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Abstract

We show a new general approach for constructing maliciously secure two-round oblivious
transfer (OT). Specifically, we provide a generic sequence of transformations to upgrade a very
basic notion of two-round OT, which we call elementary OT, to UC-secure OT. We then give
simple constructions of elementary OT under the Computational Diffie-Hellman (CDH) assump-
tion or the Learning Parity with Noise (LPN) assumption, yielding the first constructions of
malicious (UC-secure) two-round OT under these assumptions. Since two-round OT is complete
for two-round 2-party and multi-party computation in the malicious setting, we also achieve the
first constructions of the latter under these assumptions.

1 Introduction

Oblivious transfer (OT) [Rab05, EGL85], is a fundamental primitive in cryptography. An OT
protocol consists of two parties: a sender and a receiver. The sender’s input is composed of
two strings (m0,m1) and the receiver’s input is a bit c. At the end of the execution of the OT
protocol, the receiver should only learn the value mc, but should not learn anything about the
other value m1−c. The sender should gain no information about the choice bit c. This very
simple primitive is often used as the foundational building block for realizing secure computation
protocols [Yao82, GMW87]. Thus, the efficiency characteristics of the OT protocol directly affect
the efficiency of the resulting secure computation protocol. As such, several notions of OT, achieving
varying security and efficiency properties, have been devised (see e.g., [Lin16]). Ideally, we want to
achieve a simulation-based definition of OT, where we require that malicious behavior in the real
world can be simulated in an ideal world with an ideal OT functionality, and even more desirably,
we want to do so in the universal composability (UC) framework [Can01].
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OT in Two-Rounds. As the name suggests, a two-round OT protocols allows the OT function-
ality to be implemented in just the minimal two-rounds of communication. Namely, the receiver
sends the first-round message based on her input bit c. Next, using his input (m0,m1) and the first
message of the protocol, the sender generates and sends the second-round message of the protocol.
Finally, the receiver uses the second-round protocol message to recover mc.

OT protocols that require only two rounds of communication are often desirable. Most impor-
tantly, two-round OT protocols are complete (necessary and sufficient) for general two-round (i.e.,
round optima) two-party [Yao82] and multi-party secure computation (2PC,MPC) [GS18, BL18]
in both the semi-honest and malicious settings. Unfortunately, constructing two-round OT is typ-
ically much harder than constructing OT protocols with a larger round complexity. In particular,
by relying on ZK proofs, we can construct constant-round malicious OT assuming only constant-
round semi-honest OT and the latter follows from essentially all known assumptions that imply
public-cryptography. On the other hand, no such equivalence is known for 2-round protocols since
zero-knowledge proofs add more round. Furthermore, we know that two-round simulation-secure
malicious OT is impossible in the plain model, and therefore we consider security in the common
reference string (CRS) model.

Assumptions. Over the years, tremendous progress has been made in constructing both semi-
honest and maliciously secure two-round OT protocols [CCM98, NP01, AIR01, DHRS04, PVW08,
HK12, BD18] from a wide variety of assumptions. However, there are still gaps in our understanding
— namely, constructing two-round OT typically requires stronger assumptions than what known
to be sufficient for just OT. This is especially true for the case of maliciously secure OT. In this
work, we attempt to bridge this gap. More specifically, we ask:

Can maliciously secure two-round OT and be based on the Computational Diffie-Hellman (CDH)
assumption or the Learning Parity with Noise (LPN) assumption?

Since two-round malicious (UC) OT is complete for two-round malicious (UC) 2PC and MPC,
the above is equivalent to asking whether the latter can be instantiated under the CDH and LPN
assumptions. While constructions of UC-secure two-round OT under the Decisional Diffie-Hellman
(DDH) assumption and the Learning with Errors (LWE) assumption are known [PVW08], the
question of constructing the same under CDH and LPN has so far remained open. Moreover, we
do not even have two-round constructions under CDH or LPN that satisfy any alternate weaker
notions of malicious OT security that have been previously proposed in the literature.

1.1 Why is Two-Round Maliciously Secure OT Difficult?

One reason that (two-round) OT is difficult to construct is that this notion is even difficult to
define. Simulation-based definitions of security are complex and impose requirements that often
seem stronger than necessary and hard to achieve. Unlike (say) public-key encryption, where we
have simple game-based definitions that imply simulation-based (semantic) security, we do not have
any simpler definitions of malicious OT security that suffice for simulation. All prior attempts from
the literature to weaken the definition of OT security are still complex and require some form of
extraction/simulation. In particular, to meaningfully define that the malicious receiver only learns
one of the two sender values m0,m1, all known definitions require that we can somehow extract the
receiver’s choice bit c from the first OT message and then argue that the second message hides the
value m1−c.
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To meet any such extraction-based definition, we need to start with an OT where the receiver’s
choice bit is statistically committed in the first OT message. This seems like a significant restriction.
For example there is a natural construction of OT from CDH due to Bellare and Micali [BM90],
which achieves semi-honest security in the standard model or a weak form of malicious security
in the random-oracle model. However, in this construction, the first message only commits the
receiver computationally to the choice bit and hence there is no hope of extracting it. Therefore,
it appears difficult to prove any meaningful notion of malicious security without resorting to the
random oracle model.

Overall, we are aware of only two approaches towards achieving maliciously-secure OT. The
first starts with semi-honest OT and then compiles it to malicious OT using zero-knowledge proofs.
Unfortunately, if we want two-round OT we would need to use non-interactive zero-knowledge
(NIZK) proofs and we do not have instantiations of such NIZKs under many natural assumptions
such as CDH or LPN (or LWE). The other approach, used by Peikert, Vaikuntanathan and Waters
[PVW08] (and to some extent also e.g., [NP01, AIR01, BD18]) takes advantage of a statistically
“lossy” mode of DDH/LWE based encryption. Unfortunately, we do not have any such analo-
gous “lossy” mode for CDH/LPN based encryption and therefore this approach too appears to be
fundamentally stuck.

1.2 Our Results

In this work, we give a new general approach for constructing UC-secure two-round OT.1 Specifi-
cally, we introduce an extremely weak and simple notion of two-round OT, which we call elementary
OT. This notion is defined via a game-based definition and, in contrast to all prior notions of OT,
does not rely on an extractor. We then provide a series of generic transformations that upgrade
the security of elementary OT, eventually culminating in a UC-secure two-round OT. These trans-
formations are the main technically challenging contributions of the paper. Lastly, we show simple
constructions of two-round elementary OT under the Computational Diffie-Hellman (CDH) as-
sumption or the Learning Parity with Noise (LPN) assumption, yielding the first constructions of
UC-secure two-round OT under these assumptions. We rely on a variant of LPN with noise-rate
1/nε for some arbitrary constant ε > 1

2 .2

Applications to Two-round MPC. As mentioned earlier, two-round OT is known to be com-
plete for constructing two-round MPC [GS18, BL18]. Thus, our results also yield the first construc-
tions of two-round malicious (UC-secure) MPC under the Computational Diffie-Hellman (CDH)
assumption or the Learning Parity with Noise (LPN) assumption.

Open problems. Interestingly, our generic transformations use garbled circuits that make a non-
black-box use of the underlying cryptographic primitives. We leave it as an open problem to obtain
a black-box construction or show the impossibility thereof.

1Although we achieve UC security, it does not appear that achieving stand-alone security would make the problem
our our solutions significantly simpler.

2This is marginally stronger than the variant used in constructing public-key encryption due to
Alekhnovich [Ale03], which relies on a noise-rate 1/Θ(n1/2).
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2 Technical Overview

Our results are obtained via a sequence of transformations between various notions of OT. We give
an overview of this sequence in Figure 1 and explain each of the steps below. All of the notions
of OT that we consider are two-round and can rely on a common reference string (CRS), which is
generated by a trusted third party and given to both the sender and the receiver. For simplicity,
we often ignore the CRS in the discussion below.

CDH

LPN

Elementary OT Search OT

iOT Weak SFE

Sender’s UC Security

ZK UC OT

Sec. 10.1

Sec. 10.2

Sec. 5.1

Sec. 5.2 & 5.3

Sec. 6

Sec. 7

Sec. 8

Sec. 9

Figure 1: Sequence of transformations leading to our results.

Elementary OT. We begin by defining an extremely weak and simple notion of OT, called
elementary OT. The receiver uses her choice bit c to generate a first round message otr. The sender
then uses otr to generate a second-round message ots together with two values y0, y1. The receiver
gets ots and uses it to recover the value yc. Note that, unlike in standard OT, the sender does not
choose the two values y0, y1 himself, but instead generates them together with ots. (One may think
of this as analogous to the distinction between key-encapsulation and encryption.) The security of
elementary OT is defined via the following two game-based requirements:

1. Receiver Security: The receiver’s choice bit c is computationally hidden by the first-round
OT message otr.

2. Sender Security: A malicious receiver who creates the first-round message otr maliciously and
is then given an honestly generated second-round message ots cannot simultaneously output
both of the values y0, y1 except with negligible probability.

Note that elementary OT provides a very weak notion of sender security. Firstly, it only provides
unpredictability, rather than indistinguishability, based security – the malicious receiver cannot
output both values y0, y1, but may learn some partial information about each of the two values.
Second of all, it does not require that the there is a consistent bit w such that the value yw is
hidden from the malicious receiver – it may be that, even after the receiver maliciously chooses otr,
for some choices of ots she learns y0 and for other choices she learns y1. We fix the second issue
first.

From Elementary OT to Search OT. We define a strengthening of elementary OT, which we
call search OT. The syntax and the receiver security remain the same. For sender security, we still
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keep an unpredictability (search) based security definition. But now we want to ensure that, for
any choice of the malicious receiver’s message otr, there is a consistent bit w such that yw is hidden.
We want to capture this property without requiring the existence of an (even inefficient) extractor
that can find such w. We do so as follows. For any choice of the malicious receiver’s first message
otr (along with all her random coins and the CRS), we define two probabilities ε0, ε1 which denote
the probability of the receiver outputting y0 and y1 respectively, taken only over the choice of ots.
We require that for any polynomial p, with overwhelming probability over the receiver’s choices,
at least one of ε0 or ε1 is smaller than 1/p. In particular, this means that with overwhelming
probability over the malicious receiver’s choice of otr, there is a fixed and consistent bit w such
that the receiver will be unable to recover yw from the sender’s message ots. Note that the value
w may not be extractable (even inefficiently) from otr alone since the way that w is defined is
“adversary-dependent”.

To go from elementary OT to search OT, we rely on techniques from “hardness amplification”.
The difficulty of using a search-OT adversary to break elementary-OT security is that a search-OT
adversary can, for example, have ε0 = ε1 = 1

2 , but for half the value of ots it outputs the correct
y0 and for half it outputs the correct y1, yet it never output both correct values simultaneously.
However, if we could ensure that ε0, ε1 are both much larger than 1

2 , then this could not happen.
We use hardness amplification to achieve this. In particular, we construct search OT scheme
from elementary OT by having the sender generate λ (security parameter) different second-round
messages of the elementary OT and set the search OT values to be the concatenations OTS =
(ots1, . . . , otsλ) and Y0 = (y1

0, . . . , y
λ
0 ), Y1 = (y1

1, . . . , y
λ
1 ). By hardness amplification, if for some

choice of otr the malicious receiver can separately predict each of Y0, Y1 with probability better than
some inverse polynomial 1/p, then that means it can separately predict each of the components
y0, y1 with extremely high probability > 3

4 , and by the union bound, can therefore predict both
components y0, y1 simultaneously with probability > 1

4 .

From Search OT to Indistinguishability OT. Next, we define a notion that we call in-
distinguishability OT. Here, just like in standard OT, the sender gets to choose his two values
m0,m1 himself, rather than having the scheme generate values y0, y1 for him, as was the case in
elementary and search OT. The receiver security remains the same as in elementary and search
OT: the receiver’s choice bit c is hidden by her first-round message otr. The sender security is
defined in a similar manner to search OT, except that we now require indistinguishability rather
than unpredictability. In particular, the malicious receiver chooses two values m0,m1 and a ma-
liciously generated otr. For any such choice, we define two probabilities ε0, ε1, where εb denotes
the receiver’s advantage, calculated only over the random coins of the sender, in distinguishing
between ots generated with the messages (m0,m1) versus (m′0,m

′
1) where m′b is uniformly random

and m′1−b = m1−b. We require that for any polynomial p, with overwhelming probability over the
receiver’s choices, at least one of ε0 or ε1 is smaller than 1/p. In particular, this means that, with
overwhelming probability, the malicious receiver’s choice of otr fixes a consistent bit w such that
the receiver does not learn anything about mw.

To go from search OT to indistinguishability OT with 1-bit values m0,m1, we rely on the
Goldreich-Levin hardcore bit [GL89]. In particular, we use search OT to generate ots along with
values y0, y1 and then use the Goldreich-Levin hardcore bits of y0, y1 to mask m0,m1 respectively.
To then allow for multi-bit values m0,m1, we simply have the sender send each bit separately, by
reusing the same receiver message otr for all bits.
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From Indistinguishability OT to Weak SFE. Next, we generalize from OT and define a
weak form of (two-round) secure function evaluation (weak-SFE). Here, there is a receiver with an
input x and a sender with a circuit f . The receiver learns the output f(x) in the second round.
We define a very simple (but weak) game-based notion of malicious security, without relying on a
simulator or extractor:

• Receiver Security: The receiver’s first-round message hides the input x from the sender.

• Sender Security: A malicious receiver cannot distinguish between any two functionally equiv-
alent circuits f0, f1 used by the sender.

We show how to compile indistinguishability OT to weak SFE. Indeed, the construction is the same
as the standard construction of (standard) SFE from (standard) OT: the receiver sends first-round
OT messages corresponding to the bits of the input x and the sender creates a garbled circuit for
f and uses the two input labels as the values for the second-round OT messages.

The proof of sender security, however, is very different than that for the standard construction
of SFE from OT, which relies on extracting the receiver’s OT choice bits. Instead, we rely on
technical ideas that are similar to and inspired by those recently used in the context of distinguisher-
dependent simulation [JKKR17] and have a sequence of hybrids that depends on the adversary.
More concretely, indistinguishability OT guarantees that for each input wire, there is some bit w
such that the adversary cannot tell if we replace the label for w by uniform. However, this bit w
is defined in an adversary-dependent manner. This effectively allows us to extract the adversary’s
OT choice bits. Therefore, we have a sequence of adversary-dependent hybrids where we switch the
OT values used by the sender and replace the labels for the bits w by random values. We then rely
on garbled circuit security to argue that garblings of f0 and f1 are indistinguishable, and conclude
that the adversary’s advantage is negligible.

