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Abstract. Cube attacks are an important type of key recovery attacks against stream
ciphers. In particular, it is shown to be powerful against Trivium-like ciphers. Tra-
ditional cube attacks are experimental attacks which could only exploit cubes of
size less than 40. At CRYPTO 2017, division property based cube attacks were
proposed by Todo et al., and an advantage of introducing the division property to
cube attacks is that large cube sizes which are beyond the experimental range could
be explored, and so powerful theoretical attacks were mounted to many lightweight
stream ciphers.

In this paper, we revisit the division property based cube attacks. There is an
important assumption, called Weak Assumption, proposed in division property based
cube attacks to support the effectiveness of key recovery. Todo et al. in CRYPTO
2017 said that the Weak Assumption was expected to hold for theoretically recovered
superpolies of Trivium according to some experimental results on small cubes. In
this paper, based on some new techniques to remove invalid division trails, some
best key recovery results given at CRYPTO 2017 and CRYPTO 2018 on Trivium
are proved to be distinguishers. First, we build a relationship between the bit-based
division property and the algebraic degree evaluation on a set of active variables.
Second, based on our algebraic point of view, we propose a new variant of division
property which incorporates the distribution of active variables. Third, a new class
of invalid division trails are characterized and new techniques based on MILP models
to remove them are proposed. Hopefully this paper could give some new insights
on accurately evaluating the propagation of the bit-based division property and also
attract some attention on the validity of division property based cube attacks against
stream ciphers.
Keywords: Division property, cube attacks, MILP, Trivium

1 Introduction
The cube attack is a powerful cryptanalytic technique against stream ciphers proposed
by Dinur and Shamir at Eurocrypt 2009 in [1]. Note that for a stream cipher, the first
output bit could be described by a tweakable polynomial f(x, v) where x represents
secrete variables and v represents public variables. Then the main idea of cube attacks
is to simplify f by evaluating a set of public variables indexed by I to all their possible
values and summing the resultant polynomials. The set CI containing all the possible
values of the public variables indexed by I is called a cube and the symbolic sum of 2|I|

resultant polynomials obtained from f is called the superpoly of CI in f . In cube attacks,
attackers make use of superpolies to recover secrete key information.

In [1, 2, 3, 4], low-degree superpolies are found by performing a number of lineari-
ty/quadraticity tests and the algebraic normal forms of superpolies are also experimental-
ly recovered. Hence, cube attacks in [1, 2, 3, 4] are called experimental cube attacks. The
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advantage of an experimental cube attack is that it is easy to verify the correctness of the
recovered superpolies since their ANFs are clearly provided. However, testing cubes of
size greater than 35 is time consuming. Hence, in experimental cube attacks, the sizes of
cubes are typically confined to 40, which greatly restricts the number of attacking rounds.

In [5], by introducing the bit-based division property into cube attacks, Todo et al.
could exploit large cube sizes and theoretically evaluate the security of a stream cipher
against cube attacks. The division property was first proposed by Todo in [6] as a gener-
alization of integral property used in integral cryptanalysis against block ciphers. In [6],
Todo systematically studied propagation rules of division property against Feistel Net-
work and Substitute-Permutation Network (SPN). Later, at FSE 2016, the authors of [7]
further proposed the bit-based division property and applied it to SIMON family yielding
several new integral distinguishers. In [8], Xiang et al. introduced mixed integer linear
programming (MILP) models to evaluate the division propagation which was shown to be
more efficient.

In [5], for a cube CI , by solving an MILP model built according to the propagation
rules of the division property, the authors could determine a set J , where the superpoly
pI depends on xj ’s (j ∈ J) for arbitrary assignments of non-cube variables. Then, by
constructing the truth table of pI for some randomly chosen assignments of non-cube
variables, they attempted to find a proper assignment such that pI was non-constant.
Once a non-constant superpoly pI was found, a part of the key information could be
recovered. Due to the power of MILP solvers, large cubes could be explored. For example,
in [5], it was shown that the superpoly of a given 72-dimensional cube was dependent on
at most five key variables for the 832-round Trivium. Later in [9], the authors introduced
several techniques to improve the division property based cube attacks proposed in [5].
Their techniques focused on finding proper assignments of non-cube variables faster and
reducing the complexity of recovering the superpoly. It was shown in [9] that the superpoly
of a given 78-dimensional cube was dependent on at most one key variable for the 839-
round Trivium. So far this is the best key recovery attack against Trivium regarding the
number of rounds.

Besides division property based cube attacks, another two important variants of cube
attacks are dynamic cube attacks [10] and correlation cube attacks [11]. Dynamic cube
attacks recover secrete key information by exploiting distinguishers on superpolies such
as unbalance and constantness. To obtain such distinguishers, the main idea of dynamic
cube attacks is to simplify the ANF representation of some intermediate state bits by
assigning dynamic constraints to public variables. Dynamic cube attacks were success-
fully used to break Grain-128 [10, 12]. Although in [13], the authors propose dynamic
cube attacks against 721- and 855-round Trivium, quickly the attack against 721-Trivium
was experimentally verified to fail and some complexity analysis also indicated that the
855-round attack was questionable in [14]. Correlation cube attacks recover secrete key
information by solving a system of probabilistic equations in key variables derived from
conditional correlation properties between superpolies and a set of simple key expressions
which is a basis of the superpoly. In [11], a correlation cube attack was applied to 835-
round Trivium which could recover about 5-bit key information with time complexity 244,
using 245 keystream bits and preprocessing time 251.

1.1 Motivations
First, we revisit what is guaranteed by a bit-based division trail for an r-round iterative ci-
pher. Second, we briefly discuss how division trails are used in cube attacks against stream
ciphers, and we will see the problem. Third, we discuss the countermeasure proposed by
previous papers to the problem. Forth, we explain why we focus on Trivium.

Let E be a target r-round n-bit iterated cipher, whose input variables are denoted by
x1, x2, . . . , xn and the output variable is denoted by y, respectively, i.e., y = E(x1, x2, . . .,
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xn). If E is a block cipher, then x1, x2, . . . , xn will represent plaintext bits and y means a
ciphertext bit1. If E is a stream cipher, then x1, x2, . . . , xn will represent both IV and key
variables and y means the first keystream bit. If there is a division trail k0

E−→ kr = 1, then
attackers do not know whether the output bit y is balanced or not. On the other hand,
if there is no division trail such that k0

E−→ 1, then it is guaranteed that the output bit y

is balanced. The prevail method to check the existence of a division trail like k0
E−→ 1 is

using MILP solvers, that is, generating an MILP model to cover all division trails starting
from k0, and the feasibility of the model will tell us whether there is a division trail from
k0 to 1 or not.

Next let us revisit how the division property is used in a cube attack against a stream
cipher f(x, v) where x and v denote the secrete key and IV variables, respectively. Given
a cube CI and a secrete key variable xj where I is a subset of IV indices, generate an
MILP model M that covers all division trails from (ej , kI) and evaluate whether there
exists a division trail such that (ej , kI) f−→ 1, where kI is the division property of the cube
CI and ej is the unit vector whose only j-th bit is 1. If there is no division trail such
that (ej , kI) f−→ 1, then it is guaranteed that the secrete key variable xj is not involved in
the superpoly pI of the cube CI . But on the other hand, if there is a division trail such
that (ej , kI) f−→ 1, attackers do not know whether the secrete key variable xj is involved
in pI or not. Hence what is guaranteed by the division property in a cube attack is a set
of secrete key variables not appearing in a target superpoly. However, to mount a key
recovery attack, attackers need to know all key variables that are involved in a superpoly.

The countermeasure used in the previous papers on division property based cube
attacks is giving the following assumption to support the existence of key variables in a
superpoly, namely Weak Assumption.

Assumption 1 (Weak Assumption [5, 15, 9]). For a cube CI , there are many values in
the constant part of IV whose corresponding superpoly is not a constant function.

Based on this assumption, a division property based cube attack goes roughly like this.
Also take f(x, v) and the cube CI for example. First using the division property to rule
out a set J1 of secrete key variables not appearing in the superpoly pI , which on the other
hand implies that secrete key variables not included in J1 possibly appear in pI , the set
of which is denoted by J2. That is to say, it is unknown whether a secrete key variable
in J2 appears in pI or not, but if pI is not a constant function, then J2 includes all its
variables. Note that it is also possible that none of the key variables in J2 appears in pI ,
for which case pI is a constant function. Second, based on Assumption 1, it is thought that
attackers could easily find an appropriate constant part of IV to make pI not a constant
function. In such case, attackers recover the algebraic normal form (ANF) of pI on the set
J2 of key variables. Finally, attackers obtain the value of pI online to build an equation
on key variables. Because cube sizes used in division property based cube attacks were
very large, best results are theoretical attacks and impossible to experimentally verify. We
argue that if Assumption 1 fails, some key recovery attacks claimed in [5, 15, 9] will be
distinguishing attacks only. The validity of Weak Assumption was ever briefly discussed
in [15, Sect. 7]. Based on some experiments on small cubes, it was concluded in [15] that
Weak Assumption was expected to hold in theoretical recovered superpolies for Trivium,
and if the assumption did not hold, the recovered superpoly is useful for distinguishing
attacks. Although we agree that Assumption 1 should hold with a large probability, they
still might fail for a few specific attacks, especially when few key variables are involved in
a superpoly, say 1 or 2 key variables, which often happens on Trivium.

1Generally, for a block cipher, there are n-bit ciphertexts. Because we focus on stream ciphers, here
we simplify the representation of an iterated block cipher to make it look unified with that of a stream
cipher.
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The validity of Assumption 1 as well as our experimental observation that Assumption
1 fails in some best key recovery attacks on Trivium is the motivation of our work in this
paper.

