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ABSTRACT
This paper presents a novel, yet efficient secret-key authentication

and MAC, which provide post-quantum security promise, whose

security is reduced to the quantum-safe conjectured hardness of

Mersenne Low Hamming Combination (MERS) assumption re-

cently introduced by Aggarwal, Joux, Prakash & Santha (CRYPTO

2018). Our protocols are very suitable to weak devices like smart

card and RFID tags.

CCS CONCEPTS
• Security and privacy→ Symmetric cryptography and hash
functions;Hash functions andmessage authentication codes;
Authentication.

KEYWORDS
secret-key authentication, MAC, MERS assumption, man-in-the-

middle security.

1 INTRODUCTION
Secret key authentication and HB family. Secret-key authentica-

tion protocol is a process by which a prover authenticates itself to
a verifier. In recent years such protocols have become an important

mechanism for low-cost device authentication with small computa-

tional power such as smart cards or radio-frequency identification

(RFID) tags.

For this purpose, Hopper and Blum [HB01] introduced a two-

round secret-key authentication protocol, denoted byHB, requiring
only bit-wise operations whose security relies on the Learning Par-

ity with Noise (LPN) problem [BFKL94]. Juels and Weis [JW05]

pointed out that HB is insecure against active adversary and pro-

posed HB+ built upon the HB protocol, a three-round secret-key

authentication protocol.
1
Soon after, HB+ was shown vulnerable

to aman-in-the-middle (MIM) attack proposed by Gilbert, Robshaw,

and Silbert [GRS05]. The line of researches [BCD06, DK07, GRS08b,

KPV
+
17, HKL

+
12, CKT16] proposed variants ofHB/HB+ and some

of them are secure against MIM attacks.

Their underlying problems are the LPN problem and its variants.

Several attacks on the LPN problem have been proposed over the

last years [LF06, EKM17]. Most of them are variants of the BKW

algorithm [BKW03] whose running time is 2
O( k

logk )
. In addition,

[EKM17] introduced an algorithm solving the LPN problem running

on quantum setting. They make the HB family very inefficient in

1
Later, Katz, Shin, and Smith gave simplified security proofs of them [KSS10]
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practice either in classical or quantum setting. Moreover, Bernstein

and Lange [BL12] discussed the comparison of Lapin [HKL
+
12]

and (light-weight) block-ciphers on RFID tags and smart cards.

Armknecht, Hamann, and Mikhalev [AHM14] also discussed the

hardware limits of low-cost RFID tags in the range of $0.05–$0.10.

They concluded that all LPN-based authentication protocols are

out of the range.

Hence, it is desirable to come up with a new proposal for secret-

key authentication and MAC that provides provable security with

better efficiency in terms of key-size, communication, and rounds,

while providing post-quantum security promise.

The Mersenne Low-Hamming Combination (MERS) problem and
its application. In 2017, Aggarwal, Joux, Prakash, and Santha pro-

posed theMersenne LowHamming Combination (MERS) problem [AJPS18,

AJPS17]: Given a Mersenne prime in the form p = 2
n − 1 (where n

is prime), samples of theMERSn,h distribution are constructed as

(a,b = as + e), where a ∈ Zp is chosen uniformly at random, the

secret s and the error e are chosen uniformly at random from the

elements in Zp of the Hamming weight h. The decisional version
of the MERS assumption states that any efficient adversary cannot

distinguish theMERSn,h distribution from the uniform distribution

over Z2

p . Aggarwal et al. proposed a public-key encryption scheme

based on the MERSn,h problem [AJPS18, AJPS17].

Regarding the practical aspect, MERS assumption provides ef-

ficiency due to its reliance on Mersenne primes [BKLM11]. The

potential benefit of MERS-based scheme is a subject of several

ongoing research [AJPS18, AJPS17, Sze17, FN17]. Unfortunately,

because of their constraint that n = Θ(h2) from the correctness of

the key-encapsulation mechanisms, the mechanisms in [AJPS18,

AJPS17, Sze17, FN17] set n = 216091 or 756839. This impacts the

sizes of public key and ciphertext, which are approximately n bits,

26.41 KiB – 100.39 KiB.

1.1 Our contribution
There are three main contributions in this paper:

• New version ofMERS problem The first contribution of this

work isMERS-U, which is theMERS problem assuming that

the secret is uniform. We formally prove that the MERS-U
problem is hard if theMERS problem is hard as in the case

of the LWE problem [ACPS09].

• Two-round authentication with S-MIM security The second

contribution is a two-round authentication protocol secure

against sequential man-in-the-middle (S-MIM) attacks with

tight reductions to the MERS problem. Our construction

need not require n = Θ(h2) as in KEMs/PKEs in [AJPS18,

AJPS17, Sze17, FN17] and we can set n = Θ(h), say, n = 4h.
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Thus, we can set n = 521 and h = 128, and this makes

our protocol efficient and compact, say, the communication

complexity is at most 3n = 1563 bits.

• Message Authentication Code (MAC) The third contribution

is to construct a MAC scheme that is existentially unforge-

able under chosen message attacks (UF-CMA) assuming that

theMERS problem is hard. OurMAC improves upon the key

size, communication and computation complexity with re-

spect to prior works [KPV
+
17, DKPW12]. Again, we can set

n = Θ(h) as in the authentication.

1.2 Related Works
Security notions. Bellare and Rogaway [BR94] gave the formal

security definition of mutual authentication schemes. Their secu-

rity model captures MIM attack and more. Vaudeney [Vau07] gave

the formal security and privacy definitions of RFID authentications.

In this paper, we only consider unilateral authentication scheme

and do not consider any corruption. Mol and Tessaro [MT12] gave

the security definitions for unilateral authentication scheme that

captures from passive attacks to MIM attacks. Lyubashevky and

Masny [LM13] introduced an interesting notion of security against

Man-In-the-Middle (MIM) attacks, which slightly weakens MIM

to only allow the attacker to interfere with non-overlapping se-
quential sessions. This seems sufficient for real-world application

in which the keys do not allow parallel sessions. Cash, Kiltz, and

Tessaro [CKT16] also defined Sequential MIM (S-MIM) security.

We adopt the following definition of S-MIM security.

Authentication from LPN/LWE. Hopper and Blum [HB01] intro-

duced a secret-key authentication protocol that is proven secure

against passive adversaries from the hardness of the LPN prob-

lem. Since then, a family of LPN-based authentication protocols

has been developed. Juels and Weis [JW05] proposed an efficient

three-round variant of HB, called HB+, which they proved to be

secure against active attacks. Later, Gilbert et al. [GRS05] show

that HB+ is not secure against a MIM attack, resulting in several

variants [MP07, DK07]. However, most of these variants lack secu-

rity proofs [GRS08a]. Recent proposals [GRS08b, KPV
+
17, HKL

+
12,

LM13, CKT16] have proofs for active security or variants of MIM

security.

LPN-based protocols have gained some popularity since they

require only small number of primitive bit-wise operations (e.g.

"XOR" and "AND") for their implementation. However, all LPN-

based protocols require huge security parameters. [EKM17] esti-

mates the hardness of LPNℓ,τ . According to their estimation, for

τ = 1/8, ℓ = 670, 1060, 1410 corresponds to 128, 192, and 256 bit

security assuming that the memory is constrained to 2
80

bits. If we

set τ = 1/20 as in [KPV
+
17], then ℓ should be larger than 1280 for

128-bit security.

Authentication from number-theoretic problems. Concurrently
to above, there is another type of protocols based on number-

theoretic assumptions, which are DDH-based protocols introduced

in [DKPW12, LM13, CKT16]. Unfortunately, like RSA, the DDH

implementation is not suitable for low-cost device. Besides that, the

DDH assumption is known to be threatened by Shor’s algorithm

that runs by quantum computer [Sho97].