Formalizing the above high-level approach is the most technically involved component of the
paper.

From Weak SFE to OT with UC Sender Security. We show how to go from weak SFE to an
OT scheme that has UC-security for the sender. In particular, this means we can extract the choice
bit c from the receiver’s first-round message otr and simulate the sender’s second-round message ots
given only mc, without knowing the “other” value m1−c. For the receiver’s security, we maintain
the same indistinguishability-based requirement as in elementary/search/indistinguishability OT,
which guarantees that the choice bit c is hidden by the first-round OT message otr. We refer to
this as a “half-UC OT” for short. This is the first step where we introduce a simulation/extraction
based notion of security.

Our compiler places a public-key pk of a public-key encryption (PKE) scheme to the CRS. The
receiver encrypts her choice bit c under pk using randomness r and sends the resulting ciphertext
ct = Epk(c; r) as part of her first-round OT message. At the same time, the receiver and sender
run an instance of weak SFE, where the receiver’s input is x = (c, r) and the sender’s circuit
is fpk,ct,m0,m1(c, r), which output mc if ct = Epk(c; r) and ⊥ otherwise. The indistinguishability-
based security of the receiver directly follows from that of the SFE and the PKE, which together
guarantees that c is hidden by the first-round message. To argue UC security of the sender, we
now extract the receiver’s bit c by decrypting the ciphertext ct. If ct is an encryption of c then
fpk,ct,m0,m1 is functionally equivalent to fpk,ct,m′0,m′1 where m′c = mc and m′1−c is replaced by an
arbitrary value, say all 0s. Therefore, we can simulate the sender’s second-round OT message by
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using the circuit fpk,ct,m′0,m′1 , which only relies on knowledge of mc without knowing m1−c, and
weak SFE security guarantees that this is indistinguishable from the real world.

From UC Sender Security to Full UC OT. Finally, we show how to use an OT scheme
with UC-security of the sender and indistinguishability-based security for the receiver (“half-UC
OT”) to get a full UC-secure OT. In particular, this means that we need to simulate the receiver’s
first-round message without knowing c and extract two values m0,m1 from a malicious sender such
that, if the receiver’s bit was c, he would get mc.

Before we give our actual construction, it is useful to examine a naive proposal and why it fails.
In the naive proposal, the sender commits to both values m0,m1 using an extractable commitment
(e.g., PKE where the public key is in the CRS); the parties use a half-UC OT where the sender
puts the two decommitments as his OT values and also sends the commitments as part of the
second-round OT message. We can extract two values m0,m1 from the commitment and are
guaranteed that the receiver either outputs the value mc or ⊥ (if the decommitment he receives
via the underlying OT is incorrect). But we are unable to say which of the two cases will occur.
This is insufficient for full security.

We solve the above problem via two steps:

• We first give a solution using a two-round zero-knowledge (ZK) argument and an extractable
commitment (both in the CRS model). The sender and receiver run the half-UC OT protocol
where the receiver uses her choice bit c and the sender uses his two values m0,m1. In the
first round, the receiver also sends the first-round verifier message of the ZK argument. In
the second round, the sender also commits to his two messages m0,m1 using an extractable
commitment and uses the ZK argument system to prove that he computed the second-round
OT message correctly using the same values m0,m1 as in the commitment. This provides
UC security for the receiver since, if the ZK argument verifies, we can extract the values
m0,m1 from the commitment and know that the receiver would recover the correct value mc.
The transformation also preserves UC security for the sender since the ZK argument can be
simulated.

• We then show how to construct a two-round ZK argument using half-UC OT. We rely on a
Σ-protocol for NP where the prover sends a value a, receives a 1-bit challenge b ∈ {0, 1}, and
sends a response z; the verifier checks that the transcript (a, b, z) is valid for the statement
being proved and accepts or rejects accordingly. We can compile a Σ-protocol to a two-round
ZK argument using OT. The verifier sends a first-round OT message for a random bit b. The
prover chooses a and computes both responses z0, z1 corresponding to both possible values
of the challenge b; he then sends a and uses z0, z1 as the values for the second-round OT
message. The verifier recovers zb from the OT and checks that (a, b, zb) is a valid transcript
of the Σ-protocol. We repeat this in parallel λ (security parameter) times to get negligible
soundness error. It turns out that we can prove ZK security by relying on the UC-security for
the sender; we can extract the OT choice bits b in each execution and then simulate the Σ-
protocol transcript after knowing the challenge bit b. It would also be easy to prove soundness
using UC-security for the receiver, but we want to only rely on a “half-UC” OT where we
only have indistinguishability security of the receiver. To solve this, we rely on a special type
of “extractable” Σ-protocol [HL18] in the CRS model, where, for every choice of a there is a
unique “bad challenge” b such that, if the statement is false, there exists a valid response z
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that results in a valid transcript (a, b, z). Furthermore, this unique bad challenge b should be
efficiently extractable from a using a trapdoor to the CRS. Such “extractable” Σ-protocols
can be constructed from only public-key encryption. If the Σ-protocol is extractable and the
OT scheme has indistinguishability-based receiver security then the resulting two-round ZK
is computationally sound. This is because, the only way that the prover can succeed is if in
each of the λ invocations he chooses a first message a such that the receiver’s OT choice bit
b is the unique bad challenge for a, but this means that the prover can predict the receiver’s
OT choice bits (the reduction uses the trapdoor for the Σ-protocol to extract the unique bad
challenge from a).

Combined together, the above two steps give a general compiler from half-UC OT to fully secure
UC OT.

Instantiation from CDH. We now give our simple instantiation of elementary OT under the
CDH assumption. The construction is based on a scheme of Bellare and Micali [BM90], which
achieves a weak form of malicious security in the random-oracle model. Our protocol is somewhat
simplified and does not require a random oracle. Recall that the CDH assumption states that,
given a generator g of some cyclic group G of order p, along with values ga, gb for random a, b ∈ Zp,
it is hard to compute gab.

The CRS of the OT scheme consists of A = ga for random a ∈ Zp. The receiver with a choice
bit c computes two value hc = gr and h1−c = A/hc for a random r ∈ Zp and sends otr := h0 as
the first-round OT message. The sender computes h1 = A/h0. It chooses a random b ∈ Zp, sets
ots := B = gb as the second-round message, and generates the two values y0 = hb0, y1 = hb1. The
receiver outputs ŷc = Br.

This ensures correctness since ŷc = Br = gbr = hbc = yc. Also, h0 is uniformly random over G no
matter what the receiver bit c is, and therefore this provides (statistic) indistinguishability-based
receiver security. Lastly, we argue that we get elementary OT security for the sender, meaning
that a malicious receiver cannot simultaneously compute both y0, y1. Note that the only values
seen by the malicious receiver during the game are A = ga, B = gb. If the receiver outputs
y0 = hb0, y1 = hb1 = (A/h0)b then we can use these values to compute y0 · y1 = Ab = gab, which
breaks CDH.

Instantiation from LPN. We also give a simple instantiation of elementary OT under the
LPN assumption. This construction closely mirrors the CDH one. We use a variant of the LPN
problem with noise-rate 1/nε for an arbitrary constant ε > 1

2 . We also rely on a variant of the LPN
problem where the secret is chosen from the error distribution, which is known to be equivalent to
standard LPN where the secret is uniformly random [ACPS09]. In particular this variant of the
LPN problem states that, for a Bernoulli distribution Bρ which outputs 1 with probability ρ = 1/nε,
and for A← Zn×n2 , s, e← Bnρ , the values (A, sA+ e) are indistinguishable from uniformly random
values.

The CRS of the OT scheme consists of a tuple (A, v) where A ← Zn×n2 and v ← Zn2 . The
receiver chooses x, e ← Bnρ and sets hc = Ax + e and h1−c = v − hc and sends otr = h0 as the

first-round OT message. The sender computes h1 = h0 + v, chooses S,E ← Bλ×nρ where λ is the
security parameter and sends ots := B = SA + E as the second-round OT message. The sender
computes the values y0 = Sh0, y1 = Sh1. The receiver outputs ŷc = Bx.
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This ensures correctness with a small inverse-polynomial error probability. In particular, yc =
Shc = S(Ax + e) = Bx + Se − Ex = ŷc + (Se − Ex) where Ex + Se = 0 except with a small
error probability, which we can make an arbitrarily small inverse polynomial in λ by setting n to
be a sufficiently large polynomial in λ. The receiver’s (computational) indistinguishability-based
security holds under LPN since h0 is indistinguishable from uniform no matter what c is. We also
get elementary OT security for the sender under the LPN assumption. A malicious receiver only
sees the values A, v and B = SA+E during the game. If the receiver outputs y0 = Sh0, y1 = Sh1,
then we can use it to compute y0 + y1 = S(h0 + h1) = Sv. But, since S is hard to compute
given A,B, we can argue that Sv is indistinguishable form uniform under the LPN assumption,
by thinking of the i’th of Sv as a Goldreich-Levin hardcore bit for the i’th row of S. Therefore, is
should be hard to output Sv except with negligible probability.

The fact that we get a small (inverse polynomial) error probability does not affect the security of
the generic transformations going from elementary OT to indistinguishability OT for 1-bit messages.
Then, when we go from 1-bit messages to multi-bit messages we can also use an error-correcting
code to amplify correctness and get a negligible correctness error.

3 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote computational indistin-

guishability between two distributions and use ≡ to denote two distributions are identical. For a

distribution D we use x
$←− D to mean x is sampled according to D and use y ∈ D to mean y is in

the support of D. For a set S we overload the notation to use x
$←− S to indicate that x is chosen

uniformly at random from S.

3.1 Basic Inequalities

Lemma 3.1 (Markov Inequality for Advantages). Let A(Z) and B(Z) be two random variables de-
pending on a random variable Z and potentially additional random choices. Assume that |PrZ [A(Z) =
1]− PrZ [B(Z) = 1]| ≥ ε ≥ 0. Then

Pr
Z

[|Pr[A(Z) = 1]− Pr[B(Z) = 1]| ≥ ε/2] ≥ ε/2.

Proof. Let a := PrZ [|Pr[A(Z) = 1] − Pr[B(Z) = 1]| ≥ ε/2]. We have ε ≤ a × 1 + (1 − a) × ε/2.
Since 0 ≤ 1− a ≤ 1, we obtain ε ≤ a+ ε/2. The inequality now follows.

Theorem 3.2 (Hoeffding Inequality). Let X1, . . . , XN ∈ [0, 1] be i.i.d. random variables with
expectation E[X1]. Then it holds that

Pr

[∣∣∣∣∣ 1

N

∑
i

Xi − E[X1]

∣∣∣∣∣ > δ

]
≤ 2e−2Nδ2 .

3.2 Standard Primitives

Definition 3.3 (PKE). The notion of CPA security for a PKE scheme PKE = (KeyGen,E,Dec) is
standard. We say that PKE is perfectly correct if Pr[∃(m, r) s.t. Dec(sk,E(pk,m; r)) 6= m] = negl(λ),

where (pk, sk)
$←− KeyGen(1λ).
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Definition 3.4 (Garbled Circuits). A garbling scheme for a class of circuits C with n-bit inputs
consists of (Garble,Eval, Sim) with the following correctness and security properties.

• Correctness: for all C ∈ C and all x ∈ {0, 1}n, we have Pr[Eval(Ĉ,GarbleInput(~lb
0
, ~lb

1
, x)) =

C(x)] = 1, where (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ,C), ~lb
0

:= (lb0
1, . . . , lb

0
n), ~lb

1
:= (lb1

1, . . . , lb
1
n) and we

define GarbleInput(~lb
0
, ~lb

1
, x) := (lbx11 , . . . , lb

xn
n ).

• Security: For any C ∈ C and x ∈ {0, 1}n: (Ĉ,GarbleInput(~lb
0
, ~lb

1
, x))

c≡ Sim(1λ,C(x)), where

(Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ,C).

4 Definitions of Two-Round Oblivious Transfer

A two-round oblivious transfer (OT) protocol (we use the definition from [BGI+17]) is given by

algorithms (Setup,OT1,OT2,OT3), where the setup algorithm Setup generates a CRS value crs
$←−

Setup(1λ).3 The receiver runs the algorithm OT1 which takes crs and a choice bit c ∈ {0, 1} as
input and outputs (otr, st). The receiver then sends otr to the sender, who obtains ots by evaluating
OT2(1λ, otr,m0,m1), where m0 and m1 (such that m0,m1 ∈ {0, 1}λ) are its inputs. The sender then
sends ots to the receiver who obtains mc by evaluating OT3(1λ, st, ots).

4.1 Correctness

We say that a two-round OT scheme is perfectly correct, if with probability 1 − negl(λ) over the

choice of crs
$←− Setup(1λ) the following holds: for every choice bit c ∈ {0, 1} of the receiver and input

messages m0 and m1 of the sender, and for any (otr, st) ∈ OT1(crs, c) and ots ∈ OT2(crs, otr,m0,m1),
we have OT3(st, ots) = mc. (Recall that x ∈ D for a distributions D means that x is in the support
of D.)

4.2 Receiver’s Security Notions

We consider two notions of receiver’s security — namely, notions that require security against a
malicious sender. We describe them next.

Receiver’s indistinguishability security. For every non-uniform polynomial-time adversary

A: |Pr[A(crs,OT1(crs, 0)) = 1]− Pr[A(crs,OT1(crs, 1)) = 1]| = negl(λ), where crs
$←− Setup(1λ).

Receiver’s UC-security. We work in Canetti’s UC framework with static corruptions [Can01].
We assume familiarity with this model. We use Z for denoting the underlying environment. For a
real protocol Π and an adversary A, we use EXECΠ,A,Z to denote the real-world ensemble. Also,
for an ideal functionality F and an adversary S we denote IDEALF ,S,Z to denote the ideal-world
ensemble.

We say that an OT protocol OT is receiver-UC secure if for any adversary A corrupting the
sender, there exists a simulator S such that for all environments Z:

3Some variants of two-round OT do not need a CRS. In this case, we will assume Setup as the identity function.
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IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

where the ideal functionality FOT is defined in Figure 2. (We will follow the same style as
in [CLOS02, PVW08].)

FOT interacts with an ideal sender S and an ideal receiver R.

1. On input (sid, sender,m0,m1) from the sender, store (m0,m1).

2. On input (sid, receiver, b), check if a pair of inputs (m0,m1) has been already recorded for
session sid; if so, send mb to R and send sid to the adversary and halt; else, send nothing.

Figure 2: Ideal Functionality FOT

Since our OT protocols are in the CRS model, we also give the FCRS idea functionality below.

