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Abstract—Decentralised ledgers are a prime application case
for consensus protocols. Changing sets of validators have to agree
on a set of transactions in an asynchronous network and in the
presence of Byzantine behaviour. Major research efforts focus on
creating consensus protocols under such conditions, with proof-
of-stake (PoS) representing a promising candidate. PoS aims to
reduce the waste of energy inherent to proof-of-work (PoW)
consensus protocols. However, a significant challenge is to get PoS
protocols “right”, i.e. ensure that they are secure w.r.t. safety and
liveness. The “Correct-by-Construction” (CBC) Casper approach
by the Ethereum project employs pen-and-paper proofs to ensure
its security. CBC Casper is a framework to define consensus
protocols and aims to prove safety without loss of abstractness.
Each member of the CBC Casper family of protocols is defined
by five parameters. CBC Casper models the protocol by a state of
each validator and messages sent by validators. Each validator
can transition its state using messages by other validators that
include their current consensus value and a justification (i.e.
their previous messages). We extend CBC Casper in three ways.
First, we summarise the research of CBC Casper and extend
the definitions of safety and liveness properties. To this end, we
discuss an instance of CBC Casper called Casper The Friendly
GHOST (TFG), a consensus protocol using a variant of the
GHOST fork-choice rule. Second, we refine the properties of
messages and states in CBC Casper and give a definition of
blockchain safety for Casper TFG. Third, we formally verify the
CBC Casper framework together with our refined message and
state properties as well as our blockchain safety definition in the
Isabelle/HOL proof assistant.

I. INTRODUCTION

Consensus protocols are at the core of cryptocurrencies.
They determine which set of transactions are considered
globally valid and need to ensure to be resilient against ma-
licious actors. Generally, a consensus protocol aims to ensure
security through safety and liveness. Consensus protocols with
Byzantine actors offer a trade-off of the two properties, as it is
not possible to provide both safety and liveness with at least
one Byzantine fault in asynchronous networks [2]–[4].

In cryptocurrencies, Nakamoto consensus introduced the
principle of proof-of-work (PoW) and combined this with
rewards paid to honest participants [5]. Nakamoto consensus
is secure under certain conditions when a majority of nodes
behaves honestly [6]–[8]. However, Nakamoto consensus and
similar PoW protocols consume large amounts of energy and
have limited throughput of transactions [9]. Proof-of-stake
(PoS) is a proposal to replace the wasteful mining process
with staking of cryptocurrencies (e.g. [1], [10], [11]).

Ethereum seeks to replace its current PoW consensus with
a more efficient PoS protocol. In Ethereum, two proposals for
PoS are discussed. First, Casper the Friendly Finality Gadget
(FFG) is introduced initially to provide finality in an existing
blockchain consensus protocol via PoS [12]. This proposal is
modified to a full PoS blockchain later [13]. Second, “Correct-
by-Construction” (CBC) Casper is a proposal by Zamfir et
al. [14]. An extension to this work, the Minimal CBC Casper
family of consensus protocols, is introduced in [1]. This paper
builds on and extends the second strand of work, CBC Casper.

CBC Casper1 intends to create a family of consensus pro-
tocols which provides safety in asynchronous networks with
Byzantine faults. CBC Casper is a framework to create consen-
sus protocols based on an iterative process rooted in a rigorous
mathematical model. The mathematical models captures the
parameters of a consensus protocol and their relationships. The
iterative process allows to create consensus protocol instances
that inherit proven properties from the abstract model. Further,
CBC Casper provides a “decision function” called a safety
oracle [15], which a validator can query to know whether a
certain value (e.g. block) is agreed upon. For example, CBC
Casper provides an abstract proof for asynchronous safety
given any consensus values and fork-choice rule. Casper The
Friendly GHOST (TFG) is an instance of a CBC Casper
protocol that (i) inherits the mathematical model and its safety
proof, (ii) instantiates the abstract parameters with a chain of
blocks as consensus values and using a variant of GHOST [16]
as fork-choice rule, and (iii) uses a safety oracle to decide
which blocks are members of the chain of blocks.

A. Contribution

Our contributions are summarised below (cf. Fig. 1).
• Systematisation of CBC Casper: We summarise CBC

Casper from three working papers [1], [14], [17] and
give further pointers from blog articles and talks where
relevant. We further add aspects including a discussion
of faults, a liveness property, and instantiating protocols.

• Mathematical foundation: We refine basic properties of
CBC Casper including ordering of justifications, ordering
of messages, and state transitions. We verify the basic
properties in the Isabelle/HOL proof assistant.

1Note: When we use the term CBC Casper we refer to the Minimal CBC
Casper paper by Zamfir et al. [1].



Fig. 1. Our work is summarised in three steps. (1), we update the definition of asynchronous safety and discuss how CBC Casper handles safety and liveness
faults. (2), we refine the message and state properties of the Minimal CBC Casper paper [1]. (3), we formally verify CBC Casper in Isabelle/HOL. Dotted
lines indicate work-in-progress (WIP).

• Safety proofs: We extend CBC Casper by present-
ing a general definition of asynchronous safety and a
blockchain-specific safety definition for Casper TFG.
This work is formally verified. Our proofs in Is-
abelle/HOL are open source2.

• Safety oracle: Last, we revise the safety oracle and show
that Byzantine validators must be less than 1/3 by weight
so that validators can reach decisions to finalise blocks.

B. Outline

Section II introduces our systematisation of knowledge of
CBC Casper. We discuss the safety and liveness of CBC
Casper in Section III. Next, we introduce refinements to CBC
Casper in Section IV. This is followed by the description of
our approach to formally verify CBC Casper in Isabelle/HOL
in Section V. Further, we present a more realistic construction
of CBC Casper the Friendly GHOST. We compare our contri-
butions to related work in Section VI. The article is concluded
and future work is presented in Section VII.

II. CBC CASPER

CBC Casper introduces a family of “correct-by-
construction” consensus protocols. We first describe the
CBC Casper approach, its parameters, followed by an
overview of the protocol.