Authentication from an “ad-hoc” block-cipher. The most common

and direct approach to construct a secret-key authentication is by

using an “ad-hoc” block-cipher such as AES or DES [FDW04]. Their

implementations roughly require approximately 4, 000 gates. Con-

trary to PRF from mathematical assumptions, it does not provide

provable security proofs. That is, we need to assume that the block

cipher is PRF or OW-CCA encryption.

Fortunately, we can weaken the assumption; we just assume that

the block cipher is weak PRF. Dodis et al. [DKPW12] show how

to construct a three-round authentication from any weak PRFs,

which is secure against active attacks. Later, Lyubashevaky and

Masny [LM13] constructs a three-round authentication from any

weak PRFs with MIM security in sequential sessions.

MAC. Message Authentication Code (MAC) is one of the most

fundamental primitive in cryptography, used to authenticate a mes-

sage. Similarly to secret-key authentication, most of MAC schemes

have been based on PRFs. This is achieved either by using secure

block ciphers [Pre97] or number-theoretic constructions as shown

in [DKPW12, KPV
+
17]; the latter provides provably (weakly) MIM-

secure
2
authentication scheme andMAC based on LPN/LWE and

their ring/field variants.

1.3 Organization of the Paper
In Section 2, we review the basic notion and notations, secret-key au-

thentication, and MAC. In Section 3, we review the MERS problem

and assumption. In Section 4, we construct a two-round secret-key

authentication scheme that is secure against passive adversaries.

Next, we build an efficient two-round authentication protocol that

has special properties (ROR-CMA security) in Section 5. We then

build an efficient two-round authentication protocol secure against

S-MIM attacks upon it in Section 6, by applying the transforma-

tion of [CKT16]. Finally, we obtain a MAC scheme from the MERS
problem in Section 7.

2 PRELIMINARIES
2.1 Notation
We denote by ∥x ∥ the Hamming weight of an n-bit string x , which
is the total number of 1’s in x . Let Hn,h be the set of all n-bit strings
of Hamming weight h.

Letn be a positive integer and letp = 2
n−1. We callp aMersenne

number if n is prime. If p is itself a prime number then p is called a

Mersenne prime.
3

Let Zp be the integer ring modulo p, where p is a Mersenne

prime. We have the following properties [AJPS18]:

Lemma 2.1. For any x ,y ∈ Zp , we have
• ∥x + y (mod p)∥ ≤ ∥x ∥ + ∥y∥
• ∥x · y (mod p)∥ ≤ ∥x ∥ · ∥y∥
• If x , 0

n , ∥ − x (mod p)∥ = n − ∥x ∥
The proof of this lemma is in [AJPS18].

2
“MIM security” in [DKPW12] is defined by two-phase games. This is ({P, V }, {V })-
auth security, while the MIM security is ({}, {P, V })-auth security using [MT12]’s

terminology.

3
For example, n can be 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,

2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,

132049, 216091, 756839, 859433, and so on. Mersenne-756839 employed n = 756839

and Ramstake employed n = 216091 and 756839

2



Protocol #r Assumption Security Key Size Comm.

Authwprf [DKPW12] 3 weak PRF active |K| + |H| 2|D| + |F|
AuthFig2 [LM13] 3 weak PRF S-MIM |K| + |H| |D| + 2|F|
Authwprf [CKT16] 2 weak PRF S-MIM 2ℓ |K| + |H| |D| + |F|
Auth [KPV

+
17] 2 LPNℓ,γ active 2ℓ 2ℓ + (ℓ + 1)η

Lapin [HKL
+
12] 2 Ring-LPNℓ,γ active 2ℓ 3ℓ

AuthLPN [CKT16] 2 LPNℓ,γ S-MIM 5ℓ (η + 2)ℓ
AuthTLPN [CKT16] 2 LPNℓ,γ S-MIM (2η + 2)ℓ 2ℓ + η
AuthField-LPN [CKT16] 2 Field-LPNℓ,γ S-MIM 4ℓ 3ℓ

Auths-mim [Sect. 6] 2 MERSn,h S-MIM 4n 3n

Table 1: Authentication Protocols based onWeak-PRFs, the LPN-related assumptions, and the MERS assumption. A family of
weak PRFs is denoted by F := {F : K×D→ F}. A family of pairwise independent hash functions is denoted byH := {H : H×D→
F}. ℓ and γ defines the dimension and the error rate of the LPN problem. η = O(ℓ) defines the number of parallel repetitions. n
and h are parameters forMERSn,h .

Protocol Assumption Security Key Size Comm.

MAC1 [KPV
+
17] LPNℓ,γ UF-CMA 2ℓ + |H | + |π | ℓη + η + ν

MAC2 [KPV
+
17] LPNℓ,γ UF-CMA (µ + 1)ℓ + η + |H | + |π | ℓη + η + ν

MACMERS [Sect. 7] MERSn,h UF-CMA (µ + 2)n + |H | + |π | 2n + ν

Table 2: MACs based on the LPN-related assumptions and the MERS assumption. ℓ and γ defines the dimension and the error
rate of the LPN problem. η = O(ℓ) defines the number of parallel repetitions. n and h are parameters for MERSn,h . A family
of pairwise independent hash functions is denoted by H := {H : M × {0, 1}ν → {0, 1}µ }. A family of pairwise independent
permutations is denoted by P := {π : {0, 1}z → {0, 1}z }, where z = ℓη + η + ν for LPN case and z = 2n + ν for MERS case.

2.2 Secret-Key Authentication Syntax
Secret-key authentication protocol Auth = (KeyGen,P,V) is an
interactive protocol in which P and V share the same secret key SK
(in the context of RFID, we consider P as a tag and V as a reader).
More formally, a secret-key authentication protocol proceeds in

two phases:

• Key-generation algorithm: The key-generation algorithm

KeyGen(1κ ) is executed on the security parameter κ and

outputs a secret key SK.
• Authentication Protocol: The interactive algorithm be-

tween P and V takes as input the shared secret key SK and

is executed r rounds. And finally, V outputs either Accept
or Reject.

In this paper, we only consider two-round random-challenge secret-
key authentication protocols, in which the protocol is run as fol-

lows; the verifier chooses a challenge c from the challenge space C
uniformly at random and sends it as the first message; the prover

receives c , computes a response τ ← PSK(c), and sends it as the

second message; the verifier receives τ and outputs its decision

d ← VSK(c,τ ).
We say that the authentication protocol has completeness error

α if for all secret keys SK generated by KeyGen(1κ ) the honestly
executed protocol returns reject with probability at most α . More

formally, for all 1
κ ∈ N, SK← KeyGen(1κ ):

Pr[c ←
$
C;τ ← PSK(c);d ← VSK(c,τ ) : d = Reject] ≤ α .

2.3 Security Models
As for public-key authentication [FS87], several security notions

have been introduced for secret-key authentication. There are three

main security models against impersonation attacks that are: pas-
sive, active, and man-in-the-middle. All three models proceed in

two steps: In the first step, the adversary interacts with P and V
and then in the second step, it starts interacting only with V in

order to get accepted. The weakest notion, which is the passive

security, is when the adversary should not be able to interact with V
after eavesdropping several sessions in the authentication protocol

between P and V. A stronger notion, which is the active security,

is when the adversary should not be able to interact with V after

interacting arbitrarily with P and eavesdropping passively several

sessions in the authentication protocol between P and V.
Finally, the strongest and most realistic security model of adver-

sary is a man-in-the-middle attack (MIM), where the adversary, in

the first phase, can arbitrarily interact with P and V before making

verification queries to the reader.

