
Masking Dilithium

Efficient Implementation and Side-Channel Evaluation

Vincent Migliore1, Benôıt Gérard2,3, Mehdi Tibouchi4, and Pierre-Alain Fouque2

1 LAAS–CNRS, Univ. Toulouse, CNRS, INSA
vincent.migliore@laas.fr

2 Univ Rennes, CNRS, IRISA
{benoit.gerard,pierre-alain.fouque}@irisa.fr

3 Direction Générale de l’Armement
4 NTT Corporation

mehdi.tibouchi.br@hco.ntt.co.jp

Abstract. Although security against side-channel attacks is not an
explicit design criterion of the NIST post-quantum standardization effort,
it is certainly a major concern for schemes that are meant for real-
world deployment. In view of the numerous physical attacks that have
been proposed against post-quantum schemes in recent literature, it is
in particular very important to evaluate the cost and effectiveness of
side-channel countermeasures in that setting.

For lattice-based signatures, this work was initiated by Barthe et al., who
showed at EUROCRYPT 2018 how to apply arbitrary order masking
to the GLP signature scheme presented at CHES 2012 by Güneysu,
Lyubashevsky and Pöppelman. However, although Barthe et al.’s paper
provides detailed proofs of security in the probing model of Ishai, Sahai
and Wagner, it does not include practical side-channel evaluations, and
its proof-of-concept implementation has limited efficiency. Moreover, the
GLP scheme has historical significance but is not a NIST candidate, nor
is it being considered for concrete deployment.

In this paper, we look instead at Dilithium, one of the most promising
NIST candidates for postquantum signatures. This scheme, presented at
CHES 2018 by Ducas et al. and based on module lattices, can be seen as
an updated variant of both GLP and its more efficient sibling BLISS; it
comes with an implementation that is both efficient and constant-time.

Our analysis of Dilithium from a side-channel perspective is threefold.
We first evaluate the side-channel resistance of an ARM Cortex-M3
implementation of Dilithium without masking, and identify exploitable
side-channel leakage. We then describe how to securely mask the scheme,
and verify that the masked implementation no longer leaks. Finally, we
show how a simple tweak to Dilithium (namely, replacing the prime
modulus by a power of two) makes it possible to obtain a considerably
more efficient masked scheme, by a factor of 7.3 to 9 for the most time-
consuming masking operations, without affecting security.

1 Introduction

Post-quantum cryptography and lattice-based signatures. As the threat
of quantum computers becomes increasingly concrete, the need for public-key
cryptography to transition away from legacy schemes based on factoring and
discrete logarithms and towards post-quantum secure primitives gets more press-
ing. In particular, there is a growing push to make post-quantum cryptography,
which was of somewhat theoretical interest for some time, ready for real-world
deployment. At the forefront of that push is NIST’s post-quantum standardization
process [1], which aims at selecting post-quantum secure schemes for encryption
and signatures that can practically replace RSA and elliptic curve cryptography.
The first round includes 69 candidates across encryption and signatures, based
on codes, lattices, multivariate cryptography, hash functions and more.

Among them, lattice-based schemes stand out as particularly attractive,
thanks to their strong security foundations and their high level of efficiency,
often comparable to RSA and elliptic curves both in terms of key and cipher-
text/signature size, and of computational complexity. However, they present a
unique set of challenges from an implementation perspective, due to the reliance
on new types of operations such as Gaussian sampling, polynomial arithmetic,
number-theoretic transforms and rejection sampling.

Such new operations are a concern, in particular, from the standpoint of
fault and side-channel analysis. A number of implementation attacks have been
proposed against lattice-based schemes, including fault attacks [4,11], cold boot
attacks [2], cache timing attacks [13,17] and more standard power/electromagnetic
analysis [12], taking advantage of vulnerabilities of the implementation of those
new operations in order to mount key recovery attacks. Lattice-based signatures
have notably been the target of multiple such attacks. It is therefore of prime
importance to study how to securely and efficiently protect implementations
against those attacks.

Masking lattice-based signatures. Regarding side-channels, a generic and
provable countermeasure is known: masking, in which all sensitive variables
in the signing algorithm is stored and processed as several shares, typically
using some linear secret sharing scheme. The two most common approaches are
boolean masking, where a secret bitstring x is represented as the bitwise XOR
x = x1⊕· · ·⊕xt of uniformly random shares xi’s, and arithmetic masking, where
a secret element x of Z/mZ is represented as the sum x = x1 + · · ·+ xt modulo
m of uniformly random elements of Z/mZ. Boolean masking is better suited to
mask logical operations, whereas arithmetic masking is convenient for operations
than can be represented in a simple way as arithmetic circuits (i.e., multivariate
polynomials modulo m).

Applying masking countermeasures to lattice-based signatures is a challenging
task, mainly due to the overall structure of the corresponding signing algorithm,
which typically involve sampling some sensitive randomness, combining it with
the secret key, and then carrying out some form of rejection sampling on the

resulting value. The random sampling and rejection sampling are complicated
operations which are better suited for boolean masking, whereas the main part
of the signing algorithm involving the secret key is linear modulo some prime p,
and therefore convenient for arithmetic masking. Protecting the entire algorithm
therefore requires conversions between arithmetic and boolean masking, targeted
unmasking of provably non-sensitive variables, and the design of novel masked
gadgets to support the new sampling and rejection operations.

This was all first tackled recently by Barthe et al. [3] in a EUROCRYPT 2018
paper providing a complete, arbitrary order masking of the (relatively simple)
lattice-based signature scheme of Güneysu, Lyubashevsky and Pöppelman (GLP).
The paper addresses all the issues above in the case of GLP to construct a provably
secure masked implementation of the key generation and signing algorithms of
GLP. It suffers from several limitations, however. First, the GLP scheme itself
has the advantage of being relatively simple compared to later lattice-based
signatures like BLISS and the current NIST candidates, but it is of limited
practical relevance, due to a level of efficiency that falls short of the state of
the art, and more lax security guarantees. Second, the masked implementation
of Barthe et al. incurs a rather severe overhead compared to the (already not
that efficient) unmasked scheme. And finally, although the paper comes with
security proofs, it does not include a practical side-channel evaluation: this can
be a problem in practice due to discrepancies between formal specifications and
compiled code, unexpected data dependencies introduced at the CPU-level, and
other hardware issues like glitches.

Our contributions. As a result, it is desirable to consider the application of
the masking countermeasure to a more up-to-date lattice-based signature scheme
(preferably a NIST candidate), hopefully achieving better performance than
the masked implementation of Barthe et al., and with a concrete validation of
side-channel resistance.

This is the goal pursued in this work, where we examine in particular the
Dilithium signature scheme of Ducas et al. [10], a NIST candidate that can be
seen as a descendant of both GLP and BLISS. It comes with an implementation
that emphasizes both efficiency and constant running time (so as to achieve
security against timing attacks and simple power analysis). In particular, like
GLP but unlike BLISS, its main variant excludes Gaussian distribution and only
relies on random numbers that are sampled uniformly from small intervals.