A. Design approach

CBC Casper abstracts consensus protocols by five param-
eters and provides a minimal specification. This minimal
specification is intentionally abstract. It is designed to share a
proof of safety within the range of the parameters and without
assumptions on message delay. By restricting parameters,
consensus protocols can be instantiated to have other desirable
properties without breaking the safety proof. For example,
we show a protocol where we restrict one parameter, the
consensus value, to a chain of blocks. For this, we provide
a blockchain-specific safety proof in Section IV-C.

CBC Casper allows an iterative design of consensus proto-
cols by starting from the minimal specification equipped with
the proof of safety and the safety oracle. Also, we can discuss

2https://github.com/LayerXcom/cbc-casper-proof

the trade-offs between metrics such as latency to finality, the
number of validators, and the number of messages required
for each protocol within one framework [18]. Because of this
design principle, the minimal specification of CBC Casper
abstracts its implementation details including the data structure
of consensus values, block proposing mechanism, fork choice
rule, and signature scheme3. Instances of CBC Casper are
introduced including Casper the Friendly Binary Consensus,
Casper TFG, and a sharding consensus protocol.

Note that liveness is not covered by the Minimal CBC
Casper specification and hence is discussed specifically in
each instance of a protocol. We describe this in Section III-D.
An overview of CBC Casper’s design approach is given in
Figure 2.

B. Parameters
The parameters of CBC Casper are listed in Table I.

Validators V are the finite set of consensus-forming nodes4.
Weights W are assigned to each validator. In PoS consensus
protocols, the weight can be decided by the amount of stake.
The fault threshold t is the upper bound of the added weight
of validators which are subject to faults described in Section
III-A. Consensus values C are the set of all possible values
which validators agree on. In a binary protocol, consensus
values are a set {0, 1}. In blockchain protocols, they are the
set of all possible blocks or chains. The estimator E is a
function executed by each validator in the consensus protocol.
Typically, this corresponds to the fork-choice rule and derives
consensus values from the protocol states Σ. For example,
Casper TFG uses a variant of GHOST [16] for the estimator.
Validators choose among consensus values if and only if the
estimator returns a set with multiple elements.

C. States and messages
In CBC Casper, validators make decisions individually

based on their local states and a state consists of messages.

3Ali et al. [19] reviewed CBC Casper under the assumption of a “complete”
consensus protocol. However, by definition, Minimal CBC Casper is abstract.
Their comments are helpful for creating protocol instances that are based on
CBC Casper.

4In [1], the condition that V must be finite is not explicitly stated. This
condition is reasonable if we consider the protocol is used in real world and
also necessary for the later proofs.

https://github.com/LayerXcom/cbc-casper-proof


TABLE I
CBC CASPER PROTOCOL PARAMETERS.

Parameter Name Definition
V Validator names V 6= ∅: A finite set of validators.
W Validator weights W : V → R+: A function assigning

positive weights to V .
t Fault threshold t ∈ R+, t <

∑
v∈VW(v): A pos-

itive number smaller than the total
weights of all validators.

C Consensus values |C| > 1: A set of all consensus
values.

E Estimator E : Σ→ P(C)\{∅}: A function that
returns the set of consensus values
from a protocol state Σ.

A state represents the set of messages that the validator at
that state received so far. A message is defined as a 3-tuple
consisting of an “estimate” c ∈ C, together with a “sender”
v ∈ V , and a “justification” σ ∈ Σ.

Definition 1 (Estimate, Sender, Justification):

Estimate((c, v, σ)) := c (1)
Sender((c, v, σ)) := v (2)

Justification((c, v, σ)) := σ (3)

Senders are other validators in the network and authenti-
cated e.g. by a digital signature. Estimates are votes on
the consensus value by a sender. For example, a certain
chain of blocks within a set of alternative chains. Last, the
justification contains all previous messages that the validator
received and provides an argument on why the consensus value
was reached5. Specifically, validators can only have estimates

5In practice, messages do not need to include all the justified messages.
Since justification is partially ordered in M (see Section IV), a finite set of
messages form a DAG where the vertices are messages and the reachability is
the relation of justification. Therefore, it is enough for a message to include
the messages which it is connected to in the transitive closure of the DAG.

Fig. 2. Minimal CBC Casper is an abstract framework. Protocols that use
Minimal CBC Casper are instances that share the proofs of Minimal CBC
Casper. In this example we display how CBC Casper is used to create an
instance of Casper the Friendly GHOST. First, the parameters are instantiated
(as described in Section III-D). Next, the abstract protocol is made concrete
by adding the required components. Further, the safety proof is added as
discussed in Section IV-C (the liveness proof is WIP). Last, Casper TFG is
constructed and verified using Isabelle/HOL (see Section V-E).

which are the result of executing the estimator function E for
the justification. For example, in Casper TFG, estimates are
the blocks selected by its fork choice rule. Justifications are
integral to safety oracles described in Section III-C.

The sets of possible states Σ and messages M are defined
below. It is an interpretation how possible validators’ states
and messages evolve during the execution of the protocol.

Definition 2 (States and messages):

Σ0 := {∅} (4)
Mn := {m ∈ C × V × Σn |

Estimate(m) ∈ E(Justification(m))}
(5)

Σn := {σ ∈ Pfinite(Mn−1) |
∀m ∈ σ. Justification(m) ⊆ σ}, for n > 0

(6)

M :=

∞⋃
i=0

M i (7)

Σ :=

∞⋃
i=0

Σi (8)

Pfinite is a power set function which only returns finite sets.
Hence all σ ∈ Σ and Justification(m) of m ∈ M are
finite. We formally verify that Σn and Mn are monotonically
growing, i.e. for all n ∈ N 6, Σn ⊆ Σn+1 and Mn ⊆Mn+1.
Note that a set of messages is not necessarily a state, i.e. do not
necessarily exists in Σ. When m1 ∈ Justification(m2), m1 is
justified by m2 and m2 is a later message of m1. The message
sent by a validator which is not justified by any messages from
the same validator is called the latest message of the validator.