Finally, there are two reasons for us focusing on Trivium in this paper. First, Trivium
is an important and typical target for cube attacks. Second, compared with other NFSR-
based ciphers, we feel that Weak Assumption is more likely to fail for Trivium since
Trivium has quite simple state update function and the recovered superpolies often involve
few key variables. So far we do not observe invalid key recovery results for other NFSR-
based ciphers.

1.2 Our Contributions
The validity of Assumption 1 is related to the accuracy of division trails. To raise the
accuracy, it is necessary to remove as many invalid division trails as possible. In this
paper, we propose new methods to identify and remove a class of invalid division trails
which could not be aborted by the previous propagation rules of the division property.
Consequently, division property based attacks could definitely be improved.

The theoretical basis is our algebraic point of view of the bit-based division property.
When an input set of an iterative cipher is just a cube defined by a set of active variables, it
is shown that if we treat each output bit as a function on input variables, then the zero-sum
property in the definition of the bit-based division property is equivalent to an algebraic
degree bounding on active variables. Then we rewrite the definition of the bit-based
division property by focusing on algebraic degrees. Furthermore, we propose a new variant
of division property with propagation information of each active variables by describing
its propagation rules for AND, XOR and COPY. Besides, to facilitate computing division
trails of the new variant we also provide MILP models for describing these propagation
rules. Then with a division trail of the new variant, we could trace the propagation of
every active variable along this trail2. This is impossible for the conventional division
trails. Based on this new variant of division property, it is easy for us to characterize
a new class of invalid division trails: if the propagation of active variables given by a
division trail is not true, then this trail is invalid. Finally, we show how to efficiently
remove invalid division trials with MILP models.

As an application, we apply our new techniques to the round-reduced Trivium. Our
main goal is to check whether the known best key-recovery attacks on Trivium are based
on invalid division trails. If the existence of all key variables in a superpoly is implied by
invalid division trails, then the superpoly is a constant polynomial, and so it is useless in a
key recovery attack. Best key-recovery attacks against the round-reduced Trivium based
on division property were given in [5, 9]. The best key-recovery attack in [5] was the one
mounting to 832-round Trivium which only used one superpoly of some 72-dimensional
cube and the superpoly was said to have 5 key variables, and the best key-recovery attack
in [9] was the one mounting to 839-round Trivium which only used one superpoly of some
78-dimensional cube and the superpoly was said to have 1 key variable. We checked these
two best ones as well as some other key-recovery attacks reported in [9] by detecting
and removing invalid division trails defined in this paper. Our results are summarized
in Table 1. Superpolies of all the cubes listed in Table 1 are constant functions, and so
they could only provide distinguishing attacks. Besides, it is clear that better zero-sum
distinguishers might be obtained by removing more invalid division trails. Therefore, we
try to find better zero-sum distinguisher for full IV variables by our new method, and it
is shown that the first output bit of 840-round Trivium is balanced on full IV variables
which tackles one more round than previous best result in [15], see Table 2.

2Propagation trails of active variables are not unique. Different division tails implies different propa-
gation trails of active variables.
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Table 1: Checking key-recovery attacks on round-reduced Trivium

# of Rounds Cube Cube Size Involved Key Variables Checking Result
832 I1 72 k34, k58, k59, k60, k61 [5] no key variable
833 I2 73 k49, k58, k60, k64, k74, k75, k76 [9] no key variable
833 I3 74 k60 [9] no key variable
835 I4 77 k57 [9] no key variable
836 I5 78 k57 [9] no key variable
839 I6 78 k61 [9] no key variable

I1 = {1, 2, . . . , 65, 67, 69, . . . , 79}, I2 = {1, 2, . . . , 67, 69, 71, . . . , 79}
I3 = {1, 2, . . . , 69, 71, 73, . . . , 79}, I4 = {1, 2, 3, 4, 6, 7, . . . , 50, 52, 53, . . . , 64, 66, 67, . . . , 80}
I5 = {1, . . . , 11, 13, . . . , 42, 44, . . . , 80}, I6 = {1, . . . , 33, 35, . . . , 46, 48, . . . , 80}

Table 2: Zero-sum distinguishers against Trivium

Applications # of Rounds Cube Size Type Reference

Trivium

793 80 zero-sum distinguisher [16]
837 37 zero-sum distinguisher [16]
839 80 zero-sum distinguisher [15]
840 80 zero-sum distinguisher Section 5.6

1.3 Organization
The rest of this paper is organized as follows. Sect. 2 briefly introduces the necessary
backgrounds of this paper. In Sect. 3, we view the division property from an algebraic
point of view. In Sect. 4, we introduce new techniques to remove invalid division trails.
In Sect. 5, we apply our attack framework to the round-reduce Trivium. Finally, Sect. 6
concludes this paper.

2 Preliminaries
2.1 Mixed Integer Linear Programming
Mixed Integer Linear Programming (MILP) is a kind of mathematical optimization whose
objective function and constraints are linear, and all or some of the variables are con-
strained to be integers. Generally, there are variablesM.var, constraintsM.con, and the
objective function M.obj in an MILP model M. If there is no objective function in M,
then MILP solvers like Gurobi [17] will return whether M is feasible.

MILP was first applied to differential and linear cryptanalysis by N. Mouha et al. in
[18]. Since then, MILP has been applied to search characteristics in many cryptanalysis
techniques such as differential cryptanalysis [19, 20], impossible differential cryptanalysis
[21] and integral cryptanalysis based on the division property [8].

2.2 Cube Attacks
The idea of cube attacks was first proposed by Dinur and Shamir in [1]. In a cube attack
against stream ciphers, an output bit z is described as a tweakable Boolean function f
in key variables x = (x1, x2, . . . , xn) and public IV variables v = (v1, v2, . . . , vm), i.e.,
z = f(x, v). Let I = {i1, i2, . . . , id} be a subset of IV indices. Then f can be rewritten as

f(x, v) = tI · pI(x, v)⊕ q(x, v), (1)

where tI =
∏

i∈I vi, pI does not contain any variable in {vi1 , vi2 , . . . , vid
}, and each term

in q is not divisible by tI . It can be seen that the summation of 2d functions derived from
f by assigning all the possible values to d variables indexed by I equals to pI , that is,⊕

(vi1 ,vi2 ,...,vid
)∈Fd

2

f(x, v) = pI(x, v). (2)
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The public variables in {vi1 , vi2 , . . . , vid
} are called cube variables, while the remaining

public variables are called non-cube variables. The set CI of all 2d possible assignments
of the cube variables is called a d-dimensional cube, and the polynomial pI is called the
superpoly of CI in f .

A cube attack consists of the precessing phase and the online phase. In the preprocess-
ing phase, attackers try to find cubes with low-degree superpolies. In the online phase,
the previously found superpolies are evaluated under the real key. By solving a system of
low-degree equations, some key variables could be recovered.

2.3 The Bit-Based Division Property
The conventional bit-based division property was introduced in [7]. The authors of [7] also
introduced the bit-based division property using three subsets. In this paper, we focus on
the conventional bit-based division property. The definition of the conventional bit-based
division property is as follows.

Definition 1 (Bit-Based Division Property). Let X be a multiset whose elements
take a value of Fn

2 . Let K be a set whose elements take an n-dimensional bit vector. When
the multiset X has the division property D1n

K , it fulfills the following conditions:⊕
x∈X

xu =
{

unknown if there exists k in K s.t. u ≽ k,
0 otherwise.

where u ≽ k if and only if ui ≥ ki for all i and xu =
∏n

i=1 xui
i .

Let Er be an r-round iterative cipher of size n, which is initialized with x1, x2, . . . , xn.
Assume that X is the input set with the division property D1n

K0
. Denote by Y the cor-

responding output set created from X by Er. Generally, it is difficult to evaluate the
division property of Y directly. Based on the propagation rules of basic operations proved
in [7, 8], the division property of Y, denoted by D1n

Kr
, can be figured out by evaluating

the propagation of the division property for every round function. More specifically, when
the input set X is generated by a set of active variables indexed by I = {i1, i2, . . . , id},
where the active variables traverse all 2|I| possible combinations while the other variables
are assigned to constants. Then, X has the division property D1n

k , where ki = 1 if i in
I and ki = 0 otherwise. In this case, the division property of Y can be evaluated as
{k} = K0 → K1 → K2 · · · → Kr, where D1n

Ki
is the division property of the internal state

after i rounds. Moreover, if there does not exist a vector ej (only the j-th element is 1)
in D1n

Kr
, then the j-th output bit is balanced.

However, as r increases, |Kr| would expand rapidly and lead to a high memory com-
plexity [9]. It confines the bit-based division property to be applied to small block ciphers
such as SIMON32 and Simeck32 [7]. To avoid the high memory complexity, in [8], the au-
thors applied the MILP methods to the bit-based division property. They first introduced
the concept of division trails, which is defined as follows.

Definition 2 (Division Trail [8]). Let us consider the propagation of the division prop-
erty {k} = K0 → K1 → K2 · · · → Kr. Moreover, for any vector k∗

i+1 ∈ Ki+1, there must
exist a vector k∗

i ∈ Ki such that k∗
i can propagate to k∗

i+1 by the propagation rules of di-
vision property. Furthermore, for (k0, k1, . . . , kr) ∈ K0×K1×· · ·×Kr if ki can propagate
to ki+1 for i ∈ {0, 1, . . . , r − 1}, we call k0 → k1 → · · · → kr an r-round division trail.

In [8], the authors described the propagation rules for AND, COPY and XOR with
MILP models, see [8] for the detailed definition of AND, COPY and XOR. Therefore,
they could build an MILP model to cover all the possible division trails generated during
the propagation. Besides, in [5, 22], the authors made some simplifications to those MILP
models in [8]. In this paper, we describe the propagation rules of division property for
AND, COPY and XOR in the following three propositions.
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Proposition 1 (MILP Model for AND). Let (a1, a2, . . . , am) AND−−−→ b be a division
trail of AND. The following inequalities are sufficient to describe the propagation of the
division property for AND.{

M.var ← a1, a2, . . . , am, b as binary,
M.con← b = max(a1, a2, . . . , am).