FDCRS: parameterized over a distribution D, run by parties P1, . . . , Pn, and an adversary S:

• Whenever receiving message a message (sid, Pi, Pj) from party Pi, sample crs
$←− D and

send (sid, crs) to Pi and send (sid, crs, Pi, Pj) to S. Whenever receiving the message
(sid, Pi, Pj) from Pj , send (sid, crs) to Pj and S.

Figure 3: Ideal Functionality FDCRS [CR03]

4.3 Sender’s Security Notions

We consider several different notions of sender’s security that we define below. In the first two
notions of security, namely elementary and search notions, we change the syntax of OT2 a bit.
More specifically, instead of taking m0 and m1 as input, OT2 outputs two masks y0 and y1 where
the receiver only gets yc, where c is the receiver’s choice bit.

Sender’s Elementary Security. The elementary sender security corresponds to the weakest
security notion against a malicious receiver that is considered in this work. This notion requires
that the receiver actually compute both the strings y0 and y1 used by the sender. Let A = (A1,A2)
be an adversary. Consider the following experiment ExpλeOT(A):

1. Run crs
$←− Setup(1λ).

2. Run (otr, st)
$←− A1(1λ, crs)

3. Compute (ots, y0, y1)
$←− OT2(crs, otr)

4. Compute (y∗0, y
∗
1)

$←− A2(st, ots) and output 1 iff (y∗0, y
∗
1) = (y0, y1)

We say that a scheme satisfies eOT security if Pr[ExpλeOT(A) = 1] = negl(λ).
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Sender’s Search Security. Next, we consider the search security notion. In this stronger secu-
rity notion, the adversary is expected to still compute both y0 and y1 but perhaps not necessarily
at the same time. More formally, let A = (A1,A2) be an adversary where A2 outputs a message
y∗. Consider the following experiment Expcrs,r,wsOT (A), indexed by a crs, random coins r ∈ {0, 1}λ and
a bit w ∈ {0, 1}.

1. Run (otr, st)
$←− A1(1λ, crs; r)

2. Compute (ots, y0, y1)
$←− OT2(crs, otr)

3. Compute y∗
$←− A2(st, ots, w) and output 1 iff y∗ = yw

We say a PPT adversary A breaks the sender search privacy if there exist a non-negligible
function ε such that

Pr
crs,r

[Pr[Expcrs,r,0sOT (A) = 1] > ε and Pr[Expcrs,r,1sOT (A) = 1] > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.

Sender’s Indistinguishability Security (iOT). Moving on, we consider the sender’s indis-
tinguishability security notion (or the iOT notion for short). In this notion, we require that the
receiver does not learn any information about either m0 or m1. More formally, let A = (A1,A2) be

an adversary where A2 outputs a bit s. Consider the following experiment Expcrs,r,w,biOT (A), indexed
by a crs, random coins r ∈ {0, 1}λ, a bit w ∈ {0, 1} and a bit b ∈ {0, 1}.

1. Run (m0,m1, otr, st)
$←− A1(1λ, crs; r)

2. If b = 0 compute ots
$←− OT2(crs, otr,m0,m1)

3. Otherwise, if b = 1 compute ots
$←− OT2(crs, otr,m′0,m

′
1) where m′w

$←− {0, 1}n and m′1−w =
m1−w.

4. Compute and output s
$←− A2(st, ots)

Define the advantage of A as Advcrs,r,wiOT (A) = |Pr[Expcrs,r,w,0iOT (A) = 1] − Pr[Expcrs,r,w,1iOT (A) = 1]|.
We say a PPT adversary A breaks the sender’s indistinguishability security if there exist a non-
negligible function ε such that

Pr
crs,r

[Advcrs,r,0iOT (A) > ε and Advcrs,r,1iOT (A) > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.
In the experiment above, if the two messages m0 and m1 are single-bits, then call the notion bit

iOT. Otherwise, we call the notion string iOT.
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Sender’s UC-security. We say that an OT protocol OT is sender-UC secure if for any adversary
A corrupting the receiver, there exists a simulator S such that for all environments Z:

IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

where the ideal functionality FOT is defined in Figure 2.

Definition 4.1. For X ∈ {elementary, search, indistinguishability}, we call a two-round OT scheme
X -secure if it has sender’s X security and receiver’s indistinguishability security. Moreover, we call
a two-round OT scheme UC-secure if it has sender’s UC-security and receiver’s UC-security.

5 Transformations for Achieving Sender’s Indistinguishability

In this section, we give a sequence of transformations which leads us to sender’s indistinguishability
security, starting with sender’s elementary security.

5.1 From Elementary OT to Search OT

We rely on a result of [CHS05] on hardness amplification of weakly verifiable puzzles. In such
puzzles, a puzzle generator can efficiently verify solutions but others need not be able to; we rely
on a restricted case where the solution is unique and the puzzle generator generates the puzzle with
the solution. The result essentially says that solving many puzzles is much harder than solving a
single puzzle. For simplicity, we state a simplified version of their result (restatement of Lemma 1
in [CHS05]) with a restricted range of parameters. It shows that, if there is a “weak solver” that has
some inverse polynomial advantage in solving λ puzzles simultaneously, then there is an “amplified
solver” that has extremely high advantage (arbitrarily close to 1) in solving an individual puzzle.

Lemma 5.1 (Hardness Amplification [CHS05]). For every polynomial p and every constant δ > 0
there exists a PPT algorithm Amp such that the following holds for all sufficiently large λ ∈ N. Let
G be some distribution over pairs (puzzle, solution)← G. Let WS be a “weak solver” such that

Pr[WS(puzzle1, . . . , puzzleλ) = (solution1, . . . , solutionλ)] ≥ 1/p(λ)

where (puzzlei, solutioni)
$←− G for i ∈ {1, . . . , λ}. Then

Pr[AmpWS,G(1λ, puzzle∗) = solution∗] ≥ δ

where (puzzle∗, solution∗)
$←− G.

Construction of Search OT. Let Π = (Setup,OT1,OT2,OT3) be an elementary OT. We con-
struct a search OT scheme Π′ = (Setup,OT1,OT

′
2,OT

′
3) as follows:

• (ots′, Y0, Y1)
$←− OT′2(otr′): Sample (otsi, yi0, y

i
1)

$←− OT2(crs, otr) for i = 1, . . . , λ. Output
ots′ = (ots1, . . . , otsλ) and Y0 = (y1

0, . . . , y
λ
0 ), Y1 = (y1

1, . . . , y
λ
1 ).

• Y $←− OT′3(ots′, st): Parse ots′ = (ots1, . . . , otsλ). Let yi
$←− OT3(otsi, st) for i = 1, . . . , λ.

Output Y = (y1, . . . , yλ).
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Theorem 5.2. If Π is an elementary OT then Π′ described above is a search OT.

Proof. Assume there is some adversary A′ = (A′1,A′2) that breaks the search OT security of Π′.
That is, there exists some polynomial p(·) and an infinite set of values Good ⊆ N such that for all
λ ∈ Good:

Pr
crs,r

[Pr[Expcrs,r,0sOT (A′) = 1] > 1/p(λ) and Pr[Expcrs,r,1sOT (A′) = 1] > 1/p(λ)] > 1/p(λ),

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ.
Let us define the set Good+ to consist of values (crs, r) for which Pr[Expcrs,r,0sOT (A′) = 1] > 1/p(λ)

and Pr[Expcrs,r,1sOT (A′) = 1] > 1/p(λ). Let us fix any such values in Good+. Note that the choice of
(crs, r) ∈ Good+ also implicitly fixes (otr, st) = A′1(crs; r). Therefore, by expanding the definition of
Expcrs,r,0sOT (A′), for this choice of values, we have that for w ∈ {0, 1}:

Pr[A′2(st, ots1, . . . , otsλ, w) = (y1
w, . . . , y

λ
w)] ≥ 1/p(λ).

Let Amp be the success amplification algorithm form Lemma 5.1 with the polynomial p given

above and with δ = 3/4. For w ∈ {0, 1}, let (puzzle, solution)
$←− Gw be the distribution that samples

puzzle = ots, solution = yw with (ots, y0, y1)
$←− OT2(crs, otr) and let WSw(puzzle1, . . . , puzzleλ) =

A′2(st, puzzle1, . . . , puzzleλ, w) be the weak solver. Then, by applying Lemma 5.1, we have:

Pr[AmpWSw,Gw(ots) = yw : (ots, y0, y1)
$←− OT2(crs, otr)] ≥ 3/4.

Finally, define A2(st, ots) to run yw
$←− AmpWSw,Gw(ots) for w ∈ {0, 1} and output y0, y1. Then

for any fixed choice of values in Good+ we have:

Pr[A2(st, ots) = (y0, y1) : (ots, y0, y1)
$←− OT2(crs, otr)]

≥1−
∑
w

Pr[AmpWSw,Gw(ots) 6= yw : (ots, y0, y1)
$←− OT2(crs, otr)]

≥1

2

where the second line follows by the union bound.
Let A = (A′1,A2). Then for all λ ∈ Good:

Pr[ExpλeOT(A) = 1]

≥ Pr
crs,r

[(crs, r) ∈ Good+] Pr[A2(st, ots) = (y0, y1)|(crs, r) ∈ Good+]

≥ 1

p(λ)
· 1

2
,

where crs
$←− Setup(1λ), r

$←− {0, 1}λ, (otr, st)
$←− A′1(crs; r), (ots, y0, y1)

$←− OT2(crs, otr). This shows
that A breaks the elementary security of Π and therefore concludes the proof of the theorem.
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5.2 From Search OT to Bit iOT

We rely on the following standard result that unpredictability implies indistinguishability.

Lemma 5.3 (Distinguishing Implies Predicting). There exists a PPT algorithm P such that the

following holds. Let (z, b)
$←− D be some distribution with b ∈ {0, 1} and let A be an algorithm such

that
|Pr[A(z, b) = 1]− Pr[A(z, b′) = 1]| ≥ ε,

where (z, b)
$←− D and b′

$←− {0, 1}. Then

Pr[PA(z) = b] ≥ 1

2
+ ε.

Proof. Define PA(z) to choose b
$←− {0, 1} and call A(z, b) to get b′. If b′ = 1, output b, else output

1− b. A simple calculation of probabilities shows that P satisfies the claim of the lemma.

We also rely on the Goldreich-Levin theorem [GL89]. The following is the key component of
the theorem, which shows that there is an efficient local decoder for the Hadamard code.

Lemma 5.4 (Goldreich-Levin Decoding [GL89]). There exists a PPT algorithm GLDec and a
polynomial q(·, ·) such that for any n, `, any y ∈ {0, 1}n and any function P : {0, 1}n → {0, 1}
satisfying

Pr
s

$←−{0,1}n
[P(s) = 〈y, s〉] ≥ 1

2
+

1

`

we have:

Pr[GLDecP(1n, 1`) = y] ≥ 1

q(n, `)
.

Let Π = (Setup,OT1,OT2,OT3) be a search OT with message length n = n(λ). We construct
an iOT scheme Π′ = (Setup,OT′1,OT

′
2,OT

′
3) with 1-bit message as follows:

• (otr′, st′)
$←− OT′1(crs, b): Let (otr, st)

$←− OT1(crs, b). Output otr′ = otr, st′ = (st, b).

• ots′
$←− OT′2(otr′,m0,m1): Sample (ots, y0, y1)

$←− OT2(crs, otr). Choose s0, s1
$←− {0, 1}n. For

b ∈ {0, 1}, let cb = 〈yb, sb〉 ⊕mb. Output ots′ = (ots, s0, s1, c0, c1).

• M $←− OT′3(st′, ots′): Parse ots′ = (ots, s0, s1, c0, c1), st′ = (st, b). Let y
$←− OT3(ots, st). Output

M = cb ⊕ 〈y, sb〉.

Theorem 5.5. If Π is a search OT then Π′ is an iOT with 1-bit messages.

Proof. Assume there is some adversary A′ = (A′1,A′2) that breaks the iOT security of Π′. That is,
there exists some polynomial p(·) and an infinite set Good ⊆ N such that for all λ ∈ Good we have:

Pr
crs,r

[Advcrs,r,0Π′ (A′) > 1/p(λ) and Advcrs,r,1Π′ (A′) > 1/p(λ)] > 1/p(λ),

Let us define the set Good+ to consist of values (λ, crs, r) for which Advcrs,r,0Π′ (A′) > 1/p(λ) and

Advcrs,r,1Π′ (A′) > 1/p(λ). For any λ ∈ Good we have

Pr
crs,r

[(λ, crs, r) ∈ Good+] ≥ 1/p(λ). (1)
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Note that any such choice of (λ, crs, r) ∈ Good+ also implicitly fixes (m0,m1, otr, st) = A1(crs; r).
Therefore, by expanding the definition of the advantage, for any choice of such values in Good+,
we have:

|Pr[A′2(st, (ots, s0, s1, c0, c1), w = 0) = 1]− Pr[A′2(st, (ots, s, c′0, c1), w = 0) = 1]| ≥ 1/p(λ)

|Pr[A′2(st, (ots, s0, s1, c0, c1), w = 1) = 1]− Pr[A′2(st, (ots, s, c0, c
′
1), w = 1) = 1]| ≥ 1/p(λ)

where the probability is over (ots, y0, y1)
$←− OT2(crs, otr), s0, s1

$←− {0, 1} and we define cb =

〈yb, sb〉 ⊕mb and c′b
$←− {0, 1}.

We can use the fact that distinguishing implies predicting (Lemma 5.3) to argue that the above
means there is a PPT predictor P such that for any choice of values in Good+:

Pr[P(st, (ots, s0, s1, c1), w) = 〈y0, s0〉] ≥
1

2
+ 1/(2p(λ)) (2)

Pr[P(st, (ots, s0, s1, c0), w) = 〈y1, s1〉] ≥
1

2
+ 1/(2p(λ)) (3)

where the probabilities are over (ots, y0, y1), s0, s1 as above.
Let us define the set Good++

0 to consist of values v = (λ, crs, r, (ots, y0, y1, s1)) such that the prob-
ability in the left-hand side of equation (2) with the fixed choice of the values v, is ≥ 1

2 + 1/(4p(λ)).
We define Good++

1 analogously. By an averaging argument(Lemma 3.1), for any (λ, crs, r) ∈ Good+

we have

Pr
(ots,y0,y1,s1)

[v ∈ Good++
0 ] ≥ 1/(4p(λ)) , Pr

(ots,y0,y1,s0)
[v ∈ Good++

1 ] ≥ 1/(4p(λ)). (4)

By the Goldreich-Levin lemma (Lemma 5.4) there is then some PPT decoder Dec and some poly-
nomial q such that for any fixing of values in Good++

0 and Good++
1 respectively we have:

Pr[Dec(st, (ots, s1, c1), w = 0) = y0] ≥ 1/q(λ)

Pr[Dec(st, (ots, s0, c0), w = 1) = y1] ≥ 1/q(λ))

where the probability is only over the internal coins of Dec.