Our main contributions are as follows:

1. we carry out a side-channel evaluation of the reference design of Dilithium
when implemented on an ARM Cortex-M3 micro-controller (the STM32F1),
and identify exploitable side-channel leakage, which underscores the need for
suitable countermeasures;

2. we propose an efficient masking of Dilithium at any order, partially leveraging
the work carried out by Barthe et al. on GLP (in particular, we reuse their
formally verified masked gadgets);

3. we describe a simple variant of Dilithium that lends itself to a consider-
ably more efficient masking while preserving security, using the key idea of
switching from a prime modulus to a power of two5;

4. we implement these masked schemes on the same ARM Cortex-M3 micro-
controller, we manage to remove unexpected leakages due to some micro-
architectural features and evaluate both the efficiency and side-channel
resistance of the implementation, with satisfactory results on both counts.

The paper is organized as follows. Section 2 recalls the key generation and the
signing algorithms of Dilithium. Section 3 evaluates the side-channel leakage of
sensitive operations on our STM32F1 target micro-controller. Section 4 proposes
an efficient masking of the Dilithium reference design, as well as that of our
proposed variant (using a power-of-two modulus) which greatly improves masking
efficiency. Section 5 provides implementation results, both in terms of performance
and of side-channel resistance.

2 The Dilithium Signature scheme

Dilithium is a signature scheme based on Lyubashevsky’s Fiat–Shamir with
aborts framework and is based on hard problems in module lattices. Its core
functions are KeyGen for the key generation, Sign to produce a signature of a
message, and Verify to verify the signature.

One of the main features of Dilithium (aside from its module lattice approach)
is the key compression mechanism to reduce public key size. The compression is
performed at two different levels. First, Module matrices are constructed with
an extendable output function (XOF), which generates a (deterministic) pseudo-
random string from a small seed. Thus, the public only requires the seed and
not the full matrix. Second, the public key size is reduced using a truncation
on its second component. This truncation is performed coefficient-wise and is
associated to an error-correcting code mechanism to recover truncated bits6.

In addition, Dilithium does not instantiate Module with discrete Gaussian
sampling, but with bounded coefficients. This approach greatly simplifies the
arithmetic of Dilithium (and at the same time masking) since discrete Gaussian
sampling is much more complex than a simple bound check.

In this paper, we mainly focus on the key generation and the signature
generation algorithms (which will respectively be called DILITHIUM.KeyGen
and DILITHIUM.Sign) since the verification algorithm does not handle sensitive
data and hence does not require masking.

DILITHIUM.KeyGen. The DILITHIUM.KeyGen algorithm, described in
Algorithm 1, generates the secret key Skey and public key Pkey required to
respectively sign and verify a message.

5 this statement is discussed later on in Section 4.4.
6 For a formal description of the different truncation procedures used in Dilithium

(namely Decomposeq, HighBitsq, LowBitsq and Power2Round) the reader can refer
to the original Dilithium paper [9].

Algorithm 1 DILITHIUM.KeyGen()

1: ρ, ρ′ ← {0, 1}256

2: A = Sam(ρ) ∈ Rk×`q

3: (S1, S2) = Sam(ρ′) ∈ R`×1
η ×Rk×1

η

4: T = A · S1 + S2 ∈ Rk×1
q

5: T1 = Power2Round(T, d) ∈ Rk×1
q

6: Pkey = (ρ, T1)

7: Skey = (ρ′, S1, S2, T)

8: return (Pkey, Skey)

The randomness is obtained using an extendable output function (XOF)
called Sam which takes a random seed as input and returns an extendable pseudo-
random string. The Sam function is used to compute the matrix A (which is part
of the public key) and matrices (S1,S2) (which are part of the secret key). Unlike
coefficients of A, the coefficients of S1 and S2 are small ones.

Regarding arithmetic complexity, the Sam function and the polynomial mul-
tiplication line 4 are the most time-consuming part of the computation. For the
implementation provided for the NIST competition, the Sam function is imple-
mented using SHAKE-256, and polynomial multiplications with NTT algorithm.

DILITHIUM.Sign. The DILITHIUM.Sign algorithm is described in Algo-
rithm 2. It is constructed by a rejection sampling loop where a fresh signature
is generated until it satisfies some security properties. First of all, a uniformly
sampled matrix Y in Rγ1−1 is secretly generated, and multiplied by the public
value A to produce W (lines 6 and 7). Then a challenge C ∈ B60 is generated
as the output of a hash function H with (ρ, T1,W1, µ) as input, where W1 is
composed by the high order bits of W and µ is the message to sign.

To ensure that the signature does not leak information about the key, line
11 executes some bound checks. If this verification fails, a new signature is
generated. One of the most important parameter is β, because it will determine the
number of rounds required before a valid signature is produced. For recommended
parameters, an average of 5 rounds are needed before producing a good set of
parameters. Eventually, the MakeHintq,2γ2 procedure line 12 will generate some
hints for the public key reconstruction (bits are due to its truncation.).

3 Side-channel evaluation of unmasked Dilithium

In this section we report the results we obtained evaluating the potential side-
channel weaknesses of an unprotected implementation of Dilithium. We performed
Welch’s t-test to localize potential leakages and single-bit DPA on secret variables
to confirm that actually correspond to exploitable leakages.

Algorithm 2 DILITHIUM.Sign(Skey, µ)

1: A = Sam(ρ) ∈ Rk×`q

2: T1 = Power2Round(T, d) ∈ Rk×1
q

3: T0 = T − T1 · 2d ∈ Rk×1
q

Rejection sampling loop

4: ρ′′ ← {0, 1}256

5: Y = Sam(ρ′′) ∈ R`×1
γ1−1

6: W = A · Y ∈ Rk×1
q

7: W1 = HighBitsq,2γ2(W) ∈ Rk×1
q

8: C = H(ρ, T1,W1, µ) ∈ {0, 1}256

9: Z = Y + CS1 ∈ R`×1
q

10: R0 = LowBitsq,2γ2(W − CS2)

11: if ||Z||∞ ≥ γ1 − β or ||R0||∞ ≥ γ2 − β or ||CT0||∞ ≥ γ2 goto 4

12: H = MakeHintq,2γ2(−CT0,W − CS2 + CT0)

13: return (Z,H,C)

Operation choice motivation. We limited the unprotected-case study to three
operations namely, the rejection, LowBitsq,2γ2 and HighBitsq,2γ2 . We detail now
the motivations that led to this choice.

The rejection is one of the most critical operations as it is both used for secret
data generation and for rejection sampling during the signature computation.
A successful attack on the rejection will leak information on S1, S2 during the
key generation, on Y during the signature or on a rejected Z (which leaks
information about S1 as stated by the designers). Regarding decomposition
operations, LowBitsq,2γ2(W −C ·S2) in line 10 of Algorithm 2 and HighBitsq,2γ2
which is part of the computation of MakeHintq,2γ2(−CT0,W −CS2 +CT0) (line
12) have been chosen because W − C · S2 is a sensitive variable since, together
with the public value, Z it would allow the attacker to recover the secret key T .