2.3.1 Passive Security. As the basic security notion, we review

the definition of passive security for two-round random-challenge
secret-key authentication protocols.

Definition 2.2 (Passive security). Let Auth = (KeyGen,P,V) be
a two-round random-challenge secret-key authentication protocol.

Define the security game ExppaAuth,A (κ) between a challenger and

an adversary A as in Figure 1. For any adversary A, we define its

3



advantage against Auth as the quantity

AdvpaAuth,A (κ) := Pr[ExppaAuth,A (κ) ⇒ True].

We say Auth is (t ,q, ϵ)-passively-secure if for all t-time adversary

A querying to T at most q times, we have AdvpaAuth,A (κ) ≤ ϵ .

ExppaAuth,A (κ)
SK←

$
KeyGen(1κ )

st ← AT (·)(1κ )
c∗ ←

$
C

τ ∗ ← A(st, c∗)
return (VSK(c∗, τ ∗) = Accept)

Oracle T ()
c ←

$
C

τ ← PSK(c)
return (c, τ )

Figure 1: Definition of ExppaAuth,A (κ)

2.4 Tag Sparsity Definition and Security
In this section we define an important tool that our construction

relies on, which is tag sparsity [CKT16].

This is the property of an authentication protocolAuth = (KeyGen,
P,V) for which the tag τ is composed into two distinct components,

which are τ1 ∈ T1 and τ2 ∈ T2.
Informally, this notion is based on the fact that for any challenge

c, a secret SK, and a left tag τ1, it is hard for an adversary to find a

right tag τ2 which makes τ accepted.

Definition 2.3 (Right Tag-Sparsity [CKT16, Definition 4]). Let
Auth = (KeyGen,P,V) be a two-round random-challenge secret-

key authentication protocol with tags in T1×T2 and challenge space
C. For ϵ = ϵ(1κ ), we say that Auth has ϵ-sparse right tags (or Auth
has ϵ-right tag sparsity) if

Pr[τ2 ←$
T2;d ← VSK(c, (τ1,τ2)) : d = Accept] ≤ ϵ

for all c ∈ C, SK, and τ1 ∈ T1.

2.4.1 ROR-CMA security. In our construction we are also con-

sidering a new property introduced in [CKT16], called real-or-
random right-tag chosen-message security (ROR-CMA) suitable to
tag-sparsity notion. Roughly speaking, the scheme is ROR-CMA-
secure if, given a random challenge c∗, any efficient adversary

cannot distinguish a real prover from the fake prover that returns

the random right tag τ2 on all challenge except c∗ even if it can

finally access to the verification oracle on the challenge c∗ and τ ∗

of its choice. The formal statement follows:

Definition 2.4 (ROR-CMA security). Let Auth = (KeyGen,P,V)
be a two-round random-challenge secret-key authentication pro-

tocol. For b ∈ {0, 1}, we define the security game Expror-cma,b
Auth,A (κ)

between a challenger and an adversary A as in Figure 2. For any

adversary A, we define its ROR-CMA advantage against Auth as

the quantity

Advror-cma
Auth,A (κ) :=

���Pr[Expror-cma,0
Auth,A (κ) ⇒ 1] − Pr[Expror-cma,1

Auth,A (κ) ⇒ 1]
��� .

We say Auth is (t ,q, ϵ)-ROR-CMA-secure if for all t-time adver-

sary A issuing at most q queries to the oracle Tb (·), we have

Advror-cma
Auth,A (κ) ≤ ϵ .

Expror-cma,b
Auth,A (κ)

SK←
$
KeyGen(1κ )

c∗ ←
$
C

(τ ∗, state) ←
$
ATb (·)(1κ , c∗)

d ←
$
VSK(c∗, τ ∗)

return A(state, d )

Oracle Tb (c)
(τ1, τ 1

2
) ←

$
PSK(c); τ 0

2
←

$
T2

if c = c∗ then

return τ := (τ1, τ 1

2
)

else

return τ := (τ1, τ b2 )

Figure 2: Definition of Expror-cma,b
Auth,A (κ)

2.5 Security against Sequential
Man-in-the-Middle Adversary

In this paper, we target a weaker notion of the man-in-the-middle

security, which is Sequential MIM (S-MIM) security, of [LM13,

CKT16]; in which the adversary can first interact sequentially with

P andV in independent sessions and thenmakes verification queries

to V in order to make the latter accept.

Cash, Kiltz, and Tessaro [CKT16] defined S-MIM security notion

for two-round random-challenge secret-key authentication proto-

cols. We invoke the adversary A who access to three oracles: C ,
P , and V . To synchronize the sessions, each of these oracles use

a variable sid associated to a given session. For every session, A
invokes C() to get a new random challenge c , and then invokes the

oracle P() on input c ′ that runs PSK(c ′) and returns a response τ .
Finally, given τ ′ fromA, V () checks whether τ ′ is a valid response

on a session challenge c[sid] or not, and then increases the session

number sid. A wins if it makes V accepts in some session and has

changed at least one of messages in the session sent by P and V.

Definition 2.5 (S-MIM security [CKT16, Section 2]). Let Auth =
(KeyGen,P,V) be a two-round random-challenge secret-key au-

thentication protocol. Define the security game Exps-mim
Auth,A (κ) be-

tween a challenger and an adversary A as in Figure 3. For any

adversary A, we define its S-MIM advantage against Auth as the

quantity

Advs-mim
Auth,A (κ) := Pr[Exps-mim

Auth,A (κ) ⇒ True].

We say Auth is (t ,q, ϵ)-S-MIM-secure if for all t-time adversary A
invoking at most q sessions, we have Advs-mim

Auth,A (κ) ≤ ϵ .

Let Auth′ = (KeyGen′,P′,V′) be two-round random-challenge

authentication protocol with challenge space C and split tag space

T = T1 × T2. We assume that T2 = F is a finite field with addition

+ and multiplication ◦. Let H := {HKH : T1 → F} be a family of

pairwise independent hash functions. Cash et al. [CKT16] turn

Auth′ satisfying ROR-CMA security into Auth = (KeyGen, P,V) as
follows:

• Public parameters: The same as Auth′.
4



Exps-mim
Auth,A (κ)

sid← 0

SK←
$
KeyGen(1κ )

run AC (·),P (·),V (·)(1κ )

return
(∃i : (c[i], τ [i]) , (c′[i], τ ′[i])

∧d [i] = Accept

)

Oracle C()
if c[sid] = ⊥ then

c[sid] ←
$
C

return c[sid]

Oracle P(c ′)
if c′[sid] = ⊥ then

c′[sid] ← c′

τ [sid] ←
$
PSK(c′)

return τ [sid]

Oracle V (τ ′)
τ ′[sid] ← τ ′, c ←

$
C()

d [sid] ←
$
VSK(c, τ ′[sid])

sid← sid + 1

return d [sid]

Figure 3: Definition of Exps-mim
Auth,A (κ)

• Key generation: The key-generation algorithm KeyGen
picksKH ←$

KH ,KF ←$
F\ {0}, andK ′ ←

$
KeyGen′(1κ ).

The key is K := (KH ,KF ,K
′).

• Challenge: The challenge is c ←
$
C.

• Response: The response is σ = (σ1,σ2); the prover first

computes τ = (τ1,τ2) ←$
P′K ′(c) and

σ = (σ1,σ2) :=
(
τ1,τ2 ◦ KF + HKH (τ1)

)
∈ T1 × F.

