
This is the full version of a paper which appears in CT-RSA 2020,
20th Cryptographer’s Track at the RSA Conference, San Francisco, CA, USA, Feb 24 - Feb 28, 2020,
Proceedings. LNCS 12006. pages 538–563.© Springer, 2020.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-40186-3_23.

Policy-Based Sanitizable Signatures‡

Kai Samelin1 and Daniel Slamanig2

1 TÜV Rheinland i-sec GmbH, Hallbergmoos, Germany
kaispapers@gmail.com

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Sanitizable signatures are a variant of signatures which al-
low a single, and signer-defined, sanitizer to modify signed messages
in a controlled way without invalidating the respective signature. They
turned out to be a versatile primitive, proven by different variants and
extensions, e.g., allowing multiple sanitizers or adding new sanitizers
one-by-one. However, existing constructions are very restricted regarding
their flexibility in specifying potential sanitizers. We propose a different
and more powerful approach: Instead of using sanitizers’ public keys
directly, we assign attributes to them. Sanitizing is then based on policies,
i.e., access structures defined over attributes. A sanitizer can sanitize,
if, and only if, it holds a secret key to attributes satisfying the policy
associated to a signature, while offering full-scale accountability.

1 Introduction

Unforgeability of a digital signature scheme prevents deriving signatures
for a message not explicitly endorsed by the signer. This is a desired
property in many use cases of signatures. However, it turned out that
certain controlled modifications of signed messages are beneficial in many
scenarios [ABC+15, BPS17, DDH+15, GGOT16]. Over the years, dif-
ferent types of signature schemes supporting such modifications have
been proposed, including homomorphic signatures [ABC+15, BFKW09],
redactable signatures [DPSS15, JMSW02, SBZ01], and sanitizable signa-
tures [ACdMT05, BFF+09, BFLS10]. In this paper, we focus on sanitizable
signatures (3S henceforth). In a nutshell, a standard 3S [ACdMT05] allows
for altering signer-chosen (so called admissible) blocks of signed messages
by a single semi-trusted entity, called the sanitizer, which is specified by
the signer when generating the signature. The sanitizer holds its own key
pair. By using the secret key, the sanitizer can derive modified messages

‡ The project leading to this work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 783119
secredas.

https://doi.org/10.1007/978-3-030-40186-3_23
mailto:kaispapers@gmail.com?subject=Question About Your Paper 'Policy-Based Sanitizable Signatures'
mailto:daniel.slamanig@ait.ac.at?subject=Question About Your Paper 'Policy-Based Sanitizable Signatures'

with modifiable parts (called admissible blocks) arbitrarily updated, along
with corresponding valid signatures. Moreover, given a sanitizable signa-
ture, there is a (virtual) entity, dubbed the judge, who can determine
whether a signature comes from the original signer or has been sanitized,
providing accountability. Even though allowing arbitrary modification of
signer-specified blocks seems to give too much power to the sanitizer, 3Ss
have proven to be useful in numerous use-cases, as exhaustively discussed
by Bilzhause et al. [BPS17].

After 3Ss were introduced by Ateniese et al. [ACdMT05], they re-
ceived a lot of attention in the recent past. The first thorough security
model was given by Brzuska et al. [BFF+09] (later slightly modified by
Gong et al. [GQZ10]). Their work was later extended for multiple sign-
ers/sanitizers [BFLS09, CJL12], unlinkability (meaning derived signatures
cannot be linked to its origin) [BFLS10, BPS13, BL17, BLL+19, FKM+16],
non-interactive public-accountability (every party can determine which
party is accountable for a given valid message/signature pair) [BPS12],
limiting the sanitizer to signer-chosen values [CJ10, DS15], invisibility
(meaning that an outsider cannot determine which blocks of a message are
sanitizable) [BCD+17, BLL+19, CDK+17, FH18], the case of strongly un-
forgeable signatures [KSS15], and generalizations such as merging the func-
tionality from sanitizable and redactable signatures [KPSS18b, KPSS19].
All these extensions make 3Ss suitable for an even broader field of use-
cases of (cf. [BPS17] for a discussion), and are directly applicable to our
contribution.

In all of the aforementioned work on sanitizable signatures, the sani-
tizer(s) need(s) to be known in advance at signature generation, and there
is no possibility to control sanitizing capabilities in a fine-grained way. We
note that there is the concept of trapdoor 3Ss [CLM08, LDW13, YSL10].
Although here the signer can grant the possibility to sanitize to different
entities even after generating the initial signature, existing constructions
do either not provide accountability, a central feature of 3S, or require
obtaining the trapdoor from the original signer before sanitizing [LDW13].
This drastically restricts the applicability of 3Ss, their flexibility, and may
lead to severe problems when the specified sanitizer is not available.

Motivation and Applications. To illustrate the problem, let us con-
sider an enterprise scenario where policies are associated to different types
of documents and documents of some type can be sanitized if the person
performing the sanitization fullfills the respective policy. For simplicity,
assume that sanitizing should be possible if the sanitizer satisfies the policy

P = (IT department ∧ admin) ∨ (team leader). Now, let’s say that the
head of IT department has previously signed a document, e.g., an order,
which urgently needs to be sent to reseller but some information needs to
be sanitized before, e.g., fixing the number of new PCs ordered. Unfor-
tunately, the original signer is not available, e.g., due to vacation. Now,
everyone satisfying P should be able to sanitize. Since this covers a poten-
tially large set of persons, there is no availability issue, and the document
can be sent in time. Still, the department head (the “group manager”) can
control via P who is trusted to sanitize the document if required, and there
must be means to determine who performed the sanitization in case of a
dispute. Realizing this scenario with the state-of-the-art 3S, such as using a
sanitizer key per policy and giving the key to everyone satisfying it clearly
destroys accountability, i.e., there is no means identifying the accountable
party later on, and thus no satisfying solution can be achieved. To tackle
this situation, we introduce a primitive denoted policy-based sanitizable
signatures (P3S), that allows to sanitize if, and only if, the attributes as-
sociated to a sanitizer satisfy the policy associated to the signature, while
at the same time providing accountability. We also want to discuss one
application of P3S extending the scope of the one discussed in [DSSS19].
In particular, [DSSS19] discusses an application to updating/rewriting
transactions (or more generally speaking objects) in blockchains by se-
lectively replacing the hash function used to aggregate transactions (e.g.,
within a Merkle-tree) by a novel chameleon hash. This adds flexibility to
the initial proposal of a redactable blockchain (where entire blocks can
be rewritten) due to Ateniese et al. in [AMVA17]. In [DSSS19], everyone
who wants a transaction that can be updated/rewritten can distribute
attribute-keys to users who can potentially update the transactions of
this entity. Using P3S instead of this novel chameleon hash allows to not
only hash transactions/objects but combine it with a signature (as usual
for transactions and typically also for other objects in blockchains), we
can thus achieve stronger guarantees than in [DSSS19]. In addition to
transparency, meaning that no outsider sees whether updates happened
(as also achieved in [DSSS19]), using P3S provides accountability, i.e., it
can be determined who conducted the update.

Contribution and Our Techniques. We introduce the notion of policy-
based sanitizable signatures (P3S). The main idea is the following: At
signing, the signer assigns some access-policy P with each generated
signature. A sanitizer can sanitize such signatures, if, and only if, that
sanitizer has a secret key satisfying the associated policy P . Sanitizers

can obtain new secret keys for some attributes in a dynamic fashion by a
special entity named the “group manager”, essentially playing the same
role as the “issuer” in dynamic group signatures [BSZ05].1 The reason
for this design choice stems from practical considerations: Generated
sanitizing keys must only be valid for a single group; In our example
mentioned above, the sanitization rights must not work for signatures
for another company. However, we also allow that signers and sanitizers
can re-use their keys across different groups, e.g., in an enterprise every
employee can hold a single key-pair and can participate in multiple groups
without generating fresh keys for every group. In our running example,
this also means that, e.g., a supplier for our company could sanitize certain
signatures using its long-term key (if it received the corresponding secret
keys).

We provide a natural formal framework for such P3S by extending the
one for 3S. We note that in the case of P3S, with a potentially large sets of
sanitizers and different sanitization keys (depending on attributes), make
the formal definition much trickier and somewhat involved. Still, we believe
that our proposed definitions are clean and easy to comprehend. We also
consider a notion analogous to opening-soundness [SSE+12]. Moreover,
we propose very strict privacy notions, where even (most of) the keys
are generated by the adversary, further strengthening already existing
definitions [dMPPS14, FF15, KSS15].

Finally, we provide a construction of P3S which we rigorously analyze
in the proposed framework. Technically, the heart of our construction is
a recent primitive called policy-based chameleon hash (PCH) [DSSS19],
which is a trapdoor collision-resistant hash-function, where the hash com-
putation in addition to the message takes a description of a policy as input.
Loosely speaking, there are many different trapdoors and collisions can be
found if, and only if, a trapdoor satisfying the policy used for the computa-
tion of the hash is known. Looking ahead, the PCH proposed in [DSSS19]
combines chameleon-hashes with ephemeral trapdoors (CHET) [CDK+17]
and CCA2-secure ciphertext-policy attribute-based encryption (CP-ABE)
scheme. In contrast to the original PCH definition in [DSSS19], however,
we have to make some minor, yet important, alterations and show that a
modified construction from [DSSS19] satisfies our stronger notions. In this
regard, we also strengthen the CH and CHET definitions by Camenisch et
al. [CDK+17] to also cover keys generated by the adversary. We believe
that this strengthened definitions are also useful in many other scenarios.

1 If wanted, a signer can also be a group manager simultaneously, without sacrificing
accountability.

The concrete PCH construction then requires some additional tools and
tricks; In order to achieve accountability, we use an “OR-trick”, and attach
a non-interactive zero-knowledge proof of knowledge, demonstrating that
either the signer or a sanitizer performed the signing, or the sanitization,
respectively. The expressiveness of the policies supported by the P3S are
determined by that of the PCH and in particular by that of the underlying
CP-ABE scheme. We chose to build upon the existing PCH framework
which covers (monotone) access structures as policies as this seems to
be the most interesting setting for practical applications.2 For a detailed
intuition on the construction, see Sect. 4.

2 Preliminaries

Notation. With κ ∈ N we denote our security parameter. All algorithms
implicitly take 1κ as an additional input. We write a ← A(x) if a is
assigned to the output of algorithm A with input x. An algorithm is
efficient, if it runs in probabilistic polynomial time (PPT) in the length of
its input. All algorithms are PPT, if not explicitly mentioned otherwise.
If we make the random coins r explicit, we use the notation a← A(x; r).
Otherwise, we assume that the random coins are drawn internally. For
m = (m1,m2, . . . ,ml), we call mi ∈M, whereM = {0, 1}∗, a block. Most
algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an
exception. Returning output ends execution of an algorithm or an oracle. If
S is a set, we write a←r S to denote that a is chosen uniformly at random
from S. For a list we require that there is an injective, and efficiently
reversible, encoding, mapping the list to {0, 1}∗. A function ν : N→ R≥0 is
negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N,
∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

Assumptions and Primitives. For our construction to work, we need a
one-way function (OWF) f , an unforgeable digital signature scheme Σ =
{PPGenΣ ,KGenΣ , SignΣ ,VerfΣ}, and an IND-CCA2-secure encryption-
schemeΠ = {PPGenΠ ,KGenΠ ,EncΠ ,DecΠ ,KVrfΠ}. Key-verifiability means
that for a given public key, exactly one secret key can be found (e.g.,
Cramer-Shoup (CS) encryption [CS98] in a setting with common group
parameters suffices), while KVrfΠ checks whether a given secret key sk
belongs to a pk. Moreover, we require a (labeled) simulation-sound ex-
tractable non-interactive zero-knowledge proof system Ω = {PPGenΩ,
2 PCHs and P3S could be defined for richer policies, e.g., polynomial sized circuits.

ProveΩ,VerifyΩ}, and a recent primitive dubbed policy-based chameleon-
hash (PCH), recently introduced by Derler et al. [DSSS19].

For the sake of readability, a somewhat informal Camenisch and Stadler
notation [CS97] is used. For example, the notation

π ←r ProveΩ{(g1) : C = EncΠ(g1)}(`)

denotes the computation of a simulation-sound extractable non-interactive
zero-knowledge proof (NIZK for short) of the plaintext g1 contained in
C (which is assumed to be public), with a non-malleable attached label
` ∈ {0, 1}∗. Sometimes only “verify π” is used for verification of a proof π.
It is assumed that the public parameters, and the statement to be proven,
are also input to the proof system as the label, and are public (all those
values are assumed to be part of π as well). This is not made explicit to
increase readability.

All primitives, but PCHs, are well-known; We give the full formal
definitions of the standard building blocks in App. A, and only fully
restate PCHs here. In a nutshell, a PCH = (PPGenPCH,MKeyGenPCH,
KGenPCH,HashPCH,VerifyPCH,AdaptPCH) is a trapdoor collision-resistant
hash-function, where the hash computation in addition to the message
takes a description of a policy as input. Loosely speaking there can be
many different trapdoors and collisions can be found if, and only if, a
trapdoor satisfying the policy used for the computation of the hash is
known.

Before we recall PCHs, we need to define what an access structure is.

Definition 1 (Access Structure). Let U denote the universe of at-
tributes. A collection A ∈ 2U \ {∅} of non-empty sets is an access structure
on U. The sets in A are called the authorized sets, and the sets not in
A are called the unauthorized sets. A collection A ∈ 2U \ {∅} is called
monotone if ∀ B,C ∈ A : if B ∈ A and B ⊆ C, then C ∈ A.

Definition 2 (Policy-Based Chameleon-Hashes [DSSS19]). A po-
licy-based chameleon-hash PCH consists of the following six algorithms
(PPGenPCH,MKeyGenPCH,KGenPCH,HashPCH,VerifyPCH,AdaptPCH), which
are defined as follows.

PPGenPCH. On input a security parameter κ, PPGenPCH outputs the public
parameters:

ppPCH ←r PPGenPCH(1κ)

We assume that ppPCH contains 1κ and is implicit input to all other
algorithms.

MKeyGenPCH. On input of some global parameters ppPCH, MKeyGenPCH

outputs the master private and public key (skPCH, pkPCH) of the scheme:

(skPCH, pkPCH)←r MKeyGenPCH(ppPCH)

KGenPCH. On input a secret key skPCH and a set of attributes S ⊆ U (U
is the universe), the key generation algorithm outputs a secret key skS:

skS ←r KGenPCH(skPCH,S)

HashPCH. On input a public key pkPCH, access structure A ⊆ 2U and a
message m, this algorithm outputs a hash h and some randomness
(sometimes referred to as “check value”) r:

(h, r)←r HashPCH(pkPCH,m,A)

VerifyPCH. On input a public key pk, a message m, a hash h, and a
randomness r, it outputs a bit b ∈ {1, 0}.

b← VerifyPCH(pkPCH,m, h, r)

AdaptPCH. On input a secret key skS, messages m and m′, a hash h,
and randomness value r, the adaptation algorithm outputs a new
randomness r′:

r′ ←r AdaptPCH(pkPCH, skS,m,m
′, h, r)

We assume that the KGenPCH outputs ⊥, if S is not contained in U.

Note, we have added an additional algorithm PPGenPCH which out-
puts some additional global parameters, which was not part of the
original description in [DSSS19], as we work in a slightly different set-
ting. For correctness, we require that for all κ ∈ N, for all ppPCH ←r

PPGenPCH(1κ), for all (skPCH, pkPCH) ←r MKeyGenPCH(ppPCH), for all
A ⊆ 2U, for all S ∈ A, for all skS ←r KGenPCH(skPCH,S), for all m ∈ M,
for all (h, r) ←r HashPCH(pkPCH,m,A), for all m′ ∈ M, for all r′ ←r

AdaptPCH(pkPCH, skS,m,m
′, h, r), we have that 1 = VerifyPCH(pkPCH,m, h,

r) = VerifyPCH(pkPCH,m
′, h, r′).

Furthermore, we require the following security properties, where our
notion of indistinguishability below is stronger than the one introduced
in [DSSS19]. We also restate the black-box construction from [DSSS19]
(with some minor rephrasing and slightly stronger primitives) in App. C.
The security proof in our stronger model is given in App. B.

Full Indistinguishability. Informally, indistinguishability requires that it be
intractable to decide whether for a chameleon-hash its randomness is fresh
or was created using the adaption algorithm. Full indistinguishability even
lets the adversary choose the secret key used in the HashOrAdapt oracle.
The security experiment grants the adversary access to a left-or-right style
HashOrAdapt oracle and requires that the randomnesses r does not reveal
whether it was obtained through HashPCH or AdaptPCH. The messages and
secret keys are adaptively chosen by the adversary.

ExpFIndistinguishability
A,PCH (κ)

ppPCH ←r PPGenPCH(1κ)
b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,·,·,b)(ppPCH)

where HashOrAdapt on input pkPCH,m,m
′, skS,A, b:

(h0, r0)←r HashPCH(pkPCH,m
′,A)

(h1, r1)←r HashPCH(pkPCH,m,A)
r1 ←r AdaptPCH(pkPCH, skS,m,m

′, h1, r1)
return ⊥, if r0 = ⊥ ∨ r1 = ⊥
return (hb, rb)

return 1, if b = b∗

return 0

Fig. 1: PCH Full Indistinguishability

Definition 3 (PCH Full Indistinguishability). We say a PCH scheme
is fully indistinguishable, if for every PPT adversary A, there exists a
negligible function ν such that:∣∣∣Pr

î
ExpFIndistinguishability

A,PCH (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 1.

Insider Collision-Resistance. Insider collision-resistance addresses the
requirement that not even insiders who possess secret keys with respect
to some attributes can find collisions for hashes which were computed
with respect to policies which are not satisfied by their keys (oracle
KGen′PCH). Intuitively, this notion enforces the attribute-based access-
control policies, even if the adversary sees collisions for arbitrary attributes
(oracles KGen′′PCH and Adapt′PCH).

ExpCRIns
A,PCH(κ)

ppPCH ←r PPGenPCH(1κ)
(skPCH, pkPCH)←r MKeyGenPCH(ppPCH)
S = H = Q ← ∅
i← 0

(m∗, r∗,m′∗, r′∗, h∗)←r A
KGen′PCH(skPCH,·),KGen′′PCH(skPCH,·)
Hash′

PCH
(pkPCH,·,·),Adapt′

PCH
(pkPCH,·,·,·,·)

(pkPCH)

where KGen′PCH on input skPCH, S:
skS ←r KGenPCH(sk, S)
S ← S ∪ {S}
return skS

and KGen′′PCH on input skPCH, S:
skS ←r KGenPCH(sk, S)
Q∪ {(i, skS)}
i← i+ 1
return ⊥

and Hash′PCH on input pkPCH,m,A:
(h, r)←r HashPCH(pkPCH,m,A)
if r 6= ⊥, H ← H∪ {(h,A,m)}
return (h, r)

and Adapt′PCH on input pkPCH,m,m
′, h, r, j:

return ⊥, if (j, skS) /∈ Q for some skS
r′ ←r AdaptPCH(pkPCH, skS,m,m

′, h, r)
if r′ 6= ⊥ ∧ (h,A,m) ∈ H for some A, H ← H∪ {(h,A,m′)}
return r′

return 1, if
VerifyPCH(pk,m∗, h∗, r∗) = VerifyPCH(pk,m′∗, h∗, r′∗) = 1 ∧
(h∗,A, ·) ∈ H, for some A ∧ m∗ 6= m′∗ ∧ A ∩ S = ∅ ∧ (h∗, ·,m∗) /∈ H

return 0

Fig. 2: PCH Insider Collision-Resistance

Definition 4 (PCH Insider Collision-Resistance). We say a PCH
scheme is insider collision-resistant, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
î
ExpCRIns

A,PCH(κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 2.