We did not studied the Sam function. Although it is a good candidate for an
attack as it is used to generate S1, S2 and Y , its actual implementation can vary
from a Dilithium implementation to another. Indeed, designers of Dilithium state
that different implementations are free to use whichever pseudo-random generator
is offering the best performance and security on their respective platform. The
situation is similar for the random oracle H as its actual implementation from
the NIST submission relies on SHAKE256 what is not mandatory. Studying the
resistance of these primitives is indeed of great importance before deploying a
solution but is out of the scope of this paper where we aim at considering intrinsic
security properties of DILITHIUM.

Note that the polynomial multiplications used to compute T = A · S1 + S2

during the key generation (line 4 of Algorithm 1) and W = A · Y during the
signature is also a sensitive step of the algorithm. Since this classical operation

has already been shown to be sensitive to side-channel attacks and is easy to
mask (due to its linearity) we did not evaluate its unprotected version.

Experimental setup and methodology. Our workbench were composed of
an STM32F1 micro-controller from a discovery platform (referred as the DUT
in the rest of the section) running sensitive operations, an H 2.5-2 near-field
probe coupled with a 20dB pre-amplifier to measure electromagnetic leaks,
an instrumented RTO2014 oscilloscope from Rohde & Schwarz (with 1GHz
bandwidth) to capture traces and a desktop computer for performing trace
analysis.

The oscilloscope was configured with a sample rate ensuring 8 samples per
DUT clock cycle (that is a bit more than 160 MHz). The data was sent to the
DUT through a serial connection, then before the computation a trigger helped
the synchronization of the oscilloscope and the DUT (using a GPIO pin of the
board). A python script was used to perform t-test and DPA on the captured
traces. For the t-test we used the fixed vs random approach and took care of
randomly mix requests from both populations. The single-bit DPA has been
performed on each bit of the sensitive data in the input of the target operations.

Evaluation results. We present here the results obtained. For the t-test (Fig-
ure 1), the threshold use is the classical 4.5 one (red lines).

Rejection LowBitsq,2γ2 HighBitsq,2γ2

Fig. 1: T-Test evaluation for targeted operations (using 500 traces).

As can be seen in Figure 1, basic implementation are highly leaking (we
observe clear peaks using only 500 traces). In all cases, we confirmed the threat
induced by those leakages by computing single-bit DPA curves for all sensitive
inputs. Results can be seen in Figure 2 and show that t-test peaks are actual
leakages. We obtain similar results for other target bits even if for some bits the
signal has a smaller magnitude.

Rejection LowBitsq,2γ2 HighBitsq,2γ2

Fig. 2: Single-bit DPA curves on bit 0 of sensitive data (using 5000 traces).

4 Masking Dilithium

Results of Section 3 confirm that an attacker having a physical access to a
device can easily perform a side-channel key-recovery on a standard Dilithium
implementation. In this section, we propose some guidelines to efficiently protect
the Dilithium algorithm.

First, we provide some information about the leakage model adopted for the
determination of masking operations. Second, we present a high-level strategy
for masking. Third, we detail the implementation of secured operations.

4.1 Leakage model

The first introduced side-channel security model was the noisy leakage model in
which the attacker obtains sensitive information mixed with noise [5,18]. The
main limitation of this approach is the deep knowledge of the noise it requires
which is strongly device-dependent.

A more generic approach is the probing model [14]. In the t-probing model,
the attacker observes t intermediate noise-free variables of the algorithm (as if
she was directly probing the bus). In [8], a reduction have been obtained proving
that security in the t-probing model implies security in the noisy leakage one.

This last model is the one to consider in the case a designer wants to totally
remove leakages up to a given order. To achieve probing security, operations on
secret variables are computed over shared values, i.e. variables which are split
into shares containing partial information of the initial variable mixed with noise.
Masking variables at order d requires at least d+ 1 shares. The threshold probing
model introduces the notion of t-probing secure gadget.

Definition 1 A circuit G is a t-probing secure gadget if and only if every tuple
composed of t of its intermediate variables is independent from any sensitive
variables it manipulates.

In the following, we expose our masking strategy and describe the secure gadgets
used for our implementation.

4.2 Presentation of the masked key generation and signature

We provide here design considerations on securing DILITHIUM.Keygen and
DILITHIUM.Sign in the t-probing model. The sensitive operations performed are
of different natures which implies using both arithmetic and Boolean masking. In
the following, we help the reader by disambiguating the used masking using the
prefixes arith:: for arithmetic (the sensitive variable is the sum of the shares)
and bool:: for Boolean masked operations (the sensitive variable is the exclusive
or of the shares).

Masking of DILITHIUM.Keygen. Basically, DILITHIUM.KeyGen can be
split into 3 phases: the sampling of uniform matrices A, S1 and S2; the computa-
tion of T = A · S1 + S2; and the computation of high-order bits of T using the
PowerToRound function. Variables S1 and S2 are clearly sensitive data because
they are part of the secret key what is not the case of variable T = A · S1 + S2

since it is part of the public key. Consequently, only lines 3 and 4 of Algorithm 1
require masking, i.e. the sampling of S1 and S2, usage of these secrets in the
computation of T and the secured reconstruction of T . The high-level description
of the masked version of DILITHIUM.Keygen is proposed in Figure 3.

The first masked operation is arith::generate which provides a secured
uniform sampling algorithm within a given bound. The choice of arithmetic
masking will ease the following computations: the multiplication of A with masked
S1 can be performed independently on each share of S1 due to the linearity of
the operation with respect to the masking. The second masked operation is
arith::unmask which securely reconstructs an integer from its shares.

Masking of DILITHIUM.Sign. The most sensitive data used in the signature
is Y because it is directly linked with the secret S2 by the equation Z = Y +C ·S1.
Since both Z and C are public when a valid signature is produced, the attacker
just need to solve a linear system of equations to extract S2. Variable Z is also
critical because in case of a rejection, Z leaks partial information about the secret
S1 as stated in the original security proof of Dilithium. Thus, intermediate Z
must be protected.Function H however does not need to be protected. Its inputs
ρ, T1, µ and its output C are public and W1 is not sensitive (W1 is reconstructed
from public data in the signature verification).

ρ

arith::generate

arith::generate

Sam

×

+ arith::unmask PowerToRound

A

(S1)0≤i<t

(S2)0≤i<t

(T)0≤i<t T T1

Fig. 3: Masked implementation of DILITHIUM.Keygen. Masked functions are
represented with a double lined box.