• Verification: Given a challenge c and response σ = (σ1,σ2),
the verifier first computes

τ = (τ1,τ2) :=
(
σ1, (σ2 − HKH (σ1)) ◦ K−1

F

)
and returns the decision d ←

$
V′K ′(c,τ ).

Theorem 2.6 ([CKT16, Theorem 5]). Suppose that H is δ -almost
universal and that Auth′ is (t , r , ϵ)-ROR-CMA-secure, satisfies β-
right tag sparsity, and has completeness error α . then Auth is

(
t ′, r , r ·

(ϵ + r/|C| + βδ |F|/(|F| − 1) + rα
)
-S-MIM-secure, where t ′ ≈ t .

2.6 Message Authentication Codes
A MAC scheme is a tuple of three probabilistic polynomial-time

algorithmsMAC = (KeyGen, Tag,Verify) over (K,M,T)whereK ,

M, and T are key space, message space, and tag space, respectively:

• Key-generation algorithm: The probabilistic key-generation

algorithm KeyGen gives secret key SK on input a security

parameter κ.
• Tag-generation algorithm: The probabilistic authentica-

tion algorithm Tag takes as inputs the secret key SK, the
messagem and then outputs a tag σ .
• Verification algorithm: The deterministic verification al-

gorithm Verify takes as inputs a secret key SK, a messagem
and a tag σ and outputs either Accept or Reject.

Completeness. We say thatMAC has a completeness error α , if
for allm ∈ M and 1

κ ∈ N:
Pr[SK←

$
KeyGen(1κ );σ ←

$
Tag(SK,m);d ← Verify(SK,m,σ ) :

d = Reject] ≤ α .
We often say thatMAC is perfectly correct if α = 0.

UF-CMA security. The standard security notion for MAC scheme

is unforgeability under chosen-message attacks (UF-CMA), captured
by the experiment described in Figure 4.

Definition 2.7. LetMAC = (KeyGen, Tag,Verify) be aMAC scheme.

We define the security game Expuf-cma
MAC,A (κ) between a challenger

and an adversaryA as in Figure 4. For any adversaryA, we define

UF-CMA advantage againstMAC as the quantity

Advuf-cma
MAC,A (κ) := Pr[Expuf-cma

MAC,A (κ) ⇒ True].

We say that aMAC is (t ,q, ϵ)-UF-CMA-secure if for all t-time ad-

versary Advuf-cma
MAC,A (κ) issuing at most q queries to the oracles T (·)

and V (·, ·), we have Advuf-cma
MAC,A (κ) ≤ ϵ .

Expuf-cma,b
MAC,A (κ)

QT , QV ← ∅
SK←

$
KeyGen(1κ )

run AT (·),V (·, ·)(1κ )

return
( ∃(m, σ ) ∈ QV s.t.m < QT
∧Verify(SK,m, σ ) = Accept

)

Oracle T (m)
QT ← QT ∪ {m }
σ ←

$
Tag(SK,m)

return σ

Oracle V (m,σ )
QV ← QV ∪ {(m, σ )}
return Verify(SK,m, σ )

Figure 4: Definition of Expuf-cma
MAC,A (κ)

2.7 Hash Functions
Our construction relies on pairwise-independent hash functions

and is defined as following:

Definition 2.8 (Pairwise-independent hash functions). A function

h : K × N → M is called pairwise-independent hash function if

for x1 , x2 ∈ N, y1,y2 ∈ M,

Pr

SK←K
[hSK(x1) = y1 ∧ hSK(x2) = y2] ≤

1

|M|2
.

Concrete Construction. We now consider the following construc-

tion of pairwise independent function based on ring of integers

modulo prime (Zp ):

Lemma 2.9. For every n ∈ N, define: h : Z2

p × Zp → Zp by
ha,b (x) = a ·x +b. Then the function h is pairwise-independent. That
is, for all x1 , x2 and y1,y2 ∈ Zp ,

Pr

(a,b)←Z2

p

[ha,b (x1) = y1 ∧ ha,b (x2) = y2] ≤ 1/p2.

The proof can be found in [Rub12]

3 THE MERS PROBLEM
Aggarwal et al. introduced a new assumption [AJPS18] mimicking

NTRU over integers, relying on the properties of Mersenne primes

in the ring Zp instead of polynomial rings Zq [x]/(xn − 1). The
conjecture is based on the observation that given any number

a ∈ Zp , then we obtain this following property: if we multiply

5



a by any number b = 2
x
and x ∈ [0,n − 1], then the result c = a · b

is just a cyclic shift. Since the reduction modulo Mersenne prime

does not increase Hamming weights of a, then the result c looks
pseudorandom (i.e., it is hard to distinguish c from any random

integer modulo Mersenne prime).

For two integers n > h and for n-bit Mersenne prime p = 2
n − 1,

and for integer s ∈ Zp , we define a distribution Os,n,h as follows:

choose a ← Zp and e ← Hn,h , return (a,a · s + e mod p). We also

define a uniform distributionU as follows: choose (a,b) ← Z2

p .
4

Let us define the Mersenne Low-Hamming Combination Assump-
tion (the MERS assumption).

Definition 3.1 (MERS problem). For two positive integers n > h
and for an adversary A, we introduce theMERSn,h advantage as

the quantity:

Adv
MERSn,h
A (κ) :=

���Pr[AOs,n,h () ⇒ True] − Pr [AU() ⇒ True]
��� ,

where s ←
$
Hn,h . We say that the MERSn,h problem is (t ,q, ϵ)-

hard if all t-time attacker A with time complexity t , making at

most q queries, we have Adv
MERSn,h
A (κ) ≤ ϵ .

The original definition [AJPS18, Definition 5] allows an adver-

sary to query at most twice. We generalize the assumption by

allowing polynomially-many queries.

3.1 MERS Problem with Uniform Secret
We next define the MERS-Un,h problem with an n-bit Mersenne

prime p = 2
n − 1 and integer h ∈ {0, . . . ,n}.

Definition 3.2 (MERS problem with uniform secret). For two posi-

tive integersn > h and for an adversaryA, we define theMERS-Un,h
advantage as the quantity:

Adv
MERS-Un,h
A (κ) :=

���Pr[AOs,n,h () ⇒ True] − Pr[AU() ⇒ True]
��� ,
(1)

where s ←
$
Zp . We say that the MERS-Un,h problem is (t ,q, ϵ)-

hard if all attacker A with time complexity t , making at most q

queries, we have Adv
MERS-Un,h
A (κ) ≤ ϵ .

It is easy to show that if MERSn,h is hard, then MERS-Un,h is

also hard (by a simple randomization of the secret s). We note that

the converse is also true.

Proposition 3.3. If theMERS-Un,h problem is (t ′,q+1, ϵ ′)-hard,
then theMERSn,h problem is (t ,q, ϵ ′)-hard, where t ′ ≈ t and ϵ ′ ≈ ϵ .

Proof. We show a reduction algorithm by following the reduc-

tion in [ACPS09, Lemma 2]. Consider the following conversion,

which will map Os,n,h (andU) into Oē,n,h where ē ← Hn,h (and

U), respectively: It takes a sample (ā, ¯b) with ā , 0 from the oracle

of MERS-Un,h . It then converts a sample (a,b) into (a′,b ′), where
a′ := −ā−1 · a and b ′ := b + a′ · ¯b.

• Suppose that
¯b = ā · s + ē , where s ← Zp and ē ← Hn,h .

In this case, a′ is uniformly distributed since a is uniformly

distributed and the map a 7→ −ā−1a is one-to-one. Moreover,

if b = as + e with e ∈ Hn,h , then b ′ = b + a′ · ¯b = as + e +
a′(ās + ē) = as + e + a′ās + a′ē = a′ē + e since a′ā ≡ −a

4
In the original definition, a is chosen from {0, 1}n . This change introduces only
negligible distance

(mod p). Thus, the converted samples are identified with the

samples from Oē,n,h .
• On the other hand, if the oracle is U, then the converted

samples are also distributed according to the uniform distri-

bution.

