
Mitigation Techniques for Attacks on
1-Dimensional Databases that Support Range

Queries

Evangelia Anna Markatou and Roberto Tamassia

Brown University, Providence RI 02912, USA,
markatou@brown.edu, rt@cs.brown.edu

Abstract. In recent years, a number of attacks have been developed
that can reconstruct encrypted one-dimensional databases that support
range queries under the persistent passive adversary model. These at-
tacks allow an (honest but curious) adversary (such as the cloud provider)
to find the order of the elements in the database and, in some cases, to
even reconstruct the database itself.
In this paper we present two mitigation techniques to make it harder
for the adversary to reconstruct the database. The first technique makes
it impossible for an adversary to reconstruct the values stored in the
database with an error smaller than k/2, for k chosen by the client. By
fine-tuning k, the user can increase the adversary’s error at will.
The second technique is targeted towards adversaries who have managed
to learn the distribution of the queries issued. Such adversaries may be
able to reconstruct most of the database after seeing a very small (i.e.
poly-logarithmic) number of queries. To neutralize such adversaries, our
technique turns the database to a circular buffer. All known techniques
that exploit knowledge of distribution fail, and no technique can deter-
mine which record is first (or last) based on access pattern leakage.

Keywords: Searchable Encryption · Encrypted Databases · Leakage-
Abuse Attacks · Mitigation

1 Introduction

Currently several organizations outsource their data, and sometimes their entire
IT departments to the cloud. This is a reasonable choice as the cloud usually
provides a reliable, inexpensive, and safe place to store an organization’s data.
However, although data stored on the cloud are usually safe from outside at-
tackers, they are sometimes vulnerable to the prying eyes of curious insiders. To
protect their data from curious cloud providers, some organizations choose to
store their data encrypted, using searchable encryption. This extra encryption
step makes sure that the data can not be seen (at least in plain text) by curious
cloud providers.

Although, at a first glance, searchable encryption seems to ensure the con-
fidentiality of the data, unfortunately, this is not true. Recent papers have
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demonstrated several attacks against encrypted databases that allow for range
queries on the data, attacks which leak various amounts of information rang-
ing in some cases to full database reconstruction. For example, Kellaris et al.
[14] have demonstrated that they can achieve full database reconstruction after
observing O(N4 logN) range queries where N is the range of the data. More re-
cently, Grubbs et al. [11] have improved in this result and have shown that they
can achieve full database reconstruction in O(N2 logN) time. To make matters
worse, they have also shown that approximate1 database reconstruction can be
done very fast: only in poly-logarithmic time. Although approximate database
reconstruction reconstructs only a portion of the database, still this portion is
usually large enough and reveals a lot of the data stored in the “encrypted”
database.

The literature presents plenty of attacks on other various types of leakage as
well. For example, Kornaropoulos, Papamanthou and Tamassia [15] developed an
approximate reconstruction attack utilizing leakage from k-nearest neighborhood
queries. Grubbs, Lacharité, Minaud, and Paterson [10] utilize volume leakage
from responses to range queries to achieve full database reconstruction. Grubbs,
Ristenpart, and Shmatikov [13] present a snapshot attack that can break the
claimed security guarantees of encrypted databases.

All this previous research suggests that even if the database is stored en-
crypted, a database reconstruction may be possible in reasonable time.

Having realized that current searchable encryption approaches provide little
protection against powerful attackers such as honest but curious cloud providers,
in this paper we take a slightly different approach and explore whether it is
possible to make the task of the attacker a bit more difficult by introducing
some form of noise or some kind of error by changing the queries issued by the
clients. For example, when a client issues query [a, b], our methods issue query
[a′, b′] (where a 6= a′ and/or b 6= b′) or our methods issue multiple queries. The
choice of a′ and b′ is done in such as way so as to obfuscate the real query that
the clients want to issue and thus confuse the attacker.

So far, all attacks either assume that the client issues queries uniformly at
random ([11], [14]), or that the adversary has access to all possible query re-
sponses ([10], [16]).

1.1 Contributions

In this paper we present two obfuscation techniques.