We can define an adversary A2(st, ots, w) that chooses s1−w
$←− {0, 1}n and c1−w

$←− {0, 1} and
outputs Dec(st, (ots, s1−w, c1−w), w). We write A2(st, ots, w; s1−w) to denote a run over a fixed
choice of s1−w. Then for any fixing of values in Good++

0 and Good++
1 respectively we have

Pr[A2(st, ots, w = 0; s1) = y0] ≥ 1/(2q(λ))

Pr[A2(st, ots, w = 1; s0) = y1] ≥ 1/(2q(λ))

where the above probabilities are only over the internal coins of A2 with s1−w fixed; the only
difference between A2 and Dec is that A2 has to guess the correct bit c1−w and therefore loses
a factor of 1

2 in the success probability. In particular, for any choice of (λ, crs, r) ∈ Good+, there
exists a polynomial q′(λ) = (2q(λ))(4p(λ))

Pr[A2(st, ots, w = 0) = y0] ≥ 1/q′(λ)

Pr[A2(st, ots, w = 1) = y1] ≥ 1/q′(λ)
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where the probability is now over (ots, y0, y1)
$←− OT2(crs, otr) and all randomness ofA2. This follows

by equation (4), which shows that once we fix a choice of values in Good+ then the probability of
ending up in Good++

0 ,Good++
1 respectively is ≥ 1/(4p(λ)).

Finally, we define the adversary A = (A′1,A2). Then for all infinitely many λ ∈ Good we have,
by equation (1), that:

Pr
crs,r

[Pr[A2(st, ots, w = 0) = y0] ≥ 1/q′(λ) ∧ Pr[A2(st, ots, w = 1) = y1] ≥ 1/q′(λ)] ≥ 1/p(λ),

where the inner probability is over (ots, y0, y1)
$←− OT2(crs, otr) and all randomness of A2, and we

define (otr, st) = A1(crs; r).
But the above is equivalent to saying that for all infinitely many λ ∈ Good we have:

Pr
crs,r

[Advcrs,r,0Π (A) > 1/q′(λ) and Advcrs,r,1Π (A) > 1/q′(λ)] > 1/p(λ),

in the search OT security game, and therefore A breaks the search OT security of Π. This completes
the proof.

5.3 From Bit iOT to String iOT

Let Π = (Setup,OT1,OT2,OT3) be an iOT scheme with 1 bit messages. Then, we construct an
iOT scheme Π′ = (Setup,OT′1,OT

′
2,OT

′
3) with message length n = n(λ) as follows:

• (otr′, st′)
$←− OT′1(crs, b): Let (otr, st)

$←− OT1(crs, b). Output otr′ = otr, st′ = st.

• ots′
$←− OT′2(otr′,m0,m1): For each i ∈ [n], sample ots(i)

$←− OT2(crs, otr,m
(i)
0 ,m

(i)
1 ), where m

(i)
0

and m
(i)
1 are the ith bits of m0 and m1, respectively. Output ots′ = {ots(i)}i∈[n].

• M $←− OT′3(ots′, st′): Parse ots′ = {ots(i)}, st′ = (st, b). Let M (i) $←− OT3(ots(i), st) and output
M .

Theorem 5.6. If Π is iOT with 1-bit messages then Π′ is an iOT with messages of length n.

Proof. The receiver’s security follows straightforwardly since only otr can reveal the choice bit b
and otr is identical in the string and bit iOT.

For sender’s indistinguishable security, we need to ensure that a malicious receiver cannot
distinguish both mi

0 and mj
1 from a uniform message for any choice of i, j ∈ [n]. We first define

2(n + 1) hybrids Hcrs,r
1,0 , . . . ,H

crs,r
n+1,0,H

crs,r
1,1 , . . . ,H

crs,r
n+1,1. For j ∈ [n + 1] and w ∈ {0, 1}, Hcrs,r

i,w is

indexed by a a common reference string crs and random coins r ∈ {0, 1}λ and has the description:

• Run (m0,m1, otr, st)
$←− A1(1λ, crs; r)

• For 0 < j < i compute ots(j)
$←− OT2(crs, otr,m

(j)
0 ,m

(j)
1 )

• For n ≥ j ≥ i compute ots(j)
$←− OT2(crs, otr, M̂

(j)
0 , M̂

(j)
1 ) where M̂

(j)
w

$←− {0, 1} and M̂
(j)
1−w :=

m
(j)
1−w.

• Compute and output s
$←− A2(st, ots), where ots = (ots(1), . . . , ots(n)).
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Notice thatHcrs,r
1,w is identical with Expcrs,r,w,0iOT andHcrs,r

n+1,w is identical with Expcrs,r,w,1iOT . Therefore,
if there is an adversary A = (A1,A2) against the string iOT security of the above constructed OT
Π′ = (Setup,OT′1,OT

′
2,OT

′
3), i.e. there exist a non-negligible function ε such that

Pr
crs,r

[Advcrs,r,0iOT (A) > ε and Advcrs,r,1iOT (A) > ε] > ε,

where crs
$←− Setup(1λ) and r

$←− {0, 1}λ, then there is a i, j ∈ [n] such that

Pr
crs,r

[|Pr[Hcrs,r
i,0 (A) = 1]−Pr[Hcrs,r

i+1,0(A) = 1]| > ε′ and |Pr[Hcrs,r
j,1 (A) = 1]−Pr[Hcrs,r

j+1,1(A) = 1]| > ε′] > ε,

where ε′ > ε
n . This implies that A breaks the sender’s indistinguishable security of the bit iOT Π

for non-negligible function ε′.

6 Weak Secure Function Evaluation

In this section, we will define our notion of weak secure function evaluation and provide instantia-
tions of the new notion.

6.1 Definitions

Definition 6.1. A weak secure function evaluation scheme wSFE for a function class F consists
of four PPT algorithms (Setup,Receiver1, Sender,Receiver2) with the following syntax.

Setup(1λ): Takes as input a security parameter and outputs a common reference string crs

Receiver1(crs, x) : Takes as input a common reference string crs and an input x and outputs a
message z1 and a state st

Sender(crs, f, z1) : Takes as input a common reference string crs, a function f ∈ F and a receiver
message z1 and outputs a sender message z2

Receiver2(st, z2): Takes as input a state st and a sender message z2 and outputs a value y.

We require the following properties.

• Correctness: It holds for any λ, any f ∈ F and any x in the domain of f that

Receiver2(st,Sender(crs, f, z1)) = f(x),

where crs
$←− Setup(1λ) and (z1, st)

$←− Receiver1(crs, x)

• Receiver Privacy: Let A = (A1,A2) be an adversary where A2 outputs a bit and let the
experiment ExpRP (A) be defined as follows:

– Compute crs
$←− Setup(1λ)

– Compute (x0, x1)
$←− A1(crs)

– Choose b
$←− {0, 1}
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– Compute z∗1
$←− Receiver1(crs, xb)

– Compute b′
$←− A2(crs, z∗1)

– If b′ = b output 1, otherwise 0

Define AdvRP (A) = |Pr[ExpRP (A) = 1]−1/2|. We say that wSFE has computational receiver
privacy, if it holds for all PPT adversaries A that AdvRP (A) < negl(λ). Likewise, we say that
wSFE has statistical receiver privacy, if it holds for all unbounded (non-uniform) adversaries
A that AdvRP (A) < negl(λ).

• Sender Privacy: Let A = (A1,A2) be an adversary where A2 outputs a bit and let the
experiment ExpSP (A) be defined as follows:

– Compute crs
$←− Setup(1λ)

– Compute (f0, f1, z1)
$←− A1(crs)

– Choose b
$←− {0, 1}

– Compute z∗2
$←− Sender(crs, fb, z1)

– Compute b′
$←− A2(crs, z∗2)

– If b′ = b output 1, otherwise 0

Define AdvSP (A) = |Pr[ExpSP (A) = 1]− 1/2|. We say that wSFE has computational sender
privacy, if it holds for all PPT adversaries A = (A1,A2) which output equivalent functions
f0 ≡ f1 in the first stage that AdvSP (A) < negl(λ). Likewise, we say that wSFE has statis-
tical sender privacy, if it holds for all unbounded (non-uniform) adversaries A which output
equivalent functions f0 ≡ f1 in the first stage that AdvSP (A) < negl(λ).

6.2 wSFE for all Circuits from iOT and Garbled Circuits

Let iOT = (Setup,OT1,OT2,OT3) be an iOT protocol and let (Garble,Eval) be a garbling scheme.
Overloading notation, assume that if ~x = (x1, . . . , xn) ∈ {0, 1}n is an input vector, then OT1(crs, ~x) =
(OT1(crs, x1), . . . ,OT1(crs, xn)). Similarly, if ~m0 = (m0,1, . . . ,m0,n) and ~m1 = (m1,1, . . . ,m1,n) are
two vectors of messages, then denote

OT2(crs, ~otr, ~m0, ~m1) = (OT2(crs, otr1,m0,1,m1,1), . . . ,OT2(crs, otrn,m0,n,m1,n))

The scheme wSFE is given as follows.

Setup(1λ): Compute and output crs
$←− iOT.Setup(1λ)

Receiver1(crs, ~x ∈ {0, 1}n): Compute ( ~otr, ~st
′
)

$←− iOT.OT1(crs, ~x). Output z1
$←− ~otr and st

$←− ~st
′
.

Sender(crs, z1 = ~otr,C) :

• Compute (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ,C)

• Compute ~ots
$←− iOT.OT2(crs, ~otr, ~lb

0
, ~lb

1
).
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• Output z2
$←− ( ~ots, Ĉ).

Receiver2(st = ~st
′
, z2) :

• Parse z2 = ( ~ots, Ĉ).

• Compute ~lb
$←− iOT.OT3(~st

′
, ~ots)

• Compute m
$←− Eval(Ĉ, ~lb).

• Output m

6.2.1 Correctness

We will briefly argue that the scheme is correct. Thus, let crs
$←− iOT.Setup(1λ) and ( ~otr, ~st)

$←−
iOT.OT1(crs, ~x). Further let (Ĉ, ~lb

0
, ~lb

1
)

$←− Garble(1λ,C) and ~ots
$←− iOT.OT2(crs, ~otr, ~lb

0
, ~lb

1
). By

the correctness of iOT it holds that

~lb = iOT.OT3(~st, ~ots) = GarbleInput(~lb
0
, ~lb

1
, ~x).

Furthermore, by the correctness of the garbling scheme (Garble,Eval) it holds that

m = Eval(Ĉ, ~lb) = Eval(Ĉ,GarbleInput(~lb
0
, ~lb

1
, ~x)) = C(~x),

and we get that wSFE is correct.

6.2.2 Receiver Privacy

We will first establish receiver privacy of wSFE.

Theorem 6.2. Assume that iOT has receiver indistinguishability security. The wSFE has receiver
privacy.

The proof of Theorem 6.2 follows via standard techniques.

Proof. Let A = (A1,A2) be a PPT adversary against the receiver privacy of wSFE with advantage
ε. Consider the following hybrids.

• Hybrid H0: This is the real receiver privacy experiment with choice bit b = 0, i.e. we compute

~otr by ( ~otr, ~st)
$←− iOT.OT1(crs, ~x0).

• Hybrid Hi (for i = 1, . . . , n): This is the same as hybrid Hi−1, except that we compute otri

by (otri, sti)
$←− iOT.OT1(crs, x1,i) instead of (otri, sti)

$←− iOT.OT1(crs, x0,i).

Observe that in Hn we compute ~otr by ( ~otr, ~st)
$←− iOT.OT1(crs, ~x1). Thus Hn is the real receiver

privacy experiment with choice bit b = 1. Thus, it holds that

|Pr[Hn(A) = 1]− Pr[H0(A) = 1]| ≥ ε,

Consequently, there must be an i∗ ∈ [n] such that

|Pr[Hi∗(A) = 1]− Pr[Hi∗−1(A) = 1]| ≥ ε/n.
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We will now construct a PPT adversary B with advantage ε/n against the receiver privacy of iOT.
For simplicity, we will use an equivalent notion of iOT receiver privacy where the the adversary out-

puts two bits (β0, β1) and the experiment returns otr∗ computed by (otr∗, st∗)
$←− iOT.OT1(crs, βb).

B1(1λ, crs) :

• Run Hi∗(A) until before otri is computed. Output (xi,0, xi,1).

B2(1λ, crs, otr∗) :

• Set otri
$←− otr∗ and continue the simulation.

• Output whatever the simulated Hi∗(A) outputs.

We will now analyse the advantage of B.

1. Assume first that otr∗ was computed by (otr∗, st∗)
$←− iOT.OT1(crs, x0,i). In this case B

perfectly simulates Hi∗−1(A) and we get that Pr[B(1λ, crs, otr∗) = 1] = Pr[Hi∗−1(A) = 1].

2. On the other hand, if otr∗ was computed by (otr∗, st∗)
$←− iOT.OT1(crs, x1,i), then B perfectly

simulates Hi∗(A) and we get Pr[B(1λ, crs, otr∗) = 1] = Pr[Hi∗(A) = 1].

Consequently, we get that

|Pr[Exp1(B) = 1]− Pr[Exp0(B) = 1]| = |Pr[Hi∗(A) = 1]− Pr[Hi∗−1(A) = 1]| ≥ ε/n,

which concludes the proof.

6.2.3 Sender Privacy

We will now proceed to show sender privacy of wSFE against malicious receivers.

Theorem 6.3. Assuming that iOT has indistinguishability sender privacy and that (Garble,Eval)
is a simulation secure garbling scheme, it holds that wSFE has sender privacy.

Proof. Assume towards contradiction that there exists a PPT adversary A = (A1,A2) with non-
negligible advantage ε against the sender privacy of wSFE, i.e.

AdvSP (A) = |Pr[ExpSP (A) = 1]− 1/2| = ε.

We will henceforth only consider λ for which ε(λ) > 1/p(λ), that is we assume that 1/ε = poly(λ)
without further mention. Assume that the circuits C0, C1 output by A have at most n = n(crs) =
poly(λ) input wires. In the following denote ε′ = ε

8(n+1) .

Denote by ExpSP (A; crs, rA) the sender privacy experiment.

ExpSP (A) :

• Choose uniformly random coins rA for A

• Compute crs
$←− iOT.Setup(1λ; crs).
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• Compute (C0, C1, z1)
$←− A1(crs; rA)

• Choose b
$←− {0, 1}

• Compute (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ, Cb)

• For i = 1, . . . , n

– Compute otsi
$←− iOT.OT2(crs, otri, lb

0
i , lb

1
i ).