Therefore, the conversion algorithm converts the oracle Os,n,h
(andU) into Oē,n,h where ē ← Hn,h (andU), respectively. This

completes the proof. □

3.2 Hardness and Concrete Parameters
Meet-in-the-Middle attack. de Boer el al. [dBDJdW18] presented

a meet-in-the-middle attack for solving theMERS problem.Their

classical attack runs in the time Õ
( (n−1

h−1

)1/2)
. The quantum version

runs in the time Õ
( (n−1

h−1

)1/3)
. They corresponds to roughly

1

4
h lgn

and
1

6
h lgn bits security, respectively.

LLL-attack. The authors of [BCGN17, dBDJdW18] presented an

LLL-based algorithm for solving the ratio version ofMERS assump-

tion
5
and theMERS problem used in the present paper. For small

h = O(
√
n), the running time of the LLL attack is O(22h ) on Turing

machine and O(2h ) on quantum machine. As claimed in [AJPS18],

attacks against MERS cannot exceed the complexity of the order

2
h
where h is the hamming weight parameter.

Assuming that, when considering the security and implementa-

tion of our protocols, one should choose the parameter h at least

half of the desired security level κ.

Primality of n in Mersenne primes. Agrawall discussed that p =
2
n − 1 and n should be primes to avoid an attack on composite n.
For the details, see Aggrawal et al. [AJPS18].

Parameters. Assuming the attacks and constraints above, we

choose parameter values as (κ,h,n) = (256, 128, 521). It will serve
classical 256-bit sec. and quantum 192-bit sec.

4 PASSIVELY-SECURE AUTHENTICATION
BASED ON MERS

In this section we introduce our new two-round authentication

protocol based on MERSn,h problem with passive security. Our

Authpa is defined as follows:

• Public parameters: The authentication protocol has the

following public parameters that depend on the security

parameter κ.
– n ∈ N: the length of A, S , and E
– h ∈ N: the Hamming weight of E
• Key generation: The key-generation algorithmKeyGen(1κ )
outputs SK = S ←

$
Zp .

• Authentication protocol: To be authenticated by verifier, a
prover follows the two-round authentication protocol shown

on Figure 5.

5
The Mersenne Low Hamming Ratio Assumption states that, given an n-bit Mersenne

prime p = 2
n − 1 and an integer h, any PPT adversary cannot distinguish between

F /G mod p with F , G ←
$
Hn,h , and R ← Zp with non-negligible advantage.
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Auth : SK = S ←
$
Zp

Prover Verifier
A←

$
Zp

A

E ←
$
Hn,h

B ← AS + E

B

if ∥B − AS ∥ = h, then Accept

Figure 5: Passively-secure authentication protocol
Authpa

Theorem 4.1. If the MERS-Un,h problem is (t ,q, ϵ)-hard and
1

p
∑

2h
i=0

(n
i
)
is negligible in κ, then Authpa is passively-secure au-

thentication.

The proof results straightforwardly from the MERS-Un,h as-

sumption:

We have

Pr[ExppaAuth,A (κ) ⇒ True] ≤ ϵ +
1

p

2h∑
i=0

(
n

i

)
.

The security proof is obtained by following the proof of [KSS10,

Theorem 2].

Proof. LetA be an adversary against passive security ofAuthpa.
Let us consider the following reduction algorithmB solvingMERS-Un,h
by using A: In the learning phase, B sends a sample (a,b) from its

oracle as a transcript (A,B). In the impersonating phase, B gets a

sample (ā, ¯b) from its oracle, sends A := −ā to A, and receives B
from A. It outputs 1 if ∥ ¯b + B∥ ≤ 2h and 0 otherwise.

If B’s oracle is U, then B outputs 1 with probability exactly

1

p ·
∑

2h
i=0

(n
i
)
, since

¯b is uniformly distributed and independent of

everything else.

Next, suppose that B’s oracle is Os,n,h . In this case, the simula-

tion of the learning phase is perfect, where the secret key is S = s .
Therefore, the event that ∥B−A ·S ∥ = h holds with probability is ex-

actly Pr[ExppaAuth,A (κ) ⇒ True].We note that if ∥B−A·S ∥ = h holds,
then ∥B + ā · s∥ = h also holds. Meanwhile, ∥ ¯b − ās ∥ = h since the

oracle is Os,n,h . Thus, with probability at least Pr[ExppaAuth,A (κ) ⇒
True], ∥ ¯b + B∥ = ∥ ¯b − ās + ās + B∥ ≤ ∥ ¯b − ās ∥ + ∥ās + B∥ = 2h
holds.

Therefore, we have

Pr[s ← Zp : DOs,n,h () = 1] − Pr[DU () = 1]

≥ Pr[ExppaAuth,A (κ) ⇒ True] − 1

p

2h∑
i=0

(
n

i

)
and this yields the theorem as we wanted. □

Active attack against Authpa. The active attack against Authpa
based on MERSn,h is quite similar to the active attack against

HB+ [GRS05]. It consists for an arbitrary fixed A, the adversarial
verifier can send fixed A repeatedly and obtain

B1 ≡ AS + E1 (mod p), . . . ,Bk ≡ AS + Ek (mod p),
where Ei ’s Hamming weight is at most h. The adversary takes

majority of Bi values to get noise-free equation; it can determine

AS’s bits from LSB to MSB by taking the majority. It then learns

AS mod p and obtains S by computing A−1
.

5 ROR-CMA-SECURE AUTHENTICATION
BASED ON MERS

Our Authror is defined as follows:

• Public parameters: n and h as in section 4.

• Key generation: The key-generation algorithmKeyGenror(1κ )
outputs SK = (S1, S2) ←$

Z2

p .

• Authentication protocol: To be authenticated by V, P fol-

lows the 2-round authentication protocol shown on Figure 6.

Theorem 5.1. Authror has
(n
h
)
/p-sparse right tags.

Proof. For any secret (S1, S2), challenge A, and left tag R , 0,

we have Pr[V(S1,S2)(A, (R,B)) ⇒ Accept : B ←
$
Zp ] = |Hn,h |/p =(n

h
)
/p. □

Theorem 5.2. If the MERS-Un,h problem is (t ,q, ϵ)-hard, then
Authror is (t ′,q, ϵ)-ROR-CMA-secure, where t ′ ≈ t .

Proof of Theorem 5.2. We follow the proof of the ROR-CMA
security of the LPN-based authentication scheme in Cash, Kiltz,

and Tessaro [CKT16, Theorem 7].

The security of the MERS-based Authror essentially builds on

the ROR-CMA notion. Let us consider an adversary A who plays

the security game Expror-cma,b
Authror,A (κ). We build an adversary B who

solves theMERSn,h problem, where n and h are known, by using

A as in Figure 7.

Assume that S1 is the secret of the MERS-Un,h problem. B
chooses S ′

2
←

$
Zp and A∗ ←

$
Zp . It implicitly defines S2 :=

−A∗ · S1 + S ′
2

mod p. Since S ′
2
is uniform over Zp , S2 is also. In

addition, we have

B∗ − R∗ · (S1 · A∗ + S2) ≡ B∗ − R∗ · S ′
2
(mod p).

Thus, the decision by B is always correct.

We assume that oracle returns (R̃, B̃ = R̃S1 + E), where E ←
$

Hn,h or Zp .

