signature which captures the spirit of LRS, but the
linkability of their work is restricted to the same message, which is not suited for cryptocurrency.
Except that, there are a series of outstanding results on constructing concrete linkable ring
signature schemes. Yuen et al. [YLA+13] proposed a LRS scheme whose signature size is
square root of the number of ring members. Sun et al. [SALY17] presented an accumulator-
based LRS scheme whose signature size is independent of the number of ring members. Yang
et al. [YAL+17] presented a construction of weak-PRF from LWR and designed a LRS scheme
based on lattice by combining with an accumulator scheme in [LLNW16] and the supporting
ZKAoKs. Zhang et al. [ZZTA17] proposed an anonymous post-quantum cryptocash which
contains an ideal lattice-based LRS scheme. Baum et al. [BLO18] proposed a LRS scheme
based on module lattice, which is mainly constructed from a lattice-based collision-resistant
hash function. At the same time, Torres et al. [TSS+18] proposed a post-quantum one-time
LRS scheme, which generalized a practical lattice-based digital signature BLISS [DDLL13] to
LRS and successfully applied to the privacy protection protocol lattice ringCT v1.0.

Note. The issues we discovered about Raptor exist in the previous eprint version, available
at https://eprint.iacr.org/2018/857 (version: 20180921:135633). We have communicated with
the authors of Raptor, they confirmed our findings and the issues have been discovered inde-
pendently by them as well. They shared with us their revised version which does not have the
same flaws.

2 Preliminary
2.1 Notations
Throughout this paper, we use N, Z and R to denote the set of natural numbers, integers and
real numbers respectively. For N ∈ N, we define [N ] as shorthand for the set {1, ..., N}. We
use lower-case bold letters and upper-case bold letters to denote vectors and matrices (e.g.
x and A). We denote the Euclidean norm of a vector x = (x0, ..., xn−1) and a polynomial
f(x) = a0 + a1X + · · ·+ an−1X

n−1 in variable X as ||x|| =
√∑n−1

i=0 x2i and ||f || =
√∑n=1

i=0 a2i .

For a vector f = (f0, · · · , fn−1) of polynomials, ||f || =
√∑n−1

i=0 ||fi||2. The infinity norm of f
is ||f ||∞ = maxi|ai|. Let q be an odd prime integer and assume q ≡ 5 mod 8. We define the
rings R = Z[X]/⟨Xd + 1⟩ and Rq = Zq[X]/⟨Xd + 1⟩, where d > 1 is a power of 2. If S is a
set then s ← S denotes the operation of uniformly sampling an element s from S at random.
We use the same notation to sample s from a distribution S. If S is an algorithm, the same
notation is used to denote that the algorithm outputs s. We denote a negligible function by
negl(λ), which is a function g(λ) = O(λc) for some constant c. We denote the set of integers
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{a, a+1, · · · , b−1, b} by [a, b]. We use Dv,σ to denote the discrete normal distribution centered
at v with standard deviation σ. We write Dσ as shorthand for v = 0.

2.2 Module-SIS Problem and Commitment Scheme
We recall the definition of Module-SIS problem and commitment scheme in [ESS+18].

Definition 2.1 (Module-SISn,m,q,θ). Let Rq = Zq[X]/⟨Xd+1⟩. Given A← Rn×m
q , find x ∈ Rm

q

such that Ax = 0 mod q and 0 < ||x|| ≤ θ.

Module-SIS problem is a bridge between SIS problem and Ring-SIS problem, that is if
m = nlogq and Rq = Zq, then the above problem is SIS problem; if n = m = 1, then the above
problem is R-SIS problem.

Definition 2.2. Let Rq = Zq[X]/⟨Xd + 1⟩, Sr(ϵr) = {r ∈ Rm
q : ||r||∞ ≤ ϵr} be the randomness

domain with χ as the probability distribution of r on Sr(ϵr) for a positive real number ϵr, and
SM (ϵM ) = {m ∈ Rv

q : ||m||∞ ≤ ϵM} be the message domain for a positive real number ϵM
for m, v ∈ Z+. The commitment of a message vector m = (m1, ...,mv) ∈ SM (ϵM ) using a
randomness r ∈ Sr is given as

Comck(m; r) = Comck(m1, · · · ,mv; r) = G ·


r
m1
...

mv

 ∈ Rn
q

where ck = G← R
n×(m+v)
q and it is used as the commitment key.

The Lemma 2 in [ESS+18] shows the above commitment scheme is statistically hiding if
q > 8ϵr2 and χ is greater than nlogq/m + 2λ/(md), and computationally strong binding if
Module-SISn,m+v,q,θ problem for θ = 2

√
ϵ2rmd+ ϵ2Mvd is hard.

2.3 Rejection Sampling
Lemma 2.1 ([Lyu12]). Let V be a subset of Zd where all the elements have norms less T , and
h be a probability distribution over V . Define the following algorithms:

A: v← h; z← Dd
v,σ; output (z,v) with probability min{ Dd

σ(z)
MDd

v,σ(z)
, 1}

F : v← h; z← Dd
σ; output (z,v) with probability 1

M ,

where σ = 12T and M = e1+
1

288 . Then the output of algorithm A is within statistical distance
2−100/M of the output of F . Moreover, the probability that A outputs something is more than
1−2−100

M .