• Compute b′
$←− A2(crs, (Ĉ, ~ots); rA)

• If b′ = b output 1, otherwise 0

In the following, we will need to generate samples of random variables Expi(A, crs, rA, x̄) which
themselves depend on the adversary A, a common reference string crs, random coins rA for A and
an additional input x̄ ∈ {0, 1}i. Expi(A, crs, rA, x̄) is sampled by the following algorithm.

Expi(A, crs, rA, x̄) :

• Compute (C0, C1, z1)
$←− A1(crs; rA)

• Choose b
$←− {0, 1}

• Compute (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ, Cb)

• For j = 1, . . . , i

– Set lb′
x̄j
j

$←− lb
x̄j
j

– Choose lb′
1−x̄j
j

$←− {0, 1}λ

– Compute otsj
$←− iOT.OT2(crs, otri, lb

′0
j , lb

′1
j ).

• For j = i+ 1, . . . , n

– Compute otsj
$←− iOT.OT2(crs, otri, lb

0
j , lb

1
j ).

• Compute b′
$←− A2(crs, (Ĉ, ~ots); rA)

• If b′ = b output 1, otherwise 0

Input Extractor We will now construct an input extractor Extract, which takes an index i, an
adversary A, a common reference string crs, random coins rA for A and additional random coins
rExtract as inputs and outputs a string x̄ ∈ {0, 1}i or ⊥.

We will use the following notation. For an efficiently sampleable random variable T ∈ {0, 1} we
will use the shorthand “Compute an approximation µ̃ of E[T ] with error δ” to denote the following
algorithm which computes a sample average:

• Set N = dλ/δ2e

• For j = 1, . . . , N sample tj
$←− T

• Output µ̃
$←− 1

N

∑N
j=1 tj

Recall that ε′ = ε
8(n+1) . The algorithm Extract is given as follows.
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Extracti(A, crs, rA, rExtract = (rExtract,1, . . . , rExtract,i)) :

• If i > 0 compute x̄′
$←− Extracti−1(A, crs, rA, (rExtract,1, . . . , rExtract,i−1)), otherwise set

x̄′
$←− ∅

• Parse x̄′ = (x̄1, . . . , x̄i−1)

• Use random tape rExtract,i for the following 3 steps.

• Compute an approximation µ̃i of E[Expi−1(A, crs, rA, (x̄1, . . . , x̄i−1))] with error ε′/2

• Compute an approximation µ̃i,0 of E[Expi(A, crs, rA, (x̄1, . . . , x̄i−1, 0))] with error ε′/2

• Compute an approximation µ̃i,1 of E[Expi(A, crs, rA, (x̄1, . . . , x̄i−1, 1))] with error ε′/2

• Set δ̃i,0
$←− |µ̃i,0 − µ̃i|

• Set δ̃i,1
$←− |µ̃i,1 − µ̃i|

• If δ̃i,0 > 2ε′ and δ̃i,1 > 2ε abort and output ⊥.

• else if δ̃i,1 > 2ε′ set x̄i
$←− 0

• Otherwise set x̄i
$←− 1

• Set x̄
$←− (x̄1, . . . , x̄i)

• Output x̄

Observe that since A is a PPT algorithm the Expi can be simulated efficiently. Thus, every
iteration of Extracti is efficent. As Extracti runs for i iterations, we conclude that Extracti is efficient.

Hybrids We will now define a sequence of adversary-dependent hybrid experiments.

• Hybrid H0(A): This is the real experiment ExpSP (A).

For i = 1, . . . , n define the following sequence of hybrids.

• Hi(A) :

– Choose uniformly random coins rA for A
– Compute crs

$←− iOT.Setup(1λ)

– Compute x̄
$←− Extracti(A, crs, rA, rExtract)

– Compute (C0, C1, z1)
$←− A1(crs; rA)

– Choose b
$←− {0, 1}

– Compute (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ, Cb)

– For j = 1, . . . , i

∗ Set lb′
x̄j
j

$←− lb
x̄j
j

∗ Choose lb′
1−x̄j
j

$←− {0, 1}λ

∗ Compute otsj
$←− iOT.OT2(crs, otrj , lb

′0
j , lb

′1
j ).

– For j = i+ 1, . . . , n
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∗ Compute otsj
$←− iOT.OT2(crs, otrj , lb

0
j , lb

1
j ).

– Compute b′
$←− A2(crs, (Ĉ, ~ots); rA)

– If b′ = b output 1, otherwise 0

• Hybrid Hn+1(A): This is the same as hybrid Hn(A; crs, rA), except that the garbled circuit

Ĉ and the labels ~lb = (lbix∗i ) are computed via (Ĉ, ~lb)
$←− GCSim(1λ, Cb(x

∗)). That is

Hn+1(A) :

– Choose uniformly random coins rA for A
– Compute crs

$←− iOT.Setup(1λ)

– Compute x̄
$←− Extractn(A, crs, rA, rExtract)

– Compute (C0, C1, z1)
$←− A1(crs; rA)

– Choose b
$←− {0, 1}

– (Ĉ, ~lb)
$←− GCSim(1λ, Cb(x̄))

– For j = 1, . . . , n

∗ Set lb′
x̄j
j

$←− lbj

∗ Choose lb′
1−x̄j
j

$←− {0, 1}λ

∗ Compute otsj
$←− iOT.OT2(crs, otrj , lb

′0
j , lb

′1
j ).

– Compute b′
$←− A2(crs, (Ĉ, ~ots); rA)

– If b′ = b output 1, otherwise 0

Observe that since C0 and C1 are functionally equivalent it holds that C0(x̄) = C1(x̄). Conse-
quently, in hybrid Hn+1 the view of the adversary A is independent of the challenge bit b and we
conclude that AdvHn+1(A) = 0.

We claim there must exist an i∗ ∈ [n+ 1] such that

|Pr[Hi∗(A) = 1]− Pr[Hi∗−1(A) = 1]| ≥ ε/(n+ 1) = 8ε′.

If this was not the case, we would get that

AdvSP (A) = |Pr[H0(A) = 1]− 1/2|

= |
n+1∑
i=1

(Pr[Hi−1(A) = 1]− Pr[Hi(A) = 1]) + Pr[Hn+1(A) = 1]− 1/2|

≤
n+1∑
i=1

|Pr[Hi(A) = 1]− Pr[Hi−1(A) = 1]|︸ ︷︷ ︸
<ε/(n+1) by assumption

+ |Pr[Hn+1(A) = 1]− 1/2|︸ ︷︷ ︸
=0

< (n+ 1) · ε/(n+ 1)

= ε,

which contradicts AdvSP (A) = ε.
We will show in Lemma 6.5 that if i∗ ∈ {1, . . . , n}, then we get a contradiction against the

indistinguishability sender privacy of iOT. On the other hand, we will show in Lemma 6.6 that
i∗ = n+ 1 will lead to a contradiction against the security of (Garble,Eval).
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We will first establish that the approximations δ̃i∗,0 and δ̃i∗,1 computed by Extracti∗(A, crs, rA, rExtract)
are close to the true advantages between Expi∗ and Expi∗−1, except with negligible probability over
the coins used to compute the approximations. We establish this by a routine application of the
Hoeffding bound.

Lemma 6.4. Assume that rExtract = (rExtract,1, . . . , rExtract,i∗). Now fix crs, rA and (rExtract,1, . . . , rExtract,i∗−1)
such that Extracti∗−1(A, crs, rA, (rExtract,1, . . . , rExtract,i∗−1)) 6= ⊥. Let

x̄′
$←− Extracti∗−1(A, crs, rA, (rExtract,1, . . . , rExtract,i∗−1)).

Then it holds that

|δ̃i∗,0 − |E[Expi∗(A, crs, rA, (x̄′, 0))]− E[Expi∗−1(A, crs, rA, x̄′)]|| ≤ ε′

|δ̃i∗,1 − |E[Expi∗(A, crs, rA, (x̄′, 1))]− E[Expi∗−1(A, crs, rA, x̄′)]|| ≤ ε′

except with probability 2−λ over the choice of rExtract,i∗.

Proof. The random variable µ̃i∗ is the average ofN = dλ/ε′2e = d λ
(ε/(8(n+1)))2

e samples of Expi∗−1(A, crs, rA, x̄′).
Consequently, it holds by the Hoeffding inequality (Theorem 3.2) that

Pr
rExtract,i

[|µ̃i∗ − E[Expi∗−1(A, crs, rA, x̄′)]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ

Analogously, we obtain that

Pr
rExtract,i∗

[|µ̃i∗,0 − E[Expi∗(A, crs, rA, (x̄′, 0))]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ

and
Pr

rExtract,i∗
[|µ̃i∗,1 − E[Expi∗(A, crs, rA, (x̄′, 1))]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ.

Given that

|µ̃i∗ − E[Expi∗−1(A, crs, rA, x̄′)]| ≤ ε′/2
|µ̃i∗,0 − E[Expi∗(A, crs, rA, (x̄′, 0))]| ≤ ε′/2
|µ̃i∗,1 − E[Expi∗(A, crs, rA, (x̄′, 1))]| ≤ ε′/2

and using that

δ̃i∗,0 = |µ̃i∗,0 − µ̃i∗ |
δ̃i∗,1 = |µ̃i∗,1 − µ̃i∗ |

we get that
|δ̃i∗,0 − |E[Expi∗(A, crs, rA, (x̄′, 0))]− E[Expi∗−1(A, crs, rA, x̄′)]|| ≤ ε′

and
|δ̃i∗,1 − |E[Expi∗(A, crs, rA, (x̄′, 1))]− E[Expi∗−1(A, crs, rA, x̄′)]|| ≤ ε′.

Consequently, it holds by a union-bound that

Pr
rExtract,i∗

[
|δ̃i∗,0 − |E[Expi∗(A, crs, rA, (x̄′, 0))]− E[Expi∗−1(A, crs, rA, x̄′)]|| > ε′

or |δ̃i∗,1 − |E[Expi∗(A, crs, rA, (x̄′, 1))]− E[Expi∗−1(A, crs, rA, x̄′)]|| > ε′

]
≤ 6 · e−λ ≤ 2−λ

which concludes the proof.
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Lemma 6.5. Assume that |Pr[Hi∗(A) = 1]−Pr[Hi∗−1(A) = 1]| ≥ 8 · ε′ for an i∗ ∈ [n]. Then there
exists a PPT adversary B which breaks the indistinguishability sender security of iOT.

Proof. We will first slightly reformulate Hi∗ , leaving the actual experiment unchanged. First,
instead of computing crs and sampling rA and rExtract itself, it takes these values as explicit inputs.
Second and more importantly, once we have extracted x̄, what is computed in the remaining steps
is identical to Expi∗(A, crs, rA, x̄). Consequently, we can rewrite Hi∗ as follows, where we assume

that crs
$←− iOT.Setup(1λ) and rA and rExtract are uniformly random coins.

Hi∗(A, crs, rA, rExtract) :

• Compute x̄
$←− Extracti∗(A, crs, rA, rExtract)

• Compute and output Expi∗(A, crs, rA, x̄)

To make things more readable in the following, we will bundle crs, rA and rExtract in a variable
aux. That is, we will set aux = (crs, rA, rExtract). Furthermore, we will assume that the output
x̄ ∈ {0, 1}i∗ of Extracti∗(A, crs, rA, rExtract) is of the form x̄ = (x̄′, x̄i∗), where x̄′ ∈ {0, 1}i∗−1 and
x̄i∗ ∈ {0, 1}.

We will now define three events GAP(aux), APPROX(aux) and GOOD(aux) which only depend
on aux.

• GAP(aux) holds, if and only if

|Pr[Hi∗(A; aux) = 1]− Pr[Hi∗−1(A; aux) = 1]| > 4ε′.

• Let δ̃i∗,0 and δ̃i∗,1 be the values computed during the execution of Extracti∗(A, crs, rA, rExtract).
APPROX(aux) holds, if and only if

|δ̃i∗,0 − |E[Expi∗(A, crs, rA, (x̄′, 0))]− E[Expi∗−1(A, crs, rA, x̄′)]|| ≤ ε′

|δ̃i∗,1 − |E[Expi∗(A, crs, rA, (x̄′, 1))]− E[Expi∗−1(A, crs, rA, x̄′)]|| ≤ ε′

• GOOD(aux) holds if and only if

|E[Expi∗(A, crs, rA, (x̄′, 0))]− E[Expi∗−1(A, crs, rA, x̄′)]| > ε′

|E[Expi∗(A, crs, rA, (x̄′, 1))]− E[Expi∗−1(A, crs, rA, x̄′)]| > ε′.

We will first elaborate on the events in more detail. The event GAP(aux) characterizes that
for the same choice of aux, the hybrids Hi∗(A, aux) and Hi∗−1(A, aux) have distance at least 4ε′.
Notice that the extracted prefix (x̄1, . . . , x̄i∗−1) is identical in both experiments Hi∗(A, aux) and
Hi∗−1(A, aux). Consequently, GAP(aux) immediately implies that Extracti∗−1(A, crs, rA, rExtract)
does not output ⊥, as this would imply that the two experiments are identically distributed.

The event APPROX(aux) ensures that the approximations δ̃i∗,0 and δ̃i∗,1 are sufficiently close to
the true advantages.

Finally, the event GOOD(aux) ensures that aux is such that we will be able to mount a successful
attack against indistinguishability sender security of iOT. Our first goal will be to show that the
event GOOD(aux) holds with reasonably high probability over the choice of aux. Once this is
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established, we will construct an adversary B against the indistinguishability sender security of
iOT.

Observe that by Lemma 6.4 it holds that

Pr
aux

[¬APPROX(aux)] ≤ 2−λ. (5)

As

|Pr
aux

[Hi∗(A, aux) = 1]− Pr
aux

[Hi∗−1(A, aux) = 1]| = |Pr[Hi∗(A) = 1]− Pr[Hi∗−1(A) = 1]| ≥ 8 · ε′

it holds by the Markov inequality for advantages (Lemma 3.1) that

Pr
aux

[GAP(aux)] = Pr
aux

[|Pr[Hi∗(A; aux) = 1]− Pr[Hi∗−1(A; aux) = 1]| > 4ε′] ≥ 4ε′. (6)

We will now show that if GAP(aux) holds, then it must either hold GOOD(aux) or not APPROX(aux).
We will establish this by showing that ¬GOOD(aux) and APPROX(aux) imply ¬GAP(aux). Thus,
fix aux = (crs, rA, rExtract) with ¬GOOD(aux) and APPROX(aux).

From ¬GOOD(aux) it follows that there is a β ∈ {0, 1} such that

|E[Expi∗(A, crs, rA, (x̄′, β))]− E[Expi∗−1(A, crs, rA, x̄′)]| ≤ ε′.