Let us consider T̄ (·), the simulation of T (·). If A = A∗, then the

simulation is perfect, since S ′
2
= S1A

∗ +S2 mod p and B = R ·S ′
2
+ B̃

where B̃ ←
$
Hn,h . Otherwise, that is, if A , A∗, we have

B = B̃ + R · S ′
2

= R̃S1 + E + R · S ′2
= R · (A −A∗)S1 + E + R · S ′2
= R · (AS1 −A∗S1 + S

′
2
) + E

= R · (AS1 + S2) + E,
where E is chosen from Hn,h or Zp uniformly at random.

If E is chosen from Hn,h , then (R,B) is distributed as a response

computed by the honest prover with secret key (S1, S2). On the other
hand, if E is chosen from Zp , then (R,B) is uniformly distributed
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Authror:SK = (S1, S2) ←$
Z2

p

P V

A←
$
Zp

A

R ←
$
Zp, E ←$

Hn,h

B ← R(S1A + S2) + E

R, B

if R , 0 and ∥B − R(S1A + S2) ∥ = h, then Accept

Figure 6: ROR-CMA-secure authentication protocol Authror

Boracle()
S ′

2
←

$
Zp

A∗ ←
$
Zp

(τ ∗, state) ← AT̄ (·)(1κ , A∗)
Parse τ ∗ = (R∗, B∗)
d ← (∥B∗ − R∗ · S ′

2
∥? = h)

return A(state, d )

Procedure T̄ (c)
if A = A∗ then

R ←
$
Zp

B̃ ←
$
Hn,h

else

(R̃, B̃) ← oracle

R ← R̃ · (A − A∗)−1

B ← B̃ + R · S ′
2

return τ = (R, B)

Figure 7: Definition of B

over Z2

p . Therefore, B’s simulations are perfect in both cases. This

completes the proof. □

S-MIM attack against Authror. Flip B’s two bits. With probability

≈ 1/h(n − h), it will modify E while keeping its Hamming weight.

6 S-MIM-SECURE AUTHENTICATION BASED
ON MERS

Now we turn our ROR-CMA-secure protocol into a S-MIM-secure

protocol by using the transformation described in Section 2.5 by

using the pairwise independent hash function in Section 2.7.

We set F := Zp and employ the family of pairwise indepen-

dent hash functions {HK1,K2
: Zp → Zp | K1,K2 ∈ Zp }, where

HK1,K2
(R) = K1 · R + K2. Applying the transformation, the key

consists of K = (S1, S2,KF ,K1,K2). The response to a challenge c
is computed as σ = (σ1,σ2), where

σ1 = R and σ2 = (R · (S1 · A + S2) + E)︸                     ︷︷                     ︸
=τ2

·KF + K1 · R + K2︸       ︷︷       ︸
=HKH (τ1)

.

We can apply the compression technique in [CKT16]. Prover

sends σ = (R,Z ), where
Z = (R · (S1 · A + S2) + E) · KF + (K1 · R + K2)
= R(S1KF · A + S2KF + K1) + KF · E + K2

= R(X1 · A + X2) + X3 · E + X4,

by substitutingX1 = S1KF ,X2 = S2KF +K1,X3 = KF , andX4 = K2.

The verifier also checks if

R , 0 ∧ ∥(Z − R(X1A + X2) − X4) · X−1

3
∥ = h

or not. (We can choose them as X1 ←$
Z∗p , X2 ← Zp , X3 ← Z∗p ,

and X4 ← Zp .)
The compressed authentication systems, denoted by Auths-mim,

is summarized as follows:

• Public parameters: n and h as in section 4.

• Key generation: The key-generation algorithm KeyGen
outputs SK = (X1,X2,X3,X4) ←$

Z∗p × Zp × Z∗p × Zp .
• Challenge: The challenge is A←

$
Zp .

• Response: The response is σ = (R,Z ) with Z := R · (X1A +
X2) + X3E + X4, where R ←$

Zp and E ←
$
Hn,h .

• Verification: Given a challenge A and response σ = (R,Z ),
the verifier accepts if and only if R , 0 and ∥(Z − R(X1A +
X2) − X4) · X−1

3
∥ = h.

Combining Theorem 5.1, Theorem 5.2, and Theorem 2.6, we get

the following corollary.

Corollary 6.1. IfMERS-Un,h is (t ,q, ϵ)-hard, then Auths-mim is
(t ′,q, ϵ ′)-S-MIM-secure, where t ′ ≈ t and ϵ ′ = q ·

(
ϵ+q/p+

(n
h
)
/(p−

1)
)
.

7 MAC FROMMERS
In this section, we introduce MAC based on MERS-U. Our con-
struction is an analogue to that in [KPV

+
17]. The scheme MAC =

(KeyGen, Tag,Verify) is summarized as follows:

• Public parameters: The public parameters p(1κ ) on the

security parameter κ, outputs the public parameters n and h
as in section 4.

• Key generation: The algorithm KeyGen, given public pa-

rameters p, samples s ′
0
, s0, s1, . . . , sµ ←$

Zp , h : {0, 1}∗ ×
{0, 1}ν → {0, 1}µ , and pairwise-independent permutation π
overZp×Zp×{0, 1}ν , and outputs SK := (s ′

0
, s0, s1, . . . , sµ , h,π ).
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Auths-mim:SK = (X1, X2, X3, X4) ←$
Z∗p × Zp × Z∗p × Zp

Prover Verifier
A←

$
Zp

A

R ←
$
Zp, E ←$

Hn,h

Z ← R(X1A + X2) + X3E + X4

R, Z

if R , 0 and

(Z − R(X1A + X2) − X4) · X −1

3

 = h, then Accept

Figure 8: S-MIM-secure authentication protocol Auths-mim

• Tagging: The algorithm Tag, given a secret key SK and a

messagem ∈ M. This probabilistic authentication algorithm

proceeds as follows:

– Samples R ←
$
Zp , E ←$

Hn,h and β ←
$
{0, 1}ν .

– Compute A := h(m, β).
– Compute SA = s0 +

∑µ
i=1

A[i] · si .
– Compute B := R · SA + E + s ′0.
– Output σ = π (R,B, β).
• Verification: The algorithm Verify proceeds as follows:

– Parse π−1(σ ) as (R,B, β). If R = 0, then Reject.
– Compute A := h(m, β) and SA := s0 +

∑µ
i=1

A[i] · si .
– If ∥B − (R · SA + s ′0)∥ = h then return Accept, otherwise
Reject.

Our scheme is perfectly correct.

In what follows, we let αn,h :=
(n
h
)
/p.

Theorem 7.1. If the MERS-Un,h problem is (t ,Q, ϵ)-hard, then
MAC is (t ′,Q, ϵ ′)-UF-CMA-secure, where t ≈ t ′ and

ϵ = min

{
ϵ ′/2 −Q2/2µ , ϵ ′/(8µQVerify) −QVerifyαn,h

}
,

where QVerify ≤ Q is the number of verification queries.

We obtain our main theorem by combining two lemmas Theo-

rem 7.6 and Theorem 7.3. In what follows, we say a forgery (m,σ )
is fresh if the A contained in (m,σ ) is different from all A’s con-
tained in all the previous queries to V and T . For our proof, we are
distinguishing two cases: the case where the probability that A is

fresh is sufficiently low as Pr[Fresh] ≤ ϵ ′/2, or the complement

case where Pr[Fresh] > ϵ ′/2.

7.1 Proof of Lemmas
Before proving our main theorem, we review a useful lemma for

fresh case.

