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Abstract. Group key-exchange protocols allow a set of N parties to
agree on a shared, secret key by communicating over a public network. A
number of solutions to this problem have been proposed over the years,
mostly based on variants of Diffie-Hellman (two-party) key exchange.
There has been relatively little work, however, looking at candidate post-
quantum group key-exchange protocols.

Here, we propose a constant-round protocol for unauthenticated group
key exchange (i.e., with security against a passive eavesdropper) based on
the hardness of the Ring-LWE problem. By applying the Katz-Yung com-
piler using any post-quantum signature scheme, we obtain a (scalable)
protocol for authenticated group key exchange with post-quantum secu-
rity. Our protocol is constructed by generalizing the Burmester-Desmedt
protocol to the Ring-LWE setting, which requires addressing several tech-
nical challenges.

Keywords: Ring learning with errors, Post-quantum cryptography, Group key
exchange

1 Introduction

Protocols for (authenticated) key exchange are among the most fundamental and
widely used cryptographic primitives. They allow parties communicating over an
insecure public network to establish a common secret key, called a session key,
permitting the subsequent use of symmetric-key cryptography for encryption
and authentication of sensitive data. They can be used to instantiate so-called
“secure channels” upon which higher-level cryptographic protocols often depend.

Most work on key exchange, beginning with the classical paper of Diffie and
Hellman, has focused on two-party key exchange. However, many works have
also explored extensions to the group setting [20, 28, 15, 29, 5, 6, 24, 14, 12, 13, 11,
17, 21, 16, 8, 2, 1, 23, 9, 31] in which N parties wish to agree on a common session
key that they can each then use for encrypted communication with the rest of
the group.

The recent effort by NIST to evaluate and standardize one or more quantum-
resistant public-key cryptosystems is entirely focused on digital signatures and



two-party key encapsulation/key exchange,1 and there has been an extensive
amount of research over the past decade focused on designing such schemes. In
contrast, we are aware of almost no2 work on group key-exchange protocols with
post-quantum security beyond the observation that a post-quantum group key-
exchange protocol can be constructed from any post-quantum two-party protocol
by having a designated group manager run independent two-party protocols with
the N − 1 other parties, and then send a session key of its choice to the other
parties encrypted/authenticated using each of the resulting keys. Such a solution
is often considered unacceptable since it is highly asymmetric, requires additional
coordination, is not contributory, and puts a heavy load on a single party who
becomes a central point of failure.

1.1 Our Contributions

In this work, we propose a constant-round group key-exchange protocol based
on the hardness of the Ring-LWE problem [26], and hence with (plausible) post-
quantum security. We focus on constructing an unauthenticated protocol—i.e.,
one secure against a passive eavesdropper—since known techniques such as the
Katz-Yung compiler [23] can then be applied to obtain an authenticated protocol
secure against an active attacker.

The starting point for our work is the two-round group key-exchange pro-
tocol by Burmester and Desmedt [15, 16, 23], which is based on the decisional
Diffie-Hellman assumption. Assume a group G of prime order q and a generator
g ∈ G are fixed and public. The Burmester-Desmedt protocol run by parties
P0, . . . , PN−1 then works as follows:

1. In the first round, each party Pi chooses uniform ri ∈ Zq and broadcasts
zi = gri to all other parties.

2. In the second round, each party Pi broadcasts Xi = (zi+1/zi−i)
ri (where the

parties’ indices are taken modulo N).

Each party Pi can then compute its session key ski as

ski = (zi−1)Nri ·XN−1
i ·XN−2

i+1 · · ·Xi+N−2.

One can check that all the keys are equal to the same value gr0r1+···+rN−1r0 .
In attempting to adapt their protocol to the Ring-LWE setting, we could fix

a public ring Rq and a uniform element a ∈ Rq. Then:

1. In the first round, each party Pi chooses “small” secret value si ∈ Rq and
“small” noise term ei ∈ Rq (with the exact distribution being unimportant
in the present discussion), and broadcasts zi = asi + ei to the other parties.

1 Note that CPA-secure key encapsulation is equivalent to two-round key-exchange
(with passive security).

2 Exceptions include the work of Ding et al. [18], which lacks a proof of security; the
work of Boneh et al. [10] shows a framework for group key-exchange protocols with
plausible post-quantum security but without a concrete instantiation.
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2. In the second round, each party Pi chooses a second “small” noise term
e′i ∈ Rq and broadcasts Xi = (zi+1 − zi−i) · si + e′i.

Each party can then compute a session key bi as

bi = N · si · zi−1 + (N − 1) ·Xi + (N − 2) ·Xi+1 + · · ·+Xi+N−2.

The problem, of course, is that (due to the noise terms) these session keys com-
puted by the parties will not be equal. They will, however, be “close” to each
other if the {si, ei, e′i} are all sufficiently small, so we can add an additional
reconciliation step to ensure that all parties agree on a common key k.

This gives a protocol that is correct, but proving security (even for a pas-
sive eavesdropper) is more difficult than in the case of the Burmester-Desmedt
protocol. Here we informally outline the main difficulties and how we address
them. First, we note that trying to prove security by direct analogy to the proof
of security for the Burmester-Desmedt protocol (cf. [23]) fails; in the latter case,
it is possible to use the fact that, for example,

(z2/z0)r1 = zr2−r01 ,

whereas in our setting the analogous relation does not hold. In general, the
natural proof strategy here is to switch all the {zi} values to uniform elements
ofRq, and similarly to switch the {Xi} values to uniform subject to the constraint
that their sum is approximately 0 (i.e., subject to the constraint that

∑
iXi ≈ 0).

Unfortunately this cannot be done by simply invoking the Ring-LWE assumption
O(N) times; in particular, the first time we try to invoke the assumption, say
on the pair (z1 = as1 + e1, X1 = (z2 − z0) · s1 + e′1), we need z2 − z0 to be
uniform—which, in contrast to the analogous requirement in the Burmester-
Desmedt protocol (for the value z2/z0), is not the case here. Thus, we must
somehow break the circularity in the mutual dependence of the {zi, Xi} values.