Definition 3 (State transition): With a newly received mes-
sage, a validator can transition its state to a new state σ′, if
and only if σ′ ∈ Σ. This is called state transition defined as
a relationship → which represents a set inclusion.

σ1 → σ2 :⇔ σ1 ⊆ σ2 (9)

A set of states which a state σ can transit to is called the future
states of σ.

A final decision on a new consensus value is reached after
seeing “enough” valid messages from validators determined
by the safety oracle. The minimal specification only covers
definitions of valid messages and states, state transitions, and
the safety oracle. Also, the minimal specification does not
make any assumption of timing i.e. it is in an asynchronous
network. Other specifications such as validators’ strategies
(e.g. when they should send a message) are not specified.

III. SAFETY AND LIVENESS

We discuss faults, safety and liveness properties as well as
the safety oracle in CBC Casper. Last, we elaborate the current
state of CBC Casper.

6In this paper, N represents a set of integers greater or equal to 0.



A. Faults
Validators are described by their local states {σi | 1 ≤ i ≤

n} ⊆ Σ. We assume that protocol-following validators can
detect valid messages and transit to valid states. Therefore,
we need to consider faults that prevent consensus under these
assumptions. For example, if a validator σi fails to send or
receive a message m, a state transition to σi ∪ {m} is not
possible. This is considered a liveness fault (omission fault).
However, in asynchronous networks omission faults cannot be
distinguished from latency.

We can prove safety by considering equivocation faults.
Equivocation is a Byzantine behaviour where a validator shows
different protocol execution [20].

Definition 4 (Equivocation): In CBC Casper, equivocation
is defined as producing a pair of messages which do not justify
each other.
m1 ⊥ m2 :⇔ Sender(m1) = Sender(m2) ∧m1 6= m2

∧m1 /∈ Justification(m2) ∧m2 /∈ Justification(m1)
(10)

This is considered a fault because in a single execution of the
protocol, every time a validator sends a message, the validator
must have seen their previous messages.

Definition 5 (Equivocating validators): Equivocating valida-
tors can show inconsistent decisions to different validators who
received only one of the equivocating messages.

E(σ) := {v ∈ V | ∃m1,m2 ∈ σ.
m1 ⊥ m2 ∧ Sender(m1) = v}

(11)

Note that equivocation faults are accountable [21], i.e. a
deposit and slash mechanism to economically prevent equiv-
ocating can be implemented because a pair of equivocating
messages is a verifiable evidence.

For convenience, we define helper functions about equivo-
cation faults. For this, we first define a function to measure
the weight of a given set of validators.

Definition 6 (Weight measure):

W (V ) :=
∑
v∈V
W(v) (12)

Then we define a function to measure the weight of equivo-
cating validators.

Definition 7 (Equivocation fault weight):

F (σ) := W (E(σ)) (13)

We define the set of states where there are t equivocation faults
(by weight) or less.

Definition 8 (States with equivocation fault threshold):

Σt := {σ ∈ Σ | F (σ) ≤ t} (14)

Moreover, we define the set of future states of σ where there
are t equivocation faults or less.

Definition 9 (Future states with equivocation fault thresh-
old):

Futurest(σ) := {σ′ ∈ Σt | σ → σ′} (15)

We need to discuss more kinds of faults other than equivo-
cation faults when we instantiate a protocol to prove liveness.

B. Safety

CBC Casper claims that its family of consensus protocols
is asynchronously safe, i.e. it is not possible for validators
to make inconsistent decisions in an asynchronous network,
without assumptions on the time delay between sending and
receiving messages. In this section, we introduce asynchronous
safety of CBC Casper, modifying the definition in [1].

Validators in CBC Casper make decision on properties of
consensus values7. For example, in binary consensus protocols
where C = {0, 1}, the property can be “a consensus value
is 1”. In blockchain consensus protocols, the property is the
membership of a certain block b in a chain.

Definition 10 (Block membership): A consensus value is a
block which has a certain block b as its ancestor.

Pblock(b) := λb′. b � b′ (16)

Here b � b′ defined to return true if and only if b is an ancestor
block of b′. A property is called to “hold at a state” if all the
consensus values the estimator returns at the state satisfy the
property.

Definition 11 (Decision): Validators in CBC Casper make
decisions on safe properties defined as properties which hold
in any future state where there are t equivocation faults by
weight or less. Hence, a decision of a validator at a state σ is
defined as:

Decisions(σ) := {p | ∀σ′ ∈ Futurest(σ).

∀c ∈ E(σ′). p(c)}
(17)

Decision on Pblock(b) means the finality of the block b.
Finally, we introduce the definition of safety. Safety is dis-

cussed for n validators that have no more than t equivocation
faults by weight. Because CBC Casper models validators local
states, this assumption is expressed as: there are no more than
t equivocation faults in the union of (local) states.

Theorem 1 (Safety): If there are t equivocation faults or
less in the union of states of a finite number n of validators, a
negation of a property decided by one validator is not decided
by another validator.

{σi | 1 ≤ i ≤ n} ⊆ Σt. F (

n⋃
i=1

σi) ≤ t

=⇒ ∀p ∈
n⋃
i=1

Decisions(σi).

¬ p /∈
n⋃
i=1

Decisions(σi)

(18)

Our definition of safety is different from [1]. The reason of
this modification is explained in Appendix A.

We provide the proof of safety in this abstract form and
elaborate on the safety of blockchain consensus protocols in
Section IV-C. Also, these are formally verified in Isabelle/HOL
and the representation is introduced in Section V-C.

7The safety of decisions on properties of states is also discussed in [1]. We
omit it in this paper for the sake of brevity.



C. Safety oracle

To make a decision, validators must detect that some proper-
ties hold in any future state where there are t equivocations or
less. Although we can have a detection rule specific to a certain
protocol and properties, CBC Casper implements a general
decision mechanisms called safety oracle so that the deci-
sion mechanism can be discussed inside the CBC approach.
Different types of safety oracles are proposed including the
clique oracle [18]. The draft of the updated version of [1] has
a section of safety oracle which has the definition of clique
oracle and the unfinished proof of the correctness of the oracle,
which is in parts described formally in [15]. In the rest of this
section, we extend this work of safety oracle.