1. Blocked Queries or BQ.
Our first technique modifies the queries that the client can issue.
The client selects an integer k. When the client wants to issue a query [a, b],
BQ rounds a down to the nearest smaller multiple of k, and rounds b up to

1 Reconstruction of most (but not all) database elements with a small (asymptotically
small) error.
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the nearest larger multiple of k. That is, instead of issuing query [a, b], the
client issues query

[k · ba/kc , k · db/ke] .

This way, the adversary can only approximately reconstruct the database.
Indeed, we will show that for each record ri which corresponds to value vi
the adversary can estimate vi up to an error of k/2.

The client can pick k as they desire. Note that k introduces a trade-off be-
tween communication complexity and security: the higher the value of k, the
higher the error in the adversary’s approximation, but also the larger the
range being queried, which in denser databases can increase the communi-
cation complexity - i.e. the amount of data being transferred.

2. Wrap-around Queries or WQ.

Our second approach is focused towards cases where the adversary knows
the distribution of the queries. Indeed, a large body of previous work on
attacks (including [11] and [14]) assumes that clients issue queries uniformly
at random. That is, under this uniformly at random assumption, all possible
queries [a, b] (where a ≤ b) have the same probability of being issued. Using
this assumption, previous work managed to achieve (almost) full database
reconstruction in poly-logarithmic time with only a very small amount of
error of O(1/ logN).

Therefore, protecting the privacy of the data in settings when the adversary
knows the distribution of the queries is of paramount importance.

To obfuscate the database results, when the query distribution is known, we
use a four-pronged approach:

– We introduce the notion of wrap-around queries. In normal queries [a, b]
we always assume that a ≤ b. In contrary, in wrap-around queries [a, b]
we assume that a > b.

In such cases the result of a wrap around query [a, b] is the union of the
results of normal queries [a,N ] and [1, b]. That is, a wrap-around query,
as the name goes, wraps around the end of the value range (i.e. N) and
continues from the beginning (i.e. 1).

One may imagine that wrap-around queries treat the data not as a vec-
tor (from 1 to N) but as a cyclic buffer. The size of the buffer is still
N , but the start of the cyclic buffer is not known. Actually, in a cyclic
buffer, much like in a circle, there is no start (or end for that matter).

– Approximately each time a client issues query [a, b], WQ issues a second
query: [a′, b′].2 The purpose of this second query is to confuse the adver-
sary who will not be able to say whether the original query were [a, b]

2 Depending on the distribution, WQ may need to issue several queries. For the
purposes of discussion, at this point we assume that just one extra query [a′, b′] is
issued.
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or [a′, b′]. Note, that query [a′, b′] has to be a bit more sophisticated. In-
deed, queries [a′, b′] are taken from a suitable distribution so that when
one combines all queries [a, b] and [a′, b′], the probability of each value
vi ∈ [1, N ] being queried is the same for all i. In this way, no value vi
is more popular than the other values, removing asymmetries previously
exploited by adversaries.3

– Range queries [a, b] are issued as singleton queries [a, a], [a + 1, a + 1],
[a+ 2, a+ 2], ... [b, b]. In this way the attacker will not be able to distin-
guish normal queries (which would have been issued as a single query)
from wrapped-around ones (which would otherwise have been issued as
two queries: [a,N ] and [1, b]).

– We always issue range queries in pairs. We deconstruct all range queries
into singleton queries as above, and shuffle the singleton queries of each
range query. We then issue all the singleton queries to the server.

The BQ approach aims to introduce an error in the reconstruction of any
database. This makes exact reconstruction impossible for any adversary exploit-
ing access pattern leakage.

The WQ approach aims to render unusable a large number of current attacks
on encrypted databases, that assume that they know the query distribution.
Indeed, using WQ we break the main assumption that attacks have made so
far: The assumption that when queries are issued uniformly at random, some
database values appearing more frequently than others.

Kellaris et al. [14] and Grubbs et al. [11] present attacks that inherently
depend on the client issuing queries uniformly at random. These attacks no
longer work as WQ removes any asymmetries that were being exploited in [14],
[11] and similar papers.