In Figure 4, we present the masked version of DILITHIUM.Sign. Additional
gadgets must be introduced namely:

– arith::to::bool::lowbits which securely computes the LowBitsq,2γ2 from
arithmetic masked shares, and provides the result as boolean masked shares;

– arith::rejection and bool::rejection which check if the infinity norm of
polynomial A is below a constant β for respectively arithmetic and boolean
masked shares;

– arith::makehint which securely performs the MakeHintq,2γ2 operation on
arithmetic masked inputs and returns an unmasked value.

4.3 Description of secured gadgets of Dilithium with prime
modulus

In this section, we provide the description of the different masked gadgets for
Dilithium with prime modulus. The decomposition and the MakeHintq operations
are newly introduced gadget while others were introduced in [3].

ρ

arith::generate

Sam

× arith::unmask

W

HighBitsq,2γ2

A

(Y)0≤i<t

(W)0≤i<t
H C

W1

ρ, T1, µ

C

S1

S2

Y

W

× −

× + arith::rejection
(Z)0≤i<t

Restart

fail

arith::to::bool::lowbits

R

bool::rejection

Restart

(R0)0≤i<t

fail

C

T0

R

× + arith::makehint H

Fig. 4: Masked implementation of DILITHIUM.Sign. Masked functions are repre-
sented with a double-lined box.

4.3.1 Description of standard gadgets. Gadgets are basically split into to
categories: linear and non-linear gadgets. Algorithmic definitions of non-linear
gadgets can be found in Appendix A.

Linear gadgets can be straightforwardly masked as they are implemented by
applying the related instruction separately on each share. Linear gadgets used for
the masking of Dilithium are arith::add (addition of arithmetic masked shares),
bool::lshift (left shift of boolean masked shares), bool::rshift (right shift of
boolean masked shares), bool::not (NOT operation on boolean masked shares),
bool::neg (negation operation on boolean masked shares) and bool::xor (XOR
operation on boolean masked shares).

Non-linear gadgets are more complex, especially due to the fact that op-
erations between shares are performed implying additional use of randomness
(refreshing). Such gadgets are bool::mask for the secured masking of a given
integer, arith::to::bool::convert for the arithmetic to boolean conversion,
bool::add for the addition on boolean masked shares and bool::and for the
AND operation on boolean masked shares. These standard gadgets are not a
contribution of this paper: for the reader’s convenience, a description is given in
Appendix A (see Algorithms 9, 8 and 7 respectively).

4.3.2 Description of arith::generate. The arith::generate gadget gen-
erates uniformly sampled integers in a given interval. For the non-masked version
of Dilithium, this operation is performed in two steps: a first step which uses the
XOF function Sam to generate random values; and a second step which checks
that the coefficient lies in the target interval and rejects it if not. As stated before,
we did not considered the Sam function since the used algorithm may depend
on the developers’ choice. Since the processing of the generation is analogous
to Algorithm 15 of [3] we did not provide full details in the main body, but a
description can be found in Appendix A.

4.3.3 Description of arith::rejection and bool::rejection. The gadget
performing the rejection operation on a vector of boolean masked shares called
bool::rejection is presented in Algorithm 3. For coefficient a, bound β and
modulo q, the algorithm checks if β ≤ a ≤ q−β. The algorithm is constructed by
a loop which iterates on all masked coefficients, and evaluates if any coefficient is
out of bound by checking both lower and higher bounds.

To do so, the two bound checks are performed by subtracting the given
bound to the coefficient and checking the sign bit. It is a similar approach to
arith::generate at the except that during generation, we only need to check
one bound (namely 2 · β) and shift the result by −β.

The gadget arith::rejection is simply implemented as the composition of
arith::to::bool:convert and bool::rejection.

4.3.4 Description of decomposition operations. Decomposition opera-
tions are by far the most complex operations regarding masking. The cornerstone

Algorithm 3 bool::rejection((a)0≤i<t,len, β)

1: (k0)0≤i<t= bool::mask(−β − 1)

2: (k1)0≤i<t= bool::mask(q − β − 1)

3: for i in 0 to len− 1

4: (b0)0≤i<t= bool::add((k0)0≤i<t, (a[i])0≤i<t)

5: (b0)0≤i<t= bool::rshift((b0)0≤i<t, 31)

6: (b1)0≤i<t= bool::add((k1)0≤i<t, (a[i])0≤i<t)

7: (b1)0≤i<t= bool::rshift((b1)0≤i<t, 31)

8: (b0)0≤i<t= bool::xor((b0)0≤i<t, (b1)0≤i<t)

9: (r)0≤i<t = bool::and((r)0≤i<t, (b0)0≤i<t)

10: end for

11: return bool::fullxor((r)0≤i<t)

Algorithm 4 arith:makeint((r)0≤i<t, (z)0≤i<t, β). Masked algorithm of
MakeHintq,2γ2 with a prime modulus q. w is the word base (usually 32 or 64).

1: (r1)0≤i<t= arith::to::bool::highbits((r)0≤i<t, β)

2: (a)0≤i<t = arith::addmodq((r)0≤i<t, (z)0≤i<t)

3: (a1)0≤i<t= arith::to::bool::highbits((a)0≤i<t, β)

4: (t)0≤i<t = bool::xor((r1)0≤i<t, (a1)0≤i<t)

6: return bool::fullxor((t)0≤i<t)� (w − 1)

is the function Decomposeq,2γ2 which takes an integer r as input and returns
(r0, r1) such that r = 2r1γ2+r0. The value r0 (reps. r1) is precisely LowBitsq,2γ2(r)
(resp. HighBitsq,2γ2(r)). Both functions are actually computed using a call to
Decomposeq,2γ2 then returning the relevant part of r since no relevant optimiza-
tion can be made when only one of the ri’s is needed.

To illustrate the complexity of this computation, a constant time implementa-
tion of Decomposeq,2γ2 is provided in Appendix B.1. This algorithm leverages the
specific form of both the modulus q and the base used to perform the Euclidean
division so that only some shifts and integer additions are used. However, even
with these optimizations, Decomposeq,2γ2 requires numerous non-linear oper-
ations (addition of Boolean shares or Boolean AND). The masked version of
Decomposeq,2γ2 is provided in Algorithm 13 of Appendix B.1.

4.3.5 Description of arith::makehint. The computation of MakeHintq,2γ2
strongly relies on decomposition gadgets thus its masking is straightforward as
soon as there exists a masked version of HighBitsq,2γ2 . The masked algorithm
for computing MakeHintq,2γ2 is proposed in Algorithm 4.

4.4 Optimization of Dilithium masking for power of two modulus

The main drawback of the prime modulus used in the standard version of
Dilithium is the number of non-linear operations required during decomposition
operations. As an example, the computation of LowBitsq,2γ2(W − C · S2) in line
10 of Algorithm 2 requires 12,288 bool::add and 4,608 bool::and operations.