Uniqueness. We also introduce the new notion of uniqueness for PCHs,
which basically requires that it is hard to find different randomness yielding
the same hash for an adversarial chosen message and public key.

ExpUniqueness
A,PCH (κ)

ppPCH ←r PPGenPCH(1κ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppPCH)
return 1, if VerifyPCH(pk∗,m∗, h∗, r∗) = VerifyPCH(pk∗,m∗, h∗, r′∗) = 1 ∧ r∗ 6= r′∗

return 0

Fig. 3: PCH Uniqueness

Definition 5 (PCH Uniqueness). We say a PCH scheme is unique, if
for every PPT adversary A, there exists a negligible function ν such that:

Pr
î
ExpUniqueness

A,PCH (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 3.

Note, we do not require the outsider collision-resistance notion from [DSSS19].

3 Our Framework for P3Ss

Additional Notation. We need to introduce some additional notation,
to make our representation more compact. Our notation is taken from ex-
isting work, making reading more accessible [BCD+17, BFF+09, CDK+17].
The variable A contains the set of indices of the modifiable blocks, as
well as l denoting the total number of blocks in the message m. We write
A(m) = 1, if A is valid w.r.t. m, i.e., A contains a fitting l, i.e., the correct
length of m, and the indices of the admissible blocks are actually part of
m. For example, let A = ({1, 2, 3, 5}, 5). Then, m must contain five blocks,
and all but the fourth can be modified. If we write mi ∈ A, we mean that
mi is admissible. We also use mA for the list of blocks in m which are
admissible w.r.t. A. Likewise, we use m!A for the list of blocks of m which
are not admissible w.r.t. to A. Moreover, M is a set containing pairs (i,m′i)
for those blocks that are modified, meaning that mi is replaced with m′i.
We write M(A) = 1, if M is valid w.r.t. A, meaning that the indices to be
modified are contained in A, i.e., admissible.

Definitional Framework. We now introduce our definitional framework.
It is based on existing work [BCD+17, BFF+09, CDK+17]. The main
idea is following the line of reasoning of group signatures. Namely, a
designated entity, which we name “the group manager” generates a key

pair for its group. The group manager can use its secret key to assign
secret keys to sanitizers which are identified by their own key pair. In
contrast, signers can create signatures for a signer-chosen group, identified
by a public key. Moreover, signers do not require any prior interaction, i.e.,
knowledge of the group public-key is sufficient, which is a major difference
to group signatures, and any sanitizer “authorized” by the manager of that
group can then sanitize the generated signatures. Moreover, in contrast to
group signatures, only the signer can decide which party has generated
a signature, essentially it is also the “opener” in group signatures, but
the group manager has no opening capabilities. These proofs, however,
can be verified by anyone. We keep the wording of the algorithms mostly
consistent with existing work to ease readability [BFF+09].

Definition 6 (P3S). A sanitizable signature with attribute-based san-
itizing P3S consists of the algorithms {ParGenP3S, SetupP3S,KGenSigP3S,
KGenSanP3S,SignP3S,AddSanP3S,SanitizeP3S,VerifyP3S,ProofP3S, JudgeP3S}
such that:

ParGenP3S. The algorithm ParGenP3S generates the public parameters:

ppP3S ←r ParGenP3S(1κ)

We assume that ppP3S contains 1κ and is implicit input to all other
algorithms.

SetupP3S. The algorithm SetupP3S outputs the global public key pkP3S of
a P3S, and some master secret key skP3S, i.e., it generates the group
manager’s key pair:

(skP3S, pkP3S)←r SetupP3S(ppP3S)

KGenSigP3S. The algorithm KGenSigP3S generates a key-pair for a signer:

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

KGenSanP3S. The algorithm KGenSanP3S generates a key-pair for a sani-
tizer:

(skSan
P3S, pk

San
P3S)←r KGenSanP3S(ppP3S)

SignP3S. The algorithm SignP3S generates a signature σ, on input of a
master public key pkP3S, a secret key skSig

P3S, a message m, A, and some
access structure A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

AddSanP3S. The algorithm AddSanP3S allows to the group manager to
generate a secret sanitizing key skS for a particular sanitizer, on input
of skP3S, a public key pkSan

P3S, and some set of attributes S ⊆ U:

skS ←r AddSanP3S(skP3S, pk
San
P3S,S)

VerifyP3S. The deterministic algorithm VerifyP3S allows to verify a signa-
ture σ on input of a master public key pkP3S, a signer public key pkSig

P3S,
and a message m. It outputs a decision b ∈ {0, 1}:

b← VerifyP3S(pkP3S, pk
Sig
P3S, σ,m)

SanitizeP3S. The algorithm SanitizeP3S allows to derive a new signature
on input of a master public key pkP3S, a signer’s public key pkSig

P3S, a
sanitizer’s secret key skSan

P3S, a token skS, some modification instruction
M, a message m, and a signature σ:

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

ProofP3S. The algorithm ProofP3S allows to generate a proof πP3S and
some public pk, used by the next algorithm, to find the accountable
party, on input of a master public key pkP3S, a signer’s secret key
skSig

P3S, a signature σ, and a message m:

(πP3S, pk)←r ProofP3S(pkP3S, sk
Sig
P3S, σ,m)

JudgeP3S. The algorithm JudgeP3S allows to verify whether a proof πP3S

is valid. The inputs are a master public key pkP3S, a signer’s public
key pkSig

P3S, some other public key pk, a proof πP3S, a signature σ, and
a message m. It outputs a decision b ∈ {0, 1}, stating whether πP3S is
a valid proof that the holder of pk is accountable for σ:

b←r JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ,m)

For each P3S it is required that the correctness properties hold. In par-
ticular, it is required that for all κ ∈ N, for all ppP3S ←r ParGenP3S(1κ), for

all (pkP3S, skP3S)←r SetupP3S(ppP3S), for all (skSig
P3S, pk

Sig
P3S)←r KGenSigP3S

(ppP3S), for all l ∈ N, for all m ∈ Ml, for all A ∈ 2U, for all A ∈ {Ai |
Ai(m) = 1}, for all σ ←r SignP3S(pkP3S, sk

Sig
P3S,m,A,A), we have that

VerifyP3S(pkP3S, pk
Sig
P3S, σ,m) = 1 and for all (πP3S, pk)←r ProofP3S(pkP3S,

skSig
P3S, σ,m) we have that JudgeP3S(pkP3S, pk

Sig
P3S, pk

Sig
P3S, πP3S, σ,m) = 1 and

pk = pkSig
P3S. We also require that for all (skSan

P3S, pk
San
P3S)←r KGenSanP3S(ppP3S),

for all S ∈ A, for all skS ←r AddSanP3S(skP3S, pk
San
P3S,S), for all M ∈

{Mi | Mi(A) = 1}, for all (σ′,m′) ←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,

m, σ,M) we have that VerifyP3S(pkP3S, pk
Sig
P3S, σ

′,m′) = 1 and that for all

(π′P3S, pk
′)←r ProofP3S(pkP3S, sk

Sig
P3S, σ

′,m′), we have that JudgeP3S(pkP3S,

pkSig
P3S, pk

San
P3S, π

′
P3S, σ

′,m′) = 1 and pk′ = pkSan
P3S.

Security Definitions. We now introduce our security definitions. To
increase readability, we keep the naming close to the already existing
definitions for standard 3Ss [BFF+09]. However, due to the increased
expressiveness of our new primitive, this is not always possible. Namely,
we require new unforgeability and privacy definitions not considered before.
This also has the effect that the implications and separations by Brzuska
et al. [BFF+09] have to be revisited.

Overview. We first briefly introduce each security notion to ease under-
standing of the formal definitions given afterwards.

– Unforgeability. Unforgeability requires that an adversary cannot
(except with negligible probability) generate any valid signature, if it
does not hold enough attributes to do so. We explicitly include the
case that the adversary can be group manager of other groups, but
the challenge one.

– Immutability. Immutability requires that an adverserial group man-
ager cannot (except with negligible probability) create signatures with
altered immutable parts. This also includes appending or removing
blocks.

– Privacy. Privacy requires that an adversary does not learn (except
with negligible probability) anything about sanitized parts, even if it
can generate all keys.

– Transparency. Transparency requires that an adversary cannot de-
cide (except with negligible probability) whether it sees a freshly signed
signature or a sanitized one, even if it can generate all keys, but the
signer’s one.

– Pseudonymity. Pseudonymity requires that an adversary does not
learn (except with negligible probability) which party is accountable
for a given sanitized signature, even if it can generate all keys, but the
signer’s one.

– Signer-Accountability. Signer-Accountability requires that an ad-
versary cannot (except with negligible probability) blame an honest
sanitizer for a signature it did not create, even if it can generate all
keys but the sanitizer’s one.

– Sanitizer-Accountability. Sanitzer-Accountability requires that an
adversary cannot (except with negligible probability) blame an honest
signer for a signature it did not create, even if it can generate all keys
but the signer’s one.

– Proof-Soundness. Proof-Soundness requires that an adversary can-
not (except with negligible probability) generate a proof for an adverse-
rially chosen signature/message pair that points to different entities,
even if it can generate all keys.

– Traceability. Traceability requires that an adversary cannot (except
with negligible probability) generate a verifying signature such that
an honest signer cannot identify the accountable party, even if it can
generate all keys, but the signer’s one.

Unforgeability. The property of unforgeability prohibits that an adversary,
which is not a signer, or the entity holding skP3S, i.e., the group manager,
can generate any validating signature which verifies for honestly generated
keys. This also includes messages for which the adversary does not hold
enough attributes for, even if it sees sanitizations of such signatures.
We define it in such a way that (pkP3S, skP3S), and (skSig

P3S, pk
Sig
P3S), are

generated honestly. The adversary gets access to the following oracles: (1)
Sign′P3S (where it can even use different pkP3Ss, which models the case that
secret signing keys can be re-used across multiple “groups”), (2) GetSan
which generates a new sanitizer (tracked by S), (3) AddSan′P3S which
allows to decide which attributes a given sanitizer holds (tracked by R),
(4) Sanitize′P3S which allows sanitizing signatures for an honest sanitizer
(generated by GetSan) for the challenge group, and (5) Sanitize′′P3S which
allows sanitizing for signatures from any other group (i.e., where the
adversary is the group manager). The adversary wins, if it can generate
a valid signature for the defined group which has never been output by
either Sign′P3S or Sanitize′P3S (tracked by the set M; Note, this set may
be exponential in size, but membership is trivial to decide by checking
whether the element could have been derived using A and A), and the
adversary A does not hold enough attributes itself.

Definition 7 (P3S Unforgeability). We say a P3S scheme is unforge-
able, if for every PPT adversary A, there exists a negligible function ν
such that:

Pr
î
ExpUnforgeability

A,P3S (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 4.

ExpUnforgeability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
(skP3S, pkP3S)←r SetupP3S(ppP3S)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

Q = S = R =M = Z ← ∅
i← 0

(m∗, σ∗)←r A
Sign′P3S(·,sk

Sig
P3S
,·,·,·),GetSan(),AddSan′P3S(skP3S,·,·),Sanitize′P3S(pkP3S,·,·,·,·,·,·)

,Sanitize′′
P3S

(·,·,·,·,·,·,·),ProofP3S(·,sk
Sig
P3S
,·,·)

(pkP3S, pk
Sig
P3S)

where Sign′P3S on input pk′P3S, skSig
P3S, m, A, A:

σ ←r SignP3S(pk′P3S, sk
Sig
P3S,m,A,A)

if pk′P3S = pkP3S ∧ σ 6= ⊥:
Q ← Q∪ {(σ,m,A,A)}
if A ∈ R, M←M∪ {M(m) | M(A) = 1}

return σ
and GetSan:

(skSan
P3S, pk

San
P3S)←r KGenSanP3S(ppP3S)

S ← S ∪ {(skSan
P3S, pk

San
P3S)}

return pkSan
P3S

and AddSan′P3S on input skP3S, pkSan
P3S, S

if ¬∃(·, pkSan
P3S) ∈ S:

skS ←r AddSanP3S(skP3S, pk
San
P3S, S)

return ⊥, if skS = ⊥
R ← R∪ {S}
for all (σi,mi,Ai,Ai) ∈ Q, where S ∈ Ai, M∪ {M(mi) | M(Ai) = 1}
return skS

skS ←r AddSanP3S(skP3S, pk
San
P3S, S)

Z ← Z ∪ {(i, skS)}
i← i+ 1

return (i− 1, pkSan
P3S)

and Sanitize′P3S on input pkP3S, pkSig
P3S, pkSan

P3S, j, m, σ, M:

return ⊥, if ¬∃(skSan
P3S, pk

San
P3S) ∈ S for some skSan

P3S

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

where skS is taken from (j, skS) ∈ Z
if σ′ 6= ⊥:
Q ← Q∪ {(σ′,m′,⊥,⊥)}

return σ′

and Sanitize′′P3S on input pk′P3S, pkSig
P3S, pkSan

P3S, skS, m, σ, M:

return ⊥, if ¬∃(skSan
P3S, pk

San
P3S) ∈ S ∨ pk′P3S = pkP3S

(σ′,m′)←r SanitizeP3S(pk′P3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

return σ′

return 0, if VerifyP3S(pkP3S, pk
Sig
P3S, σ

∗,m∗) = 0 ∨ m∗ ∈M
return 1, if (σ∗,m∗, ·, ·) /∈ Q

return 0

Fig. 4: P3S Unforgeability

Immutability. The above unforgeability definition assumes that the holder
of skP3S (the group manager) is honest. If this is not the case, however, the
adversary can generate its own key pair for a sanitizer and can generate
skS for any attribute-set it likes. Still, in such a case, we want to prohibit
that an adversary generates any signatures which are outside the span
the honest signer has endorsed for any combination of attributes. This
is captured by the immutability definition — if a block is marked as
non-admissible by a signer, no one must be able to change this block. This
also includes that an adversary must not be able to redact or append a
block. Clearly, we cannot limit the adversary to change admissible blocks,
as it can grant sanitizing rights to itself.

This is modeled in such a way that the challenger draws ppP3S honestly,
along with a key-pair for the signer. The adversary only receives ppP3S and
pkSig

P3S. Then, the adversary gains adaptive access to signing-oracle (where

the adversary can choose pkP3S, m, A, A, but not skSig
P3S), and access to a

proof-oracle. We keep a set M which contains all possible messages which
can “legally” be derived by the adversary (bound to pkP3S, also chosen by
the adversary, and tracked by M; Again, this set may be exponential in
size, but membership is trivial to decide). If, and only if, the adversary

finds a valid signature σ∗ w.r.t. pkSig
P3S and pk∗, which could never been

derived from any input, it wins.

ExpImmutability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

M← ∅
(pk∗, σ∗,m∗)←r ASign′P3S(·,sk

Sig
P3S
,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

where Sign′P3S on input pkP3S, skSig
P3S, m, A, A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

return ⊥, if σ = ⊥
M∪ {(pkP3S,M(m)) | M(A) = 1}
return σ

return 1, if:

VerifyP3S(pk∗, pkSig
P3S, σ

∗,m∗) = 1 ∧ (pk∗,m∗) /∈M
return 0

Fig. 5: P3S Immutability

Definition 8 (P3S Immutability). We say a P3S scheme is immutable,
if for every PPT adversary A, there exists a negligible function ν such
that:

Pr
î
ExpImmutability

A,P3S (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 5.

Privacy. Privacy prohibits that an adversary can derive any useful infor-
mation from a sanitized signature. We define a very strong version, where
all values can be generated by the adversary, making our definition even
stronger than existing ones [dMPPS14, FF15].

In more detail, the challenger draws a bit b ←r {0, 1}, while the
parameters ppP3S are generated honestly. The adversary gains access to
a LoRSanit-oracle, where it can input pkP3S, skSig

P3S, skSan
P3S, A, m0, m1, M0,

M1, A, and skS (b is input by the challenger). The oracle then signs mb

with A and A. Then, the resulting signature is sanitized to Mb(mb), while
M0(m0) = M1(m1) must hold to prevent trivial attacks. The goal of the
adversary is to guess the bit b.

We stress that this definition seems to be overly strong. However,
it also preserves privacy in case of bad randomness at key generation,
completely leaked keys, and even corrupt group managers.

ExpPrivacy
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
b←r {0, 1}
b∗ ←r ALoRSanit(·,·,·,·,·,·,·,·,·,·,b)(ppP3S)

where LoRSanit on input of pkP3S, skSig
P3S, skSan

P3S, A, m0, m1, M0, M1, A, skS, b:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,mb,A,A)

for b′ ∈ {0, 1}, (σ′b′ , ·)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,mb′ , σ,Mb′)

return ⊥, if σ′0 = ⊥ ∨ σ′1 = ⊥ ∨ A(m0) = 0 ∨
A(m1) = 0 ∨ M0(m0) 6= M1(m1)

return σ′b
return 1, if b = b∗

return 0

Fig. 6: P3S Privacy

Definition 9 (P3S Privacy). We say a P3S scheme is private, if for
every PPT adversary A, there exists a negligible function ν such that:∣∣∣Pr

î
ExpPrivacy

A,P3S (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 6.

Transparency. Transparency prohibits that an adversary can decide
whether a signature is fresh or the result of a sanitization. As for privacy,
we define a very strong version, where all values, but the signer’s key pair
(skSig

P3S, pk
Sig
P3S), can be generated by the adversary, making our definition

even stronger than existing ones [dMPPS14, FF15, KSS15]. The reason
why the signer’s key pair must be generated honestly is that the signer
can always pinpoint the accountable party due to correctness.

In more detail, the challenger draws a bit b ←r {0, 1}, while the

parameters ppP3S and the signer’s key pair (skSig
P3S, pk

Sig
P3S) are generated

honestly. The adversary gains access to three oracles: SignP3S, SignOrSanit,
and Proof ′P3S. The SignP3S-oracle allows the adversary to generate new

signatures; the only fixed input is skSig
P3S. The SignOrSanit-oracle is the

challenge oracle. It allows the adversary A to input pkP3S, skSan
P3S, A, m,

M, A, and skS (b and skSig
P3S are input by the challenger). The oracle then

signs m with A and A. Then, the resulting signature is sanitized to M(m).
If b = 1, however, a fresh signature on M(m) is generated. The resulting
signature is returned to the adversary. However, we also log the signatures
generated by this oracle in a list Q. The list Q is required to prohibit
that the adversary A can generate a proof using the Proof ′P3S-oracle with
signatures generated by the SignOrSanit-oracle, which directly returns the
accountable party. Thus, the adversary can only input pkP3S, skSig

P3S, σ, m
for which (pkP3S, σ,m) was never input/output to the SignOrSanit-oracle.
The goal of the adversary is to guess the bit b.

We stress that this definition also seems to be overly strong. However,
it also preserves transparency in case of bad randomness at key generation,
leaked keys, and even corrupt group managers.

Definition 10 (P3S Transparency). We say a P3S scheme is trans-
parent, if for every PPT adversary A, there exists a negligible function ν
such that: ∣∣∣Pr

î
ExpTransparency

A,P3S (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 7.

