
− 1 −

Miller Inversion is Easy for the Reduced Tate Pairing on Trace

Zero Supersingular Curves

Takakazu Satoh

e-mail: satoh.df603@gmail.com

Abstract

Let q be a power of an odd prime. (In practice, q itself is a large prime.)

Denote the finite field of q elements by Fq. We present a simple algorithm

for Miller inversion for the reduced Tate pairing on supersingular elliptic

curve defined over Fq of trace zero (i.e.
#
E(Fq) = q+1). Assume we precom-

puted a generator of the 2-Sylow subgroup of Fq
×
, which depends only on q.

Then our algorithm runs deterministically with O(( logq)
3
) bit operations.

1. Introduction

Difficulty of pairing inversion is a fundamental assumption in pairing based

cryptography. Duc and Jetchev[2, Sect. 5.2] gives explicit description how pairing in-

versions break Boneh-Franklin’s IBE, Hess’ IBS and Joux’s tripartite key agreement

protocol. More interestingly, Verheuel[9] proved that the computational Diffie-Hellman

problem is reduced to pairing inversion. The result is extended to asymmetric pairings

by Karabina, Knapp and Menezes[5].

Galbraith, Hess and Vercauteren[3] proposed a two step pairing inversion

framework. The first step is called final exponentiation inversion (FEI), while the

second step is called Miller inversion (MI). In general, both steps are considered to

be difficult. However, [3, Sect. 6] proposes a family of pairing friendly elliptic curves

whose MI are easy. Assuming Bateman and Horn conjecture[1] which is plausible but

unproved, we see that the family consists of infinitely many elliptic curves. The pur-

pose of this short note is to prove that MI is easy for trace zero supersingular curves.

Our algorithm is simple but it seems that it has not observed before.

Let us be more specific. Let q be a power of an odd prime and put r := q2. We

denote the q-th power Frobenius operator by ϕq. Let E be a supersingular elliptic

curve over Fq defined by the Weierstrass model (this is important for our method).

We assume E is of trace zero, i.e.,
#
E(Fq) = q+1. Let l be an odd number dividing

q+1. Put G1 := E[l]ÇE(Fq) and G0 := { P Î E[l] : ϕq(P) =,P }. By Schoof[7, Lemma 4.8],

E(Fr) = E[q+1] and E(Fq) is isomorphic to either Z/(q+1)Z or Z/
èç
çç
æ

2

q+1]]]]
øç
çç
ö
Z⊕Z/2Z. In

particular, ϕq
2|E[l] = idE[l], which yields G0ÇG1 = {O} and E[l] =G0⊕G1 as an Abelian group.

Moreover, G1 is cyclic since l is an odd divisor of q+1. Then G0 is also cyclic. Let

hq+1,A be the (q+1)-st normalized Miller function. We consider the reduced Tate pairing

defined by

eq+1(A, Q) := hq+1,A(Q)
q,1

which is a non-degenerate bilinear pairing on G0×G1. The fixed argument pairing in-

version problem (FAPI) is to find QÎG1 satisfying e(A, Q) = z for given zÎµl,{1} and

AÎG0,{O}, In the above two step framework, FEI returns the value of hq+1,A(Q) and
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MI finds Q from the output of FEI. Under this circumstance, we give a simple algo-

rithm for MI.

If we exclude side-channel attacks (and use of quantum computers), FEI seems to

be a very hard problem. See Vercauteren[8]. If FEI is actually a hard problem, our

result has probably no impact to real world cryptography. However, Lashermes,

Fournier and Goubin[6] gives a fault attack method for FEI. Although their method

is intended for ordinary curves, it is also applicable to supersingular curves. Indeed,

the method described in Section 4.2 of [6] is sufficient for the embedding degree two

case. Thus, if one has concerns about fault attacks, final exponentiation must be so

implemented that it is immune to such attacks.

2. The algorithm

We keep notation in the previous section. Let ξ be the X -coordinate function. Our

algorithm is as follows.

Algorithm 2.1.

Input: vÎFr, AÎG0,{O}. // Note that A may not be a generator.

Output: QÎG1,{O} satisfying hq+1,A(Q) = v if such Q exists. Otherwise, nil.

Procedure:

1: u := v(q+1)/2 ;

2: if uÎ/ Fq then return nil ;

3: x1 := ξ(A)+u ; x2 := ξ(A),u ;

4: Build a set Li := { QÎ E(Fq) : ξ(Q) = xi } for i = 1, 2. // Note 0 ≤ #
Li ≤ 2.