2 Model

We consider a client that stores information on a database hosted by a server. A
client can issue queries to the server using tokens, and the server issues responses.

Consider a collection of n records in the database. Each record (r, x) contains
a unique identifier r in some set R, and a value x = val(r) from some ordered set
of integers X, on which range queries are performed, X = [1, ..., N ]. We assume
N is a multiple of k.

Given r the client can retrieve x. We define normal queries, that the user can
issue, and wrapped queries, that they can’t.

3 Actually, the same should be true for all combinations of values vi and vj as we will
later show.
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Definition 1. Normal Query
A range query [a, b], where a ≤ b, is called a normal query. It returns the set

of all matching identifiers, M = {r ∈ R : val(r) = x, x ∈ [a, b]}.

Definition 2. Wrap-around Query
A range query [a, b], where a > b, is called a wrap-around query. It returns

the set of all matching identifiers, M = {r ∈ R : val(r) = x, x ∈ [b,N ] ∪ [1, a]}.

The adversarial model we consider is a persistent passive adversary, able to
observe all communication between the client and the server. The adversary aims
to recover information about val(r) for the different r ∈ R. We assume that the
encryption scheme used has access pattern leakage that the adversary can abuse.

Definition 3. Access Pattern Leakage
If whenever the server responds to a query, the adversary observes the set

of all matching identifiers, M , we say that the scheme allows for access pattern
leakage.

3 Related Work

In recent years, there have been a number of papers on attacks on encrypted
databases that support range queries and allow for access pattern leakage. This
work started with a seminal paper by Kellaris et al. [14]. A few papers followed
improving this work by Lacharite et al. [16], and Grubbs et al. [11].

There are also other attacks that focus on slightly different types of leakage.
For example, Kornaropoulos et al. [15] utilize leakage from k-nearest neighbor-
hood queries and Grubbs et al. [10] utilize volume leakage. Grubbs et al. [13]
also present a snapshot attack.

There are also more attacks in the area, but they either assume a more active
adversary or they assume that the encryption scheme reveals more properties
([1], [3], [9], [12], [18], [19]).

Additionally, there has been some work on mitigating attacks, but they don’t
prevent asymmetries caused by the client’s query distribution [2]. Note that there
are also much stronger mitigation techniques, like Oblivious Random Access
Memory ([6], [7]) and Fully Homomorphic Encryption ([4], [5]). However these
techniques are very costly.

4 Blocked Queries

In this section, we present our BQ technique (Figure 1). The goal of this tech-
nique is to introduce an error to any adversary’s reconstruction of the database.
To do so, when the client issues query [a, b], our BQ system issues the superset
query

[k · ba/kc , k · db/ke] .
This way, no two queries can overlap in less than k positions.
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Fig. 1. The BQ technique: When the client wishes to issue a query BQ extends the
query such as both endpoints are multiples of k. Once the server responds, the De-
Obfuscation module (DO) removes any extra identifiers.

Algorithm 1 BQ(a, b, k)

1: Return [k · ba/kc , k · db/ke]

Lemma 1. Let Ra be the set of records with value ∈ [a · k, (a+ 1) · k], for some
integer a, 0 < a < N/k. If one element of Ra is in a query response, all elements
of Ra will also be in the query response.

Proof. We will prove this by contradiction. Let r1 and r2 be two records whose
values v1 and v2 are both in [a ·k, (a+1) ·k]. Suppose there exists some adversary
that can deduce that v1 < v2.

The only leakage we consider here is access pattern leakage. In order for
the adversary to distinguish between r1 and r2, they must observe some query
response, which breaks the symmetry, that is it contains only one of the two
values.

However, that is impossible as the client only issues queries that return all
or none of the elements of [a · k, (a + 1) · k].

ut

Definition 4. Database Dk

Let D be a database containing a set of records (r, x), that the user wishes
to store. We construct database Dk by transforming the set of records (r, x) to
(r, bxk c).

Theorem 1. No adversary A can distinguish between the real database D, and
Dk using access pattern leakage.