The choice of a prime modulus q of a specific form is mainly made for effi-
ciency reasons, as it makes number-theoretic transform (NTT)-based polynomial
multiplications possible. However, when it comes to the masked scheme, using
a power of two modulus q instead speeds up almost all masked gadgets and
greatly simplifies the masking of Decomposeq,2γ2 . Polynomial multiplications
then have to be carried out using non-Fourier techniques like Karatsuba, but
such techniques turn out to be quite competitive for the parameters of Dilithium.

From a security standpoint, one expects the security level of Dilithium using
a power-of-two modulus to be essentially the same as that of the original prime
modulus scheme. Indeed, the asymptotic security arguments for the underlying
lattice problems Module-LWE and Module-SIS are known to hold for moduli
of an arbitrary arithmetic form. This was established by Langlois and Stehlé
in their paper on worst-case to average-case reductions for module lattices [15],
specifically as Theorem 3.6 for Module-SIS, and Theorem 4.8 (using a modulus
switching argument) for Module-LWE. In addition, while in practice parameters
are set to match the best concrete lattice attacks on the scheme rather than using
security reductions, using a power-of-two modulus does not appear to make any
known concrete attack faster compared to the prime modulus case. We also note
that power-of-two moduli are commonly used by designers of practice-oriented
lattice-based constructions, including the NIST-submitted encryption scheme
Saber [7].

Consequently, we propose this power-of-two variant of Dilithium as a relevant
alternative insofar as side-channel resistance is a concern.

4.4.1 Simplification of arith::generate. The new arith::generate is
proposed in Algorithm 5. As q is a power of two, and due to the fact that computer
units perform two’s complement arithmetic, the integer modular reduction after
the rejection sampling can be skipped. Moreover, even if the size of the modulus
is different from the computer base arithmetic (usually 32-bit of 64-bit), the
modular reduction is almost a truncation of high-order bits so we do not need to
take into account modular reduction during intermediate computations.

We also found that for the power of two case, it is faster to generate input
random integers with arithmetic masked shares (see Section 5). It is not a trivial
result because the bound check loop now requires a conversion from arithmetic
to boolean masking, and this operation is known to be expensive.

4.4.2 Adaptation of bool::rejection. The bool::rejection operation
is almost unchanged. The only difference is the fact that because the integer
modular reduction with a power of two modulus is a truncation of high order

Algorithm 5 arith::generate(β). Generates an uniformly sampled integer
in the bounds [−β,+β].

1: mask = 1 << (NumberOfBits(β) + 1)− 1

2: do

3: for i in 0 to t− 1

4: (x)i = rand() ∧mask

5: end for

6: (x)0 = (x)0 − 2 · β − 1

7: (b)0≤i<t = arith::to::bool::convert((x)0≤i<t)

8: while bool::recompose((b)0≤i<t) = 0

9: (x)0 = (x)0 + β + 1

10: return (x)0≤i<t

bits, the implementation of the rejection sampling does not require the exact
exponent of the modulus q (see line 2 of Algorithm 14 in Appendix C).

4.4.3 Simplification of decomposition operations. In the Dilithium speci-
fication, the decomposition operations are performed in base 2γ2 = γ1 = (q−1)/16
(q − 1 is divisible by 16). Using q a power of two, we have to decompose using a
base 2γ2 = 2b. Therefore, the decomposition operations become straightforward
and are close to a truncation (at the except that the remainder must be zero
centered).

Algorithm 6 provides the new constant time implementation of Decomposeq,2γ2
with a power of two modulus q (hence a power of two base). As one can see, it is
now possible to separate computations of the low order bits and high order bits.
This is directly correlated with the fact that q is divisible by 16 (and not q − 1)
so there is no need to check the border case where r − r0 = q − 1.

An explanation of Algorithm 6 is provided in Appendix B.2. The masked ver-
sions of LowBitsq,2γ2 (referred as arith::to::bool::lowbits), HighBitsq,2γ2 (referred
as arith::to::bool::highbits) and MakeHintq,2γ2 (referred as arith::makehint) are
presented in Appendix C (Algorithms 15, 16 and 17).

5 Implementation results

In this section, we provide details on the implementation of masking for Dilithium,
along with execution times and a side-channel leakage evaluation. The followed
approach is similar to the one used for the evaluation of the unprotected imple-
mentation in Section 3.

Algorithm 6 Decomposeq,2γ2(r).

Parameters: b such that 2b = 2γ2 and w the processor word size.

1: m = (1� b)− 1

2: d = 1� (b− 1)
Computation of r0

3: r0 = r � (w − b)
4: m0 = MaskFromSign(r0)

5: m0 = m0 � b

6: r0 = r0 � (w − b)
7: r0 = r0 ⊕m0

Computation of r1

8: r1 = (r + d)� b

9: return (r0, r1)

5.1 Challenges of the masked implementation

We faced several challenges for the implementation of side channel countermea-
sures on the ARM Cortex-M3.

The first challenge was the complexity of masking itself. Top level Dilithium
gadgets are constructed by calls of common sub-gadgets (which are also possibly
large ones). Thus, inlining all procedures were not a relevant approach. Instead,
we have evaluated the trade-off between function calls and inlining to reduce
memory footprint with a limited impact on performances.

The second challenge was the limitation of the processor micro-architecture.
Even with a program following the theoretical t-probing model, the processor
micro-architecture itself can possibly leak additional information not covered
by the initial model. In the case of the ARM Cortex-M3 micro-architecture,
such sensitive components are intermediate registers ra and rb which are located
between standard registers and arithmetic units (and thus not directly accessible).
These registers are not erased between instructions and consequently they leak
the transient state of successively manipulated values. Our first implementation
in C was actually subject to such leakages and turned out to be unsafe. Thus,
we implemented the library in assembly language to control the scheduling of
instructions thus overcoming this phenomenon. In addition, since Dilithium
gadgets are composed of function calls, we adapted calls to only manipulate
addresses of sensitive data instead of the data itself.

A third issue was the complexity of tracking leaky instructions. We first directly
evaluated real traces captured with our workbench. However, this approach is time
consuming due to trace acquisition and processing. Moreover, the correspondence
between timing and assembly instructions is not trivial due to pipelining (it is
tractable but takes a lot of time if not automatized). Our final approach was
the exploitation of ARM simulators that also evaluate side-channel leakages.
We evaluated two of the most recent ones: ELMO [16] and MAPS [6]. Each

Table 1: Execution times of main gadgets for both prime and power of two
modulus q on STM32F1 (order-1 masking, computation on 1 coefficient).

q = 8380417 q = 2b speedup

arith::to::bool::lowbits 331µs / 7,944 cycles 38µs / 912 cycles 8

arith::to::bool::highbits 275µs / 6,600 cycles 37µs / 888 cycles 7

arith::makehint 560µs / 13,440 cycles 79µs / 1,896 cycles 7

bool::rejection 66µs / 1,584 cycles 66µs / 1,584 cycles 1

Table 2: Execution times of DILITHIUM.KeyGen and DILITHIUM.Sign on an
Intel Core i7-7600U CPU running at 2.80 GHz (10,000 runs).