Toward this end, let us look more carefully at the distribution of
∑
iXi. We

may write ∑
iXi =

∑
i(ei+1si − ei−1si) +

∑
i e
′
i.

Consider now changing the way X0 is chosen: that is, instead of choosing X0 =
(z1 − zN−1)s0 + e′0 as in the protocol, we instead set X0 = −

∑N−1
i=1 Xi + e′0

(where e′0 is from the same distribution as before). Intuitively, as long as the
standard deviation of e′0 is large enough, these two distributions of X0 should
be “close” (as they both satisfy

∑
iXi ≈ 0). This, in particular, means that we

need the distribution of e′0 to be different from the distribution of the {e′i}i>0,
as the standard deviation of the former needs to be larger than the latter.

We can indeed show that when we choose e′0 from an appropriate distribution
then the Rényi divergence between the two distributions ofX0, above, is bounded
by a polynomial. With this switch in the distribution of X0, we have broken the
circularity and can now use the Ring-LWE assumption to switch the distribution
of z0 to uniform, followed by the remaining {zi, Xi} values.

Unfortunately, bounded Rényi divergence does not imply statistical closeness.
However, polynomially bounded Rényi divergence does imply that any event
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occurring with negligible probability when X0 is chosen according to the second
distribution also occurs with negligible probability when X0 is chosen according
to the first distribution. For these reasons, we change our security goal from an
“indistinguishability-based” one (namely, requiring that the real session key k
is indistinguishable from uniform) to an “unpredictability-based” one (namely,
requiring that it is infeasible for an attacker to compute the real session key k).
In the end, though, once the parties agree on an unpredictable value k they
can hash it to obtain the final session key sk = H(k); this final value sk will be
indistinguishable from uniform if H is modeled as a random oracle.

2 Preliminaries

2.1 Notation

Let Z be the ring of integers, and let [N ] = {0, 1, . . . , N − 1}. If S is a set,
then x0, x1, . . . , x`−1 ← S denotes uniformly sampling each xi from S; if χ
is a probability distribution, then x0, x1, . . . , x`−1 ← χ denotes independently
sampling each xi according to that distribution. Let χ(E) denote the probability
that event E occurs under distribution χ. We let Supp(χ) = {x : χ(x) 6= 0}.
Given an event E, we let E denote its complement. Given a polynomial pi, let
(pi)j denote the jth coefficient of pi. We use log(X) to denote log2(X), and
exp(X) to denote eX .

We let λ denote a computational security parameter, and ρ a statistical
security parameter.

2.2 Ring Learning with Errors

Informally, the (decisional) version of the Ring Learning with Errors (Ring-LWE)
problem is: for some secret ring element s, distinguish many random “noisy ring
products” with s from elements drawn uniformly from the ring. More precisely,
the Ring-LWE problem is parameterized by (R, q, χ, `) where:

1. R = Z[X]/(f(X)) is a ring, where f(X) is an irreducible polynomial f(X) in
the indeterminate X. In this paper, we restrict to the case of f(X) = Xn+1,
where n is a power of 2.

2. q is a modulus defining the quotient ring Rq := R/qR = Zq[X]/(f(X)). We
restrict to the case where q is prime with q = 1 mod 2n.

3. χ = (χs, χe) is a pair of noise distributions over Rq (with χs the secret-key
distribution and χe the error distribution) that are concentrated on “short”
elements, for an appropriate definition of “short.”

4. ` is the number of samples provided to the adversary.

Formally, the Ring-LWE problem is to distinguish between ` samples inde-
pendently drawn from one of two distributions. In the first case, the samples are
generated by choosing s← χs and then outputting

(ai, bi = s · ai + ei) ∈ Rq ×Rq

for i ∈ [`], where each ai is uniform in Rq and each ei ← χe is drawn from the
error distribution χe. In the second case, each sample (ai, bi) is uniformly and

4



independently drawn from Rq×Rq. We let AdvRLWE
n,q,χs,χe,`(B) denote the advantage

of algorithm B in distinguishing these two cases, and define AdvRLWE
n,q,χs,χe,`(t) to

be the maximum advantage of any algorithm running in time t. If χ = χs = χe,
we write Advn,q,χ,` for simplicity.

The noise distribution. The noise distribution χ = χs = χe is usually a dis-
crete Gaussian distribution on Rq. For power-of-2 cyclotomic rings of the form
we consider here, it is possible to sample a polynomial from this distribution by
drawing each coefficient of the polynomial independently from the 1-dimensional
discrete Gaussian distribution over Zq with parameter σ. This distribution, sup-
ported on {x ∈ Z;−q/2 < x < q/2}, has density function

DZq,σ(x) =
e
−πx2

σ2∑∞
x=−∞ e

−πx2
σ2

.

2.3 Rényi divergence

For two discrete probability distributions P and Q with Supp(P ) ⊆ Supp(Q),
their Rényi divergence is defined as

RD2(P‖Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
.

We use the following results (see [30, 26, 25] for proofs):

Proposition 1. For discrete distributions P and Q with Supp(P ) ⊆ Supp(Q)
and any f , we have

RD2(f(P )||f(Q)) ≤ RD2(P ||Q).

Proposition 2. For discrete distributions P and Q with Supp(P ) ⊆ Supp(Q),
let E ⊆ Supp(Q) be an arbitrary event. We have

Q(E) ≥ P (E)2/RD2(P ||Q).

The second property implies, roughly, that as long as RD2(P‖Q) is bounded
by some polynomial, then any event E that occurs with negligible probability
Q(E) under distribution Q also occurs with negligible probability P (E) under
distribution P .

The following theorem bounds the Rényi divergence between the 1-dimensional
discrete Gaussian distribution centered at the origin and one centered at a point
near the origin.