2.4 Ring Signature
A RS scheme consists of four algorithms (Setup, KeyGen, Sign, Vrfy):

• Setup(1λ): On input the security parameter 1λ, outputs public parameter pp. We assume
pp is an implicit input to all the algorithms listed below.

• KeyGen(pp): On input the public parameter pp, outputs secret key sk and public key pk.
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• Sign(sk,m, T ): On input the secret key sk, a signing message m and a set of public keys
T , outputs a signature σ.

• Vrfy(T,m, σ): On input the set of public keys T , signing message m and signature σ,
outputs accept/reject.

Correctness. For any security parameter λ, any {pki, ski}i∈[N ] output by KeyGen, any s ∈
[N ], and any message m, we have Vrfy(T,m, Sign(sks,m, T )) = accept where T = {pki}i∈[N ].

Before introducing the security definitions of RS, we first assume there are three oracles as
follows:

• Joining Oracle pk ← Ojoin(⊥): Ojoin generates a new user and returns the public key pk
of the new user.

• Corruption Oracle sk ← Ocorrupt(pk): On input a public key pk which is a output of Ojoin,
returns the corresponding secret key sk.

• Signing Oracle σ ← Osign(T,m, pks): On input a set of public keys T , message m and the
public key of the signer pks ∈ T , returns a valid signature σ on m and T .

There are two security properties of RS: anonymity and unforgeability.

Anonymity. The anonymity of a RS scheme requires that an adversary can not tell the real
signer from all the ring members. The anonymity can be defined by the following game between
an adversary A and a challenger CH:

1. Setup: The challenger CH runs Setup with security parameter 1λ and sends the public
parameter pp to A.

2. Query: The adversary A is allowed to make queries to Ojoin.

3. Challenge: A picks a set of public keys T = {pki}i∈[N ] and a message m. A sends (T,m)
to CH. CH picks s ∈ [N ] and runs σ ← Sign(sks,m, T ). CH sends σ to A.

4. Output: A outputs a guess s∗ ∈ [N ].

A wins if s∗ = s. The advantage of A is defined by Advanon
A = |Pr[s∗ = s]− 1

N |.

Definition 2.3. A RS scheme is said to be anonymous (resp.unconditionally anonymous) if for
any PPT adversary (unbounded adversary) A, Advanon

A is negligible in λ.

Unforgeability. The unforgeability of a RS scheme captures the intuition that an outside
adversary cannot forge a signature for a ring, whose formal definition is defined by the following
game between an adversary A and a challenger CH.

1. Setup: The challenger CH runs Setup with security parameter 1λ and sends the public
parameter pp to A.

2. Query: The adversary A is allowed to make queries to Ojoin,Ocorrupt and Osign.

3. Output: A outputs a forgery (m∗, σ∗, T ∗).

A wins if

• Vrfy(m∗, σ∗, T ∗) = accept;

7



• all of the public keys in T ∗ are query outputs of Ojoin;

• no public key in T ∗ has been input to Ocorrupt; and

• (m∗, T ∗) has not been queried to Osign.

The advantage of A, denoted as Advforge
A , is defined by the probability that A wins in the

above game.

Definition 2.4. A RS scheme is said to be unforgeable if for any PPT adversary A, Advforge
A is

negligible in λ.

2.5 Linkable Ring Signature
A LRS scheme consists of five algorithms (Setup, KeyGen, Sign, Vrfy, Link):

• Setup(1λ): On input the security parameter 1λ, outputs public parameter pp. We assume
pp is an implicit input to all the algorithms listed below.

• KeyGen(pp): On input the public parameter pp, outputs secret key sk and public key pk.

• Sign(sk,m, T ): On input the secret key sk, a signing message m and a set of public keys
T , outputs a signature σ.

• Vrfy(T,m, σ): On input the set of public keys T , the signing message m and the signature
σ, outputs accept/reject.

• Link(m1,m2, σ1, σ2, T1, T2): On input two sets of public keys T1, T2, two signing messages
m1,m2 and their signatures σ1, σ2, outputs linked/unlinked.

Correctness. For any security parameter 1λ, any {pki, ski}i∈[N ] output by KeyGen, any s ∈
[N ], and any message m, we have Vrfy(T,m, Sign(sks,m, T )) = accept where T = {pki}i∈[N ].

There are three security properties of LRS: anonymity, linkability and nonslanderability.
According to [ASY06], the unforgeability of LRS can be implied by the linkability and the
nonslanderability defined below.

Anonymity. The anonymity of LRS is the same as that of RS. The security can be defined
by the following game between an adversary A and a challenger CH:

1. Setup: The challenger CH runs Setup with security parameter 1λ and sends the public
parameter pp to A.

2. Query: The adversary A is allowed to make queries to Ojoin.

3. Challenge: A picks a set of public keys T = {pki}i∈[N ] and a message m. A sends (T,m)
to CH. CH picks s ∈ [N ] and runs σ ← Sign(sks,m, T ). CH sends σ to A.