First, the concept of “clique” is introduced. Clique is a set
of non-equivocating validators who are “locked on” a property
p, that is, validators who mutually see each other agreeing on p
and will not see each other disagreeing on p in the observer’s
state. A validator is agreeing on p if and only if the latest
estimate (i.e. the estimate of its latest message) satisfies p.
A validator is disagreeing on p if and only if she is neither
agreeing on p nor equivocating.

Definition 12 (Clique): In a state σ, a clique is a set of
non-equivocating validators V such that for all v ∈ V , (i)
in the justification of the latest message of v, p holds at the
latest estimate of the other validators in V , and (ii) σ does not
include any later message of the other validators in V whose
estimate does not satisfy p.

For the clique oracle to work, the target property must be a
max driven property i.e. a property which holds when the set of
non-equivocating validators agreeing on the property is larger
than the set of non-equivocating validators disagreeing on the
property by weight. The clique oracle makes a validator decide
on a property p when there is a clique larger than a certain
threshold by weight. (Note that this threshold is different from
equivocation fault threshold t.)

Definition 13 (Clique oracle threshold):

T (σ) := W (V)/2 + t/2− F (σ) (19)

A blockchain consensus protocol explained in Section III-D
can adopt this threshold.

The validity of clique oracle is supported by this theorem.
Theorem 2 (Clique oracle detects safe properties): If there

is a clique for a max driven property p larger than T (σ), p
holds in any future state of σ where there are t equivocations
or less.
In Appendix B, we show this theorem by extending the proofs
in Rush [15]. Concerning the Byzantine fault threshold t′, we
prove that t′ < W (V)/3 is a necessary and sufficient condition
for the protocol not to “get stuck” i.e. there are enough non-
faulty validators that can form a clique in Appendix C.

The safety oracle is not yet finalised and is currently being
debated. The clique oracle described above is not shown to
be optimal and further research w.r.t. computational efficiency
and latency for detection is left as future work.

D. Liveness

The minimal specification provides safety and a safety
oracle but not liveness i.e. that validators eventually decide
on a proposed block. Proving liveness in the minimal speci-
fication is impossible because it does not make assumptions
on timing and we cannot prove both safety and liveness in an
asynchronous network [3]. Therefore, we need to instantiate a
specific protocol from CBC Casper and specify the validator
strategy to prove liveness. Also, additional faults other than
equivocation need to be considered. In this section, we discuss
an instance of a protocol and how we can discuss liveness with
it, while we leave the complete and formally verified proof of
liveness as future work.

We instantiate Casper TFG [1], which is a blockchain
consensus protocol where the consensus values are blocks and
the fork-choice rule is a variant of GHOST [16] called latest
message driven (LMD) GHOST that calculates the score of a
block only by the latest messages of validators. In Appendix D,
we prove that the block membership property (Definition 10)
is max driven in LMD GHOST so we can use the clique oracle
from Section III-C. Here we instantiate it as a “vote-by-block”
style blockchain consensus protocol where all messages must
propose a new block as its estimate by specifying a certain
mechanism of block proposer election8. For this, we modify
the estimator so that it only allows new blocks which extend
the head decided by LMD GHOST. Then, we discuss liveness
of this protocol.

Conjecture 1 (Liveness with clique oracle): Protocol-
following validators eventually reach a state σ ∈ Σt where
there exists a clique of Pblock(b) which is larger than T (σ) by
weight (under appropriate assumptions on fault and network).
In blockchain consensus protocol, the proposers of descendant
blocks of b are agreeing on Pblock(b) at the estimate of the
message which proposed that block. Also, a message justifies
all the messages which proposed its ancestor blocks as a part
of the evidence of the fork choice. Therefore, a clique V for
Pblock(b) forms when each of validators in V has produced a
descendant block of b and again produced a descendant block
of b justifying the first messages of all the validators in V ,
as illustrated in Figure 3. Moreover, a clique of Pblock(b) is
also valid for Pblock(b′) if b′ is an ancestor block of b. From
these observations, we conjecture that if a sufficient number
of validators converges to the same chain, they form a clique
which finalises blocks that are “deep” in the chain. We leave
more detailed analysis of liveness as future work.

E. Discussions

CBC Casper is an ongoing research and has possible ex-
tensions and issues in both theory and practice. The previous
paper of CBC Casper by Zamfir [14] claims that to remove in-
protocol threshold by the decision-making rule based on the
subjective equivocation fault threshold t demotivate to form

8We can also instantiate a “block-and-vote” protocol where the estimator
also allows proposed blocks as described in V-E. This is one of the design
choices that CBC Casper is designed to provide.



Fig. 3. A clique in a blockchain. Plain arrows represent the chain structure
and dotted arrows represent justifications. (Arrows of justifications to ancestor
blocks are omitted.) Validator A, C, and D form a clique for the first block
from A. All the blue blocks justify all the red blocks.

a cartel. Also, when we consider using CBC Casper for a
public blockchain, we should achieve a dynamic validator
set because currently we are assuming static validator set V .
We proposed a way to rotate validators specific to blockchain
consensus protocols based on modified LMD GHOST which
calculate a score of a block by the weight extracted from the
blockchain [22], extending the proposal in [14].

There is a large gap between the minimal specification and
an implementable specification. First, CBC Casper makes no
assumptions on how the sender of each message is authen-
ticated but it is important when the protocols are used with
untrusted parties. Second, for blockchain consensus protocols
in CBC Casper the mechanism of block proposal and the fork-
choice rule need to be specified. These are closely related to
the liveness of the protocol as discussed in Section III-D.