Unmasked Order-1 Order-2 Order-3

DILITHIUM.KeyGen
323µs 1.83 ms 2.52 ms 4.32 ms

(reference) (5.66×) (7.8×) (13.4×)

DILITHIUM.Sign
992µs 5.64 ms 11.68 ms 28.08 ms

(reference) (5.68×) (11.77×) (28.3×)

simulator has some idiosyncrasies but for both, the main idea is to simulate
the number of bit flips during computations as it is directly correlated to the
power consumption. At the time of our experiments, ELMO was only supporting
the ARM Cortex-M0 while MAPS was only supporting Cortex-M3. We discuss
the relevance of both tools for our particular needs in Appendix D. To take
into account the optimization provided by the Cortex-M3, we finally based our
simulations on MAPS and brought some modifications to its core to manage
some specific instructions.

5.2 Evaluation of execution times

We focused on the most costly masked operations of Dilithium and calculated
computation times for both power of two and prime arithmetic. In particular,
we have evaluated arith::to::bool::lowbits, arith::to::bool::highbits,
arith::makehint and bool::rejection. Results are summarized in Table 1.

We can observe that the computation times of decomposition operations are
greatly improved with power of two modulus, with a speed-up from 7× (for
arith::makehint) to 8× (for arith::to::bool::lowbits). This is due to the
fact that only shifts are used for the decomposition when q is a power of two
while an Euclidean division is required if q is prime.

We also evaluated the overhead of the masking of Dilithium (power of two
implementation) compared to the non-masked version on the full implementation
on a general purpose processor. Computation results are summarized in Table 2.

First order masking is 5× slower than unmasked implementation. The com-
plexity of masking is limited due to the possibility of partially masking Dilithium.

5.3 Evaluation of side-channel security

We have evaluated masked gadgets separately due to the limited size on the
STM32F1 micro-controller. We focused on the power-of-two modulus version
since it corresponds to the main contribution of this paper. To speed up the
evaluation phase, we first used MAPS simulator to reduce the majority of leakages.
Then, we addressed remaining leakages with our side-channel workbench.

(a) bool::rejection (b) arith::to::bool::lowbits

(c) arith::to::bool::highbits (d) arith::makehint

Fig. 5: Evaluation of the t-test on masked gadgets after 10.000 traces.

In Figure 5, we provide the t-test evaluation of arith::to::bool::lowbits,
arith::to::bool::highbits, arith::makehint and arith::rejection. We
did not detected leakage using 10,000 traces on the first-order protected imple-
mentation which is to compare with the high leakages observed using only 500
curves for an unprotected implementation.

References

1. NIST Post-Quantum Cryptography. http://csrc.nist.gov/groups/ST/post-

quantum-crypto/

2. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. IACR Cryptology ePrint Archive 2018, 672 (2018)

3. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Grégoire, B., Tibouchi, M.:
Masking the GLP lattice-based signature scheme at any order. In: EUROCRYPT
(2018)

4. Bindel, N., Buchmann, J., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: FDTC (2016)

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: CRYPTO. pp. 398–412 (1999)

6. Corre, Y.L., Großschädl, J., Dinu, D.: Micro-architectural power simulator for
leakage assessment of cryptographic software on ARM cortex-m3 processors. In:
COSADE. pp. 82–98 (2018)

7. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR based
key exchange, CPA-secure encryption and CCA-secure KEM. In: AFRICACRYPT.
pp. 282–305 (2018)

8. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: EUROCRYPT (2014)

9. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

10. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Seiler, G., Stehlé, D.:
CRYSTALS-DILITHIUM, Algorithm Specifications and Supporting Documentation
(2017)

11. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based Fiat–Shamir and hash-and-sign signatures. In: SAC (2017)

12. Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures. In: ACM CCS. pp. 1857–1874 (2017)

13. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and reload.
In: Cryptographic Hardware and Embedded Systems – CHES 2016 (2016)

14. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: CRYPTO. pp. 463–481 (2003)

15. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptography 75(3), 565–599 (2015)

16. McCann, D., Whitnall, C., Oswald, E.: ELMO: emulating leaks for the ARM
Cortex-M0 without access to a side channel lab. IACR Cryptology ePrint Archive
2016, 517 (2016)

17. Pessl, P., Groot Bruinderink, L., Yarom, Y.: To BLISS-B or not to be—attacking
strongswan’s implementation of post-quantum signatures. In: ACM CCS (2017)

18. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: EUROCRYPT (2013)

A Standard non-linear gadgets for prime modulus

For the sake of completeness, we provide in this appendix the description of
standard gadgets for a prime modulus.

The classical and and add operations are masked using Boolean shares and
are respectively described in Algorithm 7 and Algorithm 8.

Algorithm 7
bool::and((a)0≤i<t, (b)0≤i<t)

1: for i in 0 to t− 1

2: (r)i = (a)i + (b)i

3: end for

4: for i in 0 to t− 1

5: for j in i+ 1 to t− 1

6: zij = rand()

7: zji = (a)i ∧ (b)j

8: zji = zij ⊕ zji
9: x = (a)j ∧ (b)i

10: zji = x⊕ zji
11: (r)i = (r)i ⊕ zij
12: (r)j = (r)j ⊕ zji
13: end for

14: end for

15: return (r)0≤i<t

The conversion from arithmetic masking to Boolean masking is shown in
Algorithm 9. Is is used in arith::generate, and arith::to::bool::decompose.

Algorithm 8
bool::add((a)0≤i<t, (b)0≤i<t)

1: (p)0≤i<t = bool::xor((a)0≤i<t, (b)0≤i<t)

2: (g)0≤i<t = bool::and((a)0≤i<t, (b)0≤i<t)

3: for i in 1 to log(ω)− 1

4: pow = 1 << (j − 1)

5: aux = bool::lshift((g)0≤i<t, pow)

6: aux = bool::and((p)0≤i<t, aux)

7: (g)0≤i<t = bool::xor((g)0≤i<t, aux)

8: aux0 = bool::lshift((p)0≤i<t, pow)

9: aux0 = bool::refresh(aux0)

10: (p)0≤i<t = bool::and((p)0≤i<t, aux0)

11: end for

12: aux = bool::lshift((g)0≤i<t, 1 << (log(ω)− 1))

13: aux = bool::and(aux, (p)0≤i<t)

14: (g)0≤i<t = bool::xor((g)0≤i<t, aux)

15: aux = bool::lshift((g)0≤i<t, 1)

16: (r)0≤i<t = bool::xor((a)0≤i<t, (b)0≤i<t)

17: (r)0≤i<t = bool::xor((r)0≤i<t, aux)

18: return (r)0≤i<t

Algorithm 9 arith::to::bool::convert((a)0≤i<t)

1: (r)0≤i<t = bool::mask((a)0)

2: for i in 1 to t− 1

3: (x)0≤i<t= bool::mask((a)i)

4: (r)0≤i<t = bool::add((r)0≤i<t, (x)0≤i<t)

5: end for

6: return (r)0≤i<t

The arith::generate gadget description is proposed in Algorithm 10. Two
functions are introduced namely NumberOfBits which is a function to extract
the index of the leading positive bit of a given integer, and bool::maskfromsign

gadget which extracts from a boolean masked integer the sign bit and converts it
to a binary all-ones mask (gadget presented in Algorithm 11). We now briefly
present the approach of arith::generate(β) for a given bound β.