4. Output: A outputs a guess s∗ ∈ [N ].

A wins if s∗ = s. The advantage of A is defined by Advanon
A = |Pr[s∗ = s]− 1

N |.

Definition 2.5. A LRS scheme is said to be anonymous (resp.unconditionally anonymous) if
for any PPT adversary (unbounded adversary) A, Advanon

A is negligible in λ.
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Linkability. The linkability of LRS is used to go against the dishonest signers. The intuition
of linkability is that a signer cannot generate two valid unlinked signatures. It can be translated
into that the users in a ring with size N cannot produce N + 1 valid signatures and any two of
them are unlinkable. Linkability can be defined by the following game between an adversary A
and a challenger CH:

1. Setup: The challenger CH runs Setup and gives A public parameter pp.

2. Query: The adversary A is allowed to make queries to Ojoin, Ocorrupt, Osign.

3. Output: A outputs N +1 messages/signature pairs {T,mi, σi}i∈[N+1], where T is a set of
public keys with size N .

A wins if

• all public keys in T are query outputs of Ojoin;

• Vrfy(mi, σi, T ) = accept for all i ∈ [N + 1];

• Link(mi,mj , σi, σj) = unlinked for all i, j ∈ [N + 1] and i ̸= j.

The advantage of A, denoted as Advlink
A , is defined by the probability that A wins in the

above game.

Definition 2.6. A LRS scheme is said to be linkable if for any PPT adversary A, Advlink
A is

negligible in λ.

Nonslanderability. The nonslanderability of LRS means no adversary can entrap a user
to be considered to have signed twice even he corrupted all the users except the target user.
Nonsladerabiliy can be defined by the following game between an adversary A and a challenger
CH:

1. Setup: The challenger CH runs Setup and gives A public parameter pp.

2. Query: The adversary A is allowed to make queries to Ojoin, Ocorrupt, Osign.

3. Challenge: A gives CH a set of public keys T , a message m and a public key pks ∈ T . CH
runs Sign(sks,m, T ) and returns the corresponding signature σ to A.

4. Output: A outputs a set of public keys T ∗, a message m∗ and a signature σ∗.

A wins if

• Vrfy(m∗, σ∗, T ∗) = accept;

• pks is not queried by A to Ocorrupt and as an insider to Osign;

• all public keys in T and T ∗ are query outputs of Ojoin; and

• Link(m,m∗, σ, σ∗) = linked.

The advantage of A, denoted as Advslander
A , is defined by the probability that A wins in the

above game.

Definition 2.7 (Nonslanderability). A LRS scheme is said to be nonslanderable if for any
PPT adversary A, Advslander

A is negligible in λ.
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3 Generic Construction of Linkable Ring Signature
3.1 Construction
The generic construction is based on two primitives: (1) a ring signature scheme RS=(Setup,KeyGen,
Sign,Vrfy); (2) a one-time signature scheme OTS=(KeyGen, Sign,Vrfy).

• Setup(1λ): On input the security parameter 1λ, this algorithm runs p̂p ← RS.Setup(1λ).
It also chooses a hash function H : OVK → ˆPK modeled as random oracle, where OVK
and ˆPK are public key spaces of OTS and RS respectively. Finally, it outputs public
parameter pp = p̂p. We assume pp is an implicit input to all the algorithms listed below.

• KeyGen(pp): On input the public parameter pp, runs (p̂k, ŝk) ← RS.KeyGen(p̂p). Then,
the algorithm runs (ovk, osk) ← OTS.KeyGen. It returns public key pk = p̂k ⊙ H(ovk)
and secret key sk = (ŝk, osk, ovk).

• Sign(sks,m, T ): On input the secret key sks, a signing message m and a set of public keys
T = {pki}i∈[N ], computes p̂k′i = pki⊙H(ovks) for i ∈ [N ] and sets T̂ ′ = {p̂k′i}i∈[N ]. Next,
the algorithm runs

σ̂ ← RS.Sign(ŝks,m, T̂ ′),

σ̃ ← OTS.Sign(osks, σ̂, T, ovks).

Finally, it returns the signature σ = (σ̂, σ̃, ovks).

• Vrfy(T,m, σ): On input the set of public keys T , a signing message m and the signature
σ, this algorithm first parses σ as σ = (σ̂, σ̃, ovk) and computes p̂k′i = pki ⊙ H(ovk) for
i ∈ [N ]. Next, it runs RS.Vrfy(T̂ ′ = {p̂k′i}i∈[N ],m, σ̂) and OTS.Vrfy(ovk, (σ̂, T, ovk), σ̃).
Finally, it outputs accept if RS.Vrfy returns accept and OTS.Vrfy returns accept; otherwise
outputs reject.

• Link(m1,m2, σ1, σ2, T1, T2): On input two sets of public keys T1, T2, two signing mes-
sages m1,m2 and their signatures σ1, σ2, runs Vrfy(m1, σ1, T1) and Vrfy(m2, σ2, T2). If
Vrfy(m1, σ1, T1) = reject or Vrfy(m2, σ2, T2) = reject, it aborts. Otherwise, the algorithm
parses σ1 and σ2 as σ1 = (σ̂1, σ̃1, ovk1) and σ2 = (σ̂2, σ̃2, ovk2), and compares ovk1 and
ovk2. If ovk1 = ovk2, then outputs linked; otherwise outputs unlinked.