Proposition 2 (MILP Model for XOR). Let (a1, a2, . . . , am) XOR−−−→ b be a division
trail of XOR. The following inequalities are sufficient to describe the propagation of the
division property for XOR.{

M.var ← a1, a2, . . . , am, b as binary,
M.con← b = a1 + a2 + · · ·+ am.

Proposition 3 (MILP Model for COPY). Let a
COPY−−−−→ (b1, b2, . . . , bm) be a division

trail of COPY. The following inequalities are sufficient to describe the propagation of the
division property for COPY.{

M.var ← a, b1, b2, . . . , bm as binary,
M.con← a = b1 + b2 + · · ·+ bm.

2.4 Cube Attacks Combining with the Bit-based Division Property
In [5], the authors applied the bit-based division property to cube attacks. Instead of
using the division property to find zero-sum integral distinguishers, in [5], they used the
division property to analyze the ANF coefficients of a Boolean function f . Based on the
following lemma and proposition, they proposed the division property based cube attacks.

Lemma 1. Let f(x) be a polynomial from Fn
2 to F2 and af

u be the ANF coefficients. Let
k be an n-dimensional bit vector. If there is no division trail such that k f−→ 1, then af

u is
always 0 for u ≽ k.

Proposition 4. Let f(x, v) be a polynomial, where x and v denote the secret and public
variables, respectively. For a set of indices I = {i1, i2, . . . , id} ⊂ {1, 2, . . . , m}, let CI be a
set where {vi1 , vi2 , . . . , vid

} traverse all 2|I| values and the other public variables are set to
constants. Let kI be an m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vid

, i.e.,
ki = 1 if i ∈ I and ki = 0 otherwise. If there is no division trail such that (ej , kI) f−→ 1,
then xj is not involved in the superpoly of the cube CI .

When f represents the output bit of the target cipher, based on Proposition 4, for a
cube CI , a set J including all the key variables involved in the superpoly of CI could be
identified by MILP methods. More specifically, if there exists a division trail such that
(ej , kI) f−→ 1, then it is regarded that xj is in J . After knowing the set J , in [5], division
property based cube attacks are described in the following three steps.

1. (Offline phase.) Find a preferable superpoly. Set the non-cube variables to constants
randomly. For each possible value of the key variables indexed by J , query the oracle
and obtain the summation of all the 2|I| output values. Thus, the truth table of
pI(x, v) can be constructed with time complexity 2|I|+|J|. Search for non-constant
pI(x, v) by changing the values of non-cube variables.

2. (Online phase.) Set the non-cube variables to previous found values which make
the corresponding pI(x, v) non-constant. Query the encryption oracle and get one
bit pI(x, v), denoted by a. Then, we obtain an equation pI(x, v) = a about secrete
key variables. The values of key variables which do not satisfy pI(x, v) = a could
be discarded.
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3. (Brute-force search phase.) Guess the remaining secrete key variables to recover the
entire key.

After the division property based cube attacks were first presented in [5], some im-
provements were given in [15, 9]. To name a few, in [15], which is the full version of [5],
non-cube IV variables could be filled up with 0, later in [9] non-cube IV variables could
be filled up with either 0 or 1, and also in [9] with degree bounding and term enumeration
techniques, the time complexity to recovery the superpoly could be reduced from 2|I|+|J|

to 2|I| ×
(|J|

≤d

)
where d is the degree upper bound of the superpoly.

3 An algebraic point of view of the division property and
division trails

Recall that the conventional bit-based division property is defined based on the bit product
of an input set X, see Definition 1, which tries to characterize a set of bit products that
are balanced on the input set X. To be accordance with the definition, when analyzing an
iterative cipher, we need to transform an input set X into an output set Y and describe
the division property of the output set Y to find balanced output bits. With the view that
each output bit is a function on input variables, we will show that the division property
used in cube attacks against stream ciphers is equivalent to algebraic degree bounding in
this section. Besides, based on the algebraic point of view, we propose a new variant of
division property by which we could trace the propagation of active variables. This new
variant of division property will be used to remove invalid division trails.

3.1 Notations
The symbols “+” and “⊕” denote the integer addition and exclusive or, respectively.

The finite field of two elements is denoted by F2 and for a positive integer n, the
n-dimensional vector space over F2 is denoted by Fn

2 . Define a partial order ≼ on Fn
2 by

a ≼ b⇔ ai ≤ bi for all 1 ≤ i ≤ n,

where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). Then for a subset M of Fn
2 , we set

- M+ = {u | there exists some v ∈M with v ≼ u},

- M = {a ∈ Fn
2 |a /∈M}, i.e., the complementary set of M in Fn

2 .

- M− = M+, i.e., the complementary set of M+ in Fn
2 .

Let n be a positive integer. An n-variable Boolean function f(x1, x2, . . . , xn) is a
mapping from Fn

2 into F2. It is known that a Boolean function f(x1, x2, . . . , xn) can be
uniquely represented as a multivariate polynomial of the form:

f(x1, x2, . . . , xn) =
⊕

α=(α1,α2,...,αn)∈{0,1}n

uf,α ·

 n∏
j=1

x
αj

j

 ,

where uf,α ∈ F2, which is called the algebraic normal form (ANF) of f . The algebraic
degree of f , denoted by deg(f), is the global degree of the ANF of f , i.e.,

deg(f) = max{α1 + α2 + · · ·+ αn | uf,α ̸= 0}.

Let I ⊆ {1, 2, . . . , n} be a subset of variable indexes. Then the algebraic degree of f
restricted on the variables indexed by I is denoted by degI(f), i.e.,

degI(f) = max{
∑
i∈I

αi | uf,α ̸= 0}
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where
∑

denotes the integer addition. Take f = x1x2x3x5 ⊕ x2x5 ⊕ x3x4 ⊕ x4 and
I = {2, 3, 4} for an example. We have deg(f) = 4 and degI(f) = 2.

A vectorial Boolean function f is a mapping from Fn
2 to Fn

2 , denoted by Y = f(X)
where X = (x1, x2, . . . , xn) and Y = (y1(X), y2(X), . . . , yn(X)). It is clear that each yi(X)
is a Boolean function on X for 1 ≤ i ≤ n. In the following we denote the output of r-round
iterative action of f on X by Yr = (yr,1(X), yr,2(X), . . . , yr,n(X)), i.e. Yr = fr(X).

The abbreviation w.r.t. for “with respect to” will be used in the following.

3.2 Relationship between the bit-based division property and algebraic
degree bounding

Let f : (x1, x2, . . . , xn)→ (y1, y2, . . . , yn) be a mapping from Fn
2 to Fn

2 . For an input value
a, an r-round iteration action of f on a means b = fr(a) where a = (a1, a2, . . . , an) ∈ Fn

2
and b = (b1, b2, . . . , bn) ∈ Fn

2 . For a stream cipher, f means its internal update function.
Let us fix a positive integer r. Choose some active input variables which are indexed by
I ⊆ {1, 2, . . . , n} with I ̸= ∅. Prepare an input set XI where all variables indexed by I
take all possible combinations of 0/1 and each variable not indexed by I takes a constant.
Then the division property of XI is given by kI ∈ Fn

2 with ki = 1 if i ∈ I and ki = 0
otherwise. Assume the propagation of the division property starting from kI through r

rounds is given by {kI} = K0
f−→ K1

f−→ · · · f−→ Kr. Then it follows that

⊕
b∈Y

(
n∏

i=1
bui

i

)
= 0 for u = (u1, u2, . . . , un) ∈ K−

r , (3)

where Y is the output set of the input set XI and b = (b1, b2, . . . , bn). Since each output
bit is a function on input variables, it is clear that (3) is equivalent to

⊕
a∈XI

(
n∏

i=1
yr,i(a)ui

)
= 0 for u = (u1, u2, . . . , un) ∈ K−

r . (4)

Since the propagation rules of the division property, i.e., Propositions 1-3, only distinguish
active and non-active variables, which are independent of the specific constants taken by
non-active variables, it follows that (4) holds for all possible values of non-active variables.
Let us recall the following property of Boolean functions whose proof is omitted here.

Lemma 2. Let g(x1, x2, . . . , xn) be an n-variable Boolean function. Let I ⊆ {1, 2, . . . , n}
be an nonempty set of active variable indexes. Let (XI , C) be an input set such that
all variables indexed by I take all possible combinations of 0/1 and the other variables
take constants labeled by C where C ∈ Fn−|I|

2 . Then
∑

x∈(XI ,C) g(x) = 0 holds for all
C ∈ Fn−|I|

2 if and only if degI(g) < |I|.

It immediately follows from Lemma 2 that the division property (4) implies that

degI

(
n∏

i=1
yr,i(X)ui

)
< |I| for u = (u1, u2, . . . , un) ∈ K−

r . (5)

Therefore, if we only focus on the case that an input set is a cube defined by a
set of active variables, which is exactly the case used in division property based cube
attacks against stream ciphers [5], then the definition of the bit-based division property
is equivalent to the following one.
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Definition 3. Let Y = f(X) be a mapping from Fn
2 to Fn

2 and I be a non-empty subset
of {1, 2, . . . , n} whose elements are indexes of active variables. Let K be a subset of Fn

2 . If

degI

(
m∏

i=1
yi(X)ui

)
< |I| for u = (u1, u2, . . . , um) ∈ K−,

then we say f has the division property K w.r.t. I or K is a division property set of f
w.r.t. I.

3.3 Extending division property and trails with active variable distri-
bution

From the algebraic point of view, the division trail could be considered as a propagation
trail of active variables. This could be seen more clearly after we extend the conventional
division property and trails to include indications of the distribution of active variables.