We will now show that Extracti∗(A, crs, rA, rExtract) will be able to identify the correct x̄i∗ . Observe
that since it holds that APPROX(aux), we get that

δ̃i∗,β ≤ |E[Expi∗(A, crs, rA, (x̄′, β))]− E[Expi∗−1(A, crs, rA, x̄′)]|+ ε′ ≤ 2ε′.

Consequently, Extracti∗(A, crs, rA, rExtract) will not output ⊥. We will distinguish two cases.

Case 1 : In this case it holds that

|E[Expi∗(A, crs, rA, (x̄′, 1− β))]− E[Expi∗−1(A, crs, rA, x̄′)]| ≤ 4ε′.

It follows immediately that

|E[Expi∗(A, crs, rA, (x̄′, x̄i∗))]− E[Expi∗−1(A, crs, rA, x̄′)]| ≤ 4ε′,

regardless which x̄i∗ ∈ {0, 1} is chosen.

Case 2 : In this case it holds that

|E[Expi∗(A, crs, rA, (x̄′, 1− β))]− E[Expi∗−1(A, crs, rA, x̄′)]| > 4ε′.

Again since it holds that APPROX(aux), we get that

δ̃i∗,1−β ≥ |E[Expi∗(A, crs, rA, (x̄′, 1− β))]− E[Expi∗−1(A, crs, rA, x̄′)]| − ε′ ≥ 3ε′ > 2ε′.

Consequently, Extracti∗(A, crs, rA, rExtract) will set x̄i∗
$←− β and again we can conclude

|E[Expi∗(A, crs, rA, (x̄′, x̄i∗))]− E[Expi∗−1(A, crs, rA, x̄′)]| ≤ 4ε′,

27



Observe that we can write

E[Expi∗−1(A, crs, rA, x̄′)] = Pr[Expi∗−1(A, crs, rA, x̄′) = 1]

E[Expi∗(A, crs, rA, (x̄′, 0))] = Pr[Expi∗(A, crs, rA, (x̄′, 0)) = 1]

E[Expi∗(A, crs, rA, (x̄′, 1))] = Pr[Expi∗(A, crs, rA, (x̄′, 1)) = 1].

Further observe that since Extracti∗(A, crs, rA, rExtract) will not output⊥, the output ofHi∗(A; aux)
is distributed according to Expi∗(A, crs, rA, (x̄′, x̄i∗)). We also know thatHi∗−1(A; aux) is distributed
according to Expi∗−1(A, crs, rA, x̄′). This implies that

|Pr[Hi∗(A; aux) = 1]− Pr[Hi∗−1(A; aux) = 1]| =
|E[Expi∗(A, crs, rA, (x̄′, x̄i∗))]− E[Expi∗−1(A, crs, rA, x̄′)]| ≤ 4ε′, (7)

which in turn implies that ¬GAP(aux).
Thus, we have established that

GAP(aux)⇒ GOOD(aux) or ¬APPROX(aux). (8)

From (6), (8) and (5) we obtain that

4ε′ ≤ Pr[GAP(aux)]

≤ Pr[GOOD(aux) or ¬APPROX(aux)]

≤ Pr[GOOD(aux)] + Pr[¬APPROX(aux)]

≤ Pr[(GOOD(aux)] + 2−λ,

where the third inequality follows by the union-bound. This implies that

Pr
aux

[GOOD(aux)] ≥ 4ε′ − 2−λ > ε′.

We are now ready to construct an adversary B against the sender privacy of iOT. The adversary
B = (B1,B2) is given as follows. In abuse of notation, we assume that B is stateful, i.e. the second
stage B2 remembers all variables of the first stage B1.

B1(crs; rB = (rA, rExtract)) :

• Compute x̄
$←− Extracti∗(A, crs, rA, rExtract)

• Compute (C0, C1, z1)
$←− A1(crs; rA)

• Choose b
$←− {0, 1}

• Compute (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ, Cb)

• For j = 1, . . . , i∗ − 1

– Set lb′
x̄j
j

$←− lb
x̄j
j

– Choose lb′
1−x̄j
j

$←− {0, 1}λ

– Compute otsj
$←− iOT.OT2(crs, otrj , lb

′0
j , lb

′1
j ).
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• Output (lb0
i∗ , lb

1
i∗ , otri∗)

B2(crs, rB, ots
∗) :

• Set otsi∗
$←− ots∗

• For j = i∗ + 1, . . . , n

– Compute otsj
$←− iOT.OT2(crs, otri, lb

0
j , lb

1
j ).

• Compute b′
$←− A2(crs, (Ĉ, ~ots); rA)

• If b′ = b output 1, otherwise 0

Now fix crs and rB. We will distinguish 3 cases.

1. In the first case, the challenge message ots∗ is computed via ots∗
$←− iOT.OT2(crs, otr∗i , lb

0
i∗ , lb

1
i∗).

It follows by inspection that in this case the output of B is distributed according to Expi∗−1(A, crs, rA, x̄′).

2. In the second case, the challenge message ots∗ is computed via ots∗
$←− iOT.OT2(crs, otr∗i , lb

0
i∗ , l̃b)

for a uniformly random l̃b
$←− {0, 1}λ. It follows by inspection that in this case the output of

B is distributed according to Expi∗(A, crs, rA, (x̄′, 0)).

3. In the third case, the challenge message ots∗ is computed via ots∗
$←− iOT.OT2(crs, otr∗i , l̃b, lb

1
i∗)

for a uniformly random l̃b
$←− {0, 1}λ. It follows by inspection that in this case the output of

B is distributed according to Expi∗(A, crs, rA, (x̄′, 1)).

We conclude that

Advcrs,rB,0iOT (B) = |Pr[Expi∗(A, crs, rA, (x̄, 0)) = 1]− Pr[Expi∗−1(A, crs, rA, x̄) = 1]|
Advcrs,rB,1iOT (B) = |Pr[Expi∗(A, crs, rA, (x̄, 1)) = 1]− Pr[Expi∗−1(A, crs, rA, x̄) = 1]|.

This implies that

Pr
crs,rB

[
Advcrs,rB,0iOT (B; crs, rB) > ε′

and Advcrs,rB,1iOT (B; crs, rB) > ε′

]
= Pr

crs,rA,rExtract
[GOOD(crs, rA, rExtract)] > ε′,

which contradicts the sender privacy of iOT.

Lemma 6.6. Assume that |Pr[Hn+1(A) = 1] − Pr[Hn(A) = 1]| ≥ 8ε′. Then there exists a PPT
adversary B with advantage 8ε′ against the security of (Garble,Eval).

Proof. Consider the following reduction BA(1λ) which is an adversary against the security of the
garbling scheme (Garble,Eval).

B(1λ) :

• Simulate Hn+1 faithfully until the challenge bit b
$←− {0, 1} is chosen.

• Send Cb and x̄ to the garbling experiment. Let (Ĉ, ~lb) be the output of the garbling
experiment.
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• Continue the simulation of Hn+1 faithfully using (Ĉ, ~lb) and output whatever the simu-
lated Hn+1 outputs.

First consider the case that the garbling experiment generates (Ĉ, ~lb) by (Ĉ, ~lb
0
, ~lb

1
)

$←− Garble(1λ,Cb)

and lbi
$←− lbx̄ii for all i ∈ [n]. In this case B faithfully simulates Hn and consequently the output of

B is distributed identically to Hn.

On the other hand, if the garbling experiment generates (Ĉ, ~lb) by (Ĉ, ~lb)
$←− GCSim(1λ,Cb(x̄)),

then B faithfully simulates Hn+1 and consequently the output of B is distributed identically to
Hn+1.

We conclude that

Adv(B) = |Pr[Hn(A) = 1]− Pr[Hn+1(A) = 1]| ≥ 8ε′,

which contradicts the security of (Garble,Eval).

7 Sender-UC OT from wSFE

In this section we will provide a two-round OT protocol with sender’s UC security and receiver’s
indistinguishability security from any CPA-secure PKE and a two-round wSFE for a specific class
of functions.

Let PKE := (KeyGen,E,Dec) be a PKE scheme and let wSFE := (Setup,Receiver1,Sender,Receiver2)
be a two-round wSFE for a function class F defined as follows: any function in this class is of the
form C[pk, ct,m0,m1], parameterized over a public key pk, a ciphertext ct and two messages m0 and
m1, and is defined as follows:

C[pk, ct,m0,m1](b, r): If PKE.E(pk, b; r) = ct, output mb; otherwise ⊥.

Construction 7.1 (Sender-UC OT). The OT-protocol is based on the above two primitives PKE
and wSFE, and is described as follows.

Setup(1λ): Compute crs′
$←− wSFE.Setup(1λ) and (pk, sk)

$←− PKE.KeyGen(1λ). Output crs :=
(crs′, pk).

OT1(crs = (crs′, pk), b): Choose r
$←− {0, 1}λ and compute ct

$←− PKE.E(pk, b; r). Set ~x := (b, r) and

compute (z1, st)
$←− wSFE.Receiver1(crs′, ~x). Output otr := (ct, z1) as the OT message and st

as the private state.

OT2(crs = (crs′, pk), otr = (ct, z1),m0,m1): Compute z2
$←− wSFE.Sender(crs′,C[pk, ct,m0,m1], z1).

Output ots := z2.

OT3(st, ots): Let z2 := ots. Compute and output Receiver2(st, z2).

Theorem 7.2. Assuming PKE is CPA-secure and perfectly correct (Definition 3.3), and that wSFE
satisfies correctness, receiver privacy and sender privacy (Definition 6.1), then the OT given in
Construction 7.1 provides receiver’s indistinguishability security and sender’s UC security.

We now give the proof for each part of the theorem.
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7.1 Correctness

The correctness of the OT protocol follows immediately from the perfect correctness of the under-
lying PKE scheme (Definition 3.3) and the correctness of the wSFE scheme (Definition 6.1).

7.2 Receiver’s Indistinguishability Security

We will prove receiver’s indistinguishability security for the constructed OT, assuming CPA-security
for PKE and receiver privacy for wSFE. We need to show

(crs′, pk, ct, z1)
c≡ (crs′, pk, ct′, z′1), (9)

where crs′
$←− wSFE.Setup(1λ) and (pk, sk)

$←− PKE.KeyGen(1λ), r
$←− {0, 1}λ, ct

$←− PKE.E(pk, 0; r),

(z1, ∗)
$←− wSFE.Receiver1(crs′, (0, r)), ct′

$←− PKE.E(pk, 1; r) and (z′1, ∗)
$←− wSFE.Receiver1(crs′, (1, r)).

To this end consider the following sequence of distributions:

• Dist0: As in (crs′, pk, ct, z1), corresponding to the lefthand side of Equation 9.

• Dist1: Return (crs′, pk, ct, z∗1), sampled same as Dist0, except we use “fresh input” for gener-

ating z∗1: sample z∗1
$←− wSFE.Receiver1(crs′, (0, r′)), for r′

$←− {0, 1}λ.

• Dist2: Return (crs′, pk, ct′, z∗1), sampled as in Dist1, except we switch the plaintext bit of the

ciphertext: sample ct′
$←− PKE.E(pk, 1; r).

• Dist3: Return (crs′, pk, ct′, z′1), sampled as in the righthand side of Equation 9.

By the receiver privacy of wSFE we have Dist0
c≡ Dist1. By the CPA security of PKE we have

Dist1
c≡ Dist2. Finally, by the receiver privacy of the wSFE scheme we have Dist2

c≡ Dist3. The
proof is now complete.

7.3 Sender’s UC-Security

We will now show that our protocol provides sender’s UC-security.
Let C∗ be a boolean circuit of the same size and topology as C (that is, only differing in hardwired

inputs) computing the following function.

• C∗[pk, ct, b∗,m](b, r): Check if b = b∗ and PKE.E(pk, b; r) = ct. If so output m, otherwise ⊥.

Simulating the receiver. The simulator S in the ideal model, which simulates an adversary

A in the real model, acts as follows. First, S generates crs′
$←− wSFE.Setup(1λ) and (pk, sk)

$←−
PKE.KeyGen(1λ), and sets crs := (crs′, pk). When the parties call the ideal functionality FCRS, then
S return crs. Whenever A (corrupting the receiver) submits a protocol message (sid, (ct, z1)), then:

1. S first runs PKE.Dec(sk, ct) to get b∗ ∈ {0, 1};

2. S send (sid, receiver, b∗) to the ideal functionality FOT to get m; then S stores the values of
sid and m.
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3. Whenever the dummy sender is activated for the same session sid, the simulator S sends the
adversary A the message

z2
$←− wSFE.Sender(crs′,C∗[pk, ct, b∗,m], z1).

Notice that for pk, ct, m and b∗ formed as above, and for any pair (m′0,m
′
1) such that m′b∗ = m,

we have C∗[pk, ct, b∗,m] ≡ C[pk, ct,m′0,m
′
1]. Thus, by the sender privacy of wSFE

IDEALFOT,S,Z
c≡ EXECOT,A,Z ,

and the proof is complete.
Finally, we mention that the OT protocol constructed in Construction 7.1 satisfies a receiver-

extractability property, which was (implicitly) used in the proof of sender’s UC security. Since we
will use this definition later, we formalize it below.

Definition 7.3. We say that an OT protocol (Setup,OT1,OT2,OT3) has receiver extractability if
the setup algorithm Setup(1λ) in addition to crs also outputs a trapdoor key σ and if there is a PPT
algorithm Extract, for which the following holds: for any stateful PPT adversary A := (A1,A2),

assuming (m0,m1, otr)
$←− A1(crs) and b = Extract(σ, otr), then A2 cannot distinguish between the

outputs of OT2(crs, otr, (m0,m1)) and OT2(crs, otr, (mb,mb)).

8 2-Round ZK from Sender-UC OT and Σ-protocols

In this section we give a two-round (statement-independent) ZK protocol against malicious verifiers
in the CRS model based on a special type of Σ-protocols and an OT with sender’s UC-security and
receiver’s indistinguishability security.

We first start by defining the properties we require of our Σ-protocol, and will then define the
notion of statement-independent ZK protocols that we would like to achieve. Our notion of Σ-
protocols is what Holmgren and Lombardi [HL18] called extractable Σ-protocols, defined as follows.

Definition 8.1 (Extractable Σ-protocols [HL18]). A CRS-based Σ-protocol (Setup,P,V,Extract, Sim)
for a language L ∈ NP is a three-round argument system between a prover P := (P1,P2) and a ver-
ifier V, where the prover is the initiator of the protocol and where the verifier’s only message is a

random bit b ∈ {0, 1}. The setup algorithm (crs, σ)
$←− Setup(1λ) returns a CRS value crs together

with an associated trapdoor key σ. The trapdoor key σ will only play a role in the extractability
requirement. We require the following properties:

• Completeness: For all λ, all (x,w) ∈ R (where R is the underlying relation), we have

Pr[V(crs, x, a, b, z) = 1] = 1, where the probability is taken over (crs, σ)
$←− Setup(1λ), (a, st)

$←−
P1(crs, x,w), b

$←− {0, 1} and z
$←− P2(st, b).