IV. REFINEMENTS OF CBC CASPER

We capture message justifications and state transitions in
CBC Casper using binary relations and ordering. Message
justifications and state transitions form the foundation of the
formal verification described in Section V and the proofs of
safety oracle in Appendix B. Moreover, using the lemmas of
message justifications and state transitions, we also provide
the proof of asynchronous safety described in Section III-B.
Furthermore, we instantiate blockchain consensus safety from
this abstract safety. The lemmas and theorems introduced in
this section are proved in Isabelle/HOL.

First, we introduce a lemma prerequisite for our later proofs.
Lemma 1:

∀σ ∈ Σ. ∀m ∈ σ. Justification(m) ⊆ σ (20)

Proof: There exists n ∈ N s.t. σ ∈ Σn by the definition
of Σ. When n = 0, we have σ = ∅ by the definition of Σ0

and hence ∀m ∈ σ. P for any P . This implies the goal. When
n ≥ 1, we can prove the goal by the definition of Σn.

A. Message justification

Definition 14 (Message justification): We define message
justifications as a binary relation over M .

m1 ≺ m2 :⇔ m1 ∈ Justification(m2) (21)

In this subsection we prove lemmas about ordered sets defined
with this relation. Also, we define a function From sender

which returns a set of messages in σ ∈ Σ sent by a validator
v as follows.

Definition 15 (Messages from a sender):

From sender(v, σ) = {m ∈ σ : Sender(m) = v} (22)

Lemma 2: ≺ is a strict partial order on M .
Proof: We prove this lemma by showing that ≺ on M is

irreflexive and transitive. We first prove irreflexivity:

∀m ∈M. ¬ m ≺ m (23)

We assume that there exists m ∈ M such that m ≺ m
towards contradiction. By the definition of M , there exists n ∈
N s.t. m ∈Mn. By the definition of Mn, Justification(m) ∈
Σn. When n = 0, we have Justification(m) = ∅ by
the definition of Σ0 and this contradicts to the assumption
m ∈ Justification(m). When n ≥ 1, Justification(m) ∈ Σn

implies Justification(m) ∈ Pfinite(Mn−1) by the definition
of Σn. From this and m ∈ Justification(m), we have
m ∈ Mn−1. By repeating these, m ∈ M0 is derived and
this makes the same contradiction in n = 0.

Next, we prove transitivity:

∀m1,m2,m3 ∈M. m1 ≺ m2

∧m2 ≺ m3 =⇒ m1 ≺ m3

(24)

We use monotonicity of justification [1]:

∀m,m′ ∈M. m ≺ m′

=⇒ Justification(m) ⊆ Justification(m′)
(25)

From this and the assumption, we have Justification(m2) ⊆
Justification(m3). From this and the assumption m1 ∈
Justification(m2), we have the goal m1 ∈ Justification(m3).
Finally, the irreflexivity and the transitivity of ≺ on M implies
that it is a strict partial order.

Lemma 3: ≺ is well-founded on M .
Proof: First, we prove strict monotonicity of justification:

∀m,m′ ∈M. m ≺ m′

=⇒ Justification(m) ⊂ Justification(m′)
(26)

By the monotonicity of justification, we have
Justification(m) ⊆ Justification(m′). Also, because of the
irreflexivity of justification, we have m /∈ Justification(m)
These and the assumption m ∈ Justification(m′) implies the
strict monotonicity of justification.

Then, we prove the goal by contradiction. If there exists
a infinite descending chain consists of elements of M i.e., a
sequence m0, m1, m2 ... such that mi+1 ≺ mi for all i ∈
N, the size of Justification(mi) is decreasing monotonically
due to the strict monotonicity of justification. However, this
leads to contradiction because the size of Justification(mi) is
greater or equal to 0 and justifications of messages are finite
by the definition of Σn and Mn.

Lemma 4: ≺ is a strict linear order on From sender(v, σ)
if σ ∈ Σ and v ∈ V is non-equivocating validator.

Proof: From sender(v, σ) is a subset of σ by the
definition. Also, we can prove σ ⊆ M by the def-
inition of states and messages. From these, we have



From sender(v, σ) ⊆ M . This, Lemma 2 and Lemma 3
implies that ≺ on From sender(v, σ) is partially ordered and
well-founded. Then, we show the goal by showing that ≺
on From sender(v, σ) is semi-connex i.e. any distinct pair of
messages in From sender(v, σ) are comparable under ≺:

∀m1,m2 ∈M. m1 = m2 ∨m1 ≺ m2 ∨m2 ≺ m1 (27)

This is proven by the definition of equivocation and the
assumption v /∈ E(σ).

Lemma 5: ≺ is a strict well order on From sender(v, σ) if
v ∈ V is non-equivocating validator.

Proof: We can prove this because by Lemma 3 and
Lemma 4, ≺ on From sender(v, σ) is well-founded and a
strict linear order if v ∈ V is non-equivocating validator.

B. State transition

We define state transition as a binary relationship→ over Σ
which is introduced in Section II-C. Then, we prove lemmas
about state transitions.

Lemma 6: → is a partial order on Σ.
Proof: We can prove this lemma by showing → has re-

flexivity, transitivity and antisymmetry on Σ. These properties
are obvious because → is a relation of subset.

Lemma 7: Receiving a single message m at a state σ makes
state transition if and only if Justification(m) ⊆ σ.

∀σ ∈ Σ. ∀m ∈M. σ ∪ {m} ∈ Σ

⇐⇒ Justification(m) ⊆ σ
(28)

Proof: First, we prove the =⇒ direction. By the assump-
tion and Lemma 1, we have Justification(m) ⊆ σ∪{m}. This
and the irreflexivity of justification implies the goal.

Next, we prove the ⇐= direction. There exists n1, n2 ∈
N s.t. σ ∈ Σn1∧m ∈Mn2 . When n1 = 0, we have σ = ∅ by
the definition of Σ0. From this and Justification(m) ⊆ σ, we
have Justification(m) = ∅ and hence Justification(m) =
Σ0. From this and m ∈ M , we have m ∈ M0. Hence,
{m} ∈ Pfinite(M0). From this, σ ∪ {m} = {m} and
Justification(m) ⊆ σ, we can show σ∪{m} ∈ Σ1 and hence
σ ∪ {m} ∈ Σ.