Definition 4. Let Y = f(X) be a mapping from Fn
2 to Fn

2 and I be a non-empty subset
of {1, 2, . . . , n} whose elements are indexes of active variables. Let

M = {([kj1 , λj1 ], [kj2 , λj2 ], . . . , [kjn , λjn ]) | [kji , λji ] ∈ F2 × TI ,

n∏
i=1

λ
kji
ji

=
∏
i∈I

xi, j ∈ J}

be a set of n-tuples indexed by a set J where TI = {
∏

i∈I xei
i |ei ∈ {0, 1}}. Let η :

(F2 × TI)n → Fn
2 be a mapping3 given by

η : ([kj1 , λj1 ], [kj2 , λj2 ], . . . , [kjn , λjn ]) 7→ (kj1 , kj2 , . . . , kjn).

If

degI

(
n∏

i=1
yi(X)ui

)
< |I| for u ∈ K−,

where K = η(M), then we say M is a division property set of f in (F2 × TI)n w.r.t. I.

Remark 1. Without loss of generality, if kji = 0, then we always set λji =
∏

i∈I x0
i .

Remark 2. In the following, a division property set K ⊆ Fn
2 satisfying Definition 3 is called

a division property set in Fn
2 .

It can be seen from Definition 4 that if M is a division property set of f in (F2 × TI)n

w.r.t. I, then η(M) is a division property set of f in Fn
2 w.r.t. I. On the contrary,

given a division property set K in Fn
2 , there is a corresponding division property set M in

(F2 × TI)n such that η(M) = K. We prove this in the following lemma.

Lemma 3. Let Y = f(X) be a mapping from Fn
2 to Fn

2 and I be a non-empty subset of
{1, 2, . . . , n} whose elements are indexes of active variables. If f has the division property
K in Fn

2 w.r.t. I, then there is a set M ⊆ (F2 × TI)n such that η(M) = K and f has the
division property M in (F2 × TI)n w.r.t. I.

Proof. Let k = (k1, k2, . . . , kn) ∈ K. Then we have degI(
∏n

i=1 yi(X)k1) ≤ |I|.
If degI(

∏n
i=1 yi(X)ki) < |I|, then randomly choose (λ1, λ2, . . . , λn) ∈ T n

I such that∏n
i=1 λ

kji
ji

=
∏

i∈I xi. Then set Γk = ([k1, λ1], [k2, λ2], . . . , [kn, λn]).
If degI(

∏n
i=1 yi(X)k1) = |I|, then

∏
i∈I xi appears in

∏n
i=1 yi(X)k1 . It follows that

there is at least a decomposition of
∏

i∈I xi given by
∏

i∈I xi =
∏n

i=1 λki
i such that λi

appears in the ANF of yi(X) if ki = 1. Hence we set Γk = ([k1, λ1], [k2, λ2], . . . , [kn, λn]).
Finally it can be seen that the set M = {Γk | k ∈ K} is the desirable division property

set in (F2 × TI)n w.r.t. I.
3(F2 × TI)n = {([kj1 , λj1 ], [kj2 , λj2 ], . . . , [kjn , λjn ]) | kji ∈ F2, λji ∈ TI}.
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It appears that a division property set in (F2 × TI)n may include many redundant
or nonsense elements. However, by requiring the following propagation rules, only useful
elements will be left when analyzing an iterative cipher.

Let X = (x1, x2, . . . , xn) be a set of input variables and I ⊆ {1, 2, . . . , n} be a non-
empty set of active variable indexes. In the following propagation rules, a(X), b(X), ai(X),
bi(X) are Boolean functions on X.

Propagation rule for COPY. Let a(X) COPY−−−−→ (b1(X), b2(X), . . . , bm(X)), where
the division property of a(X) in F2 × TI w.r.t. I is [ka, λa] and the division property of
(b1(X), b2(X), . . . , bm(X)) in (F2 × TI)m w.r.t. I is ([kb1 , λb1 ], [kb2 , λb2 ], . . . , [kbm , λbm ]).
Then

kb1 + kb2 + · · ·+ kbm = ka, λbi = λ
kbi
a , 1 ≤ i ≤ n.

Propagation rule for XOR. Let (a1(X), a2(X), . . . , am(X)) XOR−−−→ b(X), where
the division property of (a1(X), a2(X), . . . , am(X)) in (F2 × TI)m w.r.t. I is ([ka1 , λa1 ],
[ka2 , λa2 ], . . . , [kam

, λam
]) and the division property of b(X) in F2 × TI w.r.t. I is [kb, λb].

Then

kb = k1 + k2 + · · ·+ km, λb =

(
m∏

i=1
λai

)kb

.

Propagation rule for AND. Let (a1(X), a2(X), . . . , am(X)) AND−−−→ b(X), where
the division property of (a1(X), a2(X), . . . , am(X)) in (F2 × TI)m w.r.t. I is ([ka1 , λa1 ],
[ka2 , λa2 ], . . . , [kam

, λam
]) and the division property of b in F2×TI w.r.t. I is [kb, λb]. Then

kb = max(ka1 , ka2 , . . . , kam), λb =
m∏

i=1
λai .

Based on the above propagation rules, we define division trails for an iterative function.

Definition 5. Let Y = f(X) be a mapping from Fn
2 to Fn

2 and I ⊆ {1, 2, . . . , n} be a set of
active variable indexes. Set (k0, λ0) = ([k1, λ1], [k2, λ2], . . . , [km, λm]) with [ki, λi] = [1, xi]
if i ∈ I and [ki, λi] = [0,

∏
i∈I x0

i ] otherwise. If

(k0, λ0) f−→ (k1, λ1) f−→ · · · f−→ (kr, λr) (6)

satisfies that ki propagates to ki+1 by the three propagation rules defined above, then it
is called a division trail over (F2 × TI)n of f w.r.t. I.

Remark 3. The starting division property (k0, λ0) could be seen as the division property
of f(X)0 = id where id denotes the identity function.

It can be seen that λ0
f−→ λ1

f−→ · · · f−→ λr describes the propagation of active variables
along the specific division trial k0

f−→ k1
f−→ · · · f−→ kr. Then (6) is an indication that

degI(
∏n

i=1 yr,i(X)kr,i) may be equal to |I|. But it can not immediately deduce from (6)
that degI(

∏n
i=1 yr,i(X)kr,i) is equal to |I|. This is because the three propagation rules do

not cover all algebraic properties of Boolean functions. For example, x1x2 disappears in
f ⊕ g with f = x1x2 ⊕ x2 and g = x1x2 ⊕ x2.

4 New Techniques to Remove Invalid Division Trails
In this section, we propose a class of invalid division trails and show how to remove them
with MILP models.
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Algorithm 1 Checking whether a Division Trail is Invalid
Require: a function f , the set I of active variables indies, a division trail k0

f−→ k1
f−→ · · · f−→ kr, and an

integer N0;
1: Compute (k0, λ0) f−→ (k1, λ1) f−→ · · · f−→ (kr, λr);
2: Compute the ANF of s

(t)
i for 1 ≤ i ≤ n and 0 ≤ t ≤ N0;

3: Set end = min(N0, r);
4: Check whether λ

(t)
i appears in s

(t)
i for 0 ≤ t ≤ end and 1 ≤ i ≤ n;

5: if there exist t and j such that k
(t)
j = 1 and λ

(t)
j does not appear in s

(t)
j then

6: return This is an invalid division trail;
7: else
8: return This is a valid division trail;
9: end if

4.1 A class of invalid division trails
Based on the new variant of the division property introduced in the last section, we
propose a new class of invalid division trails.

Definition 6 (Invalid Division Trail). Let Y = f(X) be a mapping from Fn
2 to Fn

2
and I ⊆ {1, 2, . . . , n} be a set of active variable indexes. Set

(k0, λ0) = ([k(0)
1 , λ

(0)
1 ], [k(0)

2 , λ
(0)
2 ], . . . , [k(0)

n , λ(0)
n ])

with [k(0)
i , λ

(0)
i ] = [1, xi] if i ∈ I and [k(0)

i , λ
(0)
i ] = [0,

∏
i∈I x0

i ] otherwise. Let

(k0, λ0) f−→ (k1, λ1) f−→ · · · f−→ (kr, λr) (7)

be a division trail over (F2 × TI)n of f w.r.t. I. If there exist some t and j such that
k(t)

j = 1 but λ
(t)
j does not appear in the ANF of y

(t)
j , then we call (7) an invalid division

trail due to the absence of λ
(t)
j .

Remark 4. If (7) is an invalid division trail due to the absence of λ
(t)
j , then it is known that

(7) is a trail indicating that degI(
∏n

i=1(y(j)
i (X))k

(j)
i ) < |I| for all t ≤ j ≤ r. Therefore,

it should be aborted 4. We provide a small example to illustrate an invalid division trial
more clearly in Appendix, see Example 2.

Next, we propose Algorithm 1 to check whether a division trail is invalid or not. Given
a division trail k0

f−→ k1
f−→ · · · f−→ kr, in Algorithm 1, we first compute the corresponding

trail λ0
f−→ λ1

f−→ · · · f−→ λr. 5 Then, we check whether there exist some t and i such
that k(t)

i = 1 but λ
(t)
i does not appear in s

(t)
i . To achieve this goal, in Algorithm 1, we

compute the ANFs of s
(t)
i for 0 ≤ t ≤ N0 and 1 ≤ i ≤ n.

4.2 Removing Invalid Division Trails
The idea of removing invalid division trails due to the absence of λ

(t)
j is very straight-

forward. Let λ
(t)
j = T . We first build an MILP model which covers all the new division

trails, and then add a constraint that λ
(t)
j ̸= T .

4It is guaranteed that degI(
∏n

i=1(y(r)
i (X))k

(r)
i ) < |I| if and only if all trails are invalid or there is no

trail. Otherwise, it is unknown whether degI(
∏n

i=1(y(r)
i (X))k

(r)
i ) < |I| or not.