Pseudonymity. Pseudonymity prohibits that an adversary can decide
which sanitizer actually is responsible for a given signature, if it does
not have access to skSig

P3S. This is related to the anonymity of group
signatures [CvH91]. We formalize it in the following way. The challenger
draws a bit b ←r {0, 1}, generates the public parameters ppP3S and the

ExpTransparency
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

b←r {0, 1}
Q ← ∅
b∗ ←r ASignP3S(·,sk

Sig
P3S
,·,·,·),SignOrSanit(·,sk

Sig
P3S
,·,·,·,·,·,·,b),Proof′P3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

where SignOrSanit on input of pkP3S, skSig
P3S, skSan

P3S, A, m, M, A, skS, b:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

if b = 1:

σ′ ←r SignP3S(pkP3S, sk
Sig
P3S,m

′,A,A)
Q ← Q∪ {(pkP3S, σ

′,m′)}
return σ′

and Proof′P3S on input of pkP3S, skSig
P3S, σ, m:

return ⊥, if (pkP3S, σ,m) ∈ Q
return ProofP3S(pkP3S, sk

Sig
P3S, σ,m)

return 1, if b = b∗

return 0

Fig. 7: P3S Transparency

signer’s key pair (skSig
P3S, pk

Sig
P3S) honestly. The adversary gains access to

three oracles: SignP3S, LoRSanit, and Proof ′P3S. The SignP3S-oracle allows

the adversary to generate new signatures; the only fixed input is skSig
P3S.

The LoRSanit-oracle is the challenge oracle. It allows the adversary A
to input pkP3S, pkSig

P3S, skSan
P3S,0, skSan

P3S,1, skS0, skS1, m, and σ (b and skSig
P3S

are input by the challenger). The oracle then signs m with A and A.
Then, the resulting signature is sanitized to M(m), using keys skSan

P3S,b

and skS,b. The resulting signature is given to the adversary. As done for
transparency, we also log the signatures generated by this oracle in a
list Q. The list Q is required to prohibit that the adversary A wants to
generate a proof using the Proof ′P3S-oracle with signatures generated by
the LoRSanit-oracle, which clearly contradicts pseudonymity. Thus, the
adversary can only input pkP3S, skSig

P3S, σ, m for which (pkP3S, σ,m) was
never input/output to the LoRSanit-oracle. The goal of the adversary is
to guess the bit b.

Again, we stress that this definition also seems to be overly strong.
However, as also done for group signatures, secrets keys may leak over time.
This definition protects even against bad randomness at key generation.

ExpPseudonymity
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

Q ← ∅
b←r {0, 1}
b∗ ←r ASignP3S(·,sk

Sig
P3S
,·,·,·),Proof′P3S(·,sk

Sig
P3S
,·,·),LoRSanit(·,pk

Sig
P3S
,·,·,·,·,·,·,·,b)(pkSig

P3S)

where Proof′P3S on input of pkP3S, skSig
P3S, σ, m:

return ⊥, if (pkP3S, σ,m) ∈ Q
return ProofP3S(pkP3S, sk

Sig
P3S, σ,m)

and LoRSanit on input of pkP3S, pkSig
P3S, skSan

P3S,0, skSan
P3S,1, skS0, skS1, m, σ, M, b:

for b′ ∈ {0, 1}, (σ′b′ ,m
′
b′)←r SanitizeP3S(pkP3S, pk

Sig
P3S, sk

San
P3S,b′ , skS,b′ ,m, σ,M)

return ⊥, if σ′0 = ⊥ ∨ σ′1 = ⊥
Q ← Q∪ {(pkP3S, σ

′
b,m

′
b)}

return σ′b
return 1, if b = b∗

return 0

Fig. 8: P3S Pseudonymity

Definition 11 (P3S Pseudonymity). We say a P3S scheme is pseudony-
mous, if for every PPT adversary A, there exists a negligible function ν
such that: ∣∣∣Pr

î
ExpPseudonymity

A,P3S (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν(κ).

The corresponding experiment is depicted in Figure 8.

Signer-Accountability. Signer-accountability prohibits that an adversary
can generate a bogus proof that makes JudgeP3S decide that a sanitizer is
responsible for a given signature/message pair (m∗, σ∗), but that sanitizer
has never generated this pair. This is even true, if the adversary can
generate the signer’s key pair, the global group key pair, while receiving
full adaptive access to a sanitization-oracle.

Definition 12 (P3S Signer-Accountability). We say a P3S scheme is
signer-accountable, if for every PPT adversary A, there exists a negligible
function ν such that:

Pr
î
ExpSigner-Accountability

A,P3S (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 9.

ExpSigner-Accountability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSan
P3S, pk

San
P3S)←r KGenSanP3S(ppP3S)

b←r {0, 1}
Q ← ∅
(pk∗0, pk

∗
1, σ
∗,m∗, π∗)←r ASanitize′P3S(·,·,skSan

P3S,·,·,·,·)(pkSan
P3S)

where Sanitize′P3S on input of pkP3S, pkSig
P3S, skSan

P3S, skS, m, σ, M:

(σ′,m′)←r SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M)

if σ 6= ⊥, Q ← Q∪ {(pkP3S, pk
Sig
P3S, σ

′,m′)}
return σ′

return 1, if JudgeP3S(pk∗0, pk
∗
1, pk

San
P3S, π

∗, σ∗,m∗) = 1 ∧ (pk∗0, pk
∗
1, σ
∗,m∗) /∈ Q

return 0

Fig. 9: P3S Signer-Accountability

Sanitizer-Accountability. Sanitizer-accountability prohibits that an adver-
sary can generate a bogus signature/message pair (m∗, σ∗) that makes
ProofP3S outputs a (honestly generated) generated proof πP3S which points
to the signer, but (m∗, σ∗) has never been generated by the signer. This
is even true, if the adversary can generate all sanitizers key pairs, while
receiving full adaptive access to a signing-oracle and a proof-oracle.

ExpSanitizer-Accountability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

b←r {0, 1}
Q ← ∅
(pk∗, σ∗,m∗, π∗)←r ASign′P3S(·,sk

Sig
P3S
,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

where Sign′P3S on input of pkP3S, skSig
P3S, m, A, A:

σ ←r SignP3S(pkP3S, sk
Sig
P3S,m,A,A)

if σ 6= ⊥, Q ← Q∪ {(pkP3S, σ
′,m′)}

return σ′

(πP3S, pk)←r ProofP3S(pk∗, skSig
P3S, σ

∗,m∗)

return 1, if JudgeP3S(pk∗, pkSig
P3S, pk

Sig
P3S, πP3S, σ

∗,m∗) = 1 ∧ (pk∗, σ∗,m∗) /∈ Q
return 0

Fig. 10: P3S Sanitizer-Accountability

Definition 13 (P3S Sanitizer-Accountability). We say a P3S scheme
is sanitizer-accountable, if for every PPT adversary A, there exists a
negligible function ν such that:

Pr
î
ExpSanitizer-Accountability

A,P3S (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 10.

Proof-Soundness. Proof-soundness essentially only handles the case that
a signature σ can only be opened in an unambiguous way. Thus, the
adversary’s goal is to output two proofs which “prove” different statements
for the same signature/message pair. It is related to the property of opening-
soundness introduced by Sakai et al. [SSE+12] for group signatures.

ExpProof-Soundness
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)
((pk∗i)0≤i≤5, σ

∗,m∗, π∗0 , π
∗
1)←r A(ppP3S)

return 1, if JudgeP3S(pk∗0, pk
∗
1, pk

∗
2, π
∗
0 , σ
∗,m∗) = 1 ∧

JudgeP3S(pk∗3, pk
∗
4, pk

∗
5, π
∗
1 , σ
∗,m∗) = 1 ∧

(pk∗0, pk
∗
1, pk

∗
2) 6= (pk∗3, pk

∗
4, pk

∗
5)

return 0

Fig. 11: P3S Proof-Soundness

Definition 14 (P3S Proof-Soundness). We say a P3S scheme is proof-
sound, if for every PPT adversary A, there exists a negligible function ν
such that:

Pr
î
ExpProof-Soundness

A,P3S (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 11.

Traceability. Traceability requires that an adversary cannot generate a
signature which cannot be opened, i.e., it can be seen as the “dual” to
proof-soundness. In more detail, the adversary’s goal is to generate a
verifying signature for which an honest signer cannot generate (πP3S, pk)
for which JudgeP3S outputs correct.

Definition 15 (P3S Traceability). We say a P3S scheme is traceable,
if for every PPT adversary A, there exists a negligible function ν such
that:

Pr
î
ExpTraceability

A,P3S (κ) = 1
ó
≤ ν(κ).

ExpTraceability
A,P3S (κ)

ppP3S ←r ParGenP3S(1κ)

(skSig
P3S, pk

Sig
P3S)←r KGenSigP3S(ppP3S)

(pk∗, σ∗,m∗)←r ASignP3S(·,sk
Sig
P3S
,·,·,·),ProofP3S(·,sk

Sig
P3S
,·,·)(pkSig

P3S)

return 0, if VerifyP3S(pk∗, pkSig
P3S, σ

∗,m∗) = 0

(πP3S, pk)←r ProofP3S(pk∗, skSig
P3S, σ

∗,m∗)

return 1, if JudgeP3S(pk∗, pkSig
P3S, pk, πP3S, σ

∗,m∗) = 0
return 0

Fig. 12: P3S Traceability

The corresponding experiment is depicted in Figure 12.

Relationship of Properties. All properties are independent of each
other. The full theorems and proofs are given in App. D.

4 Construction

In this section we present our P3S construction. The key ingredients are
our strengthened version of a policy-based chameleon-hash PCH, a labeled
simulation-sound extractable non-interactive zero-knowledge proof system
Ω (NIZK for short), a one-way function f as well as a key-verifiable
IND-CCA2 secure public key encryption scheme3 Π and an eUNF-CMA-
secure signature scheme Σ. The intuition behind our construction, given
in Construction 1, is as follows.

The global parameters of the scheme are a one-way function f , the
CRS of the NIZK, and the parameters for the encryption scheme, the
signature scheme and the policy-based chameleon hash. The group setup
generates the keys of the policy-based chameleon-hash, and a key pair
of the signature scheme. The signer generates a signature key pair and
publishes the public key together with an image y1 of a random pre-image
x1 of the OWF f . The sanitizer chooses a random pre-image x2 of the
OWF as secret key and as public key y2 = f(x2). If a sanitizers joins a
group, i.e., obtains secret keys for a set of attributes S, the group manager
signs the sanitizer’s public key and additionally issues a secret key for the
PCH for attributes S.

3 Although key-verifiability is no property often explicitly used within IND-CCA2
encryption schemes, most encryption schemes are key-verifiable. See App. C.

For signing, the signer hashes the message using the PCH and signs
the hash (along with some additional information). Moreover, it computes
a NIZK for the relation R (using as label ` some additional information
like the admissible changes).

(y1, c, y2,pkΠ , pkΣ), (x, r, σskS)) ∈ R ⇐⇒
(y1 = f(x) ∧ c = EncΠ(pkΠ , y1; r)) ∨
(y2 = f(x) ∧ c = EncΠ(pkΠ , y2; r) ∧ VerfΣ(pkΣ , y2, σskS) = 1).

Sanitizing amounts to computing a collision for the PCH hash, updating
the respective message blocks, and again attaching a NIZK for relation
R. Verification is straightforward. Relation R is used within signing and
sanitizing to force the signer or the sanitizer to commit to having performed
the action. Intuitively, when determining whether a signer or sanitizer
has performed the action, the ProofP3S algorithm (having access to the
signer’s secret key) can simply decrypt c and prove correct decryption.

It may be tempting to think that the weaker notion of witness indis-
tinguishability is sufficient for our construction, but it turns out that one
requires zero-knowledge. Moreover, we stress that due to the underlying
construction paradigm, we do not consider the strong privacy notion of
unlinkability [BFLS10], i.e., that sanitized signatures cannot be linked
to its origin, which seems to be very hard to achieve with the current
construction paradigm. However, finding such a construction may have its
merits. Formally, for our construction, we can show the following:

Theorem 1. If f is a one-way function, Π is IND-CCA2 secure and key-
verifiable, Σ is eUNF-CMA secure, Ω is zero-knowledge and simulation-
sound extractable, while PCH is fully indistinguishable, insider collision-
resistant, and unique, the construction of a P3S given in Construction 1
is unforgeable, immutable, private, transparent, pseudonymous, signer-
accountable, sanitizer-accountable, proof-sound, and traceable. Likewise,
the construction is correct, if the underlying primitives are correct (and
sound, resp.).

The full proof of Theorem 1 is given in App. D.

Instantiation. The description of Construction 1 is as compact as rea-
sonable. For a concrete instantiation, there are some aspects which can be
optimized. Currently, it seems to be advisable to stick to elliptic curves
and in particular to the type-3 bilinear group setting (a setting where
we assume the SXDH assumption to hold), due to the efficiency of the

ParGenP3S(1κ) : On input a security parameter κ, let ppΠ ←r PPGenΠ(1κ), crsΩ ←r

PPGenΩ(1κ).a Finally, choose a one-way function f , let ppΣ ←r PPGenΣ(1κ), and
ppPCH ←r PPGenPCH(1κ). Return ppP3S ← (crsΩ , ppΠ , ppΣ , ppPCH, f).

SetupP3S(ppP3S) : Let (skPCH, pkPCH) ←r MKeyGenPCH(ppPCH) and (skΣ , pkΣ) ←r

KGenΣ(ppΣ). Return (skP3S, pkP3S)← ((skPCH, skΣ), (pkPCH, pkΣ)).
KGenSigP3S(ppP3S) : Draw x1 ←r Df , (skΠ , pkΠ)←r KGenΠ(ppΠ), let y1 ← f(x1) and

(sk′Σ , pk
′
Σ)←r KGenΣ(ppΣ).

Return (skSig
P3S, pk

Sig
P3S)← ((x1, sk

′
Σ , skΠ), (y1, pk

′
Σ , pkΠ)).

KGenSanP3S(ppP3S) : Draw x2 ←r Df . Let y2 ← f(x2). Return (x2, y2).

SignP3S(pkP3S, sk
Sig
P3S,m,A,A) : If A = ∅, return ⊥. Let (h, r) ←r HashPCH(pkPCH,m,

A), σm ←r SignΣ(sk′Σ , (pkP3S, pk
Sig
P3S,A,m!A, h,A)), and c ←r EncΠ(pkΠ , y1). Let

π ←r ProveΩ{(x1, x2, σskS) : (y1 = f(x1) ∧ c = EncΠ(pkΠ , y1)) ∨ (y2 = f(x2) ∧ c =
EncΠ(pkΠ , y2) ∧ VerfΣ(pkΣ , (y2, pkP3S), σskS) = 1)}(`), where ` = (ppP3S, pkP3S,
pkSig

P3S, h, r,m,A,A,mA,m!A, σm, c). Return σ ← (h, r,A, σm,A, π, c).
AddSanP3S(skP3S, pk

San
P3S, S) : If S /∈ 2U, return ⊥. Let σskS ←r SignΣ(skΣ , (pk

San
P3S, pkP3S))

and sk′S ←r KGenPCH(skPCH, S). Return skS ← (σskS , sk
′
S).

VerifyP3S(pkP3S, pk
Sig
P3S, σ,m) : If π or σm is not valid, return ⊥. Check that m!A is

contained in m in the correct sequence at the right positions (derivable from A). If
VerifyPCH(pkPCH,m, r, h) = 1, return 1. Otherwise, return 0.

SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS,m, σ,M) : If σskS or σ is not valid, return ⊥. Let r′ ←r

AdaptPCH(pkPCH, sk
′
S,m,M(m), h, r), c′ ←r EncΠ(pkΠ , y2), and π′ ←r ProveΩ{(x1,

x2, σskS) : (y1 = f(x1) ∧ c′ = EncΠ(pkΠ , y1)) ∨ (y2 = f(x2) ∧ c′ =
EncΠ(pkΠ , y2) ∧ VerfΣ(pkΣ , (y2, pkP3S), σskS) = 1)}(`), where ` = (ppP3S,
pkP3S, pk

Sig
P3S, h, r

′,M(m),A,A,mA,m!A, σm, c
′). Let (σ′,m′) ← ((h, r′,A, σm,A, π′,

c′),M(m)). If (σ′,m′) is not valid, return ⊥. Return (σ′,m′).
ProofP3S(pkP3S, sk

Sig
P3S, σ,m) : If σ is not valid, return ⊥. Let pk ← DecΠ(skΠ , c). Let

πP3S ←r ProveΩ{(skΠ) : pk = DecΠ(skΠ , c) ∧ KVrfΠ(skΠ , pkΠ) = 1}(`), where
` = (ppP3S, pkP3S, pk

Sig
P3S, σ, pk,m). Return (πP3S, pk).

JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ,m) : If σ or πP3S is not valid, return 0. Return 1.

a Note, we need a different CRS for each language L involved. However, we keep the descrip-
tion short, and thus do not make this explicit.

Construction 1: Our P3S

CP-ABE schemes in this setting (used by the PCH). Consequently, we
consider the OWF f to be simply the function f(x) = gx for x ∈ Zq and
g being a generator of a group G of prime order q (and in particular one
of the base groups of a bilinear group). Then, as an encryption scheme
to encrypt images under f and that is key-verifiable, we can use Cramer-
Shoup encryption in either of the two base groups. For completeness, we
show key-verifiability of CS-encryption where keys are generated with
respect to a common group description (including both generators) in
App. C). Now, the signature keys (sk′Σ , pk

′
Σ) used by signer to produce

signatures can be any arbitrary eUNF-CMA-secure scheme. In contrast,
the signature scheme associated to keys (skΣ , pkΣ) used by the group
manager in AddSanP3S to certify the y2 values of sanitizers need to be
chosen with care: we need a signature scheme with message space being
one of the base groups of the bilinear group and thus the natural choice
is a structure preserving signature scheme [AFG+10]. Moreover, the SPS
(e.g., Groth [Gro15]) needs to be compatible with efficient labeled NIZK;
the latter can be instantiated from standard Σ-protocols using the com-
piler by Faust et al. [FKMV12] and supporting labels is straightforward
(cf. [ABM15]). As PCH instantiation we can use a strengthened version of
the PCH by Derler et al. [DSSS19]. See App. C. To make the public key
of the PCH compatible with the NIZK and Σ, it can simply be hashed
using a collision-resistant hash-function.

Efficiency. Our scheme is reasonably efficient. The group manager only
needs to create a key-pair for a PCH, while the sanitizer only needs to
evaluate a one-way functions (the signer additionally needs to draw a key-
pair for an encryption scheme Π). For signing, the signer needs to generate
a hash, a signature, an encryption, and a simple NIZK. For sanitizing,
the sanitizer has to create an encryption, adapt a hash, and attaches a
simple NIZK. Granting sanitizing rights boils down to creating a signature
and creating a key for the PCH. Verification is also straightforward: A
verifier checks a signature and the NIZK. Likewise, proof-generation is a
simple decryption and a NIZK proving that decryption was done honestly.
Checking a proof is verifying a proof and a signature. Thus, ignoring the
NIZK and the encryptions, our scheme is comparable to existing, way less
expressive, constructions.

5 Conclusion

We have introduced the notion of policy-based sanitizable signatures,
which are an extension to standard sanitizable signature schemes, along
with a provably secure construction. Our construction features, for the
first time, full accountability. In our new primitive, a sanitizer is no longer
appointed by the signer at signature generation, but rather can sanitize
based on a set attributes it has.

References

ABC+15. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi
Shelat, and Brent Waters. Computing on authenticated data. J. Cryptology,

28(2):351–395, 2015.
ABM15. Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of

the J-PAKE password-authenticated key exchange protocol. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 571–587. IEEE Computer Society, 2015.

ACdMT05. Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
Sanitizable signatures. In Sabrina De Capitani di Vimercati, Paul F.
Syverson, and Dieter Gollmann, editors, Computer Security - ESORICS
2005, 10th European Symposium on Research in Computer Security, Milan,
Italy, September 12-14, 2005, Proceedings, volume 3679 of Lecture Notes
in Computer Science, pages 159–177. Springer, 2005.