Lemma 7.2. Consider the two games Real and Rand between a
challenger and an adversary B defined in Figure 9. Assume that the
MERS-Un,h problem is (t ,Q, ϵ)-hard. Then, for all (t ′,Q)-adversary
B with t ′ ≈ t , we have

|Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]| ≤ 2µϵ .

The proof of Theorem 7.2 is in Appendix A.

RealB(κ),RandB(κ)
L := ∅
s′

0
, s0, s1, . . . , sµ ←$

Zp

d ← BEval(·),Chal(·, ·)(1κ )
return d ∧ (A∗ < L)

Oracle Chal(R∗,A∗) // one query
SA∗ := s0 +

∑µ
j=1

A∗[j] · sj
B∗ := s′

0
+ R∗ · SA∗

return B∗

Oracle Eval(A)
if A ∈ L then

return ⊥
L ← L ∪ {A}
SA := s0 +

∑µ
j=1

A[j] · sj
R ←

$
Zp ; E ←

$
Hn,h

if Real then

B := s′
0
+ R · SA + E

if Rand then

B ←
$
Zp

return τ = (R, B)

Figure 9: Definition of Real and Rand

7.1.1 Fresh Case.

Lemma 7.3. Suppose that there exists an adversary A that breaks
(t ′,Q, ϵ ′)-UF-CMA-security of MAC. If the probability that the first
forgery found by the adversary is more likely to be fresh: Pr[Fresh] >
ϵ ′/2, thenwe have another (t ,Q, ϵ)-adversaryB that breaksMERS-Un,h
with

t ≈ t ′ and ϵ ≥ ϵ ′/(4µQVerify) −QVerifyαn,h ,

where QVerify ≤ Q is the number of verification queries.

Proof of Theorem 7.3. We define the following games:

• Let G0 be the original security game Expuf-cma
.

• Let G j for j = 1, . . . ,QVerify denote the games where the

adversary is allowed to ask only j verification queries.

• We also define G ′j as same as the game G j except that the

tag oracle will use random R,B, β to compute σ instead of

the real computation.

As [KPV
+
17], we have

ϵ ′/2 < Pr[Fresh] = Pr[G0 = 1] ≤
QVerify∑

j
Pr[G j = 1].

Thus, what we should do is bounding Pr[G j = 1].
9



Claim 7.4. Assume that A is a (t ,Q)-adversary. for all j, there
exists a (t ′,Q)-adversary B such that t ′ ≈ t and
|Pr[G j = 1]−Pr[G ′j = 1]| ≤ |Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]| .

Proof. We construct B as follows:

(1) B samples h and π .
(2) B runs A on input 1

κ
and simulates the oracles as follows:

• T (m):
(a) sample a random β ←

$
{0, 1}ν and compute A =

h(m, β).
(b) query A to oracle Eval and obtain a pair (R,B).
(c) return σ := π (R,B, β).
• V (m,σ ):
(a) if (m,σ ) is previously returned to A, then B returns

Accept.
(b) if (m,σ ) is not j-th verification query, then B returns

Reject.
(c) if (m,σ ) is the j-th verification query; we call it (m∗,σ ∗).

let (R∗,B∗, β∗) := π−1(σ ∗); compute A∗ := h(m∗, β∗);
send (R∗,A∗) to oracleChal and obtain B′. If ∥B∗−B′∥ =
h, then return Accept. otherwise, return Reject.

The j-th verification query is fresh by the definition. In addition,

since the oracle Chal returns B′ := s ′
0
+ R∗ · SA∗ , this simulated

verification procedure correctly checks the Hamming weight of

∥B∗ − (s ′
0
+ R∗ · SA∗ )∥ as the correct verification. Therefore, the

simulation is perfect if A∗ is fresh as we wanted. □

Claim 7.5. for all j,

Pr[G ′j = 1] ≤ αn,h

Proof. Fix a value j ∈ {1, . . . ,QVerify}. In game G ′j , the adver-
sary obtains no information on (s ′

0
, s0, s1, . . . , sµ ) from the tagging

oracle T (·) because the oracle returns random values (R,B). There-
fore, the valueX := B∗−B′ = B∗−(R∗ ·SA∗+s ′0) should be uniformly

at random over Zp , since s
′
0
is kept secret. Thus, the probability

that the verification ∥B∗ − B′∥ = h passes is at most

Pr[X ← Zp : ∥X ∥ = h] =
(
n

h

)
/p = αn,h .

□

Combining those two claims, we obtain the following result: If

A is (t ,Q)-adversary, then there is a (t ′,Q)-adversary B such that

t ′ ≈ t and
Pr[G j = 1] ≤ Pr[G ′j = 1] + |Pr[G j = 1] − Pr[G ′j = 1]|

≤ αn,h + |Pr[RealB(κ) ⇒ 1] − Pr[RandB(κ) ⇒ 1]|
as we wanted. Applying Theorem 7.2, we have

Pr[G j = 1] ≤ αn,h + 2µϵ

under the assumption that theMERS-Un,h problem is (t ,Q, ϵ)-hard.
Therefore, we have

ϵ ′/2 ≤
QVerify∑

j
Pr[G j = 1] ≤ QVerifyαn,h + 2QVerifyµϵ .

This yields

ϵ ≥ ϵ ′/(4QVerifyµ) −QVerifyαn,h

as we wanted. □

7.1.2 Non-Fresh Case.

Lemma 7.6. Let µ = ν . Suppose that there exists an adversary A
that breaks (t ′,Q, ϵ ′)-UF-CMA-security of MAC. If the probability
that the first forgery found by the adversary is more likely to be
non-fresh, that is, Pr[Fresh] ≤ ϵ ′/2, then we have B that breaks the
(t ,Q, ϵ)-hardness of the MERS-Un,h problem, where

t ≈ t ′ and ϵ ≥ ϵ ′/2 −Q2/2µ .

Proof. This proof is similar to the proof of the ROR-CMA se-

curity in section 5.

Let us construct an adversary Boracle
who will distinguish be-

tween two oracles O andU.

B samples π ,h, s ′
0
, s1, . . . , sµ except s0 as defined in KeyGen. It

then runs A and simulates the oracles as follows:

• T (m): On a querym,

(1) Sample β and compute A := h(m, β)
(2) Call the oracle and obtain (R̃, B̃)
(3) Compute B := B̃ + R̃ · (∑µ

i=1
A[i] · si ) + s ′

0

(4) Return σ := π (R̃,B, β)
• V (m,σ ): On a query (m,σ ), B always answers Reject.

Finally, Boracle
outputs 1 if any query toT orV contains β that has

appeared in a previous query to T or V . It outputs 0 otherwise.

We note that if oracle = Os,n,h , then B̃ = R̃ · s + e , where
e ←

$
Hn,h and the simulation of T is perfect by letting s0 := s .

Claim 7.7. If oracle = Os,n,h , then the probability that Boracle

outputs 1 is ≥ ϵ ′/2

Proof. The proof is the same as that in [KPV
+
17, Proof of

Claim 4.5]. The simulation of T is perfect. In addition, until A
makes a valid forgery, the simulation ofV is also perfect. The prob-

ability that A output his first forgery which is not fresh is simply

lower bounded by ϵ ′ − ϵ ′/2 = ϵ ′/2. Thus, we obtain the lower

bound in the claim. □

Claim 7.8. If oracle = U, then the probability thatBoracle outputs
1 is at most ≤ Q2/2µ .

Proof. The proof is the same as that in [KPV
+
17, Proof of

Claim 4.6].