Theorem 2.1 ([7]). Fix m, q, λ ∈ Z, a bound βRényi, and σ with βRényi < σ < q.
Let e ∈ Z be such that |e| ≤ βRényi. Then

RD2((e+DZq,σ)m||Dm
Zq,σ) ≤ exp(2πm(βRényi/σ)2).

(Here, χm denotes m independent samples from distribution χ.)

The above theorem implies that if σ = Ω(βRényi

√
m/ log λ) for some security

parameter λ, then RD2((e+DZq,σ)m||Dm
Zq,σ) = poly(λ).
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2.4 Generic Key Reconciliation

In this subsection, we define a generic, one round, two-party key reconcilia-
tion mechanism (tailored to the Ring-LWE setting) that allows two parties to
derive a shared key if they begin holding “close” ring elements. Formally, a key-
reconciliation mechanism KeyRec consists of two algorithms recMsg and recKey,
parameterized by a bound βRec (that may depend on the security parameter).
The first algorithm takes as input the security parameter 1λ and a value b ∈ Rq,
and outputs a reconciliation message rec and a key k ∈ {0, 1}λ. The second
algorithm takes as input 1λ, a value b′ ∈ Rq, and rec, and outputs k′ ∈ {0, 1}λ.

Correctness requires that whenever b, b′ are “close,” then k′ = k. Specifically,
for any b, b′ for which each coefficient of b − b′ is bounded by βRec, if we run
(rec, k)← recMsg(1λ, b) followed by k′ := recKey(1λ, b′, rec) then k = k′.

Security requires that if b is uniform and we derive (rec, k)← recMsg(1λ, b),
then k is computationally indistingiushable from uniform even for an attacker
given rec. Formally, the following two distribution ensembles must be computa-
tionally indistinguishable:{

b← Rq; (rec, k)← recMsg(1λ, b) : (rec, k)
}
λ∈N ,{

b← Rq; (rec, k)← recMsg(1λ, b); k′ ← {0, 1}λ : (rec, k′)
}
λ∈N ,

For some fixed value of λ we denote by AdvKeyRec(B) the advantage of adversary
B in distinguishing these distributions, and let AdvKeyRec(t) be the maximum
advantage of any such adversary running in time t.

Key-reconciliation mechanisms from the literature. The notion of key
reconciliation was first introduced by Ding et al. [18], and was later used in
several works on two-party key exchange [27, 32, 4]. In the key reconciliation
mechanisms of Peikert [27], Zhang et al. [32] and Alkim et al. [4], the agreed-
upon key k = k′ is close to each of the original values b, b′ held by the parties.
When instantiating our group key exchange (GKE) protocol with this type of
key-reconciliation mechanism, our final GKE protocol is contributory. In other
cases [3], the agreed-upon key is determined by the randomness used when run-
ning recMsg; instantiating our GKE protocol with this type of key-reconciliation
mechanism yields a non-contributory protocol.

3 Group Key Exchange

A group key-exchange protocol allows a session key to be established among
N > 2 parties. Following prior work [22, 14, 12, 13], we will use the term group key
exchange (GKE) to denote a protocol secure against a passive (eavesdropping)
adversary, and use the term authenticated group key exchange (GAKE) to denote
a protocol secure against an active adversary who controls all communication
channels. Fortunately, the work of Katz and Yung [22] presents a compiler that
takes any GKE protocol and transforms it into a GAKE protocol. The underlying
tool required for this transform is any secure signature scheme; if post-quantum
security is needed, then any post-quantum signature scheme can be used. We
thus focus our attention on achieving GKE in the remainder of this work.
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In the security definition for group key exchange, the adversary observes
a single transcript generated by an execution of the protocol. The adversary’s
goal is then to distinguish the real session key generated in that execution of
the protocol from a key that is generated uniformly and independently of that
transcript. Formally, given a GKE protocol Π we let ExecuteΠ(λ) denote an
execution of the protocol (on security parameter λ), resulting in a transcript
trans of all messages sent during the course of that execution, along with the
session key sk computed by the parties. Protocol Π is secure if the following
distribution ensembles are computationally indistinguishable:

{(trans, sk)← ExecuteΠ(λ) : (trans, sk)}λ∈N,
{(trans, sk)← ExecuteΠ(λ), sk′ ← {0, 1}λ : (trans, sk′)}λ∈N.

Our protocol Π will be analyzed in the random-oracle model. In this case, fixing
some λ, we let AdvGKE

Π (A) denote the advantage of an adversary A in distinguish-
ing between the distributions above, and define AdvGKE

Π (t, q) to be the maximum
advantage of any adversary running in time t and making at most q queries to
the random oracle.

4 A Group Key-Exchange Protocol

In this section, we present a group key exchange protocol Π for N parties
P0, . . . , PN−1. Our protocol relies on a key-reconciliation mechanism KeyRec (pa-
rameterized by a bound βRec) as a subroutine.

The overall structure of the protocol is as follows. The first two rounds allow
the parties to agree on “close” keys b0 ≈ · · · ≈ bN−1. Player N − 1 then initiates
the key-reconciliation mechanism to allow all parties to agree on the same key
k = k0 = · · · = kN−1 ∈ {0, 1}λ. Since we are only able to prove that k is difficult
to compute for an eavesdropping adversary (but may not be indistinguishable
from random), we then have each party hash k (using a hash function H) to
obtain the final shared key sk.

Our protocol is parameterized by noise distributions χσ1
, χσ2

, and assumes
public parameters Rq = Zq[x]/(xn + 1) along with a uniform value a ∈ Rq. The
protocol proceeds as follows:

Round 1: Each player Pi samples si, ei ← χσ1
and broadcasts zi = asi + ei.

Round 2: Player P0 samples e′0 ← χσ2
and each of the other players Pi samples

e′i ← χσ1 . Each Pi broadcasts Xi = (zi+1 − zi−1)si + e′i.
Round 3: Player PN−1 samples e′′N−1 ← χσ1

and computes

bN−1 = zN−2NsN−1 + (N − 1) ·XN−1 + (N − 2) ·X0 + · · ·+XN−3 + e′′N−1.