Algorithm 10 arith::generate(β). Generates a uniformly sampled integer in
the bounds [−β,+β] in mod q arithmetic. ω is the computer word size (usually
32 bits or 64 bits).

1: (k)0≤i<t= bool::mask(−2β − 1)

2: (k0)0≤i<t= bool::mask(−β − 1)

3: (k1)0≤i<t= bool::mask(q − 2β − 1)

4: mask = 1 << (NumberOfBits(β) + 1)− 1

5: do

6: for i in 0 to t− 1

7: (x)i = rand() ∧mask

8: end for

9: (b)0≤i<t = bool::add((x)0≤i<t, (k)0≤i<t)

10: (b)0≤i<t = bool::rshift((b)0≤i<t, ω − 1)

11: while bool::recompose((b)0≤i<t) = 0

12: (b)0≤i<t = bool::add((x)0≤i<t, (k0)0≤i<t)

13: (b)0≤i<t = bool::maskfromsign((b)0≤i<t)

14: (b)0≤i<t = bool::and((b)0≤i<t, (k1)0≤i<t)

15: (x)0≤i<t= bool::add((x)0≤i<t, (b)0≤i<t)

16: (r)0≤i<t = bool::to::arith::convert((x)0≤i<t)

17: return (r)0≤i<t

First, from line 5 to 11, a loop is executed until an integer is sampled in
[−β, β]. To do so, we subtract 2 · β + 1 (that is adding k) from a freshly sampled
integer in masked form (x)0≤i<t and check the sign bit. Because we need at some
point a shift to check the sign (so a boolean operation), (x)0≤i<t is generated in
boolean masked form.

Second, from line 12 to 15, we determine if (x)0≤i<t belongs to [0, β] or
(β, 2 · β]. In the second case, we subtract 2 · β to shift the result to [−β, 0]. As
operations are in mod q arithmetic, this is equivalent to add q − 2 · β.

Third, in line 16, a conversion from Boolean to arithmetic masking is per-
formed.

Algorithm 11 bool::maskfromsign((r)0≤i<t). Gadget that computes a mask
from the sign of a boolean masked shares. ω is the computer word base (usually
32 or 64).

1: (a)0≤i<t = bool::rshift((r)0≤i<t, ω − 1)

2: (a)0≤i<t = bool::neg((a)0≤i<t)

B Details on Decomposeq,2γ2

B.1 For prime modulus

As outlined in Section 4.3.4, the decomposition function is complex when a prime
modulus is used. Algorithm 12 is a constant time algorithm to perform this
operation.

Algorithm 12 Decompose(r).

– prime modulus q = 8380417
– base α = 523776 = 219 − 29

r0 = [r]α

1: t0 = r ∧ 0x7FFFF

2: t1 = r � 19

3: r0 = t0 + (t1 � 9)
Ensure that r0 is in range (−α

2
; +α

2
]

4: r0 = r0 − α
2
− 1

5: m = MaskFromSign(r0)

6: r0 = r0 +m ∧ α
7: r0 = r0 − α

2
+ 1

Computation of r1 = (r − r0)/α

8: r1 = r − r0
9: m = (r1 − 1)� 31

10: r1 = (r1 � 19) + 1−m
Evaluating the specific case r − r0 = q − 1

11: r1 = r1 � 4

12: m = MaskFromSign(r1)

13: r1 = r1 ∧m
14: r0 = r0 −m ∧ 1 + q

15: return (r0, r1)

When it comes to masking, this complexity bring a non-negligible compu-
tational cost. A masked version (taking an arithmetically masked input and
providing Boolean masked outputs) is given in Algorithm 13.

Algorithm 13 arith::to::bool::decompose((r)0≤i<t)
Parameters: prime modulus q = 8380417 and base α = 523776

1: (m)0≤i<t= bool::mask(0x7FFFF)

2: (α)0≤i<t= bool::mask(α)

3: (α1)0≤i<t= bool::mask(−(α
2

+ 1))

4: (α2)0≤i<t= bool::mask(−(α
2
− 1))

5: (k0)0≤i<t= bool::mask(q − 1)

6: (k1)0≤i<t= bool::mask(1)
r0 = [r]α

7: (rp)0≤i<t= arith::to::bool::convert((r)0≤i<t)

8: (r0)0≤i<t= bool::and((rp)0≤i<t, (m)0≤i<t)

9: (m)0≤i<t= bool::rshift((rp)0≤i<t, 19)

10: (m)0≤i<t= bool::lshift((m)0≤i<t, 9)

11: (r0)0≤i<t= bool::add((m)0≤i<t, (r0)0≤i<t)
Ensure that r0 is in range (−α

2
; +α

2
]

12: (r0)0≤i<t= bool::add((r0)0≤i<t, (α1)0≤i<t)

13: (m)0≤i<t= bool::rshift((r0)0≤i<t, 31)

14: (m)0≤i<t= bool::neg((m)0≤i<t)

15: (m)0≤i<t= bool::and((m)0≤i<t, (α)0≤i<t)

16: (r0)0≤i<t= bool::add((r0)0≤i<t, (m)0≤i<t)

17: (r0)0≤i<t= bool::add((r0)0≤i<t, (α2)0≤i<t)
Computation of r1 = (r − r0)/α

18: (r1)0≤i<t= bool::not((r0)0≤i<t)

19: (r1)0≤i<t= bool::add((r1)0≤i<t, (rp)0≤i<t)

20: (u)0≤i<t= bool::rshift((r1)0≤i<t, 31)

21: (u)0≤i<t= bool::neg((u)0≤i<t)

22: (r1)0≤i<t= bool::add((r1)0≤i<t, (k1)0≤i<t)

23: (r1)0≤i<t= bool::rshift((r1)0≤i<t, 19)

24: (u)0≤i<t= bool::not((u)0≤i<t)

25: (u)0≤i<t= bool::lshift((u)0≤i<t, 31)

26: (u)0≤i<t= bool::rshift((u)0≤i<t, 31)

27: (r1)0≤i<t= bool::add((r1)0≤i<t, (u)0≤i<t)
Evaluating the specific case r − r0 = q − 1

28: (m)0≤i<t= bool::lshift((r1)0≤i<t, 32− 4− 1)

29: (m)0≤i<t= bool::rshift((m)0≤i<t, 31)

30: (m)0≤i<t= bool::neg((m)0≤i<t)

31: (m)0≤i<t= bool::not((m)0≤i<t)

32: (r1)0≤i<t= bool::and((r1)0≤i<t, (m)0≤i<t)

33: (m)0≤i<t= bool::lshift((m)0≤i<t, 31)

34: (m)0≤i<t= bool::rshift((m)0≤i<t, 31)

35: (r0)0≤i<t= bool::add((r0)0≤i<t, (m)0≤i<t)

36: (r0)0≤i<t= bool::add((r0)0≤i<t, (k0)0≤i<t)

37: return ((r0)0≤i<t, (r1)0≤i<t)

B.2 For power of two modulus

In Section 4.4, the masked version of the decomposition function is outlined
(Algorithm 6). We propose here a more detailed explanation to convince the
reader that this algorithm actually computes the decomposition.