Proof. Let A be an adversary that can distinguish between the real database D,
and Dk using access pattern leakage. That means that there exists some query
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Fig. 2. Here we see D3, for N = 12

response that can be observed when a user queries D that cannot be observed
when they query Dk, or there exists some query response that can be observed
when a user queries Dk that cannot be observed when they query D.

1. Let [a, b] be a query whose results can be observed when a user queries D
that cannot be observed when they query Dk.

(a) Let a not be a multiple of k. Then, a will be turned into k · ba/kc, which
is a multiple of k. Thus, no query will be issued where a is not a multiple
of k.

(b) Let b not be a multiple of k. Similarly, for b, no query will be issued
where b is not a multiple of k.

(c) Let a = k · a′ and b = k · b′ be multiples of k. Then, query [a, b] to D,
results in the same response as query [a′, b′] to Dk.

It remains to show the other way. Let [a, b] be a query whose results can be
observed when a user queries Dk that cannot be observed when they query
D. However, query [a · k, b · k] to D results in the same response.

Thus, adversary A has no way of breaking the symmetry between database
D and Dk using access pattern leakage.

ut

Thus, no adversary can reconstruct the values of the database with an error
smaller than k/2.

4.1 Overhead

An important point to address is how much this technique increases the commu-
nication complexity. Whenever the user wishes to make a query [a, b], we issue
the [k · ba/kc , k · db/ke].

The user asked us to query b − a values in the database. Thus at most, we
will query b− a + 2k values in the database.
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Note that the overhead of this scheme depends a lot on the choice of k,
and the query distribution that the user picks. For example, if the user usually
queries ranges of size O(N), then k = O(N), would introduce an error of size
O(N), while only increasing the overhead by a constant factor.

Let’s take for example a user who issues queries uniformly at random (a
common victim in literature). They can issue N queries of size 1, N − 1 queries
of size 2, and so on. So, the average size of query is

2

N(N + 1)

N∑
i=1

i(N − i) =
2

N(N + 1)

(N − 1)N(N + 1)

6
=

N

3

Thus, this user can pick k = O(N), and the technique would introduce a
constant factor overhead for an error of size O(N).

5 Wrap-Around Queries

One assumption frequently made in this literature is that the adversary knows
the query distribution. In most of these papers the query distribution is assumed
to be “uniform at random”. That is, all queries [a, b], a ≤ b have the same
probability of being issued. Our second mitigation scheme, wrap-around queries,
illustrated in Figure 3, is geared towards these adversaries.

This scheme turns the linear range of possible database values into a cyclic
range, without a discernible beginning and end in the eyes of the adversary. Also,
the scheme assumes that the user issues queries according to a fixed probability
distribution and adds fictitious queries that correspond to a “complementary”
distribution. Thus, the scheme converts the original query stream into one that
is uniformly distributed over the cyclic range, thus removing any asymmetries on
the number of times database values are present in query answers. As a result,
by adopting this mitigation scheme, we prevent an adversary from distinguishing
among any two cyclic shifts of the database from the access pattern leakage.

5.1 Key Ideas

The wrap-around queries technique depends on three key ideas:

1. Suppose the client wants to issue query [a, b]. The client issues instead a
series of singleton queries [a, a], [a + 1, a + 1]...[b, b].

2. The client issues additional queries to introduce noise. Approximately, every
time the client issues a query, it issues one or more additional fictitious
queries. The fictitious queries may be normal queries (i.e., [a′, b′] where a′ ≤
b′) or wrap-around queries (i.e., [a′, b′] where a′ > b′).

3. The original normal query and fictitious queries are issued in pairs.

This technique essentially changes the ordered vector of values [1, N ] into a
circular buffer of N values, which being a circular buffer, has no start and no
end. This change (from a vector to a circular buffer) renders a persistent passive
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Fig. 3. The wrap-around queries module receives queries from the client and adds
them to a buffer. It periodically constructs a pair of queries that contains both noise
(i.e., fictitious queries) and real queries. Each query in the pair is further split into
singleton queries (i.e., queries spanning a single value). Also, the singleton queries
from each range query are shuffled. The shuffled queries are sent to the server. The de-
obfuscation component receives the answers to the queries in the pair from the server,
filters out the answers to noise, and reassembles the remaining singleton answers into
answers to the original queries, which it forwards to the client.
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adversary unable to determine which identifier corresponds to the minimum (or
maximum) value.