ADK+13. Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and
Miyako Ohkubo. Tagged one-time signatures: Tight security and optimal
tag size. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key
Cryptography - PKC 2013 - 16th International Conference on Practice and
Theory in Public-Key Cryptography, Nara, Japan, February 26 - March
1, 2013. Proceedings, volume 7778 of Lecture Notes in Computer Science,
pages 312–331. Springer, 2013.

AdM04. Giuseppe Ateniese and Breno de Medeiros. On the key exposure problem in
chameleon hashes. In Carlo Blundo and Stelvio Cimato, editors, Security
in Communication Networks, 4th International Conference, SCN 2004,
Amalfi, Italy, September 8-10, 2004, Revised Selected Papers, volume 3352
of Lecture Notes in Computer Science, pages 165–179. Springer, 2004.

AFG+10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments to
group elements. In Tal Rabin, editor, Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer
Science, pages 209–236. Springer, 2010.

AMVA17. Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton R.
Andrade. Redactable blockchain - or - rewriting history in bitcoin and
friends. In 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017, pages 111–126. IEEE,
2017.

BCD+17. Michael Till Beck, Jan Camenisch, David Derler, Stephan Krenn, Henrich C.
Pöhls, Kai Samelin, and Daniel Slamanig. Practical strongly invisible and
strongly accountable sanitizable signatures. In Josef Pieprzyk and Suriadi
Suriadi, editors, Information Security and Privacy - 22nd Australasian
Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceed-
ings, Part I, volume 10342 of Lecture Notes in Computer Science, pages
437–452. Springer, 2017.

BFF+09. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk.
Security of sanitizable signatures revisited. In Jarecki and Tsudik [JT09],
pages 317–336.

BFKW09. Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters.
Signing a linear subspace: Signature schemes for network coding. In Jarecki
and Tsudik [JT09], pages 68–87.

BFLS09. Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder.
Sanitizable signatures: How to partially delegate control for authenticated

data. In Arslan Brömme, Christoph Busch, and Detlef Hühnlein, editors,
BIOSIG 2009 - Proceedings of the Special Interest Group on Biometrics
and Electronic Signatures, 17.-18. September 2009 in Darmstadt, Germany,
volume P-155 of LNI, pages 117–128. GI, 2009.

BFLS10. Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder.
Unlinkability of sanitizable signatures. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography - PKC 2010, 13th Inter-
national Conference on Practice and Theory in Public Key Cryptography,
Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes
in Computer Science, pages 444–461. Springer, 2010.

BL17. Xavier Bultel and Pascal Lafourcade. Unlinkable and strongly accountable
sanitizable signatures from verifiable ring signatures. In Srdjan Capkun
and Sherman S. M. Chow, editors, Cryptology and Network Security - 16th
International Conference, CANS 2017, Hong Kong, China, November 30 -
December 2, 2017, Revised Selected Papers, volume 11261 of Lecture Notes
in Computer Science, pages 203–226. Springer, 2017.

BLL+19. Xavier Bultel, Pascal Lafourcade, Russell W. F. Lai, Giulio Malavolta,
Dominique Schröder, and Sri Aravinda Krishnan Thyagarajan. Efficient
invisible and unlinkable sanitizable signatures. In Dongdai Lin and Kazue
Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography,
Beijing, China, April 14-17, 2019, Proceedings, Part I, volume 11442 of
Lecture Notes in Computer Science, pages 159–189. Springer, 2019.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The one-more-rsa-inversion problems and the security of chaum’s
blind signature scheme. J. Cryptology, 16(3):185–215, 2003.

BPS12. Christina Brzuska, Henrich Christopher Pöhls, and Kai Samelin. Non-
interactive public accountability for sanitizable signatures. In Sabrina
De Capitani di Vimercati and Chris J. Mitchell, editors, Public Key Infras-
tructures, Services and Applications - 9th European Workshop, EuroPKI
2012, Pisa, Italy, September 13-14, 2012, Revised Selected Papers, volume
7868 of Lecture Notes in Computer Science, pages 178–193. Springer, 2012.

BPS13. Christina Brzuska, Henrich Christopher Pöhls, and Kai Samelin. Efficient
and perfectly unlinkable sanitizable signatures without group signatures. In
Sokratis K. Katsikas and Isaac Agudo, editors, Public Key Infrastructures,
Services and Applications - 10th European Workshop, EuroPKI 2013,
Egham, UK, September 12-13, 2013, Revised Selected Papers, volume 8341
of Lecture Notes in Computer Science, pages 12–30. Springer, 2013.

BPS17. Arne Bilzhause, Henrich C. Pöhls, and Kai Samelin. Position paper: The
past, present, and future of sanitizable and redactable signatures. In
Proceedings of the 12th International Conference on Availability, Reliability
and Security, Reggio Calabria, Italy, August 29 - September 01, 2017, pages
87:1–87:9. ACM, 2017.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93,
Proceedings of the 1st ACM Conference on Computer and Communications
Security, Fairfax, Virginia, USA, November 3-5, 1993, pages 62–73. ACM,
1993.

BSW07. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In 2007 IEEE Symposium on Security and
Privacy (S&P 2007), 20-23 May 2007, Oakland, California, USA, pages
321–334. IEEE Computer Society, 2007.

BSZ05. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group sig-
natures: The case of dynamic groups. In Alfred Menezes, editor, Topics
in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceed-
ings, volume 3376 of Lecture Notes in Computer Science, pages 136–153.
Springer, 2005.

CDK+17. Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai
Samelin, and Daniel Slamanig. Chameleon-hashes with ephemeral trap-
doors - and applications to invisible sanitizable signatures. In Serge Fehr,
editor, Public-Key Cryptography - PKC 2017 - 20th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Amster-
dam, The Netherlands, March 28-31, 2017, Proceedings, Part II, volume
10175 of Lecture Notes in Computer Science, pages 152–182. Springer,
2017.

CJ10. Sébastien Canard and Amandine Jambert. On extended sanitizable signa-
ture schemes. In Josef Pieprzyk, editor, Topics in Cryptology - CT-RSA
2010, The Cryptographers’ Track at the RSA Conference 2010, San Fran-
cisco, CA, USA, March 1-5, 2010. Proceedings, volume 5985 of Lecture
Notes in Computer Science, pages 179–194. Springer, 2010.

CJL12. Sébastien Canard, Amandine Jambert, and Roch Lescuyer. Sanitizable
signatures with several signers and sanitizers. In Aikaterini Mitrokotsa and
Serge Vaudenay, editors, Progress in Cryptology - AFRICACRYPT 2012 -
5th International Conference on Cryptology in Africa, Ifrance, Morocco,
July 10-12, 2012. Proceedings, volume 7374 of Lecture Notes in Computer
Science, pages 35–52. Springer, 2012.

CLM08. Sébastien Canard, Fabien Laguillaumie, and Michel Milhau. Trapdoorsani-
tizable signatures and their application to content protection. In Steven M.
Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti Yung, editors,
Applied Cryptography and Network Security, 6th International Conference,
ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings, volume
5037 of Lecture Notes in Computer Science, pages 258–276, 2008.

CS97. Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Burton S. Kaliski Jr., editor,
Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, volume 1294 of Lecture Notes in Computer Science, pages
410–424. Springer, 1997.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, 1998.

CvH91. David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, Advances in Cryptology - EUROCRYPT ’91, Workshop on
the Theory and Application of of Cryptographic Techniques, Brighton, UK,

April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer
Science, pages 257–265. Springer, 1991.

DDH+15. Denise Demirel, David Derler, Christian Hanser, Henrich C. Pöhls, Daniel
Slamanig, and Giulia Traverso. PRISMACLOUD D4.4: Overview of Func-
tional and Malleable Signature Schemes. Technical report, H2020 Pris-
macloud, www.prismacloud.eu, 2015.

DHLW10. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage. In
Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings, volume
6477 of Lecture Notes in Computer Science, pages 613–631. Springer, 2010.

dMPPS14. Hermann de Meer, Henrich Christopher Pöhls, Joachim Posegga, and Kai
Samelin. On the relation between redactable and sanitizable signature
schemes. In Jan Jürjens, Frank Piessens, and Nataliia Bielova, editors,
Engineering Secure Software and Systems - 6th International Symposium,
ESSoS 2014, Munich, Germany, February 26-28, 2014, Proceedings, volume
8364 of Lecture Notes in Computer Science, pages 113–130. Springer, 2014.

DPSS15. David Derler, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig. A
general framework for redactable signatures and new constructions. In
Soonhak Kwon and Aaram Yun, editors, Information Security and Cryp-
tology - ICISC 2015 - 18th International Conference, Seoul, South Korea,
November 25-27, 2015, Revised Selected Papers, volume 9558 of Lecture
Notes in Computer Science, pages 3–19. Springer, 2015.

DS15. David Derler and Daniel Slamanig. Rethinking privacy for extended
sanitizable signatures and a black-box construction of strongly private
schemes. In Man Ho Au and Atsuko Miyaji, editors, Provable Security -
9th International Conference, ProvSec 2015, Kanazawa, Japan, November
24-26, 2015, Proceedings, volume 9451 of Lecture Notes in Computer
Science, pages 455–474. Springer, 2015.

DS19. David Derler and Daniel Slamanig. Key-homomorphic signatures: def-
initions and applications to multiparty signatures and non-interactive
zero-knowledge. Des. Codes Cryptogr., 87(6):1373–1413, 2019.

DSSS19. David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. Fine-
grained and controlled rewriting in blockchains: Chameleon-hashing gone
attribute-based. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019.

FF15. Victoria Fehr and Marc Fischlin. Sanitizable signcryption: Sanitization over
encrypted data (full version). IACR Cryptology ePrint Archive, 2015:765,
2015.

FH18. Marc Fischlin and Patrick Harasser. Invisible sanitizable signatures and
public-key encryption are equivalent. In Bart Preneel and Frederik Ver-
cauteren, editors, Applied Cryptography and Network Security - 16th In-
ternational Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018,
Proceedings, volume 10892 of Lecture Notes in Computer Science, pages
202–220. Springer, 2018.

FKM+16. Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. Efficient unlinkable sanitizable
signatures from signatures with re-randomizable keys. In Chen-Mou Cheng,

www.prismacloud.eu

Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, Public-
Key Cryptography - PKC 2016 - 19th IACR International Conference on
Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March
6-9, 2016, Proceedings, Part I, volume 9614 of Lecture Notes in Computer
Science, pages 301–330. Springer, 2016.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the fiat-shamir transform. In
Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology -
INDOCRYPT 2012, 13th International Conference on Cryptology in India,
Kolkata, India, December 9-12, 2012. Proceedings, volume 7668 of Lecture
Notes in Computer Science, pages 60–79. Springer, 2012.

GGOT16. Esha Ghosh, Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia.
Verifiable zero-knowledge order queries and updates for fully dynamic lists
and trees. In Vassilis Zikas and Roberto De Prisco, editors, Security and
Cryptography for Networks - 10th International Conference, SCN 2016,
Amalfi, Italy, August 31 - September 2, 2016, Proceedings, volume 9841 of
Lecture Notes in Computer Science, pages 216–236. Springer, 2016.

GQZ10. Junqing Gong, Haifeng Qian, and Yuan Zhou. Fully-secure and practical
sanitizable signatures. In Xuejia Lai, Moti Yung, and Dongdai Lin, edi-
tors, Information Security and Cryptology - 6th International Conference,
Inscrypt 2010, Shanghai, China, October 20-24, 2010, Revised Selected
Papers, volume 6584 of Lecture Notes in Computer Science, pages 300–317.
Springer, 2010.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
Advances in Cryptology - ASIACRYPT 2006, 12th International Conference
on the Theory and Application of Cryptology and Information Security,
Shanghai, China, December 3-7, 2006, Proceedings, volume 4284 of Lecture
Notes in Computer Science, pages 444–459. Springer, 2006.

Gro15. Jens Groth. Efficient fully structure-preserving signatures for large mes-
sages. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology
- ASIACRYPT 2015 - 21st International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part I, volume 9452 of
Lecture Notes in Computer Science, pages 239–259. Springer, 2015.

JMSW02. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David A.
Wagner. Homomorphic signature schemes. In Bart Preneel, editor, Topics
in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA
Conference, 2002, San Jose, CA, USA, February 18-22, 2002, Proceedings,
volume 2271 of Lecture Notes in Computer Science, pages 244–262. Springer,
2002.

JT09. Stanislaw Jarecki and Gene Tsudik, editors. Public Key Cryptography -
PKC 2009, 12th International Conference on Practice and Theory in Public
Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings,
volume 5443 of Lecture Notes in Computer Science. Springer, 2009.

KPSS18a. Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig.
Chameleon-hashes with dual long-term trapdoors and their applications.
In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
Progress in Cryptology - AFRICACRYPT 2018 - 10th International Con-
ference on Cryptology in Africa, Marrakesh, Morocco, May 7-9, 2018,

Proceedings, volume 10831 of Lecture Notes in Computer Science, pages
11–32. Springer, 2018.

KPSS18b. Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig.
Protean signature schemes. In Jan Camenisch and Panos Papadimitratos,
editors, Cryptology and Network Security - 17th International Conference,
CANS 2018, Naples, Italy, September 30 - October 3, 2018, Proceedings, vol-
ume 11124 of Lecture Notes in Computer Science, pages 256–276. Springer,
2018.

KPSS19. Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig. Fully
invisible protean signatures schemes. IACR Cryptology ePrint Archive,
2019:39, 2019.

KR00. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2000, San
Diego, California, USA, pages 143–154. The Internet Society, 2000.

KSS15. Stephan Krenn, Kai Samelin, and Dieter Sommer. Stronger security
for sanitizable signatures. In Joaqúın Garćıa-Alfaro, Guillermo Navarro-
Arribas, Alessandro Aldini, Fabio Martinelli, and Neeraj Suri, editors,
Data Privacy Management, and Security Assurance - 10th International
Workshop, DPM 2015, and 4th International Workshop, QASA 2015,
Vienna, Austria, September 21-22, 2015. Revised Selected Papers, volume
9481 of Lecture Notes in Computer Science, pages 100–117. Springer, 2015.

LDW13. Junzuo Lai, Xuhua Ding, and Yongdong Wu. Accountable trapdoor saniti-
zable signatures. In Robert H. Deng and Tao Feng, editors, Information
Security Practice and Experience - 9th International Conference, ISPEC
2013, Lanzhou, China, May 12-14, 2013. Proceedings, volume 7863 of
Lecture Notes in Computer Science, pages 117–131. Springer, 2013.

LOS+10. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In Henri Gilbert,
editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings,
volume 6110 of Lecture Notes in Computer Science, pages 62–91. Springer,
2010.

SBZ01. Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction
signatures. In Kwangjo Kim, editor, Information Security and Cryptology
- ICISC 2001, 4th International Conference Seoul, Korea, December 6-7,
2001, Proceedings, volume 2288 of Lecture Notes in Computer Science,
pages 285–304. Springer, 2001.

SSE+12. Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and
Kazuo Ohta. On the security of dynamic group signatures: Preventing
signature hijacking. In Marc Fischlin, Johannes A. Buchmann, and Mark
Manulis, editors, Public Key Cryptography - PKC 2012 - 15th International
Conference on Practice and Theory in Public Key Cryptography, Darmstadt,
Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture Notes in
Computer Science, pages 715–732. Springer, 2012.

YAHK11. Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru
Kunihiro. Generic constructions for chosen-ciphertext secure attribute
based encryption. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and
Antonio Nicolosi, editors, Public Key Cryptography - PKC 2011 - 14th In-

ternational Conference on Practice and Theory in Public Key Cryptography,
Taormina, Italy, March 6-9, 2011. Proceedings, volume 6571 of Lecture
Notes in Computer Science, pages 71–89. Springer, 2011.

YSL10. Dae Hyun Yum, Jae Woo Seo, and Pil Joong Lee. Trapdoor sanitizable
signatures made easy. In Jianying Zhou and Moti Yung, editors, Applied
Cryptography and Network Security, 8th International Conference, ACNS
2010, Beijing, China, June 22-25, 2010. Proceedings, volume 6123 of Lecture
Notes in Computer Science, pages 53–68, 2010.

A Additional Preliminaries

Definition 16 (One-Way Functions). A function f : Df → Rf is
κ-one-way, if for every PPT adversary A there exists a negligible function
ν such that:

Pr[x←r Df , x
′ ←r A(f(x)) : f(x) = f(x′)] ≤ ν(κ)

We assume that Df and Rf are implicitly defined by f .

Definition 17 (Digital Signatures). A digital signature scheme Σ con-
sists of four algorithms {PPGenΣ ,KGenΣ ,SignΣ ,VerfΣ} such that:

PPGenΣ. The algorithm PPGenΣ outputs the public parameters

ppΣ ←r PPGenΣ(1κ)

We assume that ppΣ contains 1κ and is implicit input to all other
algorithms.

KGenΣ. The algorithm KGenΣ outputs the public and private key of the
signer, where κ is the security parameter:

(skΣ , pkΣ)←r KGenΣ(ppΣ)

SignΣ. The algorithm SignΣ gets as input the secret key skΣ and the
message m ∈M to sign. It outputs a signature:

σ ←r SignΣ(skΣ ,m)

VerfΣ. The deterministic algorithm VerfΣ outputs a decision bit d ∈ {0, 1},
indicating if the signature σ is valid, w.r.t. pkΣ and m:

d← VerfΣ(pkΣ ,m, σ)

For each Σ it is required that the correctness properties hold. In
particular, it is required that for all κ ∈ N, for all ppΣ ←r PPGenΣ(1κ), for
all (skΣ , pkΣ)←r KGenΣ(ppΣ), for all m ∈M, VerfΣ(pkΣ ,m,SignΣ(skΣ ,
m)) = 1 is true. This definition captures perfect correctness.

We require existential unforgeability (eUNF-CMA) of digital signature
schemes. In a nutshell, unforgeability requires that an adversary A cannot
(except with negligible probability) come up with a signature for a message
m∗ for which the adversary did not see any signature before. As usual,
the adversary A can adaptively query for signatures on messages of its
own choice.

Experiment eUNF-CMAΣA(κ)
ppΣ ←r PPGenΣ(1κ)
(skΣ , pkΣ)←r KGenΣ(ppΣ)
Q ← ∅
(m∗, σ∗)←r ASign′Σ(skΣ ,·)(pkΣ)

where Sign′Σ on input skΣ and m:
σ ←r SignΣ(skΣ ,m)
set Q ← Q∪ {m}
return σ

return 1, if VerfΣ(pkΣ ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 13: Σ Unforgeability

Definition 18 (Σ Unforgeability). We say a Σ scheme is unforgeable,
if for every PPT adversary A, there exists a negligible function ν such
that:

Pr
î
ExpeUNF-CMA

A,Σ (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 13.

For our definition of public key encryption we need an additional
algorithm KVrfΠ verifying if a given key pair is valid along with a cor-
responding security notion requiring that even for adversarially chosen
public keys one can find at most one corresponding secret key.

Definition 19 (Public-Key Encryption). A public-key encryption-
scheme Π consists of five algorithms {PPGenΠ ,KGenΠ ,EncΠ ,DecΠ ,KVrfΠ}

PPGenΠ . The algorithm PPGenΠ outputs the public parameters of the
scheme:

ppΠ ←r PPGenΠ(1κ)

It is assumed that ppΠ is implicit input to all other algorithms. Also,
this algorithm may be omitted, if it is clear from the context.