We have Ai = Aj if and only if h(mi , βi ) = h(mj , βj ). Now
we will upper bound the probability that an adversary find such

collision which imply the same probability that Boracle
outputs 1,

assuming that an adversary makes at most Q queries and fixing

that up to the (i − 1)-th query by which we assume that all theA’s

were distinct. Then we obtain two cases of collision:

• The probability of collision that the i-th query in which βi
will collide with a previous βj is at most (i − 1)/2ν .
• If the first collision does not happen then the probability of

collision in h(mi , βi ) = h(mj , βj ) will be (i − 1)/2µ .
Then similarly to the proof in [KPC

+
11] we obtain

∑Q
n=1
((i−1)/2ν +

(i − 1)/2µ ) ≤ Q2/2µ where µ = ν . □

Combining two claims, we have

ϵ ≥ ϵ ′/2 −Q2/2µ
10



as we wanted. □
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A PROOF OF LEMMA 7.2
The proof is almost same as that in [KPV

+
17].

For i = 0, . . . , µ and A ∈ {0, 1}µ , we define A[1..i] as the i-bit
string A1 . . .Ai ∈ {0, 1}i . (We let A[1..0] = ⊥.) For i = 0, . . . , µ,
RFi ,RF′i : {0, 1}i → Zp be two random functions. (If i = 0, then

RF0(⊥) = b ′ for some random b ′ ←
$
Zp .)

We define the line of games as follows:

• G0: this game is the same as Real except that
– in the beginning, we sample 2µ elements s1,0, . . . , sµ,0,
s1,1, . . . , sµ,1 fromZp instead of µ+1 elements s0, s1, . . . , sµ
from Zp .

– in the computation of SA, we compute SA :=
∑µ
j=1

sj,A[j]
instead of SA := s0 +

∑µ
j=1

A[j] · sj . (We also replace the

computation of SA∗ .)
• G1,i for i = 0, . . . , µ: this game is the same asG0 except that

– in the oracle Chal, we let s ′
0

:= RFi (A∗[1..i])
– in the oracle Eval, we compute B := RFi (A[1..i])+RSA+E
instead of B := s ′

0
+ RSA + E.

• G2: this game is the same as G1,µ except that

– in the oracle Chal, we sample B∗ ←
$
Zp instead of B∗ :=

s ′
0
+ R∗ · SA∗

– in the oracle Eval, we compute B := RFµ (A) instead of

B := RFµ (A) + RSA + E.

Lemma A.1. Pr[G0 = 1] = Pr[Real⇒ 1]

Proof. In G0, we replace the computation of SA. We note that

if we set s0 :=
∑µ
j=1

sj,0 and sj := sj,1 − sj,0, we have SA = s0 +∑µ
j=1

A[j] · sj =
∑µ
j sj,A[j]. In addition, if we choose sj,k uniformly

at random, then s0, s1, . . . , sµ are also distributed according to the

uniform distribution over Zp . Hence, the two games are equivalent.

□

Lemma A.2. We have Pr[G0 = 1] = Pr[G1,0 = 1].

Proof. G0 is the same as G1,0, since s
′
0
can be interpreted as

RF0(⊥) [KPV+17]. □

Lemma A.3. Let B be a (t ,Q)-adversary. For all i ∈ {0, . . . , µ − 1},
there exists a (t ′,Q)-adversary D such that

t ′ ≈ t and
��
Pr[G1,i = 1] − Pr[G1,i+1 = 1]

�� ≤ 2 · AdvMERS-Un,h
D (κ).

Proof. Notice that for arbitrarily fixed b ∈ {0, 1} and two ran-

dom functions RFi and RF′i , we can define a new random function

RFi+1 by

RFi+1(A[1...i+1]) :=

{
RFi (A[1...i]) if A[i + 1] = b
RFi (A[1...i]) + RF′i (A[1...i]) o.w.

Our adversaryD guesses E ←
$
{0, 1} as the prediction ofA∗[i +

1] and simulate the oracles by using the above observation. We

construct a distinguisher D as follows:

(1) Given 1
κ
, D prepares parameter values as follows:

• Sample b ← {0, 1} and initialize L := ∅ and Li := ∅.
• Choose sj,β ← Zp for all j ∈ [1, µ] and β ∈ {0, 1} except
for si+1,1−b .
• Query to its oracle for Q times and obtain the answers

(Rj ,B′j ) for j ∈ [Q].
(2) D runs B and simulates Eval and Chal as follows:
• Simulation of Eval on input A ∈ {0, 1}µ :
(a) Update L := L ∪ {A}
(b) If A[i + 1] = b, then R ←

$
Zp , E ←$

Hn,h , compute

B := RFi (A[1...i]) + R · (∑µ
j=1

Sj,A[j]) + E and return

(R,B).
(c) Else, that is, if A[i + 1] = 1 − b, then

(i) If Li contains (A[1...i], (Rj ,B′j )) for some j, then let

(R,B′) := (Rj ,B′j ).
(ii) Else, use a next fresh pair, that is, (R,B′) := (Rj ,B′j )

for the first j. Add (A[1...i], (Rj ,B′j )) to the list Li .

(iii) Compute B := RFi (A[1...i])+R · (
∑µ
j=1, j,i+1

Sj,A[j])+
B′ and return (R,B).

• Simulation of Chal on input R∗ and A∗:
(a) If A∗[i + 1] , b, abort.
(b) Else, define SA∗ :=

∑µ
j Sj,A∗[j].

(c) Return B∗ := R∗ · SA∗ + RFi (A∗[1...i]).
(3) Finally, B will outputs its decision d and stops. D outputs

d ∧ (A∗ < L).

Suppose that the guessb is correct. This happens with probability
1/2. If so, D perfectly simulates Chal, since RFi+1(A∗[1...i + 1]) =
RFi (A∗[1...i]) if A∗[i + 1] = b. We next analyze the simulation of

Eval: IfA[i+1] = b, then we have RFi+1(A[1...i+1]) = RFi (A[1...i]).
Thus, the distributions of Z are equal each other. Otherwise, that is,

if A[i + 1] = 1−b, then we consider two cases: If the oracle outputs

B′ := Rs + E with E ←
$
Hn,h , then we have

B := RFi (A[1...i]) + R ·
©«

µ∑
j=1, j,i+1

sj,A[j]
ª®¬ + R · s + E

= RFi (A[1...i]) + R ·
©«

µ∑
j=1

sj,A[j]
ª®¬ + E

by letting si+1,1−b := s . Therefore, if the oracle is Os,n,h , then D
perfectly simulates Gi . On the other hand, if the oracle isU, that
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is, B′ = Rs + E +U with E ←
$
Hn,h andU ←

$
Zp , then we have

B := RFi (A[1...i]) + R ·
©«

µ∑
j=1, j,i+1

sj,A[j]
ª®¬ + R · s + E +U

= RFi (A[1...i]) +U + R ·
©«

µ∑
j=1

sj,A[j]
ª®¬ + E.

By lettingU := RF′i (A[1...i]), we observe thatD perfectly simulates

Gi+1.

Therefore, we have

t ′ ≈ t and
��
Pr[G1,i = 1] − Pr[G1,i+1 = 1]

�� = 2 · AdvMERS-Un,h
D (κ)

as we wanted. □

Lemma A.4. We have Pr[G1,µ = 1] = Pr[G2 = 1].

Proof. This is almost obvious. Notice that every queryA to Eval
and Chal should be fresh. Thus, in both cases, RFµ (A)makes B (and

B∗) random. □

Lemma A.5. We have Pr[G2 = 1] = Pr[Rand⇒ 1].

Proof. In G2, all returned values (R,B) from Eval and B∗ from
Chal are fresh and random if A∗ < L. We also know that in Rand,
all values are fresh and random if A∗ < L, because s ′

0
is random

and kept secret. Therefore, there are no difference between G2 and

Rand if A∗ < L. This completes the proof. □
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