3.2 Security
Theorem 3.1. Our LRS scheme is anonymous (resp. unconditionally anonymous) if the
underlying RS scheme is anonymous (resp. unconditionally anonymous).

Proof. If there exists an adversary A with oracle access to Ojoin can break the anonymity of
LRS, then we can construct an adversary B with oracles access to Ôjoin, Ôsign to break the
anonymity of RS with the same advantage, where Ôjoin and Ôsign are oracles in security games
of RS.

Given a signature σ̂ on the set of public keys T and a message m chosen by B, B interacts
with A with the aim to guess the signer s.

1. Setup: Given the public parameter p̂p, B selects a hash function H : OVK → ˆPK, where
H is modeled as random oracle and OVK and ˆPK are public key spaces of OTS and RS
respectively. B then sends pp = p̂p to A.

10



2. Oracle Simulation: A is allowed to access the joining oracleOjoin: B runs (ovk, osk)←OTS.
KeyGen at first. Upon receiving a joining query, B queries Ôjoin to obtain a public key p̂k

of RS, computes pk = p̂k ⊙H(ovk). B then sends pk to A.
The only difference between this simulation and the real game is that in this simulation,
every pk is generated by the same ovk. A cannot distinguish this simulation from the
real game since the distribution of p̂k is close to the uniform distribution over ˆPK, which
means the pk generated in two games are both close to the uniform distribution over ˆPK.

3. Challenge: Received (T = {pki}i∈[N ],m) fromA, B computes p̂k′i = pki⊙H(ovk) for all i ∈
[N ] and sets T̂ ′ = {p̂k′i}i∈[N ]. B then sends (T̂ ′,m) to the challenger CH and received a sig-
nature σ̂ (signed by p̂ks ∈ T̂ which is chosen by CH). B runs σ̃ ←OTS.Sign(osk, σ̂, T, ovk)
and sends σ = (σ̂, σ̃, ovk) to A.

4. Output: A outputs the index s∗.

Finally, B forwards s∗ to the challenger CH. A essentially guesses which index is used to generate
σ̂ since σ̃, ovk are identical no matter which index CH has chosen. If A succeeds, B also succeeds
due to B is also aim to guess which index is used to generate σ̂. We have Advanon

A =Advanon
B .

Theorem 3.2. Our LRS scheme is linkable in the random oracle model if the underlying RS
is unforgeable .

Proof. We proceed via a sequence of games. Let Si be the event that A succeeds in Game i.

Game 0. This is the standard linkability game for LRS. The challenger CH interacts with A
as below:

1. Setup: CH runs p̂p ←RS.Setup(1λ), selects a hash function H : OVK → ˆPK, where H

is modeled as random oracle and OVK and ˆPK are public key spaces of OTS and RS
respectively. CH then sends pp = p̂p to A.

2. Oracle Simulation: A is allowed to access the following four oracles:

Random Oracle H: To make our proof explicit, we separate the queries of H as two
categories: querying directly and querying in Ojoin and Osign. CH initializes an empty
set RO. Upon receiving a random oracle query i, if it has been queried, CH returns
corresponding output in RO; else, CH picks hi ← ˆPK at random, sends hi to A and
stores the pair of (i, hi) in RO.

Joining Oracle Ojoin: CH initializes an empty set JO. Upon receiving a joining query, CH
runs (p̂k, ŝk) ←RS.KeyGen and (ovk, osk) ←OTS.KeyGen, computes pk = p̂k ⊙ H(ovk),
sets sk = (ŝk, osk, ovk). CH then sends pk to A and stores pk in JO.

Corruption Oracle Ocorrupt: Upon receiving a corruption query pk, CH sends correspond-
ing sk to A if pk ∈ JO; else, CH return ⊥.

Signing Oracle Osign: Upon receiving a signing query (T = {pki}i∈[N ],m, pks ∈ T ), CH
computes p̂k′i = pki⊙H(ovks) for i ∈ [N ], sets T̂ ′ = {p̂k′i}i∈[N ], runs σ̂ ←RS.Sign(ŝks,m, T̂ ′)
and σ̃ ←OTS.Sign(osks, σ̂, T, ovks). CH then sends σ = (σ̂, σ̃, ovks) to A.

3. Outputs: A outputs N + 1 message/signature pairs {mi, σi}i∈[N+1] on the same set of
public keys T = {pki}i∈[N ]. A wins if

11



• all public keys in T are query outputs of Ojoin;
• Vrfy(mi, σi, T ) = accept for all i ∈ [N + 1];
• Link(mi,mj , σi, σj)=unlinked for all i, j ∈ [N + 1] and i ̸= j.