It then computes (rec, kN−1) = recMsg(bN−1) and broadcasts rec. Finally, it
outputs the session key skN−1 = H(kN−1).

Key computation: Each player Pi (except PN−1) computes

bi = zi−1Nsi + (N − 1) ·Xi + (N − 2) ·Xi+1 + · · ·+Xi+N−2.

It then sets ki = recKey(bi, rec), and outputs the session key ski = H(ki).
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The following shows a condition under which each party derives the same
session key with all but negligible probability.

Theorem 4.1. Fix ρ, and assume

(N2 + 2N) ·
√
nρ3/2 σ2

1 + (
N2

2
+ 1) · σ1 + (N − 2) · σ2 ≤ βRec.

Then all parties output the same key except with probability at most 2−ρ+1.

We refer to Appendix A for the proof.

5 Proof of Security

Here we prove security of our protocol Π. We remark that our proof considers
only a classical attacker; in particular, we only allow the attacker classical access
to H. We believe the protocol can be proven secure even against attackers that
are allowed to make quantum queries to H, but leave proving this to future work.

Theorem 5.1. Assume 2N
√
nλ3/2 σ2

1+(N−1)·σ1 ≤ βRényi and βRényi < σ2 < q,
and model H as a random oracle. Then

AdvGKE
Π (t, q) ≤ 2−λ+1

+

√√√√(
N · AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t2) +

q

2λ

)
·

exp
(

2πn (βRényi/σ2)
2
)

1− 2−λ+1
,

where t1 = t +O(N · tring), t2 = t +O(N · tring) and tring is the time required to
perform operations in Rq.

Proof. Let Expt0 refer to the experiment in which protocol Π is executed to
obtain output (T, sk), where T = ({zi}, {Xi}, rec) is the transcript of the ex-
ecution and sk is the final shared session key (more formally, the session key
output by PN−1). We also then provide the attacker A with (T, sk), and then
allow A to interact with the random oracle used when executing Π. Our goal is
to bound the advantage of an attacker in distinguishing between samples (T, sk)
distributed according to Expt0 and samples (T, sk′) in which T is distributed
the same way but sk′ is a uniform key (chosen independently of T). To do so,
we show that the probability that A queries kN−1 to the random oracle (which
we denote by the event Query) is small; since that is the only way an attacker
can distinguish sk = H(kN−1) from an independent, uniform value, that allows
us to prove our desired result. In proving our result, we consider a sequence of
experiments, and let Pri[·] denote the probability of an event in Experiment i.

For completeness, we write out the distribution of (T, sk) in Expt0:
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Expt0 :=



a← Rq; ∀i : si, ei ← χσ1
; zi = asi + ei;

e′1, . . . , e
′
N−1 ← χσ1

; e′0 ← χσ2
;

∀i : Xi = (zi+1 − zi−1)si + e′i;

e′′N−1 ← χσ1
; : (T, sk)

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec)


.

Since AdvGKE
Π (t, q) ≤ Pr0[Query], we focus on bounding Pr0[Query] for the rest

of the proof.

Experiment 1. In this experiment, X0 is replaced by X ′0 = −
∑N−1
i=1 Xi + e′0.

The corresponding distribution of (T, sk) is thus as follows:

Expt1 :=



a← Rq; ∀i : si, ei ← χσ1
; zi = asi + ei;

e′1, . . . , e
′
N−1 ← χσ1

; e′0 ← χσ2

X ′0 = −
N−1∑
i=1

Xi + e′0;

∀i > 0 : Xi = (zi+1 − zi−1)si + e′i : (T, sk)

e′′N−1 ← χσ1
;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec)



.

The following claim, which is the crux of our proof, relates the probabilities
of Query in Expt0 and Expt1.

Claim. If 2N
√
nλ3/2 σ2

1 + (N − 1) · σ1 ≤ βRényi, then

Pr0[Query] ≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)

1− 2−λ+1
+ 2−λ+1. (1)

Proof. Note that we may define the random variablesX0, X
′
0 in both experiments

Expt0 and Expt1. Define the random variable Error (in either experiment) as

Error =

N−1∑
i=0

(siei+1 + siei−1) +

N−1∑
i=1

e′i.

Defining
main = as1s0 − asN−1s0 − Error,
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it is straightforward to verify that

X0 = main + Error + e′0

X ′0 = main + e′0,

where e′0 is sampled from χσ2 . Our aim is to apply Theorem 2.1 to show that
the Rényi divergence between X0 and X ′0 (and hence between Expt0 and Expt1)
is small. To do so, we must first show that the absolute value of each coefficient
of Error is bounded by βRényi with all but negligible probability.

Let boundErr be the event that for all j we have |Errorj | ≤ βRényi. Note that

|Errorj | =

∣∣∣∣∣∣
(
N−1∑
i=0

(siei+1 + siei−1) +

N−1∑
i=1

e′i

)
j

∣∣∣∣∣∣ .
Fix c =

√
2λ

π log e , and let bound be the event that for all i, j we have |(e′0)j | ≤ cσ2
and |(si)j |, |(ei)j |, |(e′′N−1)j | ≤ cσ1, and that for all i > 0 and all j it holds that
|(e′i)j | ≤ cσ1. Applying Lemmas A.1 and A.2 (with ρ = λ), we see that

Pr[bound] ≥ 1− 2−λ

and
Pr
[
|(siej)v| ≥

√
nλ3/2σ2

1 | bound
]
≤ 2−2λ+1.

Via a union bound, we thus have

Pr
[
∀j : |Errorj | ≤ 2N

√
nλ3/2σ2

1 + (N − 1)σ1 | bound
]
≥ 1− 4N · n · 2−2λ.