KGenΠ . The algorithm KGenΠ outputs the public and private key, on
input ppΠ :

(skΠ , pkΠ)←r KGenΠ(ppΠ)

EncΠ . The algorithm EncΠ gets as input the public key pkΠ , and a message
m ∈M to encrypt. It outputs a ciphertext:

c←r EncΠ(pkΠ ,m)

DecΠ . The deterministic algorithm DecΠ outputs a message m (or ⊥, if
the ciphertext is invalid) on input skΠ , and a ciphertext c:

m← DecΠ(skΠ , c)

KVrfΠ . The deterministic algorithm KVrfΠ decides whether a given secret
key skΠ belongs to pkΠ , outputting a decision bit b ∈ {1, 0}.

b← KVrfΠ(skΠ , pkΠ)

For each Π, the usual correctness properties must hold. In particular,
it is required that for all κ ∈ N, for all ppΠ ←r PPGenΠ(1κ), for all
(skΠ , pkΠ) ←r KGenΠ(ppΠ), for all m ∈ M, it holds that DecΠ(skΠ ,
EncΠ(pkΠ ,m)) = m and KVrfΠ(skΠ , pkΠ) = 1 are true.

Moreover, we require that the encryption scheme is Π is IND-CCA2
secure and key-verifiable.

Definition 20 (Π IND-CCA2 Security). An encryption scheme Π
is IND-CCA2 secure, if for any PPT adversary A there exists a negligible
function ν such that:∣∣∣Pr

î
ExpIND-CCA2

A,Π (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν(κ)

The corresponding experiment is depicted in Figure 14.

Definition 21 (Π Key-Verifiability). An encryption scheme Π is key-
verifiable, if for any PPT adversary A there exists a negligible function ν
such that:

Pr
î
ExpKey-Verifiability

A,Π (κ) = 1
ó
≤ ν(κ)

The corresponding experiment is depicted in Figure 15.

ExpIND-CCA2
A,Π (κ)

ppΠ ←r PPGenΠ(1κ)
(skΠ , pkΠ)←r KGenΠ(ppΠ)
b←r {0, 1}
((m∗0,m

∗
1), stateA)←r ADecΠ (skΠ ,·)(pkΠ)

If |m∗0| 6= |m∗1| ∨m∗0 /∈M∨m∗1 /∈M:
c∗ ← ⊥

Else:
c∗ ←r EncΠ(pkΠ ,m

∗
b)

b∗ ←r ADec′Π (skΠ ,·)(stateA, c
∗)

where Dec′Π on input skΠ and c:
return ⊥, if c = c∗

return DecΠ(skΠ , c)
return 1, if b∗ = b
return 0

Fig. 14: Π IND-CCA2 Security

ExpKey-Verifiability
A,Π (κ)

ppΠ ←r PPGenΠ(1κ)
(sk∗0, sk

∗
1, pk

∗)←r A(ppΠ)
return 0, if KVrfΠ(sk∗0, pk

∗) = 0 ∨ KVrfΠ(sk∗1, pk
∗) = 0

return 1, if sk∗0 6= sk∗1
return 0

Fig. 15: Π Key-Verifiability

Non-Interactive Proof Systems. Let L be an NP-language with asso-
ciated witness relation R, i.e., such that L = {x | ∃w : R(x,w) = 1}. A
non-interactive proof system allows to prove membership of some state-
ment x in the language L. More formally, such a system is defined as
follows.

Definition 22 (Non-Interactive Proof System). A non-interactive
proof system Ω for language L consists of three algorithms {PPGenΩ,
ProveΩ,VerifyΩ}, such that:

PPGenΩ. The algorithm PPGenΩ outputs public parameters of the scheme,
where κ is the security parameter:

crsΩ ←r PPGenΩ(1κ)

ProveΩ. The algorithm ProveΩ outputs the proof π, on input of the CRS
crsΩ, statement x to be proven, and the corresponding witness w:

π ←r ProveΩ(crsΩ, x, w)

VerifyΩ. The deterministic algorithm VerifyΩ verifies the proof π by out-
putting a bit d ∈ {0, 1}, w.r.t. to some CRS crsΩ and some statement
statement x:

d← VerifyΩ(crsΩ, x, π)

Definition 23 (Completeness). A non-interactive proof system is called
complete, if for all κ ∈ N, for all crsΩ ←r PPGenΩ(1κ), for all x ∈ L, for
all w such that R(x,w) = 1, for all π ←r ProveΩ(crsΩ, x, w), it holds that
VerifyΩ(crsΩ, x, π) = 1.

In addition to completeness, we require two standard security notions for
zero-knowledge proofs of knowledge: zero-knowledge and simulation-sound
extractability. We define them analogous to the definitions given in [DS19].

Informally speaking, zero-knowledge says that the receiver of the proof
π does not learn anything except the validity of the statement.

ExpZero-Knowledge
A,Ω,SIM (κ)

(crsΩ , τ)←r SIM1(1κ)
b←r {0, 1}
b∗ ←r APb(·,·)(crsΩ)

where P0 on input x and w:
return π ←r ProveΩ(crsΩ , x, w), if R(x,w) = 1
return ⊥

and P1 on input (x,w):
return π ←r SIM2(crsΩ , τ, x), if R(x,w) = 1
return ⊥

return 1, if b∗ = b
return 0

Fig. 16: Ω Zero-Knowledge

Definition 24 (Zero-Knowledge). A non-interactive proof system Ω
for language L is zero-knowledge, if for any PPT adversary A, there exists
an PPT simulator SIM = (SIM1, SIM2) such that there exist negligible

functions ν1 and ν2 such that∣∣∣∣Pr [crsΩ ←r PPGenΩ(1κ) : A(crsΩ) = 1]−

Pr [(crsΩ, τ)←r SIM1(1κ) : A(crsΩ) = 1]

∣∣∣∣ ≤ ν1(κ),

and that ∣∣∣Pr
î
ExpZero-Knowledge

A,Ω,SIM (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν2(κ),

where the corresponding experiment is depicted in Figure 16.

Simulation-sound extractability says every adversary which is able to come
up with a proof π∗ for a statement must know the witness, even when
seeing proofs for statements potentially not in L. Clearly, this implies that
the proofs output by a simulation-sound extractable proof-systems are
non-malleable. Note that the definition of simulation-sound extractability

ExpSimSoundExt
A,Ω,E (κ)

(crsΩ , τ, ζ)←r E1(1κ)

(x∗, π∗)←r ASIM(·)(crsΩ)
Q ← ∅

where SIM on input x:
obtain π ←r SIM2(crsΩ , τ, x)
Q ← Q∪ {(x, π)}
return π

w∗ ←r E2(crsΩ , ζ, x
∗, π∗)

return 1, if VerifyΩ(x∗, π∗) = 1 ∧ R(x∗, w∗) = 0 ∧ (x∗, π∗) /∈ Q
return 0

Fig. 17: Ω Simulation-Sound Extractability

of [Gro06] is stronger than ours in the sense that the adversary also
gets the trapdoor ζ as input. However, in our context this weaker notion
(previously also used [ADK+13, DHLW10, DS19]) suffices.

Definition 25 (Simulation-Sound Extractability). A zero-knowledge
non-interactive proof system Ω for language L is said to be simulation-
sound extractable, if for any PPT adversary A, there exists a PPT extractor

E = (E1, E2), such that∣∣∣∣Pr [(crsΩ, τ)←r SIM1(1κ) : A(crsΩ, τ) = 1]−

Pr [(crsΩ, τ, ζ)←r E1(1κ) : A(crsΩ, τ) = 1]

∣∣∣∣ = 0,

and that there exist a negligible function ν so that

Pr
î
ExpSimSoundExt

A,Ω,E (κ)
ó

= 1 ≤ ν(κ),

where the corresponding experiment is depicted in Figure 17.

Supporting Labels. We note that to support labels, the definition of
the ProveΩ, VerifyΩ, SIM2, and E2 algorithms also take a public label ` as
input, and the completeness, soundness, and zero-knowlegde properties
are updated accordingly (cf. [DHLW10]). Achieving this for SSE NIZK
proofs obtained via the Fiat-Shamir transform from Σ-protocol [FKMV12]
can be efficiently done by including the label into the hash computation
(cf. [ABM15]).

B More Preliminaries and Building Blocks

This section is devoted to give additional background on the building
blocks.

B.1 Additional Preliminaries

We first give some additional preliminaries required to understand the
concrete constructions given in Appendix C.

Known-Order Group Definitions and Assumptions.

Group Generator. Let (G, g, q)←r DLGen(1κ) be a group-generator, where
G is multiplicatively written and of prime-order q, where g is a generator.

Discrete Logarithm Assumption. Let (G, g, q)←r DLGen(1κ) be as defined
above. The discrete logarithm assumption states that given gx for some
random x←r Zq, it is hard to find that x.

Definition 26 (Discrete Logarithm Assumption). The discrete log-
arithm assumption holds, if for every PPT adversary A there exists a
negligible function ν such that:

Pr[(G, g, q)←r DLGen(1κ), x←r Zq, x′ ←r A(G, g, q, gx) : x = x′] ≤ ν(κ)

Decisional Diffie-Hellman Assumption. Let (G, g, q)←r DLGen(1κ) be as
defined above. The decisional Diffie-Hellman (DDH) assumption states that
given (gx, gy, gxy) is computationally indistinguishable from (gx, gy, gz)
for some random x, y, z ←r Z3

q .

Definition 27 (Decisional Diffie-Hellman Assumption). The deci-
sional Diffie-Hellman assumption holds, if for every PPT adversary A
there exists a negligible function ν such that:∣∣Pr[(G, g, q)←r DLGen(1κ), (x, y, z)←r Z3

q , b←r {0, 1}

b′ ←r A(G, g, q, gx, gy, gbxy+(1−b)z) : b = b′]− 1/2
∣∣ ≤ ν(κ)

Unknown-Order Group Definitions and Assumptions.

RSA Key-Generator. Let (N, p, q, e, d) ←r RSAGen(1κ) be an instance
generator which returns an RSA modulus N = pq, where p and q are
distinct primes, e > 1 an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n).
We require that RSAGen always outputs moduli with the same bit-length,
based on κ.

The One-More-RSA Inversion Assumption [BNPS03]. Let (n, e, d, p,
q) ←r RSAGen(1κ) be an RSA-key generator returning an RSA mod-
ulus n = pq, where p and q are random distinct primes, e > 1 an integer
co-prime to ϕ(n), and d ≡ e−1 mod ϕ(n). The one-more-RSA-assumption
associated to RSAGen is provided an inversion oracle I, which inverts
any element x ∈ Z∗n w.r.t. e, and a challenge oracle C, which at each call
returns a random element yi ∈ Z∗n, it is hard to invert more challenges
than calls to the inversion oracle.

Definition 28 (One-More-RSA Inversion Assumption). The one-
more RSA inversion assumption holds, if for every PPT adversary A there
exists a negligible function ν such that:

Pr[(n, p, q, e, d)←r RSAGen(1κ), X ←r A(n, e)C(n),I(d,n,·) :

more values returned by C are inverted than queries to I] ≤ ν(κ)

Here, X is the set of inverted challenges.
We require that e is larger than any possible n w.r.t. κ and that it is

prime. Re-stating the assumption with this condition is straightforward.
In this case, it is also required that e is drawn independently from p, q, or
n (and d is then calculated from e, and not vice versa). This can, e.g., be

achieved by demanding that e is drawn uniformly from [n′+1, . . . , 2n′]∩{p |
p is prime}, where n′ is the largest RSA modulus possible w.r.t. to κ. The
details are left to the concrete instantiation of RSAGen.

B.2 Additional Building Blocks

We now present our additional building blocks.

Standard Chameleon-Hashes. Chameleon-hashes behave similar to
standard collision-resistant hash-functions, but allow to find arbitrary
collisions, if a trapdoor is known [KR00].

The following framework is derived from Camenisch et al. [CDK+17].

Definition 29 (Chameleon-Hashes). A chameleon-hash CH consists
of five algorithms (PPGenCH,KGenCH,HashCH,VerifyCH,AdaptCH), such that:

PPGenCH. The algorithm PPGenCH on input security parameter κ outputs
public parameters ppCH of the scheme. For brevity, we assume that
ppCH is implicit input to all other algorithms:

ppCH ←r PPGenCH(1κ)

KGenCH. The algorithm KGenCH, given the public parameters ppCH, out-
puts the private (skCH) and public key (pkCH) of the scheme

(skCH, pkCH)←r KGenCH(ppCH)

HashCH. The algorithm HashCH gets as input the public key pkCH, and a
message m to hash. It outputs a hash h, and some randomness r:

(h, r)←r HashCH(pkCH,m)

VerifyCH. The deterministic algorithm VerifyCH gets as input the public
key pkCH, a message m, randomness r, and a hash h. It outputs a
decision d ∈ {0, 1} indicating whether the hash h is valid:

d← VerifyCH(pkCH,m, h, r)

AdaptCH. The algorithm AdaptCH on input of secret key sk, the old message
m, the old randomness r, hash h, and a new message m′ outputs new
randomness r′:

r′ ←r AdaptCH(skCH,m,m
′, r, h)

Note that we assume that the AdaptCH algorithm always verifies if the
hash it is given is valid, and outputs ⊥ otherwise.

For a CH we require the correctness property to hold. In particu-
lar, we require that for all κ ∈ N, for all ppCH ←r PPGenCH(1κ), for
all (skCH, pkCH) ←r KGenCH(ppCH), for all m ∈ M, for all (h, r) ←r

HashCH(pk,m), for all m′ ∈M, we have for all for all r′ ←r AdaptCH(skCH,
m,m′, r, h), that 1 = VerifyCH(pkCH,m, h, r) = VerifyCH(pkCH,m

′, h, r′).
This definition captures perfect correctness.

The randomness is drawn by HashCH, and not outside. This was done
to capture “private-coin” constructions [AMVA17].

Next, we present security notions of CHs.

Full Indistinguishability. Indistinguishability requires that the random-
nesses r does not reveal if it was obtained through HashCHET or AdaptPCH,
which is captured by the HashOrAdapt-oracle. The messages are chosen
by the adversary.

We relax the indistinguishability definition by Brzuska et al. [BFF+09]
to a computational version, which is enough for most use-cases, including
ours. However, compared to the existing definitions in [BCD+17, CDK+17,
DSSS19, KPSS18a], the adversary is now also allowed to generate the
secret keys involved.

ExpFIndistinguishability
A,CH (κ)

ppCH ←r PPGenCH(1κ)
b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,·,b)(ppCH)

where oracle HashOrAdapt on input skCH, pkCH,m,m
′, b:

(h, r)←r HashCH(pkCH,m
′)

(h′, r′)←r HashCH(pkCH,m)
r′′ ←r AdaptCH(skCH,m,m

′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

Fig. 18: CH Full Indistinguishability

We return ⊥ in the HashOrAdapt oracle (in case of an error), as the
adversary A may try to enter a message m /∈ M, even if M = {0, 1}∗,

which makes the algorithm output ⊥. If we would not do this, the adversary
could trivially decide which case it sees. For similar reasons these checks
are also included in other definitions.

Definition 30 (CH Full Indistinguishability). We say a CH scheme
is fully indistinguishable, if for every PPT adversary A, there exists a
negligible function ν such that:

Pr
î
ExpFIndistinguishability

A,CH (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 18.

Collision-Resistance. Collision-resistance says, that even if an adversary
has access to an adapt oracle, it cannot find any collisions for messages
other than the ones queried to the adapt oracle. Note, this is an even
stronger definition than key-exposure freeness [AdM04]: key-exposure
freeness only requires that one cannot find a collision for some new “tag”,
i.e., for some auxiliary value for which the adversary has never seen a
collision.

ExpCollision-Resistance
A,CH (κ)

ppCH ←r PPGenCH(1κ)
(skCH, pkCH)←r KGenCH(ppCH)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)←r AAdapt′CH(skCH,·,·,·,·)(pkCH)

where Adapt′CH on input skCH,m,m
′, r, h:

r′ ←r AdaptCH(skCH,m,m
′, r, h)

Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCH(pkCH,m
∗, h∗, r∗) = VerifyCH(pkCH,m

′∗, h∗, r′∗) = 1 ∧
m∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 19: CH Collision-resistance

Definition 31 (CH Collision-Resistance). We say a CH scheme is
collision-resistant, if for every PPT adversary A, there exists a negligible
function ν such that:

Pr
î
ExpCollision-Resistance

A,CH (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 19.

Uniqueness. Uniqueness requires that it be hard to come up with two
different randomness values for the same message m∗ such that the hashes
are equal, for the same adversarially chosen pk∗.

ExpUniqueness
A,CH (κ)

ppCH ←r PPGenCH(1κ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppCH)
return 1, if VerifyCH(pk∗,m∗, h∗, r∗) = VerifyCH(pk∗,m∗, h∗, r′∗) = 1
∧ r∗ 6= r′∗

return 0

Fig. 20: CH Uniqueness

Definition 32 (CH Uniqueness). We say a CH scheme is unique, if
for every PPT adversary A, there exists a negligible function ν such that:

Pr
î
ExpUniqueness

A,CH (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 20.

We do not consider uniqueness as a fundamental security property, as
it depends on the concrete use-case whether this notion is required.

Chameleon-Hashes with Ephemeral Trapdoors. We recall the no-
tion of chameleon-hashes with ephemeral trapdoors (CHET) from [CDK+17].
This primitive is a variant of a chameleon-hash where, in addition to the
long-term trapdoor, another ephemeral trapdoor etd (chosen freshly during
hashing) is required to compute collisions.

Definition 33 (Chameleon-Hashes with Ephemeral Trapdoors).
A chameleon-hash with ephemeral trapdoors CHET is a tuple of five al-
gorithms (PPGenCHET,KGenCHET,HashCHET,VerifyCHET,AdaptCHET), such
that:

PPGenCHET : On input security parameter κ, this algorithm outputs the
public parameters ppCHET.

ppCHET ←r PPGenCHET(1κ)

We assume that ppCHET implicitly defines the message space M.

KGenCHET : On input the public parameters ppCHET, this algorithm outputs
the long-term key pair (skCHET, pkCHET):

(skCHET, pkCHET)←r KGenCHET(ppCHET)

HashCHET : On input the public key pkCHET and a message m, this algo-
rithm outputs a hash h, corresponding randomness r, as well as the
ephemeral trapdoor etd:

(h, r, etd)←r HashCHET(pkCHET,m)

VerifyCHET : On input the public key pkCHET, a message m, a hash h, and
randomness r, this algorithm outputs a bit b ∈ {1, 0}:

b← VerifyCHET(pkCHET,m, h, r)

AdaptCHET : On input secret key skCHET, ephemeral trapdoor etd, a mes-
sage m, a message m′, hash h, randomness r, and trapdoor information
etd, this algorithm outputs randomness r′:

r′ ←r AdaptCHET(skCHET, etd,m,m
′, h, r)

Note that we assume that the AdaptCHET algorithm always verifies if the
hash it is given is valid, and output ⊥ otherwise.

For correctness, we require that for all κ ∈ N, all ppCHET ←r PPGenCHET

(1κ), all (skCHET, pkCHET) ←r KGenCHET(ppCHET), all m,m′ ∈ M, all (h,
r, etd)←r HashCHET(pkCHET,m), all r′ ←r AdaptCHET(skCHET, etd,m,m

′,
h, r), we have that VerifyCHET(pkCHET,m, h, r) = VerifyCHET(pkCHET,m

′,
h, r′) = 1.

Full Indistinguishability. Full indistinguishability requires that it be in-
tractable for outsiders to distinguish whether a given randomness corre-
sponds to an output of HashCHET or AdaptCHET. This is captured within
the HashOrAdapt-oracle. Note, however, that—when compared to the def-
initions in [BCD+17, CDK+17, DSSS19]—the adversary can additionally
generate all secret keys.

Definition 34 (CHET Full Indistinguishability). We say a CHET
scheme is fully indistinguishable, if for every PPT adversary A, there
exists a negligible function ν such that:

Pr
î
ExpFIndistinguishability

A,CHET (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 21.