5For a given division trail k0
f−→ k1

f−→ · · · f−→ kr, since λ0 can be set uniquely according to I, we could
recover the λi according to how ki−1 propagates to ki for 1 ≤ i ≤ r.
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4.2.1 MILP models for the propagation rules of the division property in (F2 × TI)n

To give MILP models that describe the propagation rules of the division property in
(F2 × TI)n, the key point is how to model λji in Definition 4 which is a product of active
variables. Note that a product

∏
i∈I xei

i of active variables could be represented by a
binary vector (e1, e2, . . . , e|I|). Therefore, in our MILP model, λji is represented by a
binary vector of length |I|.

Let X = (x1, x2, . . . , xn) be a set of input variables and I ⊆ {1, 2, . . . , n} be a
non-empty set of active variable indexes. Without loss of generality, we assume I =
{1, 2, . . . , q}. In the following propositions, a(X), b(X), ai(X), bi(X) are Boolean func-
tions on X.

Proposition 5 (MILP Model for COPY). Let a(X) COPY−−−−→ (b1(X), b2(X), . . . , bm(X)),
where the division property of a(X) in F2 × TI w.r.t. I is [ka, λa] with λa =

∏q
j=1 x

α[j]
j

and the division property of (b1(X), b2(X), . . . , bm(X)) in (F2×TI)m w.r.t. I is ([kb1 , λb1 ],
[kb2 , λb2 ], . . . , [kbm , λbm ]) with λbi =

∏q
j=1 x

βi[j]
j for 1 ≤ i ≤ m. The following inequalities

M.var ← ka, kb1 , kb2 , . . . , kbm as binary
M.var ← α[1], α[2], . . . , α[q] as binary
M.var ← βi[1], βi[2], . . . , βi[q] for i ∈ {1, 2, . . . , m} as binary
M.con← ka = kb1 + kb2 + · · ·+ kbm

M.con← βi[j] = min(α[j], kbi) for 1 ≤ i ≤ m and 1 ≤ j ≤ q

are sufficient to describe the propagation of the division property for COPY.

Proposition 6 (MILP Model for XOR). Let (a1(X), a2(X), . . . , am(X)) XOR−−−→ b(X),
where the division property of (a1(X), a2(X), . . . , am(X)) in (F2 × TI)m w.r.t. I is
([ka1 , λa1 ], [ka2 , λa2 ], . . . , [kam , λam ]) with λai =

∏q
j=1 x

αi[j]
j for 1 ≤ i ≤ m and the di-

vision property of b(X) in F2 × TI w.r.t. I is [kb, λb] with λb =
∏q

j=1 x
β[j]
j . The following

inequalities
M.var ← ka1 , ka2 , . . . , kam , kb as binary
M.var ← αi[1], αi[2], . . . , αi[q] for i ∈ {1, 2, . . . , m} as binary
M.var ← β[1], β[2], . . . , β[q] as binary
M.con← kb = ka1 + ka2 + · · ·+ kam

M.con← β[j] = α1[j] + α2[j] + · · ·+ αm[j] for 1 ≤ j ≤ q

are sufficient to describe the propagation of the division property for XOR.

Proposition 7 (MILP Model for AND). Let (a1(X), a2(X), . . . , am(X)) AND−−−→ b(X),
where the division property of (a1(X), a2(X), . . . , am(X)) in (F2 × TI)m w.r.t. I is
([ka1 , λa1 ], [ka2 , λa2 ], . . . , [kam , λam ]) with λai =

∏q
j=1 x

αi[j]
j for 1 ≤ i ≤ m and the di-

vision property of b(X) in F2 × TI w.r.t. I is [kb, λb] with λb =
∏q

j=1 x
β[j]
j . The following

inequalities
M.var ← ka1 , ka2 , . . . , kam , kb as binary
M.var ← αi[1], αi[2], . . . , αi[q] for i ∈ {1, 2, . . . , m} as binary
M.var ← β[1], β[2], . . . , β[q] as binary
M.con← kb = max(ka1 , ka2 , . . . , kam

)
M.con← β[j] = max(α1[j], α2[j], . . . , αm[j]) for 1 ≤ j ≤ q

are sufficient to describe the propagation of the division property for AND.

Based on Propositions 5, 6 and 7, we can build an MILP modelM which covers all the
possible division trails over (F2 × TI)n w.r.t I. Then, by adding the constraint requiring
λ

(t)
j ̸= T to M, we can remove all the invalid division trails due to the absence of λ

(t)
j .
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It can be seen that if an MILP model M which covers all the conventional division
trails contains N variables, then an MILP modelM′ which covers all the possible division
trails over (F2 × TI)n will contain approximately N + qN variables. It is well known that
a large number of variables in an MILP model means long solving time. Therefore, we
propose a small technique to reduce the number of variables in our MILP models.

4.2.2 Reducing variables in MILP models

Let Y = f(X) be a mapping from Fn
2 to Fn

2 and I ⊆ {1, 2, . . . , n} be a set of active
variable indexes. Let (k0, λ0) f−→ (k1, λ1) f−→ · · · f−→ (kr, λr) be a division trail. Suppose
T is a product of some active variables and T does not appear in s

(t)
p . It is clear that

if gcd(λ(t)
p , T ) = T , that is λ

(t)
p is divisible by T , then this trail is invalid. Then to

simplify our MILP models, we propose division trails with the restriction of T , namely,
λ0,T

f−→ λ1,T
f−→ · · · f−→ λr,T , where

λi,T = gcd(T, λi) = (gcd(T, λ
(i)
1 ), gcd(T, λ

(i)
2 ), . . . , gcd(T, λ(i)

n )), 0 ≤ i ≤ r.

Denote the j-th component of λi,T by λ
(i)
j,T , i.e., λ

(i)
j,T = gcd(T, λ

(i)
j ), where 1 ≤ j ≤ n

and 0 ≤ i ≤ r. It can be seen that λ
(i)
j,T is a divisor of T for 0 ≤ j ≤ n and 0 ≤ i ≤ r.

Moreover, since
∏n

j=1 λ
(i)
j =

∏
i∈I xi for 0 ≤ i ≤ r, it follows that

∏n
j=1 λ

(i)
j,T = T .

To illustrate our main idea of division trails with the restriction of T more clearly, we
provide the a toy example, see Example 3 in the Appendix.

MILP models to describe the propagation rules of the division property with the
restriction of T for some product T of active variables are the same as Propositions 5, 6,
and 7. But with the restriction of T , q will be quite small, and so the number of variables
in an MILP model will be much smaller. For example, in some of our experiments on
Trivium, when the number of active variables is more than 70, T only has 2 active variables.

With this new technique, we suggest to remove invalid trails after identifying a target
product of variables, see Algorithm 2 for details. In Algorithm 2, we first attempt to find
a conventional division trail γ satisfying the previous propagation rules. If the division
trail γ is invalid due to the absence of λ

(t)
p = T , then we record (T, t, p) in V T and we

remove all the invalid division trails according to the information recorded in V T .
Remark 5. So far in all our experiments on Trivium, we have |V T | = 1 for each given
cube in Algorithm 2, see Table 3.

5 Experimental Results
In this section, we apply our new attack framework to the round-reduced Trivium. We
first show how to build MILP models for Trivium. Then, we perform various experiments
on round-reduced Trivium.

5.1 Specification of Trivium
Trivium is a bit oriented synchronous stream cipher designed by Cannière and Preneel,
which was selected as one of eSTREAM hardware-oriented portfolio ciphers. The main
building block of Trivium is a 288-bit Galois nonlinear feedback shift register. For ev-
ery clock cycle there are three bits of the internal state updated by quadratic feedback
functions and all the other bits of the internal sate are updated by shifting. The internal
state of Trivium, denoted by (s1, s2, . . . , s288), is initialized by loading an 80-bit secret key
and an 80-bit IV into the registers, and setting all the remaining bits to 0 except for the
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Algorithm 2 Evaluate involved key variables by MILP models
1: procedure IdentifyInvolvedKeyVariables(cube indices I)
2: Declare an empty MILP model M;
3: Let x be n MILP variables of M corresponding to secret variables;
4: Let v be m MILP variables of M corresponding to public variables;
5: M.con← vi = 1 for all i ∈ I;
6: M.con← vi = 0 for all i ∈ ({1, 2, . . . , m} \ I);
7: M.con←

∑n

i=1 xi = 1;
8: Build an MILP model M which covers all the possible conventional division property trails prop-

agating through the target cipher;
9: Set J and V T to ∅;

10: Solve the MILP model M;
11: while M is feasible do
12: Check the validity of the reported conventional division trail (denoted by γ);
13: if γ is invalid then
14: Set V T = V T ∪ {(T, t, p)}, where γ is invalid due to that T does not appear in s

(t)
p ;

15: Rebuild the MILP model M covering all the new division trails with the restriction of T ;
16: Add the constraint requiring λ

(t)
p ̸= T to M for every (T, t, p) ∈ V T ;

17: M.con← vi = 1 for all i ∈ I;
18: M.con← vi = 0 for all i ∈ ({1, 2, . . . , m} \ I);
19: M.con←

∑n

i=1 xi = 1;
20: M.con← xj = 0 for all j ∈ J ;
21: Solve M;
22: else
23: Set J = J ∪ j, where j ∈ {1, 2, . . . , n} s.t. xj = 1;
24: M.con← xj = 0 for all j ∈ J ;
25: Solve M;
26: end if
27: end while
28: return J
29: end procedure

Algorithm 3 Pseudo-code of Trivium
1: (s1, s2, . . . , s93)← (x1, x2, . . . , x80, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;

10: end if
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for

last three bits of the third register. Then, the algorithm would not output any keystream
bit until the internal state is updated 4 × 288 = 1152 rounds. This is described by the
pseudo-code shown in Algorithm 3. For more details, please refer to [23].

5.2 Reducing MILP Models with Degree Evaluations
Let I be non-empty set whose elements are indices of active variables. Denote by XI the
input set where all active variables indexed by I take all possible combinations of 0/1 and
the remaining variables take constants.