According to the definition, we have

Advlink
A = Pr[S0]

Game 1. Same as Game 0 except that in Ojoin of Oracle Simulation stage, CH additionally
choose h′ ← ˆPK at first before receiving queries. This change is purely conceptual and thus we
have

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that in H of Oracle Simulation stage, CH chooses a index
I ← [1, ..., qh], where qh is the maximum number of times A directly queries H, then CH
programs the output of the Ith query as h′.

By the programmability of H and h′ is chosen uniformly and independently, we have

Pr[S2] = Pr[S1]

Game 3. Same as Game 2 except that in Ojoin of Oracle Simulation stage, CH additionally
runs ( ˆpk′′, ˆsk′′) ← RS.KeyGen and computes h such that p̂k ⊙ h = ˆpk′′ ⊙ h′ upon receiving a
joining query. CH then sends pk = p̂k ⊙ h to A. Due to the distribution of p̂k is close to the
uniform distribution over ˆPK, hence

Pr[S3] = Pr[S2]

Game 4: Same as Game 3 except that in H of Oracle Simulation stage, CH programs the
output of the query on ovk (querying in Ojoin) as corresponding h. By the programmability of
H, we have

Pr[S4] = Pr[S3]

Lemma 3.1. If the RS is unforgeable, then the probability that any adversary wins in Game 4
is negligible in λ.

If A wins in Game 4, then we can construct an adversary B with oracles access to Ôjoin, Ôcorrupt
and Ôsign to break the unforgeability of RS with the advantage qh · Advforge

A , implying Pr[S4]

must be negligible, where Ôjoin, Ôcorrupt and Ôsign are oracles in security games of RS.
B interacts with A in Game 4 with the aim to output (m∗, σ∗, T̂ ∗) satisfying the conditions

in Definition 4.
1. Setup: Given the public parameter p̂p, B selects a hash function H : OVK → ˆPK, where

H is modeled as random oracle and OVK and ˆPK are public key spaces of OTS and RS
respectively. B then sends pp = p̂p to A.

2. Oracle Simulation:

Random Oracle H: To make our proof explicit, we separate the queries of H as two
categories: querying directly and querying in Ojoin and Osign. B initializes an empty set
RO, chooses a index I ← [1, ..., qh], where qh is the maximum number of times A directly
queries H. A then programs the output of the Ith query as h′ and stores them in RO.
On receiving a random oracle query i, if it has been queried, A returns corresponding
output in RO; otherwise, B programs the output as corresponding h if it is the query on
ovk (querying in Ojoin), else B picks hi ← ˆPK, sends hi to A and stores the pair (i, hi) in
RO.
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Joining Oracle Ojoin: B initializes an empty set JO and chooses h′ ← ˆPK. Upon receiving
a joining query from A, B queries Ôjoin twice to get two public keys p̂k, ˆpk′′, computes h

such that p̂k ⊙ h = ˆpk′′ ⊙ h′, runs (ovk, osk) ← OTS.KeyGen. B then sends pk = p̂k ⊙ h
to A and stores pk in JO.

Corruption Oracle Ocorrupt: Upon receiving a corruption query pk, B queries the oracle
Ôcorrupt on input p̂k to obtain ŝk if pk ∈ JO; else B returns ⊥. B then sends sk =

(ŝk, ovk, osk) to A.

Signing Oracle Osign: Upon receiving a signing query (T = {pki}i∈[N ],m, pks ∈ T ), B
queries the oracle Ôsign on input (T̂ ′ = {p̂k′i = pki ⊙ hi}i∈[N ],m, p̂ks ∈ T̂ ′) to get a
signature σ̂, runs σ̃ ←OTS.Sign(osks, σ̂, T, ovks). B then sends σ = (σ̂, σ̃, ovks) to A.

3. Output: A outputs N + 1 message/signature pairs {mi, σi}i∈[N+1] on the same set of
public keys T = {pki}i∈[N ] and wins in Game 4.

Upon receiving {mi, σi, T = {pkj}j∈[N ]}i∈[N+1], B parses every signature σi as σi = (σ̂i, σ̃i, ovki).
Since A outputs N +1 unlinked signatures on N public keys, so there exits at least one of ovki
in σi which is not produced by Ojoin. We assume it is ovk∗. Hence, the probability of p̂k∗j =

pkj ⊙H(ovk∗) has been input to Ôcorrupt and Ôsign is negligible for all j ∈ [N ]. Furthermore, if
ovk∗ is the Ith query of H, which happens with probability at least 1

qh
, then {p̂k∗j}j∈[N ] are all

query outputs of Ôjoin. Hence, B can outputs a successful forgery (m∗, σ̂∗, T̂ ∗ = {p̂k∗j}j∈[N ]) if
H(ovk∗) = h′; else it returns ⊥.

It is straightforward to verify that B’s simulation for Game 4 is perfect, we can conclude

Pr[S4] = qh · Advforge
B

Putting all the above together, the theorem immediately follows.

Theorem 3.3. Our LRS is nonslanderable in the random oracle model if the underlying one-
time signature is unforgeable .

Proof. If there exists an adversary A with oracle access to Ojoin,Ocorrupt and Osign can break
the nonslanderability of LRS, then we can construct an adversary B allowed to query the
signature once for any message of his choosing to break the unforgeability of OTS with the
same advantage, implying that Advslander

B must be negligible.
Given a public key ovk∗ of OTS, B interacts with A with the aim to forge (m∗, σ∗) such

that OTS.Vrfy(ovk∗,m∗, σ∗) = accept.