When n1 ≥ 1, because Σn and Mn are monotonic9 i.e.,
Σn ⊆ Σn+1 ∧Mn ⊆ Mn+1, there exists n′ ∈ N s.t. n′ ≥
1 ∧ n′ ≥ n1 ∧ n′ ≥ n2 ∧ σ ∈ Σn

′ ∧ m ∈ Mn′
. By the

definition of Σn, we have σ ∈ Pfinite(Mn′−1). From this and
Mn′−1 ⊆ Mn′

, we have σ ∈ Pfinite(Mn′
). From this and

m ∈Mn′
, we have σ∪{m} ∈ Pfinite(Mn′

). Also, by Lemma
1 and σ ∈ Σ, we have ∀m ∈ σ. Justification(m) ⊆ σ and
hence ∀m ∈ σ∪{m}. Justification(m) ⊆ σ∪{m}. From this
and σ ∪ {m} ∈ Pfinite(Mn′

), σ ∪ {m} ∈ Σn
′+1 is derived.

Therefore, we can show σ ∪ {m} ∈ Σ by the definition of Σ.

9This is proved by induction. We omit the proof of it.

Lemma 8: About a strict subset σ′ of a state σ, the difference
has a message m such that Justification(m) ⊆ σ′. (Note that
σ′ is a set of message but not necessarily a state.)

∀σ ∈ Σ. ∀σ′. σ′ ⊂ σ
=⇒ ∃m ∈ σ − σ′. Justification(m) ⊆ σ′

(29)

Proof: By Lemma 1, we have Justification(m) ⊆ σ.
We assume ∀m ∈ σ − σ′. Justification(m) * σ′ towards
contradiction. From this, σ′ ⊂ σ and Justification(m) ⊆ σ,
we have ∀m ∈ σ − σ′. ∃m′ ∈ Justification(m). m′ ∈ σ −
σ′. This implies ∀m ∈ σ − σ′. ∃m′ ∈ σ − σ′. m′ ≺ m.
However, this leads contradiction because σ − σ′ is a subset
of M and hence we have ≺ have a minimal element on σ−σ′
by Lemma 3.

Lemma 9: The union of a finite set of states is a state.
Proof: First, we prove a lemma that the union of two

states is a state.

∀σ1, σ2 ∈ Σ. σ1 ∪ σ2 ∈ Σ (30)

When σ1 ⊆ σ2, this is obvious because σ1 ∪ σ2 = σ2. We
prove the case when σ1 * σ2. Using Lemma 7 and Lemma 8,
we can derive as follows.

∀σ, σ′ ∈ Σ. σ * σ′

=⇒ σ ∩ σ′ ⊂ σ
=⇒ ∃m ∈ σ − σ ∩ σ′. Justification(m) ⊆ σ ∩ σ′

=⇒ ∃m ∈ σ − σ′. Justification(m) ⊆ σ′

=⇒ ∃m ∈ σ − σ′. σ′ ∪ {m} ∈ Σ

(31)

This means that when we have a pair of states σ and σ′ such
that σ′ * σ, we can pick up a message m from the difference
σ − σ′ and get a new pair of states σ and σ′ ∪ {m} such
that σ′ ∪ {m} * σ. By repeating this n times where n is the
number of messages in the σ − σ′, we eventually get a state
σ′ ∪ {σ − σ′} = σ ∪ σ′. This complete the proof of the case
when σ1 * σ2.

Now we proved the lemma that the union of two states is
always a state. About a finite set of states, we can prove its
union is a state by using this lemma repeatedly.

Lemma 9 also implies that there is no race condition i.e.
when σ∪{m1} ∈ Σ and σ∪{m2} ∈ Σ, the order of receiving
m1 and m2 does not matter because σ ∪ {m1,m2} ∈ Σ.

C. Consensus Safety

In this subsection, we provide the proof sketch of Theorem
1 and introduce blockchain-specific safety.

Proof: We prove Theorem 1. We use two lemmas regard-
ing decisions10. First, forward consistency:

∀σ ∈ Σt. ∀σ′ ∈ Futurest(σ). ∀p. p ∈ Decisions(σ)

=⇒ p ∈ Decisions(σ′)
(32)

10These are extensions of Lemma 2 and Lemma 3 of [1] for properties of
consensus values.



Second, backward consistency:

∀σ ∈ Σt. ∀σ′ ∈ Futurest(σ). ∀p. p ∈ Decisions(σ′)

=⇒ ¬ p /∈ Decisions(σ)
(33)

By Lemma 9, we have
⋃n
i=1 σi ∈ Σ. From this and the

assumption F (
⋃n
i=1 σi) ≤ t, we have

⋃n
i=1 σi ∈ Σt. Let σ′

be
⋃n
i=1 σi. Because ∀i ∈ N. i ≤ n =⇒ σi ⊆ σ′, we have

σ′ ∈ Futurest(σi). (i.e. σ′ is a common future of the valida-
tors). By forward consistency, ∀p ∈

⋃n
i=1 Decisions(σi). p ∈

Decisions(σ′). Therefore, by backward consistency, ¬ p /∈⋃n
i=1 Decisions(σi).
Next, we explain this abstract safety which depends nei-

ther on parameters nor properties and implies the safety in
blockchain, i.e. validators do not decide on conflicting blocks.

Definition 16 (Block conflict): Two blocks are conflicting if
and only if neither block is the ancestor of the other block.

Conflicting(b1, b2) := ¬ (b1 � b2 ∨ b1 � b2) (34)

Then, because we consider blockchain consensus protocols,
we restrict C to satisfy this condition, i.e. ancestor blocks do
not conflict.

∀b, b′, b′′ ∈ C. b � b′ ∧ b′′ � b′ =⇒ b � b′′ ∨ b′′ � b (35)

Finally, we introduce blockchain safety defined as:
Theorem 3 (No decision on conflicting blocks): If a validator

at a state σ1 considers the block b1 finalised, a validator at a
state σ2 does not considers a block b2 finalised if b1 and b2
are conflicting when there are t equivocations or less at the
union of their state.