In our attacks, when targeting zr, we should check the existence of a conventional
division trail such that kI = k0

zr−→ 1, where kI is the division property of XI and zr is
the first output bit of an r-round iterative cipher Er. In previous papers, to check the
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existence of a such conventional division trail, it needs to build and solve an MILP model
Mr covering all the possible conventional division trails propagating through r rounds
and the output function. Since many variables and constraints are added to describe
the propagation of division property through each round, Mr usually consists of a large
amount of variables and constraints and is difficult to solve. In this section, we try to
divide such a large MILP model into several smaller ones, and the time complexity could
be reduced with the help of degree evaluation method in [16].

Let f(x) be a polynomial from Fn
2 to F2. Assume the ANF of f(x) is represented as

f(x) =
⊕

u∈Fn
2

af
u · xu.

where af
u ∈ F2 denotes the ANF coefficient of xu. Then the following Lemma is an

apparent property of the division property which was ever used in line 13 of Algorithm 2
in [5].

Lemma 4. Let k be an n-dimensional bit vector. If for any u with af
u = 1 there is no

division trail such that k
xu

−−→ 1, then there is no division trial such that k
f−→ 1.

For some 0 ≤ t < r, zr can be written as a polynomial on s(t) = (s(t)
1 , s

(t)
2 , . . . , s

(t)
n )

uniquely, i.e., zr = gt(s(t)), where s(t) is the internal state of Er after t rounds. Based
on Lemma 4, we know whether there exists a division trail k0

zr−→ 1 by checking whether
there exists a division trail k0

u−→ 1 for each term u =
∏h

j=1 s
(t)
ij

of gt. Thus, for each term
u, we only need to build an MILP model which covers all the possible trails propagating
through t rounds and check the existence of division trail k0

u−→ 1.
However, one problem to apply Lemma 4 is that there may be too many terms in gt.

Our solution is using the degree evaluation method based on the numeric mapping. For
the chosen set I, if degI(u) < |I|, then it is clear that

⊕
XI

u = 0. Namely, for such a term
u, there would be no division trail (ej , kI) u−→ 1, where ej is a binary vector whose only
the j-th element is 1. Thus, by utilizing the degree evaluation method, we could easily
remove a large amount of terms of gt, and so the number of small MILP models needed to
be solved could be reduced dramatically. Due to the high efficiency of degree evaluation
method, the total time would be much less than that of solving a large MILP model.

Combining all the above techniques, we propose a new attack framework in Algorithm
4. In Algorithm 4, RT is the set of terms whose evaluated degrees reach |I|. For each
term u in RT , we call Algorithm 2 to determine a set Ju, where the superpoly of CI in
u is only related to xj ’s (j ∈ Ju) for arbitrary assignments of non-cube variables. After
knowing Ju for each term u, the key variables involved in the superpoly of CI in zr can
be determined by J = ∪

u∈RT
Ju.

Remark 6. Since MILP solvers are used, it is hard to estimate the complexities of Algo-
rithm 4 and the previous algorithms accurately. However, in our experiments (targeting
more than 830-round Trivium with large cubes), when checking the existence of a certain
division trail, the total time of our algorithms is less than the time of solving a large MILP
model directly. This is because that many terms of gt are discarded by the degree evalu-
ation method efficiently and small MILP models are much easier to solve. Furthermore,
with Algorithm 4, the existence of a certain division trail can be checked in parallel.

5.3 MILP Models for Trivium
In this subsection, for Trivium, we would show how to build MILP models with respect

to the conventional division property and our new division property.
Assume that zr is expressed as zr = gt(s(t)) for some 0 ≤ t < r. Due to Lemma 4,

we only need to consider the propagation of the division property through t rounds. In
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Algorithm 4 New attack framework
Require: The set of cube indices I
1: Express the output bit zr as zr = gt(s(t)) for some t;
2: Set J to ∅;
3: Compute the set RT = {u|DEGI(u) ≥ |I|}, where DEGI(u) is the evaluated degree of u w.r.t. I;
4: for each term u in RT do
5: Figure out the set Ju with Algorithm 2, where the superpoly of CI in u is only related to xj ’s

(j ∈ Ju) for arbitrary assignments of non-cube variables;
6: Set J = J ∪ Ju;
7: end for
8: return J ;

Algorithm 5 Original MILP model of division property for the round function of Trivium
1: procedure TriviumCoreOriginal(M,x,W ,i1,i2,i3,i4,i5,flag,i)
2: M.var ← y5·i+j(1 ≤ j ≤ 5), z4·i+j(1 ≤ j ≤ 4), ai as binary;
3: M.con← y5·i+j = xij − z4·i+j(1 ≤ j ≤ 4);
4: M.con← ai = max(z4·i+3, z4·i+4);
5: if either flagi3 = 0 or flagi4 = 0 then
6: M.con← ai = 0;
7: end if
8: M.con← y5·i+5 = xi5 + ai + z4·i+1 + z4·i+2;
9: Set wj = xj for all j ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5;

10: wij = y5·i+j for 1 ≤ j ≤ 5;
11: return w
12: end procedure

Algorithm 6 MILP models of the division property over (F2 × TI)n with restriction of
T for the round function of Trivium
1: procedure TriviumCoreDV(M,x,W ,i1,i2,i3,i4,i5,flag,i)
2: M.var ← y5·i+j(1 ≤ j ≤ 5), z4·i+j(1 ≤ j ≤ 4), ai as binary;
3: for 1 ≤ L ≤ q do
4: M.var ← yL

5·i+j(1 ≤ j ≤ 5), zL
4·i+j(1 ≤ j ≤ 4), aL

i as binary;
5: end for
6: M.con← y5·i+j = xij − z4·i+j for all 1 ≤ j ≤ 4;
7: M.con← ai = max(z4·i+3, z4·i+4);
8: M.con← y5·i+5 = xi5 + ai + z4·i+1 + z4·i+2;

◃ Describe the propagation of our new division property for COPY.
9: M.con← yL

5·i+j = min(W [ij ][L], y5·i+j) for 1 ≤ j ≤ 4 and 1 ≤ L ≤ q;
10: M.con← zL

4·i+j = min(W [ij ][L], z4·i+j) for 1 ≤ j ≤ 4 and 1 ≤ L ≤ q;
◃ Describe the propagation of our new division property for AND.

11: M.con← aL
i = max(zL

4·i+3, zL
4·i+4) for 1 ≤ L ≤ q;

◃ Describe the propagation of our new division property for XOR.
12: M.con← yL

5·i+5 = W L
i5

+ aL
i + zL

4·i+1 + zL
4·i+2 for 1 ≤ L ≤ q;

13: if either flagi3 = 0 or flagi4 = 0 then
14: M.con← ai = 0;
15: M.con← aL

i = 0 for 1 ≤ L ≤ q;
16: end if
17: for all j ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
18: wj = xj ;
19: U [j][L] = W [j][L] for 1 ≤ L ≤ q;
20: end for
21: Set wij = y5·i+j for 1 ≤ j ≤ 5;
22: Set U [ij ][L] = yL

5·i+j for 1 ≤ j ≤ 5 and 1 ≤ L ≤ q;
23: end procedure
24: return (M, w, U )

Algorithm 5, we describe the the propagation of the conventional division property for the
round function of Trivium. Hence, we could build MILP models for each term u of gt to
check the existence of the division trail kI

u−→ 1, where kI is the initial division property.
Once we find an invalid division trail due to that T does not appear in s

(r0)
p , the next
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Algorithm 7 MILP models of the new division property with restriction of T of a target
term u against Trivium
1: procedure TriviumEval(round t where zr is expressed as zr = gt(s(t)), the term T =

∏q

j=1 vij

which does not appear in s
(r0)
p , the target term u =

∏h

i=1 s
(t)
ji

of gt)
2: Declare an empty MILP model M;
3: M.var ← s0

i for all i ∈ {1, 2, . . . , 288};
4: Set flagi = δ for i ∈ {1, 2, . . . , 80, 94, 95, . . . , 173};
5: Set flagi = 0c for i ∈ {81, 82, . . . , 93, 174, 175, . . . , 285};
6: Set flagi = 1c for i ∈ {286, 287, 288};
7: M.var ←W [0][i][j] for all i ∈ {1, 2, . . . , 288} and all j ∈ {1, 2, . . . , q};
8: M.con←W [0][93 + ij ][j] = 1 for all j ∈ {1, 2, . . . , q};
9: Add the constraints that require all the remaining variables in W [0] equal to 0;

10: for i = 1 to r0 do
11: (M, x, A)=TriviumCoreDV(M,si−1,W [i− 1],66, 171, 91, 92, 93,flag, 3 · i + 1);
12: (M, y, B)=TriviumCoreDV(M,x,A,162, 264, 175, 176, 177,flag, 3 · i + 2);
13: (M, z, C)=TriviumCoreDV(M,y,B,243, 69, 286, 287, 288,flag, 3 · i + 3);
14: Set si = z >>> 1;
15: UpdateFlag(flag); ◃ See the Appendix for the detail specification;
16: Set W [i][j][L] = C [j − 1][L], for 2 ≤ j ≤ 288 and 1 ≤ L ≤ q;
17: Set W [i][1][L] = C [288][L] for 1 ≤ L ≤ q;
18: end for
19: for i = r0 + 1 to t do
20: (M, x)=TriviumCoreOriginal(M,si−1,66, 171, 91, 92, 93,flag, 3 · i + 1);
21: (M, y)=TriviumCoreOriginal(M,x,162, 264, 175, 176, 177,flag, 3 · i + 2);
22: (M, z)=TriviumCoreOriginal(M,y,243, 69, 286, 287, 288,flag, 3 · i + 3);
23: Set si = z >>> 1;
24: UpdateFlag(flag);
25: end for
26: M.con← st

i = 0 for all i ∈ {1, 2, . . . 288} w/o {j1, j2, . . . , jh};
27: M.con←

∑h

i=1 st
ji
≤ h; ◃ Add the constraint corresponding to u;

28: M.con←
∑q

L=1 W [r0][p][L]− q < 0; ◃ Add the constraint requiring λ
(r0)
p,T ̸= T ;

29: return M;
30: end procedure

step of our attack is to remove all the invalid division trails due to the absence of T . Based
on Lemma 4, for each term u of gt, we only need to build an MILP model which covers
all the new possible division trails with restriction of T propagating through t rounds.
Hence, in Algorithm 7, for a target term u =

∏h
j=1 s

(t)
ij

, we introduce how to build the
MILP model which covers all the new division trails with the restriction of T , where the
procedure TriviumCoreDV, presented in Algorithm 6 formally, is used to describe the
propagation of our new division property with the restriction of T for the round function
of Trivium. Note that, to remove all the invalid division trails due to the absence of T ,
we only need to know whether λ

(r0)
p,T = T . Hence, in Algorithm 7, we call Algorithm 6

for the first r0 rounds with respect to the propagation of the new division property with
the restriction of T and call Algorithm 5 to consider the propagation of the conventional
division property for the (r0 + 1)-th round to the t-th round.