In addition, the noise queries follow such a distribution so that all individual
values val(ri) have the same frequency of appearance.

5.2 Example

We illustrate how the wrap-around queries scheme works with an example. Sup-
pose we have a database of size 5 and the user issues queries that are uniformly
distributed.

Let Sn be the set of normal queries that the client can issue (i.e. [a, b] where
a ≤ b) and let Sw be the set of wrap-around queries that the client cannot issue
(i.e. [a, b] where a > b). The set Sn contains 15 queries and the set Sw contains
10 queries. All these queries are shown in Table 1. We use a buffer, B, to store

(a) Normal

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5]
[1, 2] [2, 3] [3, 4] [4, 5] -
[1, 3] [2, 4] [3, 5] - -
[1, 4] [2, 5] - - -
[1, 5] - - - -

(b) Wrap-around

- - - - -
- - - - [5, 1]
- - - [4, 1] [5, 2]
- - [3, 1] [4, 2] [5, 3]
- [2, 1] [3, 2] [4, 3] [5, 4]

Table 1. All possible cyclic queries on five elements: (a) normal queries; (b) wrap-
around queries

the queries that the user wishes to issue. Let’s acquire a biased coin. This coin
with probability 15

25 returns heads, and with probability 10
25 returns tails.

We now pick a pair of queries. We flip the biased coin 2 times. On heads, we
pick a range query from buffer B,4 and on tails we pick a noise query, which is
a wrap-around query selected uniformly at random from Sw. Thus, after each
coin flip, we add a query to the pair. Once the pair is formed, we deconstruct all
queries into a series of singleton queries, shuffle the singletons, and issue them
to the server. Once the server responds, we identify the responses corresponding
to real queries and send them to the user.

In Table 2, we show how many times each single value (from 1 to 5) is ex-
pected to be included in a query in the pair. The probability of value 1 appearing
in a query in the pair is 15/25·5/15+10/25·10/10 = 3/5. The probability of value
3 appearing in a query in a given slot in the pair is 15/25 · 9/15 + 10/25 · 6/10 =
3/5: exactly the same as the probability of value 1. The same happens for all
values: the probability of a value i to appear in a query in a given slot is 3/5:

4 If the buffer is empty we choose a normal query from Sn uniformly at random.



Mitigation Techniques for Attacks on 1-Dimensional Databases 11

the same probability for all values i.5 Thus, all values have the same probability
of being included in a query in a slot.

Value Appearances Normal Queries

1 5 [1,1], [1,2], [1,3], [1,4], [1,5]

2 8 [1,2], [1,3], [1,4], [1,5], [2,2], [2,3], [2,4], [2,5]

3 9 [1,3], [1,4] [1,5], [2,3], [2,4], [2,5], [3,3], [3,4], [3,5]

4 8 [1,4], [1,5], [2,4], [2,5], [3,4], [3,5], [4,4], [4,5]

5 5 [1,5], [2,5], [3,5], [4,5], [5,5]

Value Appearances Wrap-around Queries

1 10 [5, 1], [4, 1], [3, 1], [2, 1], [5, 2], [4, 2], [3, 2], [5, 3], [4, 3], [5, 4]

2 7 [5, 2], [4, 2], [3, 2], [5, 3], [4, 3], [5, 4], [2, 1]

3 6 [2, 1], [3, 1], [3, 2], [4, 3], [5, 3], [5, 4]

4 7 [2, 1], [3, 1], [4, 1], [3, 2], [4, 2], [4, 3], [5, 4]

5 10 [2, 1], [3, 1], [4, 1], [5, 1], [3, 2], [4, 2], [5, 2], [4, 3], [5, 3], [5, 4]

Table 2. All values in the database appear with the same frequency in the query
results. In this table we show in how many queries each value appears. That is, value
“1” appears in 5 Normal Queries and 10 Wrap-around Queries (a total of 15). Similarly,
value “2” appears 8 times in Normal Queries and 7 times in Wrap-around Queries (a
total of 20). Each values appears 15 times in the Normal and Wrap-around Queries
combined.