• Special soundness and extractability: For any value crs generated as (crs, σ)
$←− Setup(1λ), any

x /∈ L and any (possibly malicious) first-round message a, there exists at most one b ∈ {0, 1}
for which there exists z such that V(crs, x, a, b, z) = 1. Moreover, for such parameters, this
unique value of b (if any) can be computed efficiently as Extract(σ, x, a).
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• Honest-verifier zero knowledge: For any value crs generated as (crs, σ)
$←− Setup(1λ), any

b ∈ {0, 1} and any (x,w) ∈ R:

(crs, x, a, b, z)
c≡ (crs, x, a′, b, z′), (10)

where (a, st)
$←− P1(crs, x,w), z

$←− P2(st, b) and (a′, z′)
$←− Sim(crs, x, b).

We will now define out notion of CRS-based two-round statement-independent ZK. Informally,
a two-round ZK protocol is statement-independent if the verifier’s message in the protocol is inde-
pendent of the statement being proven.

Definition 8.2 (Two-round statement-independent zero knowledge). A two-round zero-knowledge
argument system for a language L ∈ NP with a corresponding relation R in the CRS model consists
of four PPT algorithms ZK = (Setup,P,V := (V1,V2),Sim := (Sim1, Sim2)), defined as follows.
The setup algorithm Setup on input 1λ outputs a value crs. The verifier algorithm V1(crs) on
input crs returns a message msgv together with a private state st. We stress that the verifier does
not take as input any statement x, hence the “statement-independent” name. The prover algorithm
P(crs, x,w,msgv) on input crs, a statement x with a corresponding witness w and a verifier’s message
msgv, outputs a message msgp. Finally, the algorithm V2(st, x,msgp) outputs a bit b. We require
the following properties.

• Completeness: For all (x,w) ∈ L we have Pr[V2(st, x,msgp) = 1] = 1, where crs
$←− Setup(1λ),

(msgv, st)
$←− V1(crs) and msgp

$←− P(crs, x,w,msgv).

• Adaptive soundness: No PPT malicious prover can convince an honest verifier of a false state-
ment, even if the statement is chosen adaptively after seeing crs and the verifier’s (statement-
independent) message. Formally, for any PPT adversary P∗ the following holds: Pr[V2(st, x,msgp) =

1 ∧ x /∈ L] = negl(λ), where crs
$←− Setup(1λ), (msgv, st)

$←− V1(crs), (x,msgp)
$←− P∗(crs,msgv).

• Adaptive Malicious Zero-Knowledge (ZK): Let V∗ = (V∗1,V
∗
2) be a stateful two-phase adversary

where V∗2 outputs a bit. Let the experiment ExpZK(V∗) be defined as follows:

1. Choose b
$←− {0, 1}

2. If b = 0, sample crs
$←− Setup(1λ). Else, sample (crs, σ)

$←− Sim1(1λ).

3. Let (x,w,msgv)
$←− V∗1(crs). If R(x,w) = 0, then halt.

4. If b = 0, let msgp
$←− P(crs, x,w,msgv). Else, let msgp

$←− Sim2(σ, x,msgv).

5. Compute b′
$←− V∗2(msgp).

6. If b′ = b output 1, otherwise 0.

Define AdvZK(V∗) = |Pr[ExpZK(V∗) = 1]− 1/2|. We say that the scheme is zero-knwoledge if
for all PPT adversaries V∗, AdvZK(V∗) = negl(λ).

Construction 8.3 (Two-round ZK). Let OT := (Setup,OT1,OT2,OT3) be an OT protocol and
let SIGM := (Setup,P,V,Extract, Sim) be an extractable Σ-protocol for a language L ∈ NP (Def-
inition 8.1). We give a two-round ZK protocol ZK := (Setup,P,V := (V1,V2)) for L as follows.
The construction is parameterized over a polynomial r := r(λ), which we will instantiate in the
soundness proof.
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• ZK.Setup(1λ): Run crsot
$←− OT.Setup(1λ) and (crssig, σ)

$←− SIGM.Setup(1λ). Return crs :=
(crsot, crssig).

• ZK.V1(crs := (crsot, crssig)): For each i ∈ [r], sample bi
$←− {0, 1}. Let ( ~otr, ~stot)

$←− OT1(crsot,~b),

where ~b := (b1, . . . , br). Return (msgv, st), where msgv := ~otr is the message to the prover P,
and st := (b1, . . . , br, ~stot) is the private state.

• ZK.P(crs := (crsot, crssig), x,w,msgv): For each i ∈ [r] sample (ai, stsi)
$←− SIGM.P1(crssig, x,w).

For each i ∈ [r] and b ∈ {0, 1}, form zi,b
$←− SIGM.P2(stsi, b), which is the prover’s last message

in the Σ-protocol when his first message was ai and when the verifier’s challenge bit is b.
Return msgp := (~a,OT2(crsot, ~otr, ~z0, ~z1)), where ~a := (a1, . . . , ar), ~z0 := (z1,0, . . . , zr,o) and
~z1 := (z1,1, . . . , zr,1).

• ZK.V2(st, x,msgp): Parse st := (b1, . . . , br, ~stot), msgp := (~a, ~ots) and ~a := (a1, . . . , ar). Let
(z1, . . . , zr) = OT3(~stot, ~ots). Return 1 if for all i ∈ [r]: SIGM.V(crssig, x, ai, bi, zi) = 1 .
Otherwise, return 0.

Theorem 8.4. Assuming that OT := (Setup,OT1,OT2,OT3) provides sender’s UC-security and
receiver’s indistinguishability security, and that SIGM := (Setup,P,V,Extract,Sim) is an extractable
Σ-protocol for a language L (Definition 8.1), then the protocol ZK given in Construction 8.3 satisfies
completeness, adaptive soundness and adaptive malicious zero knowledge for L.

Before proving the theorem, since CPA-secure PKE schemes imply the existence of extractable
Σ-protocols (see [HL18] for the construction) we have the following corollary.

Corollary 8.5. Assuming the existence of two-round OT with sender’s UC security and receiver’s
indistinguishability security, and CPA-secure PKE with perfect correctness, there exists a two-round
ZK protocol (in the sense of Definition 8.2) for any language L ∈ NP.

Proof of completeness. The proof follows in a straightforward way from the completeness of
the underlying OT and the Σ-protocol.

Proof of adaptive soundness. We show that there does not exist a prover P∗ for which the
following holds with a non-negligible probability: the prover P∗(crs,msgv), after seeing both crs
and the verifier’s (statement-independent) message msgv, manages to convince the verifier on a
statement x /∈ L. We prove this via a reduction to the receiver’s indistinguishability security of the
underlying OT scheme OT := (Setup,OT1,OT2,OT3), through an adversary A as follows.

A(crsot, ~otr := (otr1, . . . , otrr)):

1. Sample (crssig, σ)
$←− SIGM.Setup(1λ). Set crs := (crsot, crssig).

2. Invoke P∗(crs, ~otr) to get (x,msgp := (~a, ~ots)). Parse ~a := (a1, . . . , ar). For i ∈ [r] let bi :=
Extract(σ, x, ai).

3. Return (b1, . . . , br) as the guess bits for the receiver’s r bits.
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To see why the reduction works, suppose b′1, . . . , b
′
r are the OT-receiver’s challenge choice bits,

namely for i ∈ [r] the verifier sampled otri as OT1(crsot, b
′
i). Let (x,msgp := (~a, ~ots))

$←− P∗(crs, ~otr)
and suppose x /∈ L. (This happens with non-negligible probability.) If the verifier accepts the proof
msgp on input x, then since x /∈ L, by the completeness of the base OT scheme and the extractability
property of SIGM we must have b′i = SIGM.Extract(σ, x, ai).

Proof of malicious zero-knowledge. We now show that the protocol is malicious zero-knowledge,
assuming the Σ-protocol is honest-verifier zero knowledge and the base OT has sender’s UC security.
For simplicity of exposition, we assume that the base OT scheme has the receiver-extractability
property (Definition 7.3), which is anyway provided by the OT scheme given in Construction 7.1.
We mention that we do not need this property and we can prove zero knowledge by assuming
sender’s UC security instead of receiver extractability, but giving the proof based on this property
makes the presentation simpler.

In the following, let OT.Extract be the extraction algorithm for the receiver’s input bit, guar-
anteed by receiver extractability. We define ZK.Sim := (ZK.Sim1,ZK.Sim2) as follows.

ZK.Sim1(1λ)

1. Sample (crsot, σot)
$←− OT.Setup(1λ) and crssig

$←− SIGM.Setup(1λ). Let crs := (crsot, crssig).
Return crs as the CRS and (crsot, crssig, σot) as the private state.

ZK.Sim2(crsot, crssig, σot, x,msgv)

1. Parse msgv := (otr1, . . . , otrr).

2. For i ∈ [r], extract bi := OT.Extract(σot, otri).

3. For i ∈ [r] let (ai, zi)
$←− SIGM.Sim(crssig, x, bi). Set ~a := (a1, . . . , ar), and ~z := (z1, . . . , zr).

4. Return (~a,OT2(crsot,~z,~z, ~otr)).

The fact that the above simulation ZK.Sim provides a computationally indistinguishable view
(in the sense of Definition 8.2) follows immediately from receiver-extractability of OT as well as the
zero-knowledge property of the underlying Σ-protocol.

9 UC-Secure OT from Sender-UC OT and Zero Knowledge

We will now show how to build a UC-secure OT scheme (with both receiver’s and sender’s UC
security) from the combination of a CPA-secure PKE scheme, a CRS-based two-round statement-
independent ZK protocol, and a two-round OT scheme with sender’s UC-security and receiver’s
indistinguishability security.

Let (Setup,OT1,OT2,OT3) be the base two-round OT scheme, PKE := (KeyGen,E,Dec) be the
PKE scheme and ZK = (Setup,P,V := (V1,V2), Sim := (Sim1,Sim2)) be a two-round statement-
independent ZK protocol for the language Lpk,crsot,otr ∈ NP, parameterized over a public key pk of
the PKE scheme, a CRS value crsot of the OT scheme and an OT-receiver’s message otr, defined
as follows:
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Lpk,crsot,otr =
{

(ct0, ct1, ots) | ∃(m0,m1, r0, r1, r) s.t. ct0 = E(pk,m0; r0), ct1 = E(pk,m1; r1)

ots = OT2(crsot, otr,m0,m1; r)
}
. (11)

Construction 9.1 (UC-secure OT). We build OT′ := (Setup′,OT′1,OT
′
2,OT

′
3) from the above

primitives as follows.

Setup′(1λ): Sample (pk, sk)
$←− PKE.Gen(1λ), crsot

$←− OT.Setup(1λ) and crszk
$←− ZK.Setup(1λ).

Output crs := (pk, crsot, crszk).

OT′1(crs, b): Parse crs := (pk, crsot, crszk). Sample (otr, stot)
$←− OT1(crsot, b) and (msgv, stzk)

$←−
ZK.V1(crszk). Output otr′ := (otr,msgv) as the message to the sender and output st :=
(stot, stzk) as the private state.

OT′2(crs, otr′,m0,m1): Parse crs := (pk, crsot, crszk) and otr′ := (otr,msgv). Sample r, r0, r1
$←−

{0, 1}∗. Let ct0 := E(pk,m0; r0), ct1 = E(pk,m1; r1), and ots = OT2(crsot, otr,m0,m1; r).
Set x := (ct0, ct1, ots) and w := (m0,m1, r0, r1, r). Output ots′ := (ct0, ct1, ots,msgp), where

msgp
$←− ZK.P(crszk, x,w,msgv).

OT′3(st, ots′): Parse st := (stot, stzk), ots′ := (ct0, ct1, ots,msgp) and let x := (ct0, ct1, ots). If
ZK.V2(stzk, x,msgp) 6= 1, then return ⊥. Otherwise, return OT3(stot, ots).

Theorem 9.2. Assuming that OT := (Setup,OT1,OT2,OT3) provides sender’s UC-security and
receiver’s indistinguishability security, that PKE := (KeyGen,E,Dec) is a CPA-secure scheme, and
that ZK is a two-round ZK protocol for the language L described in Equation 11, then the OT
protocol OT′ given in Construction 9.1 satisfies completeness and UC security.

Correctness of the above constructed OT protocol follows immediately by the correctness of
constituent primitives. We will now prove that the protocol is UC secure.

Proof of receiver’s UC-security. We now focus on the case that the sender is corrupted. Fix

the the real-world adversaryA. First, S samples (pk, sk)
$←− PKE.Gen(1λ), crsot

$←− OT.Setup(1λ) and

crszk
$←− ZK.Setup(1λ), and sets crs := (pk, crsot, crszk). When the parties call the ideal functionality

FCRS, then S returns crs. Whenever the dummy receiver is activated on a session sid, the simulator

S samples (otr′ := (otr,msgv), st := (stot, stzk))
$←− OT′1(crsot, 0), sends otr′ to A, and stores all

these values with their corresponding session sid. When A replies with a message (sid, ots′ :=
(ct0, ct1, ots,msgp)), then S computes b = ZK.V2(stzk, (ct0, ct1, ots),msgp); if b = 1, then S sends
(PKE.Dec(sk, ct0),PKE.Dec(sk, ct1)) to FOT; otherwise, S sends ⊥ to FOT.

To prove IDEALFOT,S,Z
c≡ EXECOT′,A,Z , consider a tweak S ′ of the simulator S, where instead

of sending OT′1(crsot, 0), it sends OT′1(crsot, b
′), where b′ is the bit value of the dummy receiver.

By receiver’s indistinguishability security we have IDEALFOT,S,Z
c≡ IDEALFOT,S′,Z . Finally, since

the underlying PKE scheme PKE is perfectly correct, a distinguisher between IDEALFOT,S′,Z and
EXECOT′,A,Z immediately translates into an adversary against the soundness of the scheme ZK.
the proof is now complete.
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Proof of sender’s UC-security. We show the proof for the case that the receiver is corrupted.
Fix the the real-world adversary A. Let S ′ be the simulator for the UC security of the base
OT scheme OT against malicious receivers. First, S invokes S ′ to get crsot, and then S samples

(pk, sk)
$←− PKE.Gen(1λ) and (crszk, σzk)

$←− ZK.Sim1(1λ), and sets crs := (pk, crsot, crszk). When the
parties call the ideal functionality FCRS, then S returns crs. Whenever A (corrupting the receiver)
submits a protocol message (sid, (otr,msgv)), then:

1. S extracts the bit b∗ underlying otr via the simulator S ′;

2. S send (sid, receiver, b∗) to the ideal functionality FOT to get m; then S stores the values of
sid and m.

3. Whenever the dummy sender is activated for the same session sid, the simulator S forms

ots
$←− OT2(crsot, otr,m,m), ct0

$←− PKE.E(pk,m), ct1
$←− PKE.E(pk,m), and

msgp
$←− ZK.Sim2(σzk, (ct0, ct1, ots),msgv).