5: for each QÎ L1ÈL2

6: if hq+1,A(Q) = z then return Q ;

7: return nil ;

Before we evaluate computational complexity of our algorithm, we clarify assump-

tions on time complexities for operations on elements of Fq or Fr. We assume that Fq

and Fr are so realized that one arithmetic operation in Fq or Fr amounts to O(( logq)
2
)

bit operations. We also assume that a generator g of 2-Sylow subgroup of Fq
×

is

precomputed. This is achieved by a probabilistic algorithm which needs O(( logq)
3
) bit

operations. Using g, we can deterministically compute a square root of a square ele-

ment of Fq
×

with O(( logq)
3
) bit operations. We can also use g to construct Fr as

Fq[T ]/〈T2, g〉 where T is an indeterminate.

Theorem 2.2. Algorithm 2.1 returns a correct result with O(( logq)
3
) bit operations.

Proof. First, we prove correctness. Suppose there exists QÎG1,{O} satisfying

hq+1,A(Q) = v. Recall that E is defined by the Weierstrass model. Since

AÎG0 ⊂ E[q+1], we have

hq+1,A = (ξ , ξ(A))hq,A. (2.1)

Now key observation of our algorithm is hq,A(Q)Îµl ⊂µq+1 by Granger et al.[4,

Theorem 2]. Thus evaluation of (2.1) at Q followed by q+1 powering yields

vq+1 = (ξ(Q), ξ(A))
q+1

. (2.2)
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Since QÎ E(Fq),{O}, we have ξ(Q)ÎFq. On the other hand AÎG0,{O} implies

ξ(A) = ϕq(ξ(A)). Thus ξ(A)ÎFq. Therefore ξ(Q),ξ(A)ÎFq and (ξ(Q),ξ(A))
q+1 = (ξ(Q),ξ(A))

2
.

Substituting the right side of (2.2), we obtain

vq+1 = (ξ(Q), ξ(A))
2
. (2.3)

Recall that q is odd. Hence

ξ(Q), ξ(A) = ± v(q+1)/2.

Therefore ξ(Q) is either x1 or x2. If ξ(Q) = xi then QÎ Li by the definition of Li.

Hence the algorithm terminates with correct output Q. This also implies that the al-

gorithm reaches Step 7 only if there is no element Q in G1 satisfying hq+1,A(Q) = v.

Next, we evaluate computational complexity of Algorithm 2.1. Step 1 needs

O( logq) multiplications in Fr. For each i, we obtain Li with O(1) arithmetic operations

and one square root computation in Fq (not in Fr, which is ensured by Step 2).

Since G0ÇG1 = {O}, no division by zero occurs during evaluation of hq+1,A(Q) by the

Miller algorithm. Hence we obtain hq+1,A(Q) for a given QÎG1,{O} with O( logq) arith-

metic operations over Fr. Thus the algorithm terminates with O( logq) arithmetic oper-

ations over Fr or Fq and at most two square root computations in Fq. By our

assumptions, they amount to O(( logq)
3
) bit operations. ÷

Remark 2.3. In case that q is a power of 2, the algorithm and its implementation

are in fact easier because (2.3) yields a unique candidate of Q. However in crypto-

graphic point of view, this case is irrelevant.

Example 2.4. Consider E : Y
2 = X

3,13X ,7 over F139 and take l := 35. Let θ be the

class of T in F139[T ]/〈T2+4〉. Then F
139

2 =F139(θ). Put A := (67,38θ) and v := 25θ+109.

Note that 〈A〉 =G0 and that v138 is a primitive 35-th root of unity. Then u := v70 = 131

and we obtain x1 := 59 and x2 := 75. Thus L1 := { (59,±54) } and L2 := { (75,±1) }. The

Miller algorithm gives h140,A((59, 54)) = 114θ+109, h140,A((59, ,54)) = 25θ+109,

h140,A((75, 1)) = 112θ+22 and h140,A((75, ,1)) = 27θ+22. Therefore we obtain the desired an-

swer Q := (59, ,54).

We observe an example for a non-generator. Put B := 5A and z := 56θ+55 whose

orders are both 7. There are five points Qn := (83, 55)+n(69, 11)ÎG1, where 0 ≤n < 5,

satisfying e140(B, Qn) = z. Although the paring values are equal, the algorithm requires

correct input from FEI, which are different for each n. For example, the algorithm

returns unique point Q0 for input (4θ+135, B), whereas it returns unique point Q1 for

input (98θ+41, B). It is a role of FEI to provide a correct value to Algorithm 2.1.
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