1. Setup: B runs p̂p ← RS.Setup and chooses a hash function H : OVK → ˆPK, where H

is modeled as random oracle and OVK and ˆPK are public key spaces of OTS and RS
respectively. B then sends pp = p̂p to A.

2. Oracle Simulation:

Joining Oracle Ojoin: B initializes an empty set JO. Upon receiving a joining query, B
samples pk ← ˆPK. B then sends it to A and stores it in JO.
This change cannot be distinguished from the real game since pk = p̂k ⊙H(ovk) in real
game and H is the random oracle.
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Corruption Oracle Ocorrupt: B initializes an empty set CO. Upon receiving a corruption
query pk, if pk ∈ JO, B runs (ovk, osk) ← OTS.KeyGen and (p̂k, ŝk) ← RS.KeyGen,
computes h = pk ⊙ p̂k, sets sk = (ŝk, ovk, osk). B then sends sk to A and stores (pk, sk)
in CO.
This change is purely conceptual and thus A cannot distinguish this change from the real
game.

Signing Oracle Osign: Upon receiving (m,T = {pki}i∈[N ], pks), B runs (ovks, osks) ←
OTS.KeyGen and (p̂ks, ŝks) ← RS.KeyGen, computes h = pks ⊙ p̂ks and p̂ki = pki ⊙
h for other i ∈ [N ]. B then runs σ̂ ← RS.Sign(ŝks,m, T̂ = {p̂ki}i∈[N ]) and σ̃ ←
OTS.Sign(osks, σ̂, T, ovks). Finally, B sends σ = (σ̂, σ̃, ovks) to A.
This change is purely conceptual and thus A cannot distinguish this change from the real
game.

Random Oracle H: B initializes an empty set RO. Upon receiving a random oracle query,
if it has been queried, B returns corresponding output in RO; otherwise, B programs the
output as corresponding h if it is the query in Ojoin and Osign, else B picks h ← ˆPK at
random, sends h to A and stores it in RO.
By the programmability of H we conclude that A cannot distinguish this change from the
real game.

3. Challenge: Upon receiving (T = {pki}i∈[N ],m, pk ∈ T ) from A, B runs (p̂k, ŝk) ←
RS.KeyGen, programs H(ovk∗) = pk ⊙ p̂k, computes p̂ki = pki ⊙ H(ovk∗), i ∈ [1, ..., N ]
and runs σ̂ ← RS.Sign(ŝk,m, T̂ = {p̂ki}i∈[N ]). B then queries the one-time signature σ̃ on
input the message (σ̂, T, ovk∗). Finally, B sends σ = (σ̂, σ̃, ovk∗) to A.
B embeds ovk∗ into the challenge which is sent to A by programming ovk∗ as the OTS
public key to generate the challenge.

4. Output: A outputs a set of public keys T ∗, a message m∗ and a signature σ∗ and wins if
Link(σ∗, σ,m∗,m, T ∗, T ) = linked.

B parses the signature σ∗ as σ∗ = (σ̂∗, σ̃∗, ovk∗) and sends ((σ̂∗, T ∗, ovk∗), σ̃∗) to CH. We
heve OTS.Vrfy(ovk∗, (σ̂∗, T ∗, ovk∗), σ̃∗) = accept according to the definition of Link(σ∗, σ,m∗,

m, T ∗, T ) = linked. IfA succeeds, B also succeeds due to the above. We have Advslander
A =Advforge

B .

4 Instantiation
We show an instantiation of our construction by using the RS in [ESS+18] and the signature
Dilithium [DKL+18].

• Setup(1λ): On input 1λ, select the commitment key ck = G ← R
n×(m×kβ)
q , two hash

functions H : {0, 1}∗ → C and H ′ : {0, 1}∗ → Rn
q , where H,H ′ are modeled as random

oracles and C = {Xω : 0 ≤ ω ≤ 2d− 1} is the challenge space.

• KeyGen(pp): On input public parameter pp, select ri ← {−M, ...,M}d for i ∈ [m] and set
r = (r1, ..., rm), compute c = Comck(0; r), where 0 is the all-zero vector, set p̂k = c, ŝk =
r, run (ovk, osk)← Dilithium.KeyGen(1λ). Output pk = p̂k+H ′(ovk), sk = (ŝk, osk, ovk).
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• Sign(sks,m, T ): On input the secret key sks, a signing message m and a set of public keys
T = {pki}i∈[N ]

1. Compute p̂k′i = pki −H ′(ovks) for each i ∈ [N ] and set T̂ ′ = {p̂k′i}i∈[N ].
2. Sample a0,1, ..., ak−1,β−1 ← Dd

12
√
k
, compute aj,0 = −

∑β−1
i=1 aj,i for j = 0, ..., k −

1, select rb,i, rc,i ← {−M, ...,M}d for i ∈ [m] and set rb = (rb,1, ..., rb,m), rc =
(rc,1, ..., rc,m), sample ra,i, rd,i ← Dd