Then S sends the adversary A the message ots′ := (ots,msgp).

To prove IDEALFOT,S,Z
c≡ EXECOT′,A,Z we define two modified versions of the constructed

protocol OT′, which we call them OT∗ and OT∗∗. These two variations differ from the real protocol
OT only in the output distribution of the sender’s message in response to (crs,msgv′, (m0,m1)).

• Protocol: OT∗: using the simulator to produce the ZK proof. The output message of the
prover ots′ := (ots,msgp) is formed as follows: Form ots exactly as in OT2(crs,msgv′, (m0,m1)),

and form msgp as follows: msgp
$←− ZK.Sim2(σzk, (ct0, ct1, ots),msgv)), where ct0

$←− PKE.E(pk,m0)

and ct1
$←− PKE.E(pk,m1).

• Protocol: OT∗∗: exactly as in OT∗, except we form ct0
$←− PKE.E(pk,mb∗) and ct1

$←−
PKE.E(pk,mb∗).

By the ZK property of ZK we have EXECOT′,A,Z
c≡ EXECOT∗,A,Z . By CPA security of PKE we have

EXECOT∗,A,Z
c≡ EXECOT∗∗,A,Z . Finally, since the sender’s strategy of OT∗∗ works exactly like the

simulating adversary S, we have EXECOT∗∗,A,Z ≡ IDEALFOT,S,Z . The proof is now complete.

10 Instantiations from CDH and LPN

10.1 Instantiation from CDH

We first give a construction of elementary OT from CDH. In fact, we show that the construction
also already directly satisfies the stronger notion of search OT security. The protocol is given in
Figure 4.

Definition 10.1 (Computational Diffie-Hellman (CDH) assumption). Let G be a group-generator
scheme, which on input 1λ outputs (G, p, g), where G is the description of a group, p is the order of
the group which is always a prime number and g is a generator of the group. We say that G is CDH-

hard if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ), where (G, p, g)
$←− G(1λ)

and a1, a2
$←− Zp.
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Sender(X): Receiver(X, c):CRS: X := gx

r ← Zp
h0 := grX−c

h1 := h0X

otr := h0

s← Zp
S := gs

ots := S

output yc := hsc = Sroutput y0 := hs0, y1 := hs1

Figure 4: Elementary and Search OT from CDH.

Lemma 10.2. The protocol in Figure 4 satisfies statistical receiver’s indistinguishability security.

Proof. The distribution of the receiver’s message h0 = grX−c is uniformly random over the group
G no matter that the receiver’s bit c is.

Lemma 10.3. The protocol in Figure 4 satisfies sender’s elementary security based on the CDH
assumption.

Proof. Let there be a PPT adversary A that breaks the elementary security of the sender. Then we
are able to construct a PPT adversary B that breaks the CDH assumption. Recall that A receives a
CRS X = gx, sends a group element h0, receives S = gs for a uniform s, and succeeds if he outputs
y0 = hs0, y1 = hs1 = (h0X)s. Our adversary against the CDH assumption receives G, p, g, A1 := ga1 ,
A2 := ga2 from his challenger, gives CRS X := A1 to A, receives h0, gives S := A2 to A, receives
y0, y1 and outputs y1/y0. If A succeeds then y0 = hs0 = ha20 , y1 = hs1 = (h0X)s = hb0A

a2
1 = ha20 g

a1a2

and therefore y1/y0 = ga1a2 , meaning that B succeeds in solving CDH.

The above two lemmas already show that the scheme in Figure 4 is a elementary OT scheme
and we can then rely on our black-box transformations from the previous sections to then get UC
secure OT under CDH assumption. Therefore, the following Theorem follows as a corollary.

Theorem 10.4. Under the CDH assumption there exists a 2-round UC OT.

Although the above lemmas already suffice to show the above corollary, we note that we can
actually show something stronger about the scheme in Figure 4. Not only does it satisfy sender’s
elementary security, it already also satisfies the stronger notion of sender’s search security. To show
this, we implicitly rely on the random self-reducibility of the CDH problem.

Lemma 10.5. The protocol in Figure 4 satisfies sender’s search security based on the CDH as-
sumption.

Proof. Let there be an adversary A = (A1,A2) with

Pr
crs,r

[Pr[Expcrs,r,0sOTiOT(A) = 1] > ε and Pr[Expcrs,r,1sOTiOT(A) = 1] > ε] > ε,

the we can construct an adversary A′ that solves CDH at least with probability ε3. A′ receives
a CDH challenge G, p, g, A1, A2. It sets crs X := A1, chooses random coins r and invokes A1

which outputs a state st and OT message otr = h0. A′ samples d1, d2 ← Zp, defines S0 :=
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A2 · gd1 , S1 := A2 · gd2 and invokes for i ∈ {0, 1} A2(st, Si, i) which outputs yi. A′ returns solution
(hd10 · y1)/(hd20 · y0 ·Ad21 ) to the CDH challenger.

With probability ε, crs X and random coins r are good, i.e. Pr[Expcrs,r,0sOTiOT(A) = 1] > ε and

Pr[Expcrs,r,1sOTiOT(A) = 1] > ε. We condition on that being the case. Since S0 and S1 are independent, it
holds with probability ε2 that A2 is successful for input (st, S0, 0) and input (st, S1, 1). Conditioned
on that being the case, y0 = hs00 = ha2+d1

0 and y1 = hs11 = (h0 · A1)d2+a2 . Therefore it holds that
the submitted CDH solution is

hd10 · y1

hd20 · y0 ·Ad11

=
hd10 · (h0 ·A1)d2+a2

hd20 · h
a2+d1
0 ·Ad21

= Aa21 .

Hence, A′ solves CDH with at least probability ε3.

10.2 Instantiation from LPN

We now give an instantiation of an elementary OT under the learning parity with noise (LPN)
assumption with noise rate ρ = n−ε for ε > 1

2 . This protocol only achieves imperfect correctness,
with an inverse-polynomial failure probability, but we argue that this is sufficient to get UC OT
with negligible error probability.

Definition 10.6 (Learning Parity with Noise). For a uniform s ∈ Zn2 , oracle OLPN outputs samples

of the form a, z = as+e, where a
$←− Zn2 and Bernoulli distributed noise term e

$←− Bρ for parameter
ρ. Oracle Ouniform outputs uniform samples a, z ∈ Zn2 × Z2. We say Learning with Parity (LPN)
for dimension n and noise distribution Bρ is hard iff for any ppt adversary A,

|Pr[AOLPN(1n) = 1]− Pr[AOuniform(1n) = 1]| ≤ negl.

In the following, we will use a variant of LPN, where the secret is sampled from the noise
distribution rather than the uniform distribution and the first sample is errorless. This variant is
known to be as hard as standard LPN. The two following lemmata give a more precise relation
between LPN and its above described variant.

Lemma 10.7 ([BLP+13], Lemma 4.3). There is an efficient reduction from LPN with dimension
n and noise distribution Bρ to LPN where the first sample is errorless with dimension n − 1 and
noise distribution Bρ that reduces the advantage by at most probability 2−n.

Lemma 10.8 ([ACPS09] Adaptation of Lemma 2). LPN samples of the from a, as+e with uniform

a, s ∈ Zn2 and e
$←− Bρ can be efficiently transformed into samples a′, a′s′ + e, where s′

$←− Bnρ and
uniform a′ ∈ Zn2 . This also holds when e = 0, i.e. first is errorless LPN. The same transformation
maintains the uniformity of samples in Zn2 × Z2.

Proof Sketch. The transformation queries LPN samples A, zA = As+es until A ∈ Zn×n2 is invertible.
Then, A−1, A−1zA = s + A−1es will allow mapping LPN samples a, z = as + e to samples with
secret s′ = es by computing the new sample a′ = aA−1, z + aA−1zA = a′s′ + e. In the case where
e = 0, i.e. an errorless LPN sample, the resulting sample will also be errorless.

Lemma 10.9. The protocol in Figure 5 satisfies receiver’s indistinguishability security based on
the LPN assumption with dimension n and noise distribution Bρ.
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Sender(A, v): Receiver(A, v, c):CRS: (A, v) ∈ Zn×(n+1)
2

x, e← Bnρ
h0 := Ax+ e+ cv

h1 := h0 + v

otr := h0

S,E ← Bλ×nρ

Z := SA+ E
ots := Z

output yc := Zxoutput y0 := Sh0, y1 := Sh1

Figure 5: Elementary OT from LPN with imperfect correctness.

Proof. The receiver’s bit c is masked by an LPN sample Ax+ e. Therefore, distinguishing the case
c = 0 versus c = 1 is equivalent to breaking LPN.

Lemma 10.10. The protocol in Figure 5 satisfies sender’s elementary OT security based on the
LPN assumption with dimension n− 1 and noise distribution Bρ.

Proof. We use a hybrid version of first is errorless LPN with a secret sampled from the noise
distribution which is hard based on standard LPN with the same noise distribution and dimension
n− 1, see Lemma 10.7 and Lemma 10.8. Hybrid LPN is as hard as standard LPN losing a factor
1
λ in the advantage.

Let there be a malicious receiver that outputs y0, y1 with probability ε > negl then there is a
LPN distinguisher A that breaks hybrid first is errorless LPN with advantage ε. A operates as
follows. It receives a LPN challenge v,A, zv, Z and sets CRS to A, v. After receiving h0, it sends
Z to the malicious receiver and obtains y0, y1. If y0 + y1 = zv it outputs 1 otherwise 0.

Let Z = SA + E, zv = Sv, then A faithfully simulates the actual protocol. With probability
ε, the malicious receiver will output (y0, y1) = (Sh0, Sh1). In this case y0 + y1 = Sv equals zv and
A will output 1. In the uniform case, i.e. ZA and zv are uniform, hence the malicious receiver
can output y0, y1 such that y0 + y1 = zv at most with probability 2−λ. Hence A breaks LPN with
advantage ε

λ − 2−λ > negl.

Lemma 10.11 (Imperfect Correctness). Let a sender and a receiver interact in the protocol in
Figure 5 with parameter ρ ≤ 1

nε , for constant 1 > ε > 1
2 . Then with overwhelming probability

1− negl(λ) over the coins of the receiver (i.e., x, e) we have the following probability of correctness
over the coins of the sender (i.e., S,E):

Pr
S,E

[Shc = Zx] ≥ 1− 4λn1−2ε,

where 4λn1−2ε can be an arbitrary 1
poly(λ) for a suitable choice of n = poly(λ).

Proof. The protocol is correct iff the receivers output Zx matches the senders output Shc. By
construction, Zx = SAx+Ex, whereas Shc = SAx+Se. Hence correctness holds when Ex−Se = 0.

By Chernoff,
Pr[|x| > 2ρn ∨ |e| > 2ρn] ≤ 2e−

ρn
3 ,

which is negligible for ε < 1. Given that |x| ≤ 2ρn, for all rows ei of E, eix is distributed as the sum
of at most 2ρn Bernoulli variables with parameter ρ. Hence, by a union bound over the 2ρn variables
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Prei [eix = 1] ≤ 2ρ2n. Using another union bound over all λ rows yields PrE [Ex 6= 0 ∈ Zλ2 ] ≤ 2λρ2n.
Because of symmetry,

Pr
E,S

[Ex− Se = 0] ≥ 1− 4λρ2n.

10.2.1 Dealing with Imperfect Correctness

The above gives us an elementary OT scheme with imperfect correctness under LPN: with over-
whelming probability over the coins of the receiver, we have a a 1/p(λ) error-probability over the
coins of the sender, where we can choose p(λ) to be an arbitrary polynomial. For concreteness we
set p(λ) = λ2, so the error probability is 1/λ2. We outline how to leverage the series of generic
transformations from the previous sections to get UC OT with a negligible correctness error. This
requires only minor modifications throughout.

Elementary OT → Search OT (Theorem 5.2): This transformation performs a λ-wise paral-
lel repetition on the sender message and therefore, by the union bound, increases the correct-
ness error from 1/λ2 to 1/λ. Security is unaffected.

Search OT → bit-iOT (Theorem 5.5): This transformation preserves the correctness error of
1/λ. Security is unaffected.

bit-iOT → string iOT (Theorem 5.6): Here, we can modify the transformation slightly and
first encode the strings using an error-correcting code and have the receiver apply error cor-
rection. Since each bit has an independent error probability of 1/λ, we can set the parameters
of the error-correcting code to get an exponentially small error probability, say 2−2λ. Security
is unaffected by this modification.

Imperfect → Perfect Correctness: The above gives a scheme where, with overwhelming prob-
ability over the receiver’s coins, we have a 2−2λ error probability over the sender’s coins.
However, our definition of OT correctness in Section 4.1 requires a stronger notion of perfect
correctness: with overwhelming over the receiver’s coins and the CRS, all choices of the sender
coins yield the correct output. This is needed in two places: (1) In the construction of 2-round
ZK arguments (Theorem 8.4), we rely on extractable commitments, which in turn require a
PKE with perfect correctness (Definition 3.3). Constructing PKE from OT requires the same
perfect correctness for the OT. (2) In the construction of UC OT from Sender-UC OT and
ZK (Theorem 9.2) we also need the underlying Sender-UC OT to have perfect correctness.
This is because we rely on the fact that if a malicious sender computes the second-round OT
message correctly with some choice of random coins (which he proves via the ZK argument),
then the receiver gets the correct value.

We can generically achieve such perfect correctness, using an idea similar to the one behind
Naor’s commitments [Nao90]. We add an additional random value r∗ to the CRS. The sender
computes his second-round OT message by relying on a pseudorandom generator G and
setting the random coins to be G(s) ⊕ r∗ where s is small seed of length (e.g.,) λ. By a
counting argument, with overwhelming probability over r∗ and the receiver’s random coins,
there is no choice of the sender’s coins s that results in an error. Security is preserved by
relying on the security of the PRG.
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Combining the above, the following theorem follows as a corollary.

Theorem 10.12. Under the LPN assumption with noise rate ρ = n−ε for ε > 1
2 there exists a

2-round UC OT.
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