5.3 Algorithm

In this section, we describe algorithm WQ, which performs the wrap-around
mitigation scheme for the case of a user that issues uniformly distributed range
queries. WQ takes as input buffer, Sn, Sw, N . The buffer is a buffer that contains
the queries that the client wishes to issue. Sw is the set of wrap-around queries
and Sn is the set of normal queries. N is the size of the database.

As long as there are still queries in buffer, WQ will make a new pair of
queries. For each slot in the pair, we flip a coin, and depending on the result
either a normal or a wrap-around query takes up the slot.

If the coin instructs that a normal query takes up the slot, we pop one from
the buffer. If the buffer is empty, we just pick a normal query uniformly at
random. If the coin instructs that a wrap-around query takes up the slot, we
pick one uniformly at random. Each query is split into singleton queries, and a
random permutation of the singletons is added to the pair slot.

Once the pair is full, we query the server.
Upon arrival of the results, we discard any results of wrap-around or fake

queries, and return the rest to the client.

5 The reader might wonder that since there are five values (1 to 5), then each value
should have probability 1/5 (not 3/5) to appear in the query results. We should note
however that these queries are range queries that return more than one value.
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Algorithm 2 WQ(buffer , Sn, Sw, N)

1: Let c be a biased coin with Pr(c = 1) = N(N+1)

2N2 = 1− Pr(c = 0)
2:
3: while |buffer | > 0 do
4: pair = []
5: for 2 rounds do
6: Flip c
7: if c = 1 then
8: [a, b] = buffer .pop()
9: // If |buffer | = 0, pick a query from Sn uniformly at random

10: else
11: Pick [a, b] uniformly at random from Sw

12:
13: singletons = []
14: for i ∈ range(a, b) do
15: Add query [i, i] to singletons
16: Add a random permutation of singletons to pair
17:
18: Issue all queries from pair to server
19:
20: if pair contained a user query then
21: Return the relevant server’s responses to the user.

5.4 Analysis

Lemma 2. When using Algorithm 2, a slot of the pair contains each query with
the same probability.

Proof. Table 3 shows all possible queries.

Table 3. All possible queries: Note that the blue queries are normal, and the red ones
are wrap-around.

[1, 1] [1, 2] ... [1, N − 1] [1, N ]
[2, 1] [2, 2] ... [2, N − 1] [2, N ]
[3, 1] [3, 2] ... [3, N − 1] [3, N ]
... ... ... ... ...
[N − 1, 1] [N − 1, 2] ... [N − 1, N − 1] [N − 1, N ]
[N, 1] [N, 2] ... [N,N − 1] [N,N ]

Let q1 be a normal query. Note that there are N(N+1)
2 normal queries.

In a given pair slot, query q1 is issued with probability

N(N + 1)

2N2
· 1

N(N+1)
2

=
1

N2
.
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Now, let q2 be a wrap-around query. Note that there are N2− N(N+1)
2 wrap-

around queries.
In a given pair slot, query q2 is issued with probability

N2 − N(N+1)
2

N2
·
( 1

N2 − N(N+1)
2

)
=

N(N − 1)

2N2
·
( 2

N(N − 1)

)
=

1

N2

Thus, all queries are issued with the same probability 1
N2 . ut

Lemma 3. When using Algorithm 2, each value in the database has the same
probability of being in a given pair slot.

Proof. Lemma 2 shows that all queries are issued with the same probability.
Let’s look at all the queries that query some value, say v.

There are N queries that start at v and contain v.

1 v N

...

[v, v], [v, v + 1], [v, v + 2]...[v, v − 3], [v, v − 2], [v, v − 1] // N queries

There are N − 1 queries that start at v − 1 and contain v:

[v − 1, v], [v − 1, v + 1], [v − 1, v + 2]...[v − 1, v − 3], [v − 1, v − 2]

1 v N

...