Under the assumption that 4Nn ≤ 2λ (which holds for all reasonable settings
of the parameters) and using a similar argument as in the proof of Lemma A.2,
we conclude that

Pr[boundErr] ≥ 1− 2−λ+1. (2)

When boundErr occurs, Theorem 2.1 tells us that

RD2(Error + χσ2 ||χσ2) ≤ exp(2πn(βRényi/σ2)2). (3)

Therefore,

Pr0[Query] ≤ Pr0[Query | boundErr] + Pr0[boundErr]

≤ Pr0[Query | boundErr] + 2−λ+1

≤
√

Pr1[Query | boundErr] · exp(2πn(βRényi/σ2)2) + 2−λ+1

≤

√
Pr1[Query] · exp(2πn(βRényi/σ2)2)

Pr1[boundErr]
+ 2−λ+1

≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)

1− 2−λ+1
+ 2−λ+1.

This completes the proof of the claim.
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In Appendix B, we prove (using arguments similar to those in [23]) that

Pr1[Query] ≤
(
N · AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t2) +

q

2λ

)
.

This completes the proof of Theorem 5.1.

Parameter constraints. Beyond the parameter settings required for hardness
of the Ring-LWE problem, the parameters N,n, σ1, σ2, λ, ρ of the protocol are
also required to satisfy the following:

(N2 + 2N) ·
√
nρ3/2σ2

1 + (
N2

2
+ 1)σ1 + (N − 2)σ2 ≤ βRec (correctness) (4)

2N
√
nλ3/2σ2

1 + (N − 1)σ1 ≤ βRényi (security) (5)

σ2 = Ω(βRényi

√
n/ log λ). (security) (6)

Thus, fixing the ring, the noise distributions, and the security parameters λ, ρ
induces a bound on the maximum number of parties the protocol can support.
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4. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange—a new hope. In 25th USENIX Security Symposium
(USENIX Security 16), pages 327–343, Austin, TX, 2016. USENIX Association.

5. Klaus Becker and Uta Wille. Communication complexity of group key distribution.
In Proceedings of the 5th ACM Conference on Computer and Communications
Security, CCS ’98, pages 1–6, New York, NY, USA, 1998.

6. Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The
three party case. In 27th Annual ACM Symposium on Theory of Computing, pages
57–66, Las Vegas, NV, USA, May 29 – June 1, 1995. ACM Press.

11



7. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen.
On the hardness of learning with rounding over small modulus. In Theory of
Cryptography Conference, pages 209–224. Springer, 2016.

8. Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer Steinwandt.
Password-authenticated constant-round group key establishment with a com-
mon reference string. Cryptology ePrint Archive, Report 2006/214, 2006.
http://eprint.iacr.org/2006/214.
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A Proof of Correctness

Theorem 4.1 (Restated). Fix ρ, and assume

(N2 + 2N) ·
√
nρ3/2 σ2

1 + (
N2

2
+ 1) · σ1 + (N − 2) · σ2 ≤ βRec.

Then all parties output the same key except with probability at most 2−ρ+1.

13



Proof. We begin by introducing the following lemmas to analyze probabilities
that each coordinate of si, ei, e

′
i, e
′′
N−1, e

′
0 are “short” for all i, and conditioned

on the first event, siei is “short”.

Lemma A.1. Given si, ei, e
′
i, e
′′
N−1, e

′
0 for all i as defined in the group key ex-

change protocol, fix c =
√

2ρ
π log e , and let boundρ denote the event that for all i

and all coordinate indices j, |(e′0)j | ≤ cσ2 and |(si)j |, |(ei)j |, |(e′′N−1)j | ≤ cσ1,
and that for all i > 0 and all j it holds that |(e′i)j | ≤ cσ1, we have

Pr[boundρ] ≥ 1− 2−ρ.

Proof. Using the fact that erfc(x) = 2√
π

∫∞
x
e−t

2

dt ≤ e−x2

, we obtain

Pr[|v| ≥ cσ + 1; v ← DZq,σ] ≤ 2

∞∑
x=bcσ+1e

DZq,σ(x) ≤ 2

σ

∫ ∞
cσ

e−
πx2

σ2 dx

=
2√
π

∫ ∞
√
π
σ (cσ)

e−t
2

dt ≤ e−c
2π.

Note that there are 3nN coordinates sampled from distribution DZq,σ1
, and n co-

ordinates sampled from distribution DZq,σ2
in total. Under the assumption that

3nN + n ≤ ec
2π/2 (which holds for all reasonable settings for the parameters),

we have:

Pr[boundρ] =
(
1− Pr[|v| ≥ cσ1 + 1; v ← DZq,σ1 ]

)3nN
·
(
1− Pr[|e′0| ≥ cσ2 + 1; e′0 ← DZq,σ2

]
)n

≥ 1− (3nN + n)e−c
2π ≥ 1− e−c

2π/2 ≥ 1− 2−ρ.

Lemma A.2. Given boundρ as defined in Lemma A.1, let productsi,ej denote the

event that, for all v, |(siej)v| ≤
√
nρ3/2σ2

1,

Pr[productsi,ej | boundρ] ≥ 1− 2n · 2−2ρ.

Proof. For t ∈ {0, . . . , n − 1}, Let (si)t denote the tth coefficient of si ∈ Rq,

namely, si =
∑n−1
t=0 (si)tX

i. (ej)t is defined analogously. Since we have Xn+1 as

modulo of R, it is easy to see that (siej)v = cvX
v, where cv =

∑n−1
u=0(si)u(ej)

∗
v−u.