First, a binary truncation is performed on r. Figure 6 provides the binary
representation of numbers for this operation. At this point, the truncation
produces r′0 and r′1 such as r = r′0 + αr′1 and r′0 ∈ [0, α).

r

r′0r′1

Sign bit of r′0
MSB LSB

Fig. 6: Binary representation of numbers r, r′0 and r′1 such as r = r′0 + r′1 · α,
with α a power of two and r′0 ∈ [0, α)

To shift r′0 to the interval [−α, α), we only need to expand the sign bit of r′0
as shown in Figure 6. To do so, we first shift the sign bit to the most significant
bit, negate the result to create a mask then set to zero the log2 α− 1 bits with
two successive shifts (line 3 to 6 of Algorithm 6).

If r′0 is negative, then we must add 1 to r′1. As the sign bit of r′0 can be
directly determined from r, we do not need to compute r′0 to compute r1. To
do so, we perform the addition between r and a number d constructed such as
all bits are set to 0 except at the sign bit of r′0. If the sign bit of r′0 is 0, then
r+ d does not produce carry propagation on the high order bits of r and so does
not modify r′1. If the sign bit of r′0 is 1, then there is a carry propagation which
corresponds to adding 1 to r′1. So in both cases, we have computed the wright r1.
Finally, a last shift is performed in order to keep only high order bits of r + d.

C Gadgets for Dilithium with power of two modulus

In this appendix we provide algorithmic descriptions of the gadgets linked to the
decomposition process when the modulus is a power of two.

Algorithm 14 bool::rejection((a)0≤i<t, len, β)

1: (k0)0≤i<t= bool::mask(−β − 1)

2: (k1)0≤i<t= bool::mask(β − 1)

3: for i in 0 to len− 1

4: (b0)0≤i<t= bool::add((k0)0≤i<t, (a[i])0≤i<t)

5: (b0)0≤i<t= bool::rshift((b0)0≤i<t, 31)

6: (b1)0≤i<t= bool::add((k1)0≤i<t, (a[i])0≤i<t)

7: (b1)0≤i<t= bool::rshift((b1)0≤i<t, 31)

8: (b0)0≤i<t= bool::xor((b0)0≤i<t, (b1)0≤i<t)

9: (r)0≤i<t = bool::and((r)0≤i<t, (b0)0≤i<t)

10: end for

11: return bool::fullxor((r)0≤i<t)

Algorithm 15 arith::to::bool::lowbits((r)0≤i<t, β).
Parameters: b such that 2b = q and w the processor word size.

1: (r0)0≤i<t= arith::to::bool::convert((r)0≤i<t)

2: (r0)0≤i<t= bool::lshift((r0)0≤i<t, ω − log2 β)

3: (b)0≤i<t = bool::maskfromsign((r0)0≤i<t)

4: (b)0≤i<t = bool::lshift((b)0≤i<t, log2 β)

5: (r0)0≤i<t= bool::rshift((r0)0≤i<t, ω − log2 β)

6: (r0)0≤i<t= bool::xor((r0)0≤i<t, (b)0≤i<t)

7: return (r0)0≤i<t

Algorithm 16 arith::to::bool::highbits((r)0≤i<t, β).
Parameters: b such that 2b = q and w the processor word size.

1: mask = β − 1

2: (d)0≤i<t = arith::mask((mask >> 1) + 1)

3: (r1)0≤i<t= arith::add((r)0≤i<t, (d)0≤i<t)

4: (r1)0≤i<t= arith::rshift((r1)0≤i<t, log2 β)

5: return (r1)0≤i<t

Algorithm 17 arith::makeint((r)0≤i<t, (z)0≤i<t, β).
Parameters: b such that 2b = q and w the processor word size.

1: (r1)0≤i<t= arith::to::bool::highbits((r)0≤i<t, β)

2: (a)0≤i<t = arith::add((r)0≤i<t, (z)0≤i<t)

3: (a1)0≤i<t= arith::to::bool::highbits((a)0≤i<t, β)

4: (t)0≤i<t = bool::xor((r1)0≤i<t, (a1)0≤i<t)

5: (t)0≤i<t = bool::lshift((r1)0≤i<t, (r1)0≤i<t, w − 1)

6: c = bool::fullxor((t)0≤i<t)

7: return c

D Choice of an ARM leakage simulator

In the case of ELMO simulator, the power estimation is based on a template
made from real traces of the Cortex-M0. The power consumption is estimated
by evaluating bit flips, Hamming weights and Hamming distances of operands
between the previous, the current and the subsequent operation.

On the other hand, authors of MAPS had access to the RTL of the Cortex-M3
leading to a different simulation strategy. The simulator thus takes into account
some hidden features as the state of pipeline registers (in particular, registers
ra and rb). Then, when the state of a register changes, the number of bit flips
is computed to estimate the power consumption, and the result is pushed to
the output. Consequently, the estimator is not cycle accurate as registers are
evaluated one after the other. MAPS only provides leakage of core registers, thus
leakage from peripherals or the ALU are not considered.

We faced several limitations when evaluating the masking of Dilithium. First,
ELMO, which has been designed for Cortex-M0, does not target the same micro-
controller than our workbench, i.e. the STM32F1 micro-controller (which is
a Cortex-M3). The main difference between Cortex-M0 and Cortex-M3 is the
fact that Cortex-M0 has very limited access to Thumb 2 instructions (32 bit
instructions), leading in the majority of cases to two different implementations.
Second, both ELMO and MAPS were initially developed for symmetric cryptog-
raphy, which essentially requires less resources than Dilithium (both in term of
memory, time and instruction set). For ELMO, which basically stores information
about each instruction in RAM, we run out of memory during the execution of
larger gadgets like arith::to::bool::lowbits or bool::rejection. This issue can be
addressed by predicting data stored in RAM into a file when needed. For MAPS,
we had to modify the core library to extend the instruction set implemented, as
the simulator faced several unknown instructions (i.e. not yet implemented). In
particular, the branch with link instruction, which allow to branch the program
to a sub-routine, were not implemented but was critical in Dilithium masking as
gadgets cannot be entirely inlined due to their complexity. To take into account
the optimization provided by the Cortex-M3, we finally based our simulations on
MAPS.

	Masking Dilithium