There are N − 2 queries that start at v − 2 and contain v:

[v − 2, v], [v − 2, v + 1], [v − 2, v + 2]...[v − 2, v − 3]

1 v N

...

Thus, there are

N + N − 1 + N − 2 + ... + 1 =
N(N + 1)

2

queries that query value v.
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So, for any v there are N(N+1)
2 queries that query it.

Since all queries are issued with the same probability (Lemma 2), all values
v have the same probability of being queried in given a slot pair.

ut

Lemma 4. When using Algorithm 2, every contiguous set of points of size s
has the same probability of being queried in a given pair slot.

Proof. Let’s look at some set of records S, and at the queries that return all
elements of the set. Suppose that the smallest value of an element in S is vmin

and the largest is vmax.

There are N − s queries that return all elements of S and start at vmin.

1 vmin vmax N

...

[vmin, vmax], [vmin, vmax+1], [vmin, vmax+2]...[vmin, vmin−3], [vmin, vmin−2], [vmin, vmin−1]

Similarly to Lemma 3, there are

(N − s)(N − s + 1)

2

queries that return all points from S. Thus, for any set of size s there are
(N−s)(N−s+1)

2 queries that return all its elements.
ut

Definition 5. Database Dshifts

Let database D be a set of pairs (r, x). We define database Dshifts as the set
of pairs (r, x + s(mod N)), for all (r, x) ∈ D.

Theorem 2. Consider a user that issues uniformly distributed range queries
and uses the wrap-around mitigation scheme realized by Algorithm 2 to create a
noisy query stream. A passive persistent adversary who observes the noisy query
stream cannot distinguish with probability greater than 1/2 between the original
database D and Dshifts , for any s mod N 6= 0 using access pattern leakage and
asymmetries created by the user’s query distribution,.

Proof. Suppose there exists some adversary that can distinguish between D and
Dshifts with probability greater than 1/2. The adversary has two weapons (i)
the fact that a user that issues uniformly distributed range queries, and (ii) ac-
cess pattern leakage.
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As long as there are queries that the user wants to send out, Algorithm 2
will create pairs of queries to send to the server.

The Algorithm issues range queries as a random permutation of singleton
queries. Note that the random permutation is necessary, as otherwise we leak
the order of the records and the distances between them on a single query.

We have to send the queries in pairs. If we sent only one query at a time, the
adversary would know that the last query we sent was a normal query.

1. Let us first examine access pattern leakage:

Algorithm 2 will eventually issue all queries [a, b] for a, b ∈ [1, N ] regardless
of whether the database stored is D or Dshifts . Now, because Algorithm 2
issues both normal and wrap-around queries, we can map a query from D to
a query from Dshifts such that both queries have the same response. To be
exact, suppose query [a, b] produces response resp when issued to database
D. Query [a + s(mod N), b + s(mod N)] produces the same response resp
when issued to database Dshifts . Thus, the adversary cannot get any infor-
mation out of the access pattern leakage, the databases produce the same
responses.

2. Now, let us examine what the adversary can accomplish using the fact that
a user that issues uniformly distributed range queries.

The adversary might try to use that fact, as due to the uniformity of queries
the frequency with which values of the database are queried varies. To be
exact elements in the middle of the database have a higher chance of being
queried than elements in the ends. However, Algorithm 2, ensures that any
set of contiguous points of a certain size is equally likely to be in a pair slot
(Lemma 4). Thus, there are no asymmetries that the adversary could exploit
to deduce which database is which.

Thus, neither uniformity nor access pattern leakage can help the adversary
break the symmetry between the two databases, and the best they can do is
guess, which succeeds with probability 1/2.

ut

Corollary 1. The adversary is unable to infer which record has the minimum
(or maximum) value with probability greater than 1/N , where N is the size of
the database.

Notably, after all their observations the adversary gains no knowledge on
which record is the first one.