If v − u ≥ 0, (ej)
∗
v−u = (ej)v−u. (ej)

∗
v−u = −(ej)v−u+n otherwise. Thus, condi-

tioned on |(si)t| ≤ cσ1 and |(ej)t| ≤ cσ1 (for all i, j, t) where c =
√

2ρ
π log e , by

Hoeffding’s Inequality [19], we derive

Pr[|(siej)v| ≥ δ | boundρ] = Pr

[∣∣∣∣∣
n−1∑
u=0

(si)u(ej)
∗
v−u

∣∣∣∣∣ ≥ δ
]
≤ 2 exp

(
−2δ2

n(2c2σ2
1)2

)
,
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as each product (si)u(ej)
∗
v−u in the sum is an independent random variable with

mean 0 in the range [−c2σ2
1 , c

2σ2
1 ]. By fixing δ =

√
nρ3/2σ2

1 , we obtain

Pr[|(siej)v| ≥
√
nρ3/2σ2

1 | boundρ] ≤ 2−2ρ+1. (7)

Finally, via a union bound, we thus have

Pr[productsi,ej |boundρ] = Pr[∀v : |(siej)v| ≤
√
nρ3/2σ2

1 ] ≥ 1− 2n · 2−2ρ. (8)

Now we begin analyzing the chance that not all parties agree on the same
final key. The correctness of KeyRec guarantees that this group key exchange
protocol has agreed session key among all parties. Formally, if for all i and j
that the jth coefficient of |bN−1 − bi| ≤ βRec, then for all i, ki = kN−1.

For better illustration, we first write X0, . . . , XN−1 in form of linear system
as follows. X = [X0 X1 X2 · · · XN−1]T

=



1 0 0 0 . . . 0 −1
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . −1 1


︸ ︷︷ ︸

M



as0s1
as1s2
as2s3
as3s4

...
asN−2sN−1
asN−1s0


︸ ︷︷ ︸

S

+



s0e1 − s0eN−1 + e′0
s1e2 − s1e0 + e′1
s2e3 − s2e1 + e′2
s3e4 − s3e2 + e′3

...
sN−2eN−3 − sN−2eN−3 + e′N−2
sN−1e0 − sN−1eN−2 + e′N−1


︸ ︷︷ ︸

E

.

(9)

We denote the matrices above by M ,S,E from left to right and have the linear
system as X = MS + E. Let Bi = [i− 1 i− 2 · · · 0 N − 1 N − 2 · · · i]
as a N-dimensional row vector. We can then write bi as Bi ·X + N(asisi−1 +
siei−1) = BiMS +BiE +N(asisi−1 + siei−1) for i 6= N − 1 and write bN−1 as
BN−1MS+BN−1E+N(asN−1sN−2+sN−1eN−2)+e′′N−1. It is straightforward
to see that, entries of MS and Nasisi−1 are eliminated through the process of
computing bN−1 − bi. Thus we obtain

bN−1 − bi = (BN−1 −Bi)E +N(sN−1eN−2 − siei−1) + e′′N−1

= (N − i− 1) ·

 ∑
j∈Z∩[0,i−1]
and j=N−1

sjej+1 − sjej−1 + e′j

+ e′′N−1

+ (−i− 1)

N−2∑
j=i

sjej+1 − sjej−1 + e′j

+N(sN−1eN−2 − siei−1)
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Observe that for an arbitrary i ∈ [N ], and in any coordinate of the sum above,
there are at most (N2 + 2N) terms in form of suev, at most N2/2 terms in form
of e′w sampled from χσ1 , at most N − 2 terms of e′0 sampled from χσ2 , and one
term of e′′N−1.

Let productALL denote the event that for all the terms in form of suev ob-
served above, each coefficient of such term is bounded by

√
nρ3/2σ2

1 . Under that
assumption that assuming 2n(N2 + 2N) ≤ 2ρ (which holds for all reasonable
settings of the parameters) and using a union bound, it is straightforward to see

Pr[productALL|boundρ] ≤ (N2 + 2N) · 2n2−2ρ ≤ 2−ρ.

Let fail be the event that not all parties agree on the same final key. Given

the constraint (N2 + 2N) ·
√
nρ3/2σ2

1 + (N
2

2 + 1)σ1 + (N − 2)σ2 ≤ βRec satisfied,
we have

Pr[fail] = Pr[fail|boundρ] · Pr[boundρ] + Pr[fail|boundρ] · Pr[boundρ] (10)

≤ Pr[productALL] · 1 + 1 · Pr[boundρ] ≤ 2 · 2−ρ, (11)

which completes the proof.

B Concluding the Proof of Security

Theorem 5.1 (Restated). Assume 2N
√
nλ3/2 σ2

1 + (N − 1) · σ1 ≤ βRényi and
βRényi < σ2 < q, and model H as a random oracle. Then

AdvGKE
Π (t, q) ≤ 2−λ+1

+

√√√√(
N · AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t2) +

q

2λ

)
·

exp
(

2πn (βRényi/σ2)
2
)

1− 2−λ+1
,

where t1 = t +O(N · tring), t2 = t +O(N · tring) and tring is the time required to
perform operations in Rq.

Proof. (Continued) Recall that Experiment 0 is the real world experiment. We
have that AdvGKE

Π (t, q) ≤ Pr0[Query], where Query is the event that kN−1 is
among the adversary A’s random oracle queries and Pri[Query] is the probability
that event Query happens in Experiment i.

In Experiment 1, we switched from X0 as sampled in the real world to X ′0 =

−
∑N−1
i=1 Xi + e′0 and showed (see Equation 1) that

Pr0[Query] ≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)

1− 2−λ+1
+ 2−λ+1.

Therefore, to prove the theorem, it remains to show that

Pr1[Query] ≤
(
N · AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t2) +

q

2λ

)
.
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We do so by considering a sequence of experiments as follows:

Experiment 2. In this experiment, z0 is replaced by a uniform element in Rq.
The corresponding distribution of (T, sk) is thus as follows:

Expt2 :=



a, z0 ← Rq; ∀i ≥ 1 : si, ei ← χσ1 ; zi = asi + ei;

e′1, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2

X ′0 = −
N−1∑
i=1

Xi + e′0,∀i ≥ 1 : Xi = (zi+1 − zi−1)si + e′i : (T, sk)

e′′N−1 ← χσ1
;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).



.

Claim. For any algorithm A running in time t, we have

|Pr2[Query]− Pr1[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (12)

where t1 = t + O(N · tring) and tring is the time required to perform operations
in Rq.