Remark 7. The flag technique in [9] is used to remove some invalid conventional division
trails by considering the effect of specific values of the non-active variables on the prop-
agation of the division property. Note that the main idea of our new division property
is to record the distribution of active variables for a conventional division trail. We can
still use our techniques to record the distribution of active variables of the division trails
which are valid under the flag technique.
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5.4 Experimental Verification
In this subsection, we provide a small example to illustrate our attacks in detail and verify
our techniques.

Example 1. We choose v1, v2, v45, v46 as active variables and the output bit after 308
rounds as a target, i.e., z(308) = s

(308)
66 ⊕ s

(308)
93 ⊕ s

(308)
162 ⊕ s

(308)
177 ⊕ s

(308)
243 ⊕ s

(308)
288 .

First, we compute the polynomial representation of z(308) on the internal state bits
after 239-round initialization. That is

z(308) = s
(239)
283 s

(239)
284 ⊕ s

(239)
285 ⊕ s

(239)
240 ⊕ s239

27 ⊕ s
(239)
91 s

(239)
92 ⊕ s

(239)
93

⊕s
(239)
177 ⊕ s

(239)
108 ⊕ s

(239)
172 s

(239)
173 ⊕ s

(239)
174 ⊕ s

(239)
159 ⊕ s

(239)
261 ⊕ s

(239)
219 .

Second, by using the degree evaluation method, we get a set of terms RT = {s(239)
91 s

(239)
92 },

where the evaluated degree of each term in RT reaches 4.
Third, for each term u in RT , we check whether there exists a conventional division

trail k
u−→ 1, where k ∈ F288

2 , k93+i = 1 for i ∈ {1, 2, 45, 46}, ki = 0 otherwise. For
simplicity, we denote by FRT the set of terms satisfying the above condition. In this
case, we have FRT = {s(239)

91 s
(239)
92 }. For s

(239)
91 s

(239)
92 , we obtain a conventional division

trail k = k0 → k1 → . . . → k239 → 1, denoted by γ, where k239[i] = 1 for i ∈ {91, 92}
and k239[i] = 0 otherwise.

Fourth, we recover [k0, λ0]→ [k1, λ1]→ · · · → [k239, λ239]→ [1, v1v2v45v46] according
to γ and check whether this trail is valid or not. The experiment shows that γ is invalid
due to λ

(149)
1 = v45v46 not appearing in s149

1 .
Finally, we build an MILP model which covers all our new division trials with the

restriction of T = v45v46 and requires that λ
(149)
1,T ̸= v45v46. Then we check whether there

exists a new division trail [k0, λ0] → [k′
239, λ′

239] → [1, v1v2v45v46]. Our experimental
result shows that there does not exist such a division trail. This indicates that v1v2v45v46
does not appear in z(308).

To verify our result, we practically compute the ANF of z(308), and it is shown that
v1v2v45v46 does not appear in z(308), which is in accordance with our result.

5.5 Checking Key Recovery Attacks on Trivium
In [5, 9], for a cube CI where I is an index set of active IV variables, the authors used di-
vision property to identify a set J of key variables which includes all possible key variables
that are involved in the superpoly of CI . Based on Assumption 1, it was previously re-
garded that the resultant superpoly could be nonconstant by assigning appropriate values
to non-cube IV variables and some key information could be recovered once the resultant
superpoly was recovered. However, note that it is also possible that the resultant super-
poly is only a constant function and in such case no key information would be recovered.
Therefore, we propose that key recovery attacks given by division property based cube
attacks should be verified.

We applied our new attack framework to verify the key-recovery attacks against Triv-
ium variants with more than 830 initialization rounds reported in [5, 9], it was shown
that all these key-recovery attacks were only distinguishing attacks. Some important
parameters used in our experiments are presented in Table 3, where the expressions of
u1, u2 . . . , u8 are listed in Appendix. Take the first row of Table 3 for example. Let I be
the cube index corresponding to the first row of Table 3. First, when the output bit z832
is considered as a polynomial on the internal state s(312), i.e., z832 = g312(s(312)), there
is only one term u1 satisfying that a division trail (ej , kI) u1−→ 1 exists for j = 346. Let

6Here we did not directly compute the ANF of z832 = g312(s(312)) but used Lemma 4 recursively.



20

Table 3: Details of the checking key recovering attacks

# of rounds |I| Involved key variables RT VT/internal state bit checking result
832 72 k34, k58, k59, k60, k61[5] u1 v37v38/s

(205)
94 no key variable

833 73 k49, k58, k60, k64, u2 v45v46/s
(149)
1 no key variable

k74, k75, k76[9] u3 v23v37v38/s
(249)
94

833 74 k60[9] u4 v29v30/s
(165)
1 no key variable

835 77 k57[9] u5 v72v73/s
(122)
1 no key variable

u6 v50v51/s
(169)
1

836 78 k57[9] u7 v71v72/s
(123)
1 no key variable

839 78 k61[9] u8 v61v75v76/s
(262)
94 no key variable

Table 4: Details on finding zero-sum distinguishers

# of rounds RT VT/internal state bit RT VT/internal state bit

840 u9
v30v31/s

(164)
1

u11
v74v75v76/s

(262)
94u10 u12

us denote this division trail by γu1 . Second, γu1 is invalid due to v37v38 does not appear
in s

(205)
94 . Third, after removing all the invalid division trails due to the absence of v37v38

in s
(205)
94 , there is no division trail such that (ej , kI) u1−→ 1 for any j ∈ {34, 58, 59, 60, 61}.

Therefore, no key variables are involved in the superpoly of the cube I.

5.6 Improvements on Finding Zero-Sum Distinguishers
Although invalid trails would not affect the correctness of distinguishers found with the
division property, we may find better distinguishers if some invalid division trails can be
removed. In [15], it was reported that the first output bit of 839-round Trivium is balanced
when all the IV variables are active. However, there may be some invalid division trails
not being removed in the previous works. Therefore, in this subsection, we attempt to
find distinguishers for Trivium variants with more initialization rounds than 839.

We perform the experiments in a similar way to that used in the previous subsection.
As a result, we prove that the degree of the first output bit of 840-round Trivium is
balanced when all the IV variables are active. The detailed information of our experiments
is shown in Table 4, and the detailed expressions of u9, u10, u11, u12 can be found in
Appendix.

6 Conclusion
In this paper we revisit the key recovery attacks given by the division property based cube
attacks against stream ciphers. Weak Assumption is one of fundamental assumptions used
in this type of attacks. Based on Weak Assumption, it was thought that if a subset J
of the secret key variables was suggested to be involved in a target superpoly by the
MILP modelled division property, then the superpoly would be a non-constant function
by choosing an appropriate constant part of IV and so it could be used for recovering
key information. However, our observations show that Weak Assumption does not always
hold for Trivium and the target superpoly could be a constant function for all choices of
the constant part of IV in practice. It is shown in this paper that some best key recovery
attacks on Trivium are distinguishing attacks only. To attain this goal, we proposed a new
variant of division property from an algebraic point of view and some new techniques to
remove invalid division trails by MILP models. For the state of art, division property based
cube attacks could only guarantee distinguishing attacks, and all key recovery results need
further verification.
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Appendix
The Toy Example I
Example 2. Let nf be a toy NFSR-based stream cipher of size 8. Denote the state
of nf at time clock t by s(t) = (s(t)

1 , s
(t)
2 , · · · , s

(t)
8 ). Assume that nf is initialized with

x1, x2, · · · , x8, i.e., s(0) = (x1, x2, . . . , x8). The state of nf is updated as

s
(t+1)
1 = s

(t)
5 ⊕ s

(t)
6 s

(t)
7 ⊕ s

(t)
8

s
(t+1)
i = s

(t)
i−1 for i ∈ {2, 3, 4, 5, 6, 7, 8}

Furthermore, the output bit after r rounds is defined as zr = s
(r)
1 s

(r)
3 .