∀b1, b2 ∈ C. ∀σ1, σ2 ∈ Σt.

F (σ1 ∪ σ2) ≤ t ∧ Conflicting(b1, b2)

=⇒ Pblock(b1) ∈ Decisions(σ1)

=⇒ Pblock(b2) /∈ Decisions(σ2)

(36)

Proof: Using the n = 2 case of safety Theorem 1,
¬ Pblock(b1) /∈ Decisions(σ2) is derived. By this and the
definition of Decisions, we have ∃σ′ ∈ Futurest(σ2). ∀b ∈
E(σ′). b1 � b. Assume Pblock(b2) ∈ Decisions(σ2) towards
contradiction. Unfolding the definition of Decisions, we have
∀σ′ ∈ Futurest(σ2). ∀b ∈ E(σ′). b2 � b. From this and
∃σ′ ∈ Futurest(σ2). ∀b ∈ E(σ′). b1 � b, we have ∃σ′ ∈
Futurest(σ2). ∀b ∈ E(σ′). b1 � b ∧ b2 � b. From this and
the assumption that ancestor blocks do not conflict, we have
b1 � b2 ∨ b2 � b1. This makes contradiction to the assumption
Conflicting(b1, b2).

V. FORMAL VERIFICATION OF CBC CASPER

We introduce our work on formal verification of CBC
Casper11. Isabelle/HOL is an interactive proof assistant that
utilises functional programming and higher-order logic [23].

11Names of theorems and definitions in Isabelle/HOL are shortened from
the public repository.

A. Protocol definition

We instantiate CBC Casper with the parameters listed in
Section II-B using Isabelle’s locale feature [24] to parameter-
ize theories as displayed in Figure 4.

locale Protocol =
fixes V :: validator set
and W :: validator ⇒ real
and t :: real
and C :: consensus-value set
and ε :: message set ⇒ consensus-value set
assumes V-type: V 6= ∅ ∧ finite V
and W-type: ∀ v ∈ V. W v > 0
and t-type: 0 ≤ t t < sum W V
and C-type: card C > 1
and ε-type: ∀σ ∈ Σ. ε σ ∈ Pow C − {∅}

Fig. 4. Excerpt of datatypes and locale definition of CBC Casper in
Isabelle/HOL.

B. Types of functions

Every function in CBC Casper is defined with their types,
using sets such as validators V , consensus values C, states
Σ and messages M . As Isabelle does not support dependent
types, we define them as set types and prove that the every
function we define matches with its original types12. We show
as an example the Observed function defined in [1] as follows:

Observed : P(M)→ P(V) (37)
Observed(σ) := {Sender(m) : m ∈ σ} (38)

Our definition and a lemma about the type of this function
in Isabelle/HOL are shown in Figure 5. Although the type
validator set does not necessary force the function observed
to return a set of validators in V , the lemma observed-type
proves the type of the output is P(V) if the type of the input
is P(M). We proved lemmas like this for all functions to make
sure that their types are correct.

definition observed :: message set ⇒ validator set
where

observed σ = {sender m | m. m ∈ σ}

lemma (in Protocol) observed-type :
∀ σ ∈ Pow M. observed σ ∈ Pow V

Fig. 5. Definition of observed and a lemma of it.

C. Asynchronous safety

We prove Theorem 1 and Theorem 3 in Isabelle/HOL. The
theorem displayed in Figure 6 is the definition of Theorem 1
in Isabelle/HOL.
σ-set represents the set of the validators’ states. finite σ-set

means that the number of the validators is finite.
faults-lt-threshold(

⋃
σ-set) states that in the union of the state

of validators there are not more than t equivocation faults.
decisions represents Definition 11.

12The types validator, consensus value, message and state in Figure 4 are
supertypes of them.



theorem (in Protocol) n-party-consensus-safety :
∀ σ-set. σ-set ⊆ Σt
−→ finite σ-set
−→ faults-lt-threshold (

⋃
σ-set)

−→ (∀ p ∈
⋃
{decisions σ ′ | σ ′. σ ′ ∈ σ-set}.

(λc. (¬ p c)) /∈
⋃
{decisions σ ′ | σ ′. σ ′ ∈ σ-set})

Fig. 6. Theorem n-party-consensus-safety in Isabelle/HOL.

The theorem displayed in Figure 7 is the definition of Theo-
rem 3 in Isabelle/HOL. conflicting and membership represents
Definition 16 and Definition 10 respectively.

theorem (in Blockchain) no-decision-on-conflicting-blocks :
∀ σ1 σ2. {σ1, σ2} ⊆ Σt
−→ faults-lt-threshold (σ1 ∪ σ2)
−→ (∀ b1 b2. {b1, b2} ⊆ C ∧ conflicting (b1, b2)
−→ membership b1 ∈ decisions σ1
−→ membership b2 /∈ decisions σ2)

Fig. 7. Theorem no-decision-on-conflicting-blocks in Isabelle/HOL.

D. Properties of message justification and state transition

We prove the properties of message justifications and state
transitions described in Section IV using theories of HOL
Session [25] and Restricted Predicates in AFP [26]. With the
message justification, we prove the below lemma from [1].

Lemma 10: Non-equivocating validators observed in a state
σ have a single latest message in σ.
Here a validator is called observed in a state if and only if there
exists a message from the validator in the state. This lemma is
important for clique orcle because the proof of its correctness
depends on it [15] and also for LMD GHOST. However, as
it is already pointed out [27], the proof in [1] based on the
relation of comparison of the size of justifications of message
is not correct.

We formally verify this lemma in Isabelle/HOL as follows.
First, we prove that a latest message of a validator v in a state
σ is a maximal element about ≺ on From sender(v, σ). Next,
as an independent contribution, we prove that a linear order
on non-empty finite set has one maximum by proving that:
• A strict partial order on non-empty finite set has at least

one maximal element.
• A strict partial order has at most one maximum.
• A maximal element is a maximum in linearly ordered set.
From this theorem, we prove Lemma 10 because ≺ is a strict

linear order on From sender(v, σ) if v is an non-equivocating
validator as we described in IV-A.