Proof. We first consider an experiment Expt′1 which is identical to Expt1 except
for (a, z0) given as input. For algorithmA running in time t, let B be an algorithm
running in time t1 which takes as input (a, z0), generates (T, sk) according to
Expt′1, runs A(T, sk) as a subroutine and outputs whatever A outputs. t1 is then
equal to t plus a minor overhead for the simulation of the security experiment
for A.

It is straightforward to see that if (a, z0) is sampled from An,q,χσ1 , then Expt′1
is identical to Expt1, and if (a, z0) is sampled from R2

q , Expt
′
1 is identical to Expt2.

Therefore the difference of algorithm A’s success probability in Experiment
1 and Experiment 2 is bounded by probability that B running in time t1 distin-
guishes An,q,χσ1 from R2

q given one sample. Since

AdvRLWE
n,q,χσ1 ,3

(t1) ≥ AdvRLWE
n,q,χσ1 ,2

(t1) ≥ AdvRLWE
n,q,χσ1 ,1

(t1),

for simplicity, we conclude that:

|Pr2[Query]− Pr1[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (13)

Recall that in the previous experiment, we switched z0 to be uniformly dis-
tributed in Rq. In next two experiments, we switch z1, X1 to be elements uni-
formly distributed in Rq.
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Experiment 3. In this experiment, z0 is replaced by z2−r1, and X1 is replaced
by r1s1+e′1, where r1 is uniform in Rq. The corresponding distribution of (T, sk)
is thus as follows:

Since r1 is uniform, then z2 − r1 is also uniform. Thus, we conclude that
Experiment 3 is identical to Experiment 2 up to variable substitution, namely

Pr3[Query] = Pr2[Query]. (14)

Expt3 :=



a, r1 ← Rq; ∀i ≥ 1 : si, ei ← χσ1
; zi = asi + ei;

z0 = z2 − r1;

∀i ≥ 1 : e′i ← χσ1
; e′0 ← χσ2

;

X ′0 = −
N−1∑
i=1

Xi + e′0;X1 = r1s1 + e′1; : (T, sk)

∀i ≥ 2 : Xi = (zi+1 − zi−1)si + e′i;

e′′N−1 ← χσ1
;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).



.

Experiment 4. In this experiment, z1, X1 are replaced by uniform elements in
Rq. The corresponding distribution of (T, sk) is thus as follows:

Expt4 :=



a, r1 ← Rq; ∀i ≥ 2 : si, ei ← χσ1 ; zi = asi + ei;

z0 = z2 − r1, z1 ← Rq;

e′2, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2 ;

X ′0 = −
N−1∑
i=1

Xi + e′0, X1 ← Rq;

∀i ≥ 2 : Xi = (zi+1 − zi−1)si + e′i, : (T, sk)

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).



.

Claim. For any algorithm A running in time t, we have

|Pr4[Query]− Pr3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (15)

where t1 = t + O(N · tring) and tring is the time required to perform operations
in Rq.
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Proof. We first consider an experiment Expt′3 which is identical to Expt3 except
for (a, z1), (r1, X1) given as input. For algorithm A running in time t, let B be an
algorithm running in time t1 that takes as input (a, z1), (r1, X1), generates (T, sk)
according to Expt′3. B then runs A(T, sk) as a subroutine and outputs whatever
A outputs. t1 is then equal to t plus a minor overhead for the simulation of the
security experiment for A.

It is clear to see that if (a, z1) and (r1, X1) are sampled from An,q,χσ1 , then

Expt′3 is identical to Expt3. If (a, z1) and (r1, X1) are sampled from U(R2
q), Expt

′
3

is identical to Expt4.

Therefore the difference of algorithm A successful probability in Experiment
3 and Experiment 4 is bounded by the advantage of adversary B running in time
t1 in distinguishing An,q,χσ1 from U(R2

q) given two samples. Thus, we conclude

|Pr4[Query]− Pr3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1). (16)

Experiment 5. In this experiment, z0 is replaced by a uniform element in
Rq. The corresponding distribution is denoted as Expt5. We leave the formal
definition of Expt5 implicit for simplicity

It is easy to see that the corresponding distribution Expt5 is identical to Expt4
by substituting variable z0 for z2 − r1. Thus,

Pr5[Query] = Pr4[Query]. (17)

In the case that N ≥ 3, we present the following sequence of experiments
from Experiment 6 to Experiment 3N−4. For i = 2, 3, . . . , N−2, we define three
experiments Experiment 3i, Experiment 3i+ 1, Experiment 3i+ 2. It is ensured
that in the experiments prior to Experiment 3i, we already switched zj , Xj for
all 0 ≤ j ≤ i−1. In Experiment 3i, Experiment 3i+1 and Experiment 3i+2, we
replace zi and Xi by random elements in Rq. Experiment 3i, Experiment 3i+ 1,
Experiment 3i+ 2 are formally defined as follows:

Experiment 3i. The experiment proceeds exactly the same as Experiment 3i−
1, except for setting zi−1 = zi+1 − ri, Xi = risi + e′i, where r1 is uniform in Rq.
The corresponding distribution of (T, sk) is thus as follows, denoted Expt3i:

Experiment 3i + 1. In this experiment, zi, Xi are replaced by uniform ele-
ments in Rq. The corresponding distribution of (T, sk) is thus as follows, denoted
Expt3i+1:

Experiment 3i+2. In this experiment, zi−1 is replaced by a uniform element in
Rq. The corresponding distribution is denoted as Expt3i+2. We leave the formal
definition of Expt3i+2 implicit for simplicity.
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Expt3i :=



a, ri ← Rq; ∀j ≥ i : sj , ej ← χσ1 ; zj = asj + ej ;

z0, . . . , zi−2 ← Rq, zi−1 = zi+1 − ri;
e′i, . . . , e

′
N−1 ← χσ1 , e

′
0 ← χσ2 ;

X ′0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , Xi−1 ← Rq; : (T, sk)

Xi = risi + e′i; ∀j ≥ i : Xj+1 = (zj+2 − zj)sj+1 + e′j+1

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).