5.5 Different Client Query Distributions

This technique can be extended to work with any previously known client query
distribution. Knowing the query distribution, we can construct a complimentary
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distribution, such that when the adversary observes queries, they observe the
equivalent of a uniform distribution over the queries for a cyclic buffer (Table
3).

5.6 Overhead

In order to examine how much overhead this approach introduces, we need to
consider both the singleton queries and the noisy wrap-around queries.

1. Singleton Queries
We send each query as a set of singleton queries. In first glance, this might
appear to be a lot of communication overhead, however let us consider dense
databases, an important type of database studied a lot in literature. When
the user queries [a, b], the database responds with at least b − a records.
Thus, in this interaction at least b− a records are communicated. By send-
ing singleton queries, we’re merely doubling the communication complexity
in dense databases. However, in general, we do increase the communication
complexity proportionally to the size of the interval queried.

2. Wrap-Around Queries
Whenever there is a query in the buffer, WQ sends a pair of queries to the
server.
For every 1 normal query picked to be in the pair there are N−1

N+1 wrap-around
queries also picked. However, that is approximately a 1:1 ratio.
So the wrap-around queries double the communication complexity.

In our best case scenario, when the user has a constant supply of queries and
the database is dense, the overhead of the WQ scheme is merely a factor of 4.

5.7 Current Attacks

The WQ technique makes the adversary’s job more difficult in two ways:

1. It removes asymmetries due to the client’s query distribution.
Exploiting these asymmetries has been a focus of Kellaris et al. [14] in their
seminal paper on attacks. Grubbs et al. [11] present a very elegant algorithm
as well that exploits this uniformity assumption. As we remove the asymme-
tries, these attacks can no longer reconstruct the database.

2. Most importantly, it turns the database into a cyclic buffer in the eyes of
any adversary.
No adversary exploiting access pattern leakage can tell which element is the
first (or last) in the database. So, even if an adversary can reconstruct the
shape of the database, they won’t be able to recover the actual record values,
unless they have access to auxiliary information.
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5.8 Complexity of Encryption Scheme

Encryption schemes that allow for range queries can be costly. It’s interesting
to note that when running Algorithm 2, the server is never queried for a range
that is larger than 1. Thus, a lot of the formerly required machinery is no longer
necessary, the server can just store an encrypted dictionary. The dictionary would
have N keys in the range [1, N ], whose values would be the corresponding records
in the database.

5.9 Reducing Storage Complexity

Algorithm 2 stores singleton queries from two range queries. This can require a
lot of storage.

To reduce this complexity, we can run Algorithm 2 in a streaming fashion.
More specifically, instead of constructing and storing pair, we can use tech-
niques for block ciphers with arbitrary block size to perform the pseudorandom
permutation in sub-linear (in N) space, see for example [8], [17].

6 Conclusion

In recent years, a number of attacks have been developed that can fully or
approximately reconstruct encrypted databases that allow for range queries. In
an effort to mitigate the attacks, this paper presents two approaches to help
better protect user data.

Out first approach, BQ, introduces an error to the reconstruction of the
database by any adversary. Our second approach, WQ, is aimed specifically at a
large percentage of current attacks, attacks that assume that the user queries the
database uniformly at random. Our approach removes exploitable asymmetries
caused by the uniformity rendering current attacks not usable.

References

1. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. CCS ’15, ACM, New York, NY, USA
(2015)

2. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical private range search revisited. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data. pp. 185–198. ACM (2016)

3. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’16, ACM, New York, NY, USA (2016)

4. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53
(2010)



18 Evangelia Anna Markatou and Roberto Tamassia

5. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20:09. Stan-
ford university Stanford (2009)

6. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
rams. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing. pp. 182–194. ACM (1987)

7. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM) 43(3), 431–473 (1996)

8. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: Interna-
tional Workshop on Fast Software Encryption. pp. 452–465. Springer (2007)

9. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: 2017 IEEE Symposium on
Security and Privacy (SP) (May 2017)

10. Grubbs, P., Lacharite, M.S., Minaud, B., Paterson, K.G.: Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’18, ACM, New York, NY, USA (2018)
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