ExpFIndistinguishability
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
b←r {0, 1}
b∗ ←r AHashOrAdapt(·,·,·,·,b)(ppCHET)

where HashOrAdapt on input skCHET, pkCHET,m,m
′, b:

let (h0, r0, etd0)←r HashCHET(pk,m′)
let (h1, r1, etd1)←r HashCHET(pk,m)
let r1 ←r AdaptCHET(skCHET, etd1,m,m

′, h1, r1)
return ⊥, if r0 = ⊥ ∨ r1 = ⊥
return (hb, rb, etdb)

return b = b∗

Fig. 21: CHET Full Indistinguishability

Public Collision-Resistance. Public collision-resistance grants the adver-
sary access to an AdaptPCH oracle. It requires that it is intractable to
produce collisions, other than the ones produced by the AdaptPCH oracle.
Thus, the adversary gains access to a Adapt′CHET-oracle, which also keeps
track of the produced collisions, which we need to exclude to have a
meaningful definition.

ExpPublic Collision-Resistance
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
(skCHET, pkCHET)←r KGenCHET(PPGenCHET)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)←r AAdapt′CHET(skCHET,·,·,·,·,·)(pkCHET)

where Adapt′CHET on input etd,m,m′, h, r:
r′ ←r AdaptCHET(sk, etd,m,m′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {m,m′}
return r′

return 1, if VerifyCHET(pkCHET,m
∗, h∗, r∗) = 1 ∧

VerifyCHET(pkCHET,m
′∗, h∗, r′∗) = 1 ∧

m∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 22: CHET Public Collision-Resistance

Definition 35 (CHET Public Collision-Resistance). We say a CHET
scheme is publicly collision-resistant, if for every PPT adversary A, there

exists a negligible function ν such that:

Pr
î
ExpPublic Collision-Resistance

A,CHET (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 22.

Strong Private Collision-Resistance. Strong private collision-resistance
requires that it is even intractable for the holder of the secret key sk to
find collisions without knowledge of etd. Note, the adversary can obtain
arbitrary collisions.

ExpStrong Private Collision-Resistance
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
Q ← ∅
i← 0

(pk∗,m∗, r∗,m′∗, r′∗, h∗)←r AHash′CHET(·,·),Adapt′CHET(·,·,·,·,·,·,·)(ppCHET)
where Hash′CHET on input pk, m:

(h, r, etd)←r HashCHET(pk,m)
return ⊥, if r = ⊥
i← i+ 1
let Q ← Q∪ {(pk, h,m, etd, i)}
return (h, r)

and Adapt′CHET on input sk, pk, h, r, m, m′, i:
return ⊥, if (pk, h′,m′′, etd, i) /∈ Q for some h′, m′′, etd, pk
r′ ←r AdaptCHET(sk, etd,m,m′, h, r)
if r′ 6= ⊥, let Q ← Q∪ {(pk, h′,m, etd, i), (pk, h′,m′, etd, i)}
return r′

return 1, if VerifyCHET(pk∗,m∗, h∗, r∗) = 1 ∧
VerifyCHET(pk∗,m′∗, h∗, r′∗) = 1 ∧ m∗ 6= m′∗ ∧
(pk∗, h∗,m∗, ·, ·) /∈ Q ∧ (pk∗, h∗, ·, ·, ·) ∈ Q

return 0

Fig. 23: CHET Strong Private Collision-Resistance

Definition 36 (CHET Strong Private Collision-Resistance). We
say a CHET scheme is strongly privately collision-resistant, if for every
PPT adversary A, there exists a negligible function ν such that:

Pr
î
ExpStrong Private Collision-Resistance

A,CHET (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 23.

Uniqueness. Uniqueness requires that it be hard to come up with two
different randomness values for the same message m∗ such that the hashes
are equal, for the same adversarially chosen pk∗.

ExpUniqueness
A,CHET (κ)

ppCHET ←r PPGenCHET(1κ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppCHET)
return 1, if VerifyCHET(pk∗,m∗, h∗, r∗) = VerifyCHET(pk∗,m∗, h∗, r′∗) = 1
∧ r∗ 6= r′∗

return 0

Fig. 24: CHET Uniqueness

Definition 37 (CHET Uniqueness). We say a CHET scheme is unique,
if for every PPT adversary A, there exists a negligible function ν such
that:

Pr
î
ExpUniqueness

A,CHET (κ) = 1
ó
≤ ν(κ).

The corresponding experiment is depicted in Figure 24.

Attribute-Based Encryption. Let us recall the description of a cipertext-
policy attribute encryption scheme (ABE henceforth) [BSW07].

Definition 38 (Ciphertext-Policy Attribute-Based Encryption).
A ABE scheme is a tuple of PPT algorithms (PPGenABE,KGenABE,EncABE,
DecABE) such that:

PPGenABE(1κ) : Takes as input a security parameter κ and outputs a
master secret and public key (mskABE,mpkABE):

(mskABE,mpkABE)←r PPGenABE(1κ)

We assume that all subsequent algorithms will implicitly receive the
master public key mpkABE (public parameters) as input which implicitly
fixes a message space M.

KGenABE(mskABE, S) : Takes as input the master secret key mskABE and a
set of attributes S and outputs a secret key ssk:

ssk←r KGenABE(mskABE, S)

EncABE(m,A) : Takes as input a message m ∈M and an access structure
A. It outputs a ciphertext c:

c←r EncABE(m,A)

DecABE(ssk, c) : Takes as input a secret key ssk and a ciphertext c and
outputs a message m or ⊥ in case decryption does not work:

m← DecABE(ssk, c)

Correctness of a ABE scheme requires that for all κ ∈ N,for all access struc-
tures A, all (mskABE,mpkABE) ←r PPGenABE(1κ), all m ∈ M, all S ∈ A,
all ssk←r KGenABE(mskABE,S) we have that DecABE(ssk,EncABE(m,A)) =
m.

Security of ABE. In the following, we recall adaptive IND-CCA2 security,
for ABE. It is derived from the definition given by Lewko et al. [LOS+10]
and Derler et al. [DSSS19], but altered for our used notation. Refer, e.g.,
to [YAHK11] for how to construct chosen-ciphertext secure ABEs from
CPA-secure ones.

Definition 39 (ABE IND-CCA2-Security). An ABE scheme is IND-
CCA2-secure, if for any PPT adversary A there exists a negligible function
ν such that: ∣∣∣Pr

î
ExpIND-CCA2

A,ABE (κ) = 1
ó
− 1

2

∣∣∣ ≤ ν(κ)

The corresponding experiment is depicted in Figure 25.

C Concrete Instantiations of Primitives

We now present the instantiations of our building blocks.

Instantiation of Secure CHs. We recall a construction from [CDK+17]
in Construction 2.

Theorem 2. If the one-more-RSA inversion assumption [BNPS03] holds,
then the construction of a CH given in Construction 2 is fully indistin-
guishable, correct, unique and collision-resistant, in the random-oracle
model [BR93].

Proof. All properties, but full indistinguishability, have already been
proven by Camenisch et al. [CDK+17]. Thus, it remains to prove full
indistinguishability.

ExpIND-CCA2
A,ABE (κ):

(mskABE,mpkABE)←r PPGenABE(1κ)
b←r {0, 1}
Q ← ∅
S ← ∅
i← 0

(m0,m1,A∗, state)←r AKGen′ABE(mskABE,·),KGen′′ABE(mskABE,·),Dec′ABE(·,·)(mpkABE)
where KGen′ABE on input mskABE, S:

return KGenABE(mskABE, S) and set S ← S ∪ S
and KGen′′ABE on input j, S:

let ssk←r KGenABE(mskABE, S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′ABE on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk
return DecABE(ssk, c)

if m0,m1 /∈M ∨ |m0| 6= |m1| ∨ A∗ ∩ S 6= ∅, let c∗ ← ⊥
else let c∗ ←r EncABE(mb,A∗)

b∗ ←r AKGen′′′ABE(mskABE,·),KGen′′′′ABE(mskABE,·),Dec′′ABE(·,·)(c∗, state)
where KGen′′′ABE on input mskABE, S:

return ⊥, if S ∈ A∗
return KGenABE(mskABE, S)

and KGen′′′′ABE on input j, S:
let ssk←r KGenABE(mskABE, S) and set Q ← Q∪ {(i, ssk)}
i← i+ 1

and Dec′′ABE on input j, c:
return ⊥, if (j, ssk) /∈ Q for some ssk ∨ c = c∗

return DecABE(ssk, c)
if b∗ = b return 1 else return 0

Fig. 25: ABE IND-CCA2 Security

Full Indistinguishability. We prove full indistinguishability by a sequence
of games.

Game 0: The original full indistinguishability game in the case b = 0.
Game 1: As Game 0, but we now make the transition to b = 1.
Transition - Game 0 → Game 1: As there is exactly one secret key (up

to the group order, which can be ignored), which makes adaption work
correctly, which we explicitly check, while r is always chosen randomly,
the distributions are exactly equal and thus |Pr[S0] − Pr[S1]| = 0
follows.

As the adversary now has to other way to win the full indistinguisha-
bility game and each hop only changes the view of the adversary negligibly,
full indistinguishability is proven.

PPGenCH(1κ) : On input a security parameter κ it outputs the public parameters

ppCH ← (1κ, e), where e is prime and e > N ′, and

N ′ = max
r
{N ∈ N : (N, ·, ·, ·, ·)←r RSAGen(1κ; r)}

KGenCH(ppCH) : On input ppCH = (1κ, e) run (N, p, q, ·, ·) ←r RSAGen(1κ), choose a
hash-function H : {0, 1}∗ → Z∗N (modeled as a random-oracle), compute d s.t.
ed ≡ 1 mod ϕ(N), set skCH ← d, pkCHET ← (N,H), and return (skCH, pkCH).

HashCH(pkCH,m) : On input a public key pkCH = (N,H) and a message m, choose
r ←r Z∗N , compute h← H(m)re mod N and output (h, r).

VerifyCH(pkCH,m, h, r) : On input public key pkCH = (N,H), a message m, a hash h,

and a randomness r ∈ Z∗N , it computes h′ ← H(m)re mod N and outputs 1 if
h′ = h and 0 otherwise.

AdaptCH(skCH,m,m
′, h, r) : On input a secret key skCH = d, messages m and m′, a

hash h, and randomness values r and r′, the adaptation algorithm outputs ⊥
if VerifyCH(pkCH,m, h, r) 6= 1. Otherwise, let x ← H(m), x′ ← H(m′), y ← xre

mod N . Output ⊥, if VerifyCH(pkCH,m
′, h, r′) 6= 1. Return r′ ← (y(x′−1))d mod N .

Construction 2: RSA-based CH

Instantiation of Secure CHETs. The generic construction is given in
Construction 3. This construction is essentially the one given by Krenn et
al. [KPSS18a], but we additionally check whether a hash h is valid after
adaption, and use the stronger CH introduced above.

Theorem 3. If CH is fully indistinguishable, collision-resistant, unique,
and correct, then the construction of a CHET given in Construction 3 is
fully indistinguishable, publicly collision-resistant, strongly private collision-
resistant, unique, and correct.

Proof. All properties, but full indistinguishability and uniqueness, have
already been proven [DSSS19, KPSS18a]. We thus prove each remaining
property on its own.

Full Indistinguishability. First, we prove full indistinguishability by a
sequence of games.

Game 0: The original full indistinguishability game in the case b = 1.
Game 1: As Game 0, but instead of calculating the hash h1 as in the

game, directly hash.
Transition - Game 0 → Game 1: We claim that Game 0 and Game 1

are indistinguishable under the full indistinguishability of CH. More
formally, assume that the adversary A can distinguish this hop. We can
then construct an adversary B which breaks the indistinguishability of

PPGenCHET(1κ) : On input a security parameter κ, let ppCH ←r PPGenCH(1κ). Return
ppCHET ← ppCH.

KGenCHET(ppCHET) : On input ppCHET = ppCH run (sk1CH, pk
1
CH) ←r KGenCH(ppCH). Re-

turn (sk1CH, pk
1
CH).

HashCHET(pkCHET,m) : On input of pkCHET = pk1CH and m, let: (etd, pk2CH) ←r

KGenCH(ppCH). Let (h1, r1) ←r HashCH(pk1CH, (m, pk
1
CH, pk

2
CH)) and (h2, r2) ←r

HashCH(pk2CH, (m, pk
1
CH, pk

2
CH)) Return

((h1, h2, pk1CH, pk
2
CH), (r1, r2), etd)

VerifyCHET(pkCHET,m, h, r) : On input of pkCHET = pk1CH, m, h = (h1, h2, pk1CH, pk
2
CH) and

r = (r1, r2), return 1, if

VerifyCH(pk1CH, (m, pk
1
CH, pk

2
CH), h1, r1) = 1

and
VerifyCH(pk2CH, (m, pk

1
CH, pk

2
CH), h2, r2) = 1

Otherwise, return 0.
AdaptCHET(skCHET, etd,m,m

′, h, r) : On input a secret key skCHET = sk1CH, etd, mes-

sages m and m′, a hash h = (h1, h2, pk1CH, pk
2
CH) and r = (r1, r2), first check that

VerifyCHET(pkCHET,m, h, r) = 1. Otherwise, return ⊥. Let

r′1 ←r AdaptCH(sk1CHET, (m, pk
1
CH, pk

2
CH), (m′, pk1CH, pk

2
CH), r1, h1)

and
r′2 ←r AdaptCH(etd, (m, pk1CH, pk

2
CH), (m′, pk1CH, pk

2
CH), r2, h2)

Let r′ ← (r′1, r′2). If VerifyCHET(pkCHET,m
′, h, r′) = 0, return ⊥. Return r′.

Construction 3: Construction of a CHET

CH. In particular, the reduction works as follows. B receives ppCH as it’s
own challenge, passing them through to A within ppPCH (generating
the rest honestly), and proceeds as in the prior hop, with the exception
that it uses the HashOrAdapt oracle to generate h1. Then, whatever A
outputs, is also output by B. Clearly, the simulation is perfect from A’s
point of view. Note, the HashOrAdapt always checks if the adaption
was successful, and thus so does B, making the distributions equal.
|Pr[S0]− Pr[S1]| ≤ νCH-sInd(κ) follows.

Game 2: As Game 1, but instead of calculating the hash h2 as in the
game, directly hash.

Transition - Game 1 → Game 2: We claim that Game 1 and Game 2
are indistinguishable under the full indistinguishability of CH. More
formally, assume that the adversary A can distinguish this hop. We can
then construct an adversary B which breaks the indistinguishability of

CH. In particular, the reduction works as follows. B receives ppCH as it’s
own challenge, passing them through to A within ppPCH (generating
the rest honestly), and proceeds as in the prior hop, with the exception
that it uses the HashOrAdapt oracle to generate h2. Then, whatever A
outputs, is also output by B. Clearly, the simulation is perfect from A’s
point of view. Note, the HashOrAdapt always checks if the adaption
was successful, and thus so does B, making the distributions equal.
|Pr[S1]− Pr[S2]| ≤ νCH-sInd(κ) follows.

We are now in the case b = 0. However, as the adversary only sees
negligible changes, full indistinguishability is proven.

Uniqueness. Finally, we prove uniqueness by a sequence of games.

Game 0: The original strong private collision-resistance game.

Game 1: As Game 0, but we abort if the adversary outputs (pk∗,m∗, r∗,
r′∗, h∗) such that the winning conditions are fulfilled. Let this event
be E1.

Transition - Game 0 → Game 1: Assume that event E1 happens. We can
then construct an adversary B which breaks the uniqueness of the
underlying CH.

The reduction works as follows. It receives ppCH from its own chal-
lenger and embeds it into ppCHET. Then, when the adversary out-
puts (pk∗,m∗, r∗, r′∗, h∗) such that the winning conditions are ful-
filled, we know that r∗i 6= r′∗i must hold for either i = 1 or i =
2 (or even both). Thus, the adversary can return (pk′∗, (m∗, pk1

CH,
pk2

CH), r∗i , r
′∗
i , h

∗
i), where pk′∗ = pk1

CH if i = 1 and pk′∗ = pk2
CH oth-

erwise, while for the hash h∗ = (h∗1, h
∗
2) holds. |Pr[S0] − Pr[S1]| ≤

νCH-unique(κ) follows.

As now the adversary has no longer the possibility to win the uniqueness
game, while each hop changes the view only negligibly, uniqueness is
proven.

Instantiation of Secure PCHs. Our generic construction is depicted
in Construction 4. This construction is taken from [DSSS19], but we also
check whether an adaption was successful.

Theorem 4. If ABE is IND-CCA2-secure and correct, while CHET is
fully indistinguishable, strongly private collision-resistant, unique, and
correct, then the construction of a PCH given in Construction 4 is fully
indistinguishable, insider collision-resistant, unique, and correct.

PPGenPCH(1κ) : Return ppPCH ←r PPGenCHET(1κ).
MKeyGenPCH(ppPCH) : Return skPCH ← (mskABE, skCHET) and pkPCH ← (mpkABE,

pkCHET), where (skCHET, pkCHET) ←r KGenCHET(ppPCH), and (mskABE,mpkABE) ←r

PPGenABE(1κ).
KGenPCH(skPCH, S) : Parse skPCH as (mskABE, skCHET) and return ssk ← (skCHET, ssk

′),

where ssk′ ←r KGenABE(mskABE, S).
HashPCH(pkPCH,m,A) : Parse pkPCH as (mpkABE, pkCHET) and return (h, r) ←

((hCHET, c), rCHET), where (hCHET, rCHET, etd) ←r HashCHET(pkCHET,m), and c ←r

EncABE(etd,A).
VerifyPCH(pkPCH,m, h, r) : Parse pkPCH as (mpkABE, pkCHET), h as (hCHET, c), and r as

rCHET. Return 1, if the following check holds and 0 otherwise:

VerifyCHET(pkCHET, (m, c), hCHET, rCHET) = 1

AdaptPCH(ssk,m,m′, h, r) : Parse ssk as (skCHET, ssk
′) and h as (hCHET, c), and r as rCHET.

Check whether VerifyPCH(pkPCH,m, h, r) = 1 and return ⊥ otherwise. Compute
etd ← DecABE(ssk′, c) and return ⊥ if etd = ⊥. Let r′ ← r′CHET, where r′CHET ←r

AdaptCHET(skCHET, etd,m,m
′, h, rCHET). Return ⊥, if VerifyPCH(pkPCH,m

′, h, r′) = 0.
Return r′.

Construction 4: Black-box construction of a PCH scheme

Note, we do not require outsider collision-resistance. However, this
property was already proven by Derler et al. [DSSS19].

Proof. Due to our strengthened notions, we need to prove each property
on its own.

Uniqueness. First, we prove uniqueness by a sequence of games.

Game 0: The original uniqueness game.

Game 1: As Game 0, but we abort, if the adversary found (pk∗,m∗, r∗, r′∗,
h∗) such that it wins the uniqueness game. Let this event be E1.

Transition - Game 0 → Game 1: Assume towards contradiction that event
E1 happens, we can build an adversary B which breaks unique-
ness of the underlying CHET. Our reduction receives ppCHET and
embeds it into ppPCH. Then, by assumption, B can directly return
(pk∗2,m

∗, r∗, r′∗, h∗0), where pk∗ = (pk∗0, pk
∗
1) and h∗ = (h∗0, c

∗). |Pr[S0]−
Pr[S1]| ≤ νCHET-uniq(κ) follows, as c∗ is part of the hash, while the
randomness only applies to the CHET.

As the adversary now has no way to win the uniqueness game and the
hop only changes the view of the adversary negligibly, uniqueness is
proven.

Full Indistinguishability. Now, we prove full indistinguishability by a
sequence of games.