We choose x2, x3, x4, x5 as active variables. Then, according to the propagation rules
of the conventional division property, the following conventional division trail would exist.

round 0 (0, 1, 1, 1, 1, 0, 0, 0)
round 1 (1, 0, 1, 1, 1, 0, 0, 0)
round 2 (1, 1, 0, 1, 1, 0, 0, 0)
round 3 (0, 1, 1, 0, 1, 1, 0, 0)
round 4 (0, 0, 1, 1, 0, 1, 1, 0)
round 5 (1, 0, 0, 1, 1, 0, 0, 0)
round 6 (0, 1, 0, 0, 1, 1, 0, 0)
round 7 (0, 0, 1, 0, 0, 1, 1, 0)
round 8 (1, 0, 0, 1, 0, 0, 0, 0)

For the above conventional division trail, based on our ideas, we could know the
distribution of active variables through this division trail. We show the corresponding
division trail over (F2, TI)8 in the following.

round 0 ([0, 1], [1, x2], [1, x3], [1, x4], [1, x5], [0, 1], [0, 1], [0, 1])
round 1 ([1, x5], [0, 1], [1, x2], [1, x3], [1, x4], [0, 1], [0, 1], [0, 1])
round 2 ([1, x4], [1, x5], [0, 1], [1, x2], [1, x3], [0, 1], [0, 1], [0, 1])
round 3 ([0, 1], [1, x4], [1, x5], [0, 1], [1, x2], [1, x3], [0, 1], [0, 1])
round 4 ([0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [1, x2], [1, x3], [0, 1])
round 5 ([1, x2x3], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [0, 1], [0, 1])
round 6 ([0, 1], [1, x2x3], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [0, 1])
round 7 ([0, 1], [0, 1], [1, x2x3], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1])
round 8 ([1, x4x5], [0, 1], [0, 1], [1, x2x3], [0, 1], [0, 1], [0, 1], [0, 1])

https://eprint.iacr.org/2016/811
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The above division trail indicates that ⊕
(x2,x3,x4,x5)∈F4

2

z8

is unknown, where z8 = s
(8)
1 s

(8)
3 . However, by computing the real ANFs of s(t) for 0 ≤ t ≤

8, we know that x4x5 does not appear in the s
(8)
1 and x2x3x4x5 does not appear in z8. It

indicates that the above division trail is invalid and should be aborted. Furthermore, it
can be seen that with our techniques, we could identify some invalid division trails which
could not be found previously.

The Toy Example II
Example 3. Let nf be defined as Example 2. When choosing x2, x3, x4, x5 as active
variables, as shown in Example 2, there would one division trail. Since T = x4x5 does
not appear in s

(8)
1 , we would focus on the division trails with the restriction of T . In the

following, for the division trail shown in Example 2, we present its corresponding division
trail with the restriction of T .

round 0 ([0, 1], [1, 1], [1, 1], [1, x4], [1, x5], [0, 1], [0, 1], [0, 1])
round 1 ([1, x5], [0, 1], [1, 1], [1, 1], [1, x4], [0, 1], [0, 1], [0, 1])
round 2 ([1, x4], [1, x5], [0, 1], [1, 1], [1, 1], [0, 1], [0, 1], [0, 1])
round 3 ([0, 1], [1, x4], [1, x5], [0, 1], [1, 1], [1, 1], [0, 1], [0, 1])
round 4 ([0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [1, 1], [1, 1], [0, 1])
round 5 ([1, 1], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [0, 1], [0, 1])
round 6 ([0, 1], [1, 1], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [0, 1])
round 7 ([0, 1], [0, 1], [1, 1], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1])
round 8 ([1, x4x5], [0, 1], [0, 1], [1, 1], [0, 1], [0, 1], [0, 1], [0, 1])

According to the above division trail with the restriction of T , we know that λ
(8)
1,T = x4x5.

While x4x5 does not appear in s
(8)
1 , equivalently to Example 2, we know that this division

trail is invalid and should be aborted.

The Specification of the Procedure UpdateFlag
In [9], the authors defined =,⊕ and × operations for the elements of set {0c, 1c, δ}. The
= operation tests whether two elements are equal (naturally 1c = 1c, 0c = 0c and δ = δ ).
The ⊕ operation follows the rules: 1c ⊕ 1c = 0c

0c ⊕ x = x⊕ 0c = x for arbitrary x ∈ {1c, 0c, δ}
δ ⊕ x = x⊕ δ = δ

(8)

The × operation follows the rules: 1c × x = x× 1c = x
0c × x = x× 0c = 0c for arbitrary x ∈ {1c, 0c, δ}
δ × δ = δ

(9)

Based on these rules, we give the algorithm to update the flag vector for the round function
of Trivium.
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Algorithm 8 Update the Flag Vector
procedure UpdateFlag(flag)

Set flag93 = flag66 ⊕ flag171 ⊕ flag91 × flag92 ⊕ flag93;
Set flag177 = flag162 ⊕ flag264 ⊕ flag175 × flag176 ⊕ flag177;
Set flag288 = flag243 ⊕ flag69 ⊕ flag286 × flag287 ⊕ flag288;
flag = flag >>> 1;
return flag;

end procedure

Expressions for u1, u2, . . . , u12

Here we give the specific expressions for u1, u2, . . . , u12 in Subsections 5.5 and 5.6.

u1 = s
(312)
101 s

(312)
113 s

(312)
114 s

(312)
147 s

(312)
148 s

(312)
155 s

(312)
156 s

(312)
161 s

(312)
175 s

(312)
176 s

(312)
185 s

(312)
186 s

(312)
193 s

(312)
194 s

(312)
201 s

(312)
202

u2 = s
(312)
120 s

(312)
121 s

(312)
149 s

(312)
151 s

(312)
152 s

(312)
163 s

(312)
164 s

(312)
166 s

(312)
165 s

(312)
184 s

(312)
185 s

(312)
195 s

(312)
196 s

(312)
200 s

(312)
210 s

(312)
211 s

(312)
244 s

(312)
245

u3 = s
(312)
102 s

(312)
114 s

(312)
115 s

(312)
148 s

(312)
149 s

(312)
156 s

(312)
157 s

(312)
161 s

(312)
175 s

(312)
176 s

(312)
184 s

(312)
185 s

(312)
192 s

(312)
193 s

(312)
200 s

(312)
201

u4 = s
(312)
102 s

(312)
114 s

(312)
115 s

(312)
148 s

(312)
149 s

(312)
156 s

(312)
157 s

(312)
161 s

(312)
175 s

(312)
176 s

(312)
184 s

(312)
185 s

(312)
192 s

(312)
193 s

(312)
200 s

(312)
201

u5 = s
(304)
87 s

(304)
88 s

(304)
105 s

(304)
106 s

(304)
138 s

(304)
139 s

(304)
145 s

(304)
159 s

(304)
160 s

(304)
166 s

(304)
172 s

(304)
173 s

(304)
174 s

(304)
178 s

(304)
182 s

(304)
183 s

(304)
193

u6 = s
(314)
102 s

(314)
114 s

(314)
115 s

(314)
148 s

(314)
149 s

(314)
155 s

(314)
156 s

(314)
161 s

(314)
175 s

(314)
176 s

(314)
184 s

(314)
185 s

(314)
192 s

(314)
193 s

(314)
201 s

(314)
202

u7 = s
(305)
105 s

(305)
106 s

(305)
138 s

(305)
139 s

(305)
146 s

(305)
147 s

(305)
151 s

(305)
160 s

(305)
165 s

(305)
166 s

(305)
172 s

(305)
173 s

(305)
182 s

(305)
183 s

(305)
190 s

(305)
191 s

(305)
193

u8 = s
(303)
46 s

(303)
106 s

(303)
107 s

(303)
134 s

(303)
135 s

(303)
137 s

(303)
151 s

(303)
152 s

(303)
154 s

(303)
168 s

(303)
169 s

(303)
180 s

(303)
181 s

(303)
185 s

(303)
193 s

(303)
194 s

(303)
229 s

(303)
230

u9 = s
(309)
87 s

(309)
88 s

(309)
101 s

(309)
102 s

(309)
137 s

(309)
138 s

(309)
146 s

(309)
147 s

(309)
152 s

(309)
166 s

(309)
167 s

(309)
171 s

(309)
172 s

(309)
174 s

(309)
183 s

(309)
184 s

(309)
192 s

(309)
193

u10 = s
(309)
102 s

(309)
103 s

(309)
137 s

(309)
138 s

(309)
146 s

(309)
147 s

(309)
152 s

(309)
158 s

(309)
166 s

(309)
167 s

(309)
172 s

(309)
173 s

(309)
183 s

(309)
184 s

(309)
190 s

(309)
192 s

(309)
193

u11 = s
(319)
121 s

(319)
122 s

(319)
150 s

(319)
151 s

(319)
152 s

(319)
164 s

(319)
165 s

(319)
166 s

(319)
167 s

(319)
184 s

(319)
185 s

(319)
194 s

(319)
195 s

(319)
201 s

(319)
208 s

(319)
209 s

(319)
243 s

(319)
244

u12 = s
(319)
121 s

(319)
122 s

(319)
150 s

(319)
151 s

(319)
152 s

(319)
164 s

(319)
165 s

(319)
166 s

(319)
167 s

(319)
184 s

(319)
185 s

(319)
194 s

(319)
195 s

(319)
200 s

(319)
208 s

(319)
209 s

(319)
244 s

(319)
245

The Comparison with the 3-Subset Division Property
Compared with the 2-subset division property, both the 3-subset division property and
our method with the distribution of active variables could find more accurate integral
characteristics by removing invalid division trails. However, the two methods are quite
different and the sets of invalid division trials removed by the two methods are often
distinct.

First, the 3-subset division property removes invalid division trails by recording 1-sum
property. In the 3-subset division property, division vectors are recorded in K and L
where a division vector u in L satisfies 1-sum property, that is, the summation of the bit
product y(X)u is 1 over an input set. During the propagation of 3-subset division property,
a division vector appearing even times in L are removed. As a result, the attackers could
find more accurate integral characteristics. So far there is no MILP method to compute
division trials for 3-subset division property.

Our method removes invalid division trails by finding a term t = xu, which is a
product of some active variables involved in a division trail, vanished in the ANF of some
intermediate state bit (any multiple of t does not appear). MILP solvers could be easily
utilized in our method.

In addition, the 3-subset division property could be used to find 1-sum integral char-
acteristic beside 0-sum integral characteristic, but our method could only be used to find
0-sum integral characteristic.

Finally, it is known that 3-subset division property is only useful for small state ciphers.
For stream ciphers like Trivium, it is impossible to compute 3-subset division property
because of large internal state.
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