12M
√
2md

for i ∈ [m] and set ra = (ra,1, ..., ra,m),
rd = (rd,1, ..., rd,m), compute

A = Comck(a0,0, ..., ak−1,β−1; ra)
B = Comck(δs0,0, ..., δsk−1,β−1; rb)
C = Comck({aj,i(1− 2δj,i)}k−1,β−1

j,i=0 ; rc)
D = Comck(−a20,0, ...,−a2k−1,β−1; rd),

where δj,i is Kronecker’s delta, δj,i = 1 if j = i and δj,i = 0 otherwise. Sample ρj,i ←
Dmd

12M
√

3md/k
for i ∈ [m] and set ρj = (ρj,1, ..., ρj,m), compute Ej =

∑N−1
i=0 pi,jci +

Com(0; ρj) for j = 0, ..., k − 1, where pi,j is computed by pi(x) =
∏k−1

j=0(x · δsj ,ij +
aj,ij ) =

∏k−1
j=0 x · δsj ,ij +

∑k−1
j=0 pi,jx

j = δs,ix
k +

∑k−1
j=0 pi,jx

j , i ∈ [N ]. Compute x =

H ′(ck,m, T̂ ′, A,B,C,D, {Ej}k−1
j=0), fj,i = x · δsj ,ij + aj,ij , ∀j, ∀i ̸= 0, zb = x · rb + ra,

zc = x · rc + rd, z = xk · ŝks −
∑k−1

j=0 x
j · ρj . Set CMT= (A,B,C,D, {Ej}j=k−1

j=0 ) and
RSP = ({fj,i}k−1,β−1

j=0,i=1 , z, zb, zc).
3. Repeat step 2 L times in parallel and get {CMTl}l∈[L], x = {xl}l∈[L] and {RSPl}l∈[L].

If RSPl ̸= ⊥ for all l ∈ [L], set σ̂ = ({CMTl}l∈[L],x, {RSPl}l∈[L]). Otherwise, go to
Step 2 (repeat at most −λ

log(1−1/M2)
).

4. Run σ̂ ← Dilithium.Sign(osk, (σ̂, T, ovks)).
5. Output σ = (σ̂, σ̃, ovks).

• Vrfy(T,m, σ): On input the set of public keys T = {pki}i∈[N ], a signing message m and
the signature σ, parse σ as σ = (σ̂, σ̃, ovk) and compute p̂k

′
i = pki − H(ovk) for each

i ∈ [N ], then

1. For every (CMTl, xl,RSPl), l ∈ [L] Check whether
- fj,0 = x−

∑β−1
i=1 fj,i for j = 0, ..., k − 1

- xB +A = Comck(f0,0, ..., fk−1,β−1; zb)
- xC +D = Comck(f0,0(x− f0,0), ..., fk−1,β−1(x− fk−1,β−1); zc)
- ||fj,i|| ≤ 60

√
dk, ∀j, ∀i ̸= 0

- ||fj,0|| ≤ 60
√

dk(β − 1), ∀j
- ||z||, ||zs||, ||zc|| ≤ 24

√
3Mmd

-
∑N−1

i=0 (
∏k−1

j=0 fj,ij )ci −
∑k−1

j=0 Ejx
j = Comck(0; z) for i = (i0, ..., ik−1)

if not, return reject.
2. Run accept/reject← Dilithium.Vrfy(ovk, (σ̂, T, p̂k)).
3. If neither 1 and 2 return reject, return accept.

• Link(m1,m2, σ1, σ2, T1, T2): On input two sets of public keys T1, T2, two signing messages
m1,m2 and their signatures σ1, σ2, run Vrfy(m1, σ1, T1) and Vrfy(m2, σ2, T2). Parse σ1 and
σ2 as σ1 = (σ̂1, σ̃1, ovk1) and σ2 = (σ̂2, σ̃2, ovk2). Compare ovk1 and ovk2. Return linked
if Vrfy(m1, σ1, T1) = Vrfy(m2, σ2, T2) = accept and ovk1 = ovk2.
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5 Comparison and Experimental Analysis
5.1 Comparison
We compare the size of public key and signature of existing lattice-based LRS in Table 1. Like
[ESS+18], our scheme is able to adjust the base representations for user indices and results in
different asymptotic growths of signature length.

Table 1: Comparison of Lattice-Based Linkable Ring Signature
Scheme Public Key Size Signature Size Assumption

[YAL+17] nlogp 2m(logq)2 · logN SIS/LWR
[ZZTA17] mdlogq m2dlogq · logN I(f)-SVPγ

[BLO18] ndlogq mlog(2σ
√
d) · N M-SIS/M-LWE

[TSS+18] dlogq mlog(ησ
√
d) · N R-SIS

[LAZ18] dlogq (256 + 2dlogq) · N NTRU
Ours ndlogq (ndlogq + βdlog

√
144LlogβN)L · logβN M-SIS

1. Constant terms are omittd.
2. n and m denote the row and column of matrix on Zq or Rq, d denotes the dimension of polynomials, β
denotes the base representations, σ and L denote the standard deviation of discrete normal distribution and
the number of repetitions in our scheme.