.

Expt3i+1 :=



a, ri ← Rq; ∀j ≥ i+ 1 : sj , ej ← χσ1 ; zj = asj + ej ;

z0, . . . , zi−2 ← Rq, zi−1 = zi+1 − ri, zi ← Rq,

e′1, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2

X ′0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , Xi ← Rq, : (T, sk)

∀j ≥ i+ 1, Xj = (zj+1 − zj1)sj + e′j ;

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).



.

Using similar arguments as proving (in)equalities (14), (15) and (17), we
conclude that:

Pr3i[Query] = Pr3i−1[Query]; (18)

|Pr3i+1[Query]− Pr3i[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1); (19)

Pr3i+2[Query] = Pr3i+1[Query]; (20)

Note that in Experiment 3N − 4, the last experiment of the experiment se-
quence above, we already switched all the zi, Xi up to zN−1, XN−1. We construct
the next two experiments to switch zN−1, XN−1, bN−1.

Experiment 3N−3. The experiment proceeds exactly the same as Experiment
3N−4, except for setting zN−2 = r2, XN−1 = r1sN−1+e′N−1, z0 = r1+r2, where
r1, r2 are uniform in Rq. The corresponding distribution is thus as follows:
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Since r1, r2 are uniform, r1 + r2 is then also uniform. Thus we conclude that
Experiment 3N−3 is identical to Experiment 3N−4 up to variable substitution,
namely,

Pr3N−3[Query] = Pr3N−4[Query]; (21)

Expt3N−3 :=



a, r1, r2 ← Rq, sN−1, eN−1 ← χσ1
; z0 = r1 + r2,

z1, . . . , zN−3 ← Rq, zN−2 = r2,

zN−1 = asN−1 + eN−1; e′0 ← χσ2
; e′N−1 ← χσ1

;

X ′0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , XN−2 ← Rq,

XN−1 = r1sN−1 + e′N−1; e′′N−1 ← χσ1
; : (T, sk)

bN−1 = e′′N−1 + r2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).



.

Experiment 3N − 2. In this experiment, zN−1, XN−1, bN−1 are replaced by
uniform elements in Rq. The corresponding distribution is thus as follows: :

Expt3N−2 :=



a← Rq;∀i : zi ← Rq;

e′0 ← χσ2 ; r1, r2 ← Rq

X ′0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , XN−1 ← Rq : (T, sk)

bN−1 ← Rq;

(rec, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, rec).


.

Claim. For any algorithm A running in time t, we have

|Pr3N−2[Query]− Pr3N−3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (22)

where t1 = t + O(N · tring) and tring is the time required to perform operations
in Rq.

Proof. Since r2 is uniform in Rq and N is invertible over Rq, then r2N is uni-
formly distributed in Rq. It is easy to see that (sN−1, r2NsN−1 + e′′N−1) forms
an RLWE instance. We let bRLWE = r2NsN−1 + e′′N−1.

We consider an experiment Expt′3N−3 which is identical to Expt3N−3 except
for (a, zN−1), (r1, XN−1), and (r2N, bRLWE) given as input. Given an algorithm A
running in time t, let B be an algorithm that takes as input (a, zN−1), (r1, XN−1),
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and (r2N, bRLWE), generates (T, sk) according to Expt′3N−3. B runs A(T, sk) as a
subroutine and outputs whatever A outputs. Running time t1 of B then equals
to t plus a minor overhead for the simulation of the security experiment for A.

It is straightforward to see that if (a, zN−1), (r1, X1), and (r2N, bRLWE) are
sampled from An,q,χσ1 , then Expt′3N−3 is identical to Expt3N−3. If (a, zN−1),

(r1, XN−1), and (r2N, bRLWE) are sampled from R2
q , then Expt′3N−3 is identical

to Expt3N−2, since when bRLWE is sampled uniformly at random, bRLWE +XN−1 ·
(N − 1) +X0 · (N − 2) + · · ·+XN−3 is also uniformly distributed over Rq.

Therefore the difference of algorithm A’s success probability in Experiment
3N - 2 and Experiment 3N - 3 is bounded by the advantage of adversary B
running in time t1 in distinguishing Ring-LWE from Rq given three samples.
Thus, we conclude that

|Pr3N−2[Query]− Pr3N−3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (23)

Experiment 3N − 1. In this experiment, kN−1 is replaced by random element
in {0, 1}λ. The corresponding distribution is thus as follows:

Exptfinal :=



a← Rq; z0, . . . , zN−1 ← Rq; e
′
0 ← χσ1 ;

X ′0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , XN−1 ← Rq

bN−1 ← Rq; (rec, kN−1) = recMsg(bN−1) : (T, sk)

k′N−1 ← {0, 1}λ; sk = H(k′N−1);

T = (z0, . . . , zN−1, X
′
0, . . . , XN−1, rec);


.

Given transcript T, and bN−1 which is uniformly distributed, using a straight
forward reduction, we obtain advantage of adversary B running in time t2 in
distinguishing kN−1 computed by recMsg(bN−1) from a uniform bit string k′N−1
with length λ is at least |Pr3N−1[Query]− Pr3N−2[Query]|, namely,

|Pr3N−1[Query]− Pr3N−2[Query]| ≤ AdvKeyRec(t2). (24)

Note that t2 equals to the running time of adversary A attacking the protocol
Π, plus a minor overhead for simulating experiment for A.

Finally, since adversary attacking the GKE protocol Π makes at most q
queries to the random oracle, Pr3N−1[Query] = q

2λ
∈ negl(λ). Combining Equa-

tions (12) - (24), we have

Pr1[Query] ≤ N · AdvRLWE
n,q,χσ1 ,3

(t1) + AdvKeyRec(t2) +
q

2λ
. (25)

The theorem now follows immediately from Equations (1), and (25).
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