Game 0: The original full indistinguishability game in the case b = 1.
Game 1: As Game 0, but instead of calculating the hash h as in the

game, directly hash.
Transition - Game 0 → Game 1: We claim that Game 0 and Game 1 are

indistinguishable under the full indistinguishability of CHET. More
formally, assume that the adversary A can distinguish this hop. We can
then construct an adversary B which breaks the full indistinguishability
of CHET. In particular, the reduction works as follows. B receives
ppCHET as it’s own challenge, passing them through to A within ppPCH

(generating the rest honestly), and proceeds as in the prior game, with
the exception that it uses the HashOrAdapt oracle to generate hCHET.
Then, whatever A outputs, is also output by B. Clearly, the simulation
is perfect from A’s point of view. Note, the HashOrAdapt always checks
if the adaption was successful, and thus so does B, making the output
behave the same. |Pr[S0]− Pr[S1]| ≤ νCHET-sInd(κ) follows.
We are now in the case b = 0. However, as the adversary only sees neg-
ligible changes, full indistinguishability is proven. Note, the ciphertext
is distributed equally in all cases.

Insider Collision-Resistance. Finally, we prove insider collision-resistance
by a sequence of games.

Game 0: The original insider collision-resistance game.
Game 1: As Game 0, but we abort, if the adversary makes a query

(m,m′, h, r, j), for which h verifies, to the adaption oracle, for a h
returned by the hashing oracle, but m has never been input to the
hashing oracle or the adaption oracle, and A does not have enough
attributes to find a collision all by itself. Let this event be E1.

Transition - Game 0 → Game 1: Assume that event E1 happens with
non-negligible probability. We can then construct a reduction B which
breaks the strong private collision-resistance of the underlying CHET.
Our reduction B works as follows. Let q be an upper bound on the
queries to the hashing oracle. The adversary B then makes a guess
i ←r {1, 2, . . . , q}. All queries, but the ith one, are answered as in
the prior game. On the ith query, however, B encrypts 0 instead of
the real etd. If, at some point, the adversary has asked or asks to
receive ssk which would allow to decrypt that c, we abort. However,
by assumption, this does not happen in at least one case, thus we at

most lose a factor of q. Further assume, towards contradiction, that B
guessed right, but A behaves noticeably different now. Our reduction B
can then use A to break the IND-CCA2 security of the used ABE. The
reduction proceeds as follows. It receives mpkABE as its own challenge,
and embeds it accordingly. The oracles are simulated as follows:

Before the challenge ciphertext is embedded on the ith query (see
below), every query to KGen′PCH is answered by the KGen′ABE-oracle
provided. However, calls to KGen′′PCH are simply stored as (j,S) by
B. Hashing is done honestly for all queries except for the ith query,
where the reduction queries its own challenger with either 0 or the
correct etd, embedding the response c in the returned h. All following
queries are performed honestly. After this embedding, all queries to the
KGen′′PCH-oracle are redirected to the KGen′′′ABE-oracle, while queries to
the KGen′′PCH-oracle are again stored as (j,S). Note, by assumption A
never queries for keys which would allow decrypting that ciphertext.
Adaption is done in such a way that if h was generated by the hashing-
oracle, then we only continue if (j,S) is sufficient to decrypt (note,
h is known to B, including the access structure A used to generate
that hash). Finally, for every decryption necessary during adaption,
i.e., for ciphertexts not generated by the reduction (and sskj , defined
by the index j, is actually sufficient to adapt; c, as part of h, never
needs to be decrypted, even if it is re-used in another hash), B uses
the provided decryption oracle to receive each etd, and proceeds like
in the game. Note, adaption can still be performed honestly, as all etds
are thus known. Then, whatever A outputs, is also output by B.

We are now in the case that etd is no longer given to the adver-
sary A. However, this now also means that the adversary A was
able to find a collision, without ever having grasp on the valuable in-
formation of etd. Thus, B can finally use this adversary to break
the strong private collision-resistance of CHET. Consider the fol-
lowing reduction B: it receives ppCHET and embeds it into ppPCH.
(skCHET, pkCHET)←r KGenCHET(PPGenCHET) is generated honestly. It
then uses those to initialize the adversary A. The ABE-part is done as
before. The reduction B now proceeds as follows: every hash is gener-
ated honestly, but the ith one; here, the oracle Hash′CHET is queried.
All adaptions, but the challenge one, can be performed honestly (as
described above with the decryption oracle provided). For the challenge
one, however, B uses its own oracle to find the collision. Then, if E1

happens, B can return ((m∗, c∗), r∗, (m′∗, c∗), r′∗, h∗0) by assumption,
where h∗ = (h∗0, c

∗) by construction.

|Pr[S0]− Pr[S1]| ≤ q(νABE-CCA2(κ) + νCHET-SPrivColl(κ)) follows, where
q is the number of queries to the hashing oracle.

Game 2: As Game 1, but we abort, if the adversary outputs (m∗, r∗,m′∗,
r′∗, h′∗), such that the winning conditions are fulfilled. Let this event
be E2.

Transition - Game 1 → Game 2: Assume that event E2 happens with
non-negligible probability. We can then construct a reduction B which
breaks the strong private collision-resistance of the underlying CHET.

Our reduction B works as follows. Let q be an upper bound on the
queries to hashing oracle. The adversary B then makes a guess i←r

{1, 2, . . . , q}. All queries, but the ith one, are answered as in the prior
game. On the ith query, however, B encrypts 0 instead of the real etd.
If, at some point, the adversary has asked or asks to receive ssk which
would allow to decrypt that c, we abort. However, by assumption,
this does not happen in at least one case, thus we at most lose a
factor of q. Further assume, towards contradiction, that B guessed
right, but A behaves noticeably different now. Our reduction B can
then use A to break the IND-CCA2 security of the used ABE. The
reduction proceeds as follows. It receives mpkABE as its own challenge,
and embeds it accordingly. The oracles are simulated as follows:

Before the challenge ciphertext is embedded on the ith query (see
below), every query to KGen′PCH is answered by the KGen′ABE-oracle
provided. However, calls to KGen′′PCH are simply stored as (j,S) by
B. Hashing is done honestly for all queries except for the ith query,
where the reduction queries its own challenger with either 0 or the
correct etd, embedding the response c in the returned h. All following
queries are performed honestly. After this embedding, all queries to the
KGen′′PCH-oracle are redirected to the KGen′′′ABE-oracle, while queries to
the KGen′′PCH-oracle are again stored as (j,S). Note, by assumption, i.e.,
A never queries for key which would allow decrypting that ciphertext.
Adaption is done in such a way that if h was generated by the hashing-
oracle, then we only continue if (j,S) is sufficient to decrypt (note,
h is known to B, including the access structure A used to generate
that hash). Finally, for every decryption necessary during adaption,
i.e., for ciphertexts not generated by the reduction (and sskj , defined
by the index j, is actually sufficient to adapt; c, as part of h, never
needs to be decrypted, even if it is re-used in another hash), B uses
the provided decryption oracle to receive each etd, and proceeds like
in the game. Note, adaption can still be performed honestly, as all etds
are thus known. Then, whatever A outputs, is also output by B.

We are now in the case that etd is no longer given to the adver-
sary A. However, this now also means that the adversary A was
able to find a collision, without ever having grasp on the valuable in-
formation of etd. Thus, B can finally use this adversary to break
the strong private collision-resistance of CHET. Consider the fol-
lowing reduction B: it receives ppCHET and embeds it into ppPCH.
(skCHET, pkCHET)←r KGenCHET(PPGenCHET) is generated honestly. It
then uses those to initialize the adversary A. The ABE-part is done as
before. The reduction B now proceeds as follows: every hash is gener-
ated honestly, but the ith one; here, the oracle Hash′CHET is queried.
All adaptions, but the challenge one, can be performed honestly (as
described above with the decryption oracle provided). For the challenge
one, however, B uses its own oracle to find the collision. Then, if E2

happens, B can return ((m∗, c∗), r∗, (m′∗, c∗), r′∗, h∗0) by assumption,
where h∗ = (h∗0, c

∗) by construction.

|Pr[S1]− Pr[S2]| ≤ q(νABE-CCA2(κ) + νCHET-SPrivColl(κ)) follows, where
q is the number of queries to the hashing oracle.

As now the adversary A has no additional way to win this game, our
statement is proven.

Instantiation of a Key-Verifiable Π. We recall a construction from
Cramer and Shoup [CS98] in Construction 5, with the alteration that g1

and g2 are part of the parameters. We require this alteration to prove
key-verifiability.

PPGenΠ(1κ) : On input a security parameter κ, it outputs the public parameters
ppΠ = (G, g1, g2, q,H), where (G, g, q)←r DLGen(1κ), where g is some generator of
G. Draw x←r Zq, and let g1 ← g and g2 ← gx. H is some universal hash-function.

KGenΠ(ppΠ) : On input ppΠ = (G, g1, g2, q,H), draw (x1, x2, y1, y2, z) ←r Z5
q. Let

c ← gx11 gx22 , d ← gy11 gy22 , and h ← gz1 . Set pkΠ ← (g1, g2, c, d, h), and skΠ ←
(x1, x2, y1, y2, z). Return (skΠ , pkΠ).

EncΠ(pkΠ ,m) : On input a public key pkΠ = (g1, g2, c, d, h) and a message m, draw
r ←r Zq. Compute u1 ← gr1 , u2 ← gr2 , e← hrm, α← H(u1, u2, e), and v ← crdrα.
Return (u1, u2, e, v).

DecΠ(skΠ , c) : On input secret key skΠ = (x1, x2, y1, y2, z), and a ciphertext c =

(u1, u2, e, v), compute α← H(u1, u2, e). If ux1+y1α1 ux2+y2α2 6= v, return ⊥. Return
e/uz1.

KVrfΠ(skΠ , pkΠ) : On input a secret key skΠ = (x1, x2, y1, y2, z) and a public key
pkΠ = (g1, g2, c, d, h), output 1, if pkΠ = (gx11 gx22 , gy11 gy22 , gz1), and 0 otherwise.

Construction 5: Cramer Shoup Π

Theorem 5. If the DDH-Assumption holds in G, then the above con-
struction is correct, IND-CCA2 secure, and key-verifiable.

Proof. Correctness and IND-CCA2 security have already been proven by
Cramer and Shoup [CS98].

Thus, it remains to prove key-verifiability.

Key-Verifiability. We prove key-verifiability by a sequence of games.

Game 0: The original key-verifiability game.
Game 1: As Game 0, but abort, if the adversary A wins the game as

defined. Let this event be E1.
Transition - Game 0 → Game 1: Assume, towards contradiction, that

E1 happens. We can then construct an adversary B which breaks
the discrete logarithm assumption. B proceeds as follows. It receives
(G, g, q) and gx. It embeds g as g1 and gx as g2. Whenever A outputs
(x1, x2, y1, y2, z) 6= (x′1, x

′
2, y
′
1, y
′
2, z
′). We know that z = z′ must hold,

as we are working in prime-order groups. Assume that x1 6= x′1. It fol-
lows that x2 6= x′2. B can extract x by calculating x← (x1−x′1)/(x′2−
x2). The case that y1 6= y′1 is similar. |Pr[S0] − Pr[S1]| ≤ 2νdlog(κ)
follows.
As the adversary has no more possibilities to win the game, key-
verifiability is proven.

D Proof of Theorem 1

We now present the proof of the Theorem 1.

Proof. We prove each property on its own, while correctness follows from
inspection.

Unforgeability. To prove unforgeability, we use a sequence of games:

Game 0: The original unforgeability game.
Game 1: As Game 0, but we replace crsΩ with the one generated by

(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values

honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by
(crsΩ, τ, ξ) ←r E1(1κ) and keep the trapdoors τ and ξ. Let E2 be
the event that A can distinguish this replacement with non-negligible
probability. Moreover, note that by definition crsΩ is exactly distributed
as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value,
i.e., ξ, this is only an internal change. |Pr[S1]−Pr[S2]| = 0 immediately
follows.

Game 3: As Game 2, but we abort, if the adversary was able to generate
a signature σ∗m on a string never generated by the signing-oracle. Let
this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that
event E3 happens. We can then construct an adversary B which
breaks the unforgeability of the underlying signature scheme. Namely,
B receives pk of the signature scheme. This is embedded in pk′Σ , while
all other values are generated as in Game 2. All oracles are simulated
honestly, but Sign′P3S. The only change is, however, that the generation
of each σm is outsourced to the signature-generation oracle. Then,
whenever E3 happens, B can return ((pkP3S, pk

Sig
P3S,A,m!A, h,A), σ∗m).

These values can easily be compiled using A’s output, i.e., (m∗, σ∗).
Note, this already includes that the adversary cannot temper with A.
|Pr[S2]− Pr[S3]| ≤ νeUNF-CMA(κ) follows.

Game 4: As Game 3, but we abort, if the adversary was able to generate
(m∗, σ∗) for which m∗ should not have been derivable. Let this event
be E4.

Transition - Game 3 → Game 4: Assume, towards contradiction, that
event E4 happens. We can then construct an adversary B which breaks
the strong insider collision-resistance of the used PCH. Namely, B
receives pkPCH of the PCH. This is embedded in pkP3S, while all other
values are generated as in Game 3. The GetSan-oracle is simulated
honestly. Calls to Sign′P3S-oracle are done honestly, but the hash is
generated using the Hash′PCH-oracle. Calls to the AddSan′P3S-oracle
are simulated as follows. If a key for a simulated sanitizer (obtained
by a call to the GetSan-oracle) is to be generated, it is rerouted to
KGen′′PCH. If the adversary wants to get a key for itself, it is re-routed
to the KGen′PCH-oracle and the answer embedded honestly in the re-

sponse. Sanitization requests are performed honestly (but simulated
proofs), with the exception that adaptions for simulated sanitizers are
done using the Adapt′PCH-oracle. So far, the distributions are equal.
Then, whenever the adversary outputs (m∗, σ∗) such that the winning-
conditions are fulfilled, our reduction B can return (m∗, r∗,m′∗, r′∗, h∗).
The values can be compiled from (m∗, σ∗) and the transcript from
the signing-oracle (note, we already excluded that the adversary can
temper with the hash h). |Pr[S3] − Pr[S4]| ≤ νPBCH-SInsider-CollRes(κ)
follows.

Game 5: As Game 4, but we abort, if the adversary was able to generate
(m∗, σ∗) for which σ∗ is fresh. Let this event be E5.

Transition - Game 4 → Game 5: Assume, towards contradiction, that
event E5 happens. We can then construct an adversary B which
breaks the unforgeability of the used Σ or the one-wayness of the
used one-way function f . Namely, B receives pkΣ of the Σ and f ,
and f(x) = y from its own challenger. This is embedded in pkP3S

(and, of course, the public parameters), while all other values are

generated as in Game 4. y is embedded in pkSig
P3S. For signing, the

proofs are already simulated, and thus x is not required to be known.
Each call to AddSanP3S for keys for which the adversary knows the
corresponding secret keys, B calls its signature oracle to obtain such
a key. For simulated sanitizers, those signature do not need to be
obtained, as the proofs are already simulated. Then, whenever the
adversary outputs (m∗, σ∗), B extracts values (x1, x2, σ

′). If f(x1) = y,
B can return x1 to break the one-wayness of f . In the other case, B
can return (m∗, σ∗) = (f(x2), pkP3S) as its own forgery attempt for Σ.
If extraction fails or a wrong statement was proven, SSE does not hold.
A reduction is straightforward.
|Pr[S4]− Pr[S5]| ≤ νeUNF-CMA(κ) + νow(κ) + νnizk-sse(κ) follows.
Now, the adversary can no longer win the unforgeability game; this
game is computationally indistinguishable from the original game,
which concludes the proof.

Immutability. To prove immutability, we use a sequence of games:

Game 0: The original immutability game.
Game 1: As Game 0, we abort if the adversary outputs (pk∗, σ∗,m∗)

such that the winning conditions are met. Let this event be E1.
Transition - Game 0 → Game 1: Assume, towards contradiction, that

event E1 happens. We can then build an adversary B which breaks the
unforgeability of the used signature scheme. Namely, we know that A

(which also contains the length of the message and all non-modifiable
blocks along with their location), along with pkPCH, is signed. As,
however, by definition, the message m∗ must be different from any
derivable message, A w.r.t. pkPCH was never signed in this regard.
Thus, (pk∗, pkSig

P3S,A
∗,m∗!A, h

∗,A∗) was never signed by the signer.

Constructing a reduction B is now straightforward. Our reduction B
receives the public key pk′Σ (along with the public parameters) from its
own challenger. This public key is embedded as pk′Σ . All other values
are generated honestly. If a signature σm is to be generated, B asks its
own oracle to generate that signature, embedding it into the response
A receives. At some point, A returns (pk∗, σ∗,m∗). The forgery can be
extracted as described above. |Pr[S0]−Pr[S1]| ≤ νeUNF-CMA(κ) follows.

We stress that, by construction, a sanitizer always exists. Now, the
adversary can no longer win the immutability game; this game is com-
putationally indistinguishable from the original game, which concludes
the proof.

Privacy. To prove privacy, we use a sequence of games:

Game 0: The original privacy game.

Game 1: As Game 0, but we replace crsΩ with the one generated by
(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values
honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we abort if (σ′0,m) and (σ′1,m) contain different
randomness r′0 6= r′1 if generated inside LoRSanit. Let this event be E2.

Transition - Game 1 → Game 2: Assume, towards contradiction, that
event E2 happens. We can then construct an adversary B which breaks
the uniqueness of PCH. In particular, it receives ppPCH and embeds it
accordingly. All other values are generated as in Game 2. Then, when
A was able to generate r′0 6= r′1, the reduction B can directly return
(pk∗,m, r′0, r

′
1, h
∗), where pk∗ is contained in pkP3S.

|Pr[S1]− Pr[S2]| ≤ νPCH-uniq(κ) follows, while the signature does not
matter, as it is already hidden behind a simulated zero-knowledge
proof, making the distributions equal.

Game 3: As Game 2, but we directly generate (σ,M0(m0)) without using
sanitizing, i.e., we freshly hash with M0(m0) (if the oracle would return
a signature). Note, the proofs are already simulated, but we also need
to encrypt pkSan

P3S, as it would be done at sanitization anyway. Moreover,
the adversary never sees a non-sanitized signature from that oracle,
while all proofs are already simulated.

Transition - Game 2 → Game 3: If the adversary behaves noticeably dif-
ferent, we can build an adversary B which breaks the strong indis-
tinguishability of the used PCH. The reduction works as follows. B
receives ppPCH and embeds is honestly. All other values are gener-
ated according to Game 3. Then, for every hash generated in the
LoRSanit-oracle, the challenge oracle is queried and the answer embed-
ded into the response. Whatever A then outputs, is also output by B.
|Pr[S2]− Pr[S3]| ≤ νPCH-SInd(κ) immediately follows.
We stress that, by construction, a sanitizer always exists, because A 6= ∅
must hold. Thus, sanitization is always possible from any generated
signature, even in the case A = (∅,m`), i.e., where a sanitizer only
claims accountability, but does not modify the message itself.

Now, the privacy game is independent of the bit b, proving privacy.

Transparency. To prove transparency, we use a sequence of games:

Game 0: The original transparency game, where b = 0.
Game 1: As Game 0, but we replace crsΩ with the one generated by

(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values
honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we replace the contents of c (or c′ resp.) with
a 0, if generated by the SignOrSanit-oracle.