5.2 Experimental Analysis
In order to compare the size and running time of the LRS scheme and the underlying RS scheme,
we implement the instantiation of our scheme and the RS scheme [ESS+18] based on the NTL
library and the source code of Dilithium.

Parameter setting and Experimental results. We set the parameter in the part of RS
as in Table 3 and adopt the very high version of Dilithium.

Table 2: Experimental Parameter
Parameters M n q m l d L k

Values 100 9 260 71 100 76 17 2

Table 3: Experimental Results
Size(KB) Time(ms)

Ring Size Public Key Signature Size KeyGen Sign Vrfy
26 5.13 1083 84.04 603.18 418.94

Ring 28 5.13 1100 84.04 1195.96 904.09
Signature 210 5.13 1135 84.04 2993.27 2524.47

212 5.13 1205 84.04 10310.9 9268.26
26 5.13 1088 84.89 604.94 421.47

Linkable 28 5.13 1105 84.89 1201.53 906.17
Ring Signature 210 5.13 1140 84.49 2995.47 2527.49

212 5.13 1210 84.49 10313.2 9272.20

As depicted in Table 3, the experimental results show the performance of the LRS scheme is
close to the performance of the underlying RS.
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A Comment on [LAZ18].
Lu et al. [LAZ18] adopted the definitions of anonymity, linkability and nonslanderability from
[LASZ14]. Then, they gave a theorem which shows that the unforgeability is implied by link-
ability and nonslanderability. We first review the definition of linkability and the theorem as
follows:

The linkability in [LAZ18] is defined in terms of the following game between a challenger
CH and an adversary A:

1. Setup. CH runs pp← Setup(1λ) and sends pp to A.

2. Query. A is given access to Ojoin,Ocorrupt,Osign and may query the oracles in an adaptive
manner.

3. Output. A outputs two sets {T1,m1, σ1} and {T2,m2, σ2}, where T1 and T2 are two sets
of public keys, m1 and m2 are messages, σ1 and σ2 are signatures.

A wins the game if

• all public keys in T1 and T2 are query outputs of Ojoin;

• Vrfy(T1,m1, σ1) = accept;

• Vrfy(T2,m2, σ2) = accept;

• A queried Ocorrupt less than two times; and

• Link(m1, σ1,m2, σ2) = unlinked.

The advantage of A, denoted as Advlink
A , is defined by the probability that A wins in the above

game.

Definition A.1 ([LAZ18], Definition 11). A LRS scheme is linkable if for any polynomial-time
adversary A, Advlink

A is negligible in λ.

Theorem A.1 ([LAZ18], Theorem 2). If a LRS scheme is linkable and nonslanderable, it is
also unforgeable.
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Issue 1. Theorem A.1 does not hold for the definition of linkability in [LAZ18]. The content
of theorem A.1 was introduced in [ASY06] which towards the security definitions in [ASY06].
However, the definition of linkability in [LAZ18] is different from the definition in [ASY06]. In
[LAZ18], the adversary A against unforgeability is allowed to make polynomial many Ocorrupt
queries in the unforgeability game, whereas the adversary B against linkability is restricted to
make at most one Ocorrupt query in the linkability game. This means B cannot simulate Ocorrupt
for A and thus B cannot run A to break the linkability.

Issue 2. There is a gap in the proof of linkability. They reduced the linkability of the LRS
to the collision resistance of CH+ as follows: First, they embedded the collision resistance
challenge hkc into one of the public keys pkI by computing pkI = hkc ⊕ H(ovkI). Second,
the adversary A outputs two signatures and they concluded that at least one of the output
signatures should be generated from the secret key that A does not obtain because A is allowed
to make at most one Ocorrupt query. The signature is denoted as (m∗, σ∗, T ∗), where σ∗ =
{(m∗

1, r
∗
1), ..., (m

∗
N , r∗N ), ovk∗, σ̃∗}. Finally, they assumed pkI ∈ T ∗ and used (m∗, σ∗, T ∗) to find

a collision of hkc according to the General Forking Lemma.
However, the collision resistance challenge may not be embedded into the output signatures

of A. This means that hkc is not used to generate the signature (m∗, σ∗, T ∗) although pkI ∈ T ∗.
The reason is that ovk∗ may not equal to ovkI and thus hkc ̸= hki = pki ⊕H(ovk∗) for every
i ∈ [N ]. According to the signing algorithm of the LRS in [LAZ18], we can conclude that hkc
is independent of σ∗ if ovk∗ ̸= ovkI . Thus, the collision resistance of CH+ cannot be broken
although A has broken the linkability of the LRS.

20


	Introduction
	Our Contributions
	Technique Overview
	Related Work

	Preliminary
	Notations
	Module-SIS Problem and Commitment Scheme
	Rejection Sampling
	Ring Signature
	Linkable Ring Signature

	Generic Construction of Linkable Ring Signature
	Construction
	Security

	Instantiation
	Comparison and Experimental Analysis
	Comparison
	Experimental Analysis

	Comment on DBLP:journals/iacr/LuAZ18.