Transition - Game 1 → Game 2: Assume, towards contradiction, that
the adversary behaves noticeably different. We can then construct
an adversary B which breaks the IND-CCA2 security of the used
encryption scheme. Namely, we use a series of hybrids. Our reduction
B proceeds as follows. It receives pkΠ and (and the corresponding
parameters) from its own challenger and embeds them correctly. All
other values are generated as in Game 1. For the first i ciphertexts gen-
erated, encrypt a 0. If, however, the ith ciphertext is generated, B asks
its own challenge oracle to either encrypt 0 or the correct value. The
response is embedded to B’s response to A. All following ciphertexts
are generated honestly. Thus, Game 2.0 is the same as Game 1, while
in Game 2.1., however, we make the first replacement. Then, whatever
A outputs in Game 3.i is also output by B. Note, if a ciphertext is to be
decrypted (e.g., for proof-generation of signatures not generated by the
SignOrSanit-oracle), B uses the provided decryption oracle provided.

|Pr[S1] − Pr[S2]| ≤ qνind-cca2(κ) follows, where q is the number of
ciphertexts generated. We stress that we do not need to “cheat” dur-
ing proof-generation, as the adversary is not allowed to query such
signatures to the Proof ′P3S-oracle.

Game 3: As Game 2, but we directly generate (σ,M(m)) without using
sanitizing, i.e., we always freshly hash with M(m) (if the oracle would
return a signature). Note, the proofs are already simulated. Moreover,
the adversary never sees a non-sanitized signature from that oracle,
while all proofs are already simulated.

Transition - Game 2 → Game 3: Assume, towards contradiction, that
the adversary behaves noticeably different. We can build an adversary
B which breaks the strong indistinguishability of the used PCH. The
reduction works as follows. B receives ppPCH and embeds is honestly.
All other values are generated according to Game 2. Then, for every
hash generated in the SignOrSanit oracle the challenge oracle is queried
and the answer embedded into the response. Whatever A then out-
puts, is also output by B. |Pr[S2]−Pr[S3]| ≤ νPCH-SInd(κ) immediately
follows.

We stress that, by construction, a sanitizer always exists, because A 6= ∅
must hold. Thus, sanitization is always possible from any generated
signature, even in the case A = (∅,m`), i.e., where a sanitizer only
claims accountability.

Now, we are in the case that a signature is freshly generated (b = 1). Thus,
transparency is proven, as each hop only changes the view negligibly.

Pseudonymity. To prove pseudonymity, we use a sequence of games:

Game 0: The original transparency game.
Game 1: As Game 0, but we replace crsΩ with the one generated by

(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values
honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by
(crsΩ, τ, ξ) ←r E1(1κ) and keep the trapdoors τ and ξ. Let E2 be
the event that A can distinguish this replacement with non-negligible
probability. Moreover, note that by definition crsΩ is exactly distributed
as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value,
i.e., ξ, this is only an internal change. |Pr[S1]−Pr[S2]| = 0 immediately
follows.

Game 3: As Game 2, but we abort if (σ′0,m) and (σ′1,m) contain different
randomness r′0 6= r′1 if generated inside LoRSanit. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that
event E3 happens. We can then construct an adversary B which breaks
the uniqueness of PCH. In particular, it receives ppPCH and embeds it
accordingly. All other values are generated as in Game 2. Then, when
A was able to generate r′0 6= r′1, the reduction B can directly return
(pk∗,m, r′0, r

′
1, h
∗), where pk∗ is contained in pkP3S.

|Pr[S2]− Pr[S3]| ≤ νPCH-uniq(κ) follows, while the signature does not
matter, as it is already hidden behind a simulated zero-knowledge
proof, making the distributions equal.

Game 4: As Game 3, but we replace the contents of c′ with a 0, if
generated by the LoRSanit-oracle.

Transition - Game 3 → Game 4: Assume, towards contradiction, that
the adversary behaves noticeably different. We can then construct
an adversary B which breaks the IND-CCA2 security of the used
encryption scheme. Namely, we use a series of hybrids. Our reduction

B proceeds as follows. It receives pkΠ and (and the corresponding
parameters) from its own challenger and embeds them correctly. All
other values are generated as in Game 3. For the first i ciphertexts
generated, encrypt a 0. If, however, the ith ciphertext is generated, B
asks its own challenge oracle to either encrypt 0 or the correct value.
The response is embedded to B’s response to A. All following cipher-
texts are generated honestly. Thus, Game 4.0 is the same as Game
4, while in Game 4.1., however, we make the first replacement. Then,
whatever A outputs in Game 4.i is also output by B. All decryption
queries required can be obtained by the decryption oracle provided.

|Pr[S3] − Pr[S4]| ≤ qνind-cca2(κ) follows, where q is the number of
queries to the LoRSanit-oracle. We stress that we do not need to
“cheat” during proof-generation, as the adversary is not allowed to
query such signatures to the Proof ′P3S-oracle.

Now, the game is independent of the bit b, proving the theorem.

Signer-Accountability. To prove signer-accountability, we use a sequence
of games:

Game 0: The original signer-accountability game.

Game 1: As Game 0, but we replace crsΩ with the one generated by
(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values
honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by
(crsΩ, τ, ξ) ←r E1(1κ) and keep the trapdoors τ and ξ. Let E2 be
the event that A can distinguish this replacement with non-negligible
probability. Moreover, note that by definition crsΩ is exactly distributed
as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value,
i.e., ξ, this is only an internal change. |Pr[S1]−Pr[S2]| = 0 immediately
follows.

Game 3: As Game 2, but we abort, if the adversary outputs (pk∗0, pk
∗
1, σ
∗,

m∗, π∗) such that the winning conditions are met. Let this event be
E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that E3

happened. We can then construct an adversary B against the one-
wayness of f . The reduction works as follows. It receives f and f(x). It
embeds both accordingly. Note, the proofs are simulated, and thus x
is not needed to be known for πpk. Every sanitization is done honestly,
with the exception of simulated proofs. Then, as we know that the
adversary wins its game, B can extract a pre-image x′ such that
f(x′) = f(x) (if extraction fails, this adversary breaks SSE using a
straightforward reduction), and can return it to its own challenger.
|Pr[S2]− Pr[S3]| ≤ νow(κ) + νnizk-sse(κ) follows.

As now the adversary has no more possibilities to win the signer-
accountability game, the theorem is proven.

Sanitizer-Accountability. To prove sanitizer-accountability, we use a se-
quence of games:

Game 0: The original sanitizer-accountability game.

Game 1: As Game 0, but we replace crsΩ with the one generated by
(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values
honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by
(crsΩ, τ, ξ) ←r E1(1κ) and keep the trapdoors τ and ξ. Let E2 be
the event that A can distinguish this replacement with non-negligible
probability. Moreover, note that by definition crsΩ is exactly distributed
as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value,
i.e., ξ, this is only an internal change. |Pr[S1]−Pr[S2]| = 0 immediately
follows.

Game 3: As Game 2, but we abort, if the adversary outputs (pk∗, σ∗,m∗,
π∗) such that the winning conditions are met. Let this event be E3.

Transition - Game 2 → Game 3: Assume, towards contradiction, that E3

happened. We can then construct an adversary B against the one-
wayness of f . The reduction works as follows. It receives f and f(x). It
embeds both accordingly. Every signing and proof-generation is done
honestly, with the exception of simulated proofs. Then, as we know
that the adversary wins its game, B can extract a pre-image x′ such
that f(x′) = f(x) (if extraction fails, this adversary breaks SSE using
a straightforward reduction), and can return it to its own challenger.
|Pr[S2]− Pr[S3]| ≤ νow(κ) + νnizk-sse(κ) follows.
As now the adversary has no more possibilities to win the sanitizer-
accountability game, the theorem is proven.

Proof-Soundness. First, we prove proof-soundness by a sequence of games.

Game 0: The original proof-soundness game.
Game 1: As Game 0, but we replace crsΩ with the one generated by

(crsΩ, τ)←r SIM1(1κ), keep the trapdoor τ .
Transition - Game 0 → Game 1: Assume towards contradiction that the

adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from
its own challenger and embeds it into ppP3S and generates all other
values honestly. Note, in this case no proofs need to be simulated, as
we do not have any oracles. |Pr[S0]− Pr[S1]| ≤ νnizk-zk(κ) follows.

Game 2: As Game 1, but we replace crsΩ with the one generated by
(crsΩ, τ, ξ) ←r E1(1κ) and keep the trapdoors τ and ξ. Let E2 be
the event that A can distinguish this replacement with non-negligible
probability. Moreover, note that by definition crsΩ is exactly distributed
as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value,
i.e., ξ, this is only an internal change. |Pr[S1]−Pr[S2]| = 0 immediately
follows.

Game 3: As Game 2, but we abort if the adversary outputs ((pk∗i)0≤i≤5, σ
∗,

m∗, π∗0, π
∗
1) such that pk2 6= pk5, and the winning conditions are met

(Note, decryption is deterministic). Let this event be E3.
Transition - Game 2 → Game 3: Assume, towards contradiction, that

event E3 happens. We can then construct an adversary B against
the key-verifiability of the used encryption scheme. The reduction
works as follows. It receives ppΠ , and once the adversary outputs

((pk∗i)0≤i≤5, σ
∗,m∗, π∗0, π

∗
1), B extracts sk∗0 from π∗0 and sk∗1 from π∗1 (if

extraction fails, this adversary breaks SSE; a reduction is straightfor-
ward). Then, it can return (sk∗0, sk

∗
1, pk

∗
1) as its own forgery.

|Pr[S2]− Pr[S3]| ≤ νenc-key-verf(κ) + 2νnizk-sse(κ) immediately follows.
This hop essentially rules out the possibility an adversary can create
more than one secret key w.r.t. to its pk such that decryption points
to a different sanitizer.

Game 4: As Game 4, but we abort if the adversary outputs ((pk∗i)0≤i≤5, σ
∗,

m∗, π∗0, π
∗
1) for which the winning conditions are met. Let this event

be E4.
Transition - Game 3 → Game 4: If this event (E4) happens, either π∗0 or

π∗1 is a bogus proof, as at least one proves a false statement. For the
reduction, B proceeds as in the prior game (doing everything honestly,
but using crsΩ received from B’s own challenger) and randomly selects
either the first statement (concerning (pk∗i)0≤i≤2) or the second state-
ment (concerning (pk∗i)3≤i≤5), with the proof contained in σ∗. As B
needs to randomly guess (one may still be true), we lose a factor of 2
in the reduction. |Pr[S3]− Pr[S4]| ≤ 2νnizk-sse(κ) follows.
As the adversary now has to other way to win the proof-soundness
game and each hop only changes the view of the adversary negligibly,
proof-soundness is proven.

Traceability. Next, we prove traceability by a sequence of games.

Game 0: The original traceability game.
Game 1: As Game 0, but we replace crsΩ with the one generated by

(crsΩ, τ) ←r SIM1(1κ), keep the trapdoor τ , and start simulating all
proofs.

Transition - Game 0 → Game 1: Assume towards contradiction that the
adversary behaves differently. We can then build an adversary B which
breaks the zero-knowledge property of the underlying proof-system.
The reduction works as follows. Our adversary B receives crsΩ from its
own challenger and embeds it into ppP3S and generates all other values
honestly. All proofs are then generated using the oracle P provided
and embedded honestly. Then, whatever A outputs, is also output
by B. |Pr[S0] − Pr[S1]| ≤ νnizk-zk(κ) follows. Note, this also means
that all proofs are now simulated, even though they still prove valid
statements.

Game 2: As Game 1, but we replace crsΩ with the one generated by
(crsΩ, τ, ξ) ←r E1(1κ) and keep the trapdoors τ and ξ. Let E2 be
the event that A can distinguish this replacement with non-negligible

probability. Moreover, note that by definition crsΩ is exactly distributed
as in the prior hop.

Transition - Game 1 → Game 2: As we only keep one additional value,
i.e., ξ, this is only an internal change. |Pr[S1]−Pr[S2]| = 0 immediately
follows.

Game 3: As Game 2, but we abort if the adversary outputs a valid
(pk∗, σ∗,m∗) for which we cannot (as the holder of skSig

P3S) calculate

a pk which makes JudgeP3S(pk∗, pkSig
P3S, pk, πP3S, σ

∗,m∗) output 0. Let
this event be E3.

Transition - Game 2 → Game 3: If this event (E3) happens, we have a
bogus proof π contained in σ∗, as it proves a false statement. Thus, B
proceeds as in the prior game (doing everything honestly, but using
simulated proofs and the simulated crsΩ), and can simply return the
statement claimed to be proven by π, and π itself. |Pr[S2]−Pr[S3]| ≤
νnizk-sse(κ) directly follows.

Relations of Security Properties. We now show several relations
among the security properties defined. These relations may only hold
relative to the assumptions we use in our construction.

Theorem 6 (Unforgeability is independent). There exists a P3S
which offers all security properties, but unforgeability.

Proof. A counter-example is simple: Alter AddSanP3S in such a way, that
a sanitizer receives a skS not only for the asked for attributes, but for
all attributes. Clearly, all other properties, including correctness, are still
preserved, but now a sanitizer can alter more signatures than it should
be allowed to, as it holds a skS for all attributes. Moreover, it still cannot
blame a signer or sanitizer for the signatures it creates.

Theorem 7 (Transparency is independent). There exists a P3S which
offers all security properties, but transparency.

Proof. This holds by altering our construction. Namely, at signing, the
label to the proof system is no longer ` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,

A,mA,m!A, σm, c), but ` = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,A,mA,m!A, σm,

c, 0). For sanitization, the label is changed to ` = (ppP3S, pkP3S, pk
Sig
P3S, h,

r,m,A,A,mA,m!A, σm, c, 1). For verification, both possibilities (last bit
equal to 0 or equal to 1; Both values are distinct, and are neither derived
from any secrets or message) are tested, and only returns 1, if one of the
verification procedures return 1. Clearly, all other properties still hold,

while an adversary can use the last bit to decide whether a sanitization
was performed or not.

Theorem 8 (Privacy is independent). There exists a P3S which of-
fers all security properties, but privacy.

Proof. We prove this by slightly altering our construction. First note
that, in the privacy experiment, the adversary A is allowed to generate
skSig

P3S, and thus obviously knows it. We now alter our construction in the
following way; At signing, the original message (if the message space is not
compatible, one can use a hash-function) is also encrypted to the signer
itself as c′ (note, the signer already owns an encryption key-pair), and

appended to the label ` = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,A,mA,m!A, σm,

c, c′), and is also part of the signature σ′ = (σ, c′). Verification works as
expected. Sanitization remains the same, also using c′ in the augmented
label, but returns c′ as part of the sanitized signature. Proof-generation
and the judge now also take c′ into account in a straightforward manner.
All properties, but privacy, remain to hold, as we only add an additional
value to the label ` of the proof-system. However, an adversary A can use
its secret decryption key to decrypt the original message (or its hash),
directly contradicting the privacy requirements. Transparency continues
to hold, as the message is encrypted. Note, in the altered construction
IND-CPA is sufficient, as this value is never decrypted by an honest party.

Theorem 9 (Immutability is independent). There exists a P3S which
offers all security properties, but immutability.

Proof. We alter the construction in the following way: An honestly gen-
erated pkPCH is augmented by appending a 0. For usage outside of ` for
the proof-system, this bit is dropped. However, if the appended bit is a
1, the verification algorithm now also accepts, if A, mA, and m!A are not
consistent, i.e., arbitrary. Thus, an adversary can sanitize a seen signature
to arbitrary ones. Again, all properties, but immutability, remain to hold:
An adversary A simply needs to generate a bogus public key (which is
never generated in the honest case), and can then alter immutable blocks.

Theorem 10 (Pseudonymity is independent). There exists a P3S
which offers all security properties, but pseudonymity.

Proof. We first want to remind the reader that, in the pseudonymity
experiment, the adversary A is allowed to input arbitrary signatures,
while in the transparency experiment the adversary never sees a signature
from the signer in the case b = 0 from the LeftOrRight-oracle.

We use this gap to encode the sanitizer’s identity such that it can only
be noticed, if a sanitized and the original signatures are available. Let l be
an upper bound on the bit-length of the output of the one-way function f .
Let e be an additional security parameter. We alter signing as follows: At
signing, the signer chooses a random integer i←r {0, 1}l+e, and attaches

it to the label `′ for the NIZK, i.e., `′ = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,A,

mA,m!A, σm, c, i), yet also to the signature, i.e., σ′ = (σ, i). Verification
simply also takes the altered values into account. At sanitization, however,
i is altered by setting i′ ← i+ x′2, where x′2 is the binary representation
of x2. The variable i′ then becomes part of the used label for the new
NIZK and the sanitized signatures. If e is chosen large enough, while l is
a constant, the distributions remain indistinguishable in the transparency
experiment. Note, all attached values are independent of the messages,
thus privacy still holds.

Clearly, all properties, but pseudonymity, hold. Namely, the adversary
A simply checks whether a chosen x2 and i (note, the adversary A also
chooses the corresponding secret keys in the pseudonymity experiment,
and thus knows the corresponding public keys) match by checking whether
i′ (generated by the challenger) equals x′2 + i or not.

Theorem 11 (Signer-Accountability is independent). There exists
a P3S which offers all security properties, but signer-accountability.

Proof. The idea is similar to the proof for showing that immutability
is independent. Namely, we alter our construction as follows. At key-
generation for the signer, a 0 is appended to pkSig

P3S. If some of the inner

keys of pkSig
P3S are used, the last bit is simply dropped for the underlying

algorithms. For the judge, however, if pkSig
P3S has a trailing 1, it always

outputs 1, if the key to the checked is the corresponding sanitizer one,
if signature verification passes (in other words, the generated proof is
ignored, but only the validity is checked). Otherwise, the original algorithm
is executed.

Now, if the signer generates a key with a trailing 1, if can make the
sanitizer accountable for any signature it wants. All other properties
are, however, still preserved, as all keys are part of the label, which still
preserves proof-soundness.

Theorem 12 (Sanitizer-Accountability is independent). There ex-
ists a P3S which offers all security properties, but sanitizer-accountability.

Proof. The proof follows the same line as for proving the independence
of signer-accountability. Namely, we alter our construction as follows. At

key-generation for the sanitizer, a 0 is appended to pkSan
P3S. If some of

the inner keys of pkSan
P3S are used, the last bit is simply dropped for the

underlying algorithms. For the judge, however, if pkSan
P3S has a trailing

1, it always outputs 1, if the key to the checked is the corresponding
signer one, if signature verification passes (in other words, the generated
proof is ignored, but only the validity is checked). Otherwise, the original
algorithm is executed.

Now, if the sanitizer generates a key with a trailing 1, if can make
the signer accountable for any signature it wants. All other properties
are, however, still preserved, as all keys are part of the label, which still
preserves proof-soundness.

Theorem 13 (Proof-Soundness is independent). There exists a P3S
which offers all security properties, but proof-soundness.

Proof. We alter our construction as follows. At key-generation, all keys
(group, signer, and sanitizer) are appended with a 0. If an algorithm uses
an inner key, that bit is ignored. Judge, however, outputs also 1 (if the
corresponding signature verifies), if all public keys have a trailing 1. This
allows the adversary to easily win the proof-soundness experiment. All
other properties are still preserved, as the adversary need to control all
three key-pairs to win, which is not the case in the other definitions, but
privacy. Privacy, however, still continues to hold, as the message is not
input to the changes in our contrived scheme.

Theorem 14 (Traceability is independent). There exists a P3S which
offers all security properties, but traceability.

Proof. This holds by altering our construction. Namely, at signing, the
label to the proof system is no longer ` = (ppP3S, pkP3S, pk

Sig
P3S, h, r,m,A,

A,mA,m!A, σm, c), but ` = (ppP3S, pkP3S, pk
Sig
P3S, h, r,m,A,A,mA,m!A, σm,

c, 0). For sanitization, the label remains the same. If, however, the last bit
is a 1, judge outputs 0.

Again, all properties, but traceability, are preserved, as an adversary
can simply append a 1 to the label, which an honest player would never
do.

	Policy-Based Sanitizable Signatures