E. Casper the Friendly GHOST

Casper TFG is an instance of CBC Casper as introduced
in Section III-D. In Casper TFG, consensus values are blocks
and the estimator is based on LMD GHOST. We construct
Casper TFG in Isabelle/HOL, modifying the construction in
the CBC Casper paper. First, we defined LMD GHOST as
GHOST function.

Next, we defined the estimator of Casper TFG. The original
estimator function [1] only allows blocks in GHOST({g}, σ).

function (in Ghost) GHOST :: (block set ∗ state) => block set
where

GHOST (b-set, σ) =
(
⋃

b ∈ {b ∈ b-set. children (b, σ) 6= ∅}.
GHOST (best-children (b, σ), σ))

∪ {b ∈ b-set. children (b, σ) = ∅}

Fig. 8. GHOST in Isabelle/HOL

This results in a construct where no other block than the
genesis block g can be proposed because GHOST({g}, σ)
returns blocks which is appeared in σ. Therefore, we modify
the definition to include not only the result of LMD GHOST
but also the child blocks of them.

E(σ) = GHOST({g}, σ)

∪
⋃

b∈GHOST({g},σ)

Children(b, σ) (39)

This estimator can be used in “block-and-vote” protocol,
which has two types of messages i.e. messages which propose
a new block and messages which vote for a proposed block.

F. Improving the CBC Casper paper

We found several issues in [1] through the formal ver-
ification that are reported to the authors. We list these in
Appendix E.

VI. RELATED WORK

We compare our verification efforts to related work. Toy-
chain is a formalisation of a consensus protocol in the
Coq proof assistant [28]. Toychain provides an explicit data
structure, i.e. block forest, and parameters to instantiate the
protocol. It offers a small-step semantics for message passing
and is proven to reach consensus after quiescent network under
an assumption that every nodes know each other. In our CBC
Casper proofs, the data structure of the consensus values are
abstracted. Hence, our model can be applied to blockchains,
DAGs, or other data constructs. Further, Toychain proves
eventual consistency without considering Byzantine faults and
leaves liveness properties as future work.

Safety of a simplified version of CBC Casper is verified
in Isabelle/HOL by Hirai [29]. It covers a binary consensus
where non-equivocating two-party validators, “max weight”
estimator and “tie braking” weights are allowed along with
simpler definitions of messages and states.

Casper FFG is initially verified in Isabelle/HOL by Hi-
rai [30]. This work is extended by verifying Casper FFG in
the Coq proof assistant [31]. Notably, this work builds on Toy-
chain. The proofs cover the two properties accountable safety
and plausible liveness with a static finite set of validators. Both
proofs rely on the assumption that at least 2/3 of validators
behave honestly.

The Nakamoto consensus protocol is subject to extensive
analysis by Garay et al. [32] and Pass et al. [33] using a
synchronous and semi-synchronous setting respectively. They
define three general properties of blockchain consensus proto-
cols: common prefix, chain growth, and chain quality. This



work is extended by using the UC model [34]. The UC
model for Bitcoin includes an adversary that can selectively
insert or delay messages as well as adaptive corruption of
validators. Also, the ledger functionality is split into a lottery
aspect and the remainder of the protocol. A UC treatment or
other simulation-based proof of CBC Casper including exact
definitions of ideal functionalities, protocols, and a simulator
is a promising direction for future work.

The family of Ouroboros consensus protocol is introduced
in [35]. Further, Ouroboros is extended for a semi-synchronous
network with Praos [36]. Unlike CBC Casper, Ouroboros and
Praos are probabilistic consensus protocol. From the initial
simulation-based analysis, Ouroboros moved to a UC model
with Genesis [11]. This work introduces ideal functionali-
ties, protocols, and a simulator that can be applied to other
PoS protocols, like CBC Casper, as well. Moreover, there
is a repository including formal verification of Ouroboros
Praos [37] in Isabelle/HOL and an implementation in Haskell.

Algorand [38] is also proposals for PoS consensus proto-
cols. The protocol includes an assumption that 2/3 of the
weighted participants are honest. This work is relevant for its
approach to validator election as this is not covered in CBC
Casper.

HotStuff is a consensus protocol using a semi-synchronous
model with a leader requiring linear communication [39]. It
contributes a property termed optimistic responsiveness where
a leader needs to wait only for a fraction of responses from
other nodes (the total nodes minus the faulty ones) to guarantee
progress. Further, HotStuff offers a framework to analyse other
protocols under which a version of Casper FFG is discussed.

Other work extends consensus protocols by introducing
DAGs with an adoption of existing fork-choice rules, e.g.
SPECTRE [40], PHANTOM [41]. The work on CBC Casper
is orthogonal to these proposals as the fork-choice rule as well
as the data structure are parameters in CBC Casper.

Apart from existing protocols, related work is also con-
cerned with attacks specific to PoS protocols. Nothing at
stake attacks describes the notion that it is cost-free to
produce alternative versions of a chain of blocks (or other
consensus data structure) [42]. Long-range attacks rewrite
blockchain history and are related to the fact that creating an
alternative chain is practically cost-free. Long-range attacks
also include the idea of “posterior corruption” [43]. Stake
bleeding attacks are a form of long-range attacks where a
coalition of attackers can rewrite the blockchain history by
including transactions from the current agreed-upon chain into
an attacking chain [44]. The idea is to include all transactions
of the coalition into blocks that are created by the coalition and
thereby increasing its relative stake. This attack works on PoS
blockchains without check-pointing. Known leader schedules
describe attacks where specific validators are targeted, since
(parts of) the future validator leaders are public [42].

VII. CONCLUSION

We present a summary of CBC Casper and contribute re-
finements to the CBC Casper protocol family. Our refinements

include a new definition of asynchronous safety for the CBC
Casper framework. Further, we define and prove blockchain
safety and discuss liveness for a protocol instance called
Casper TFG, which builds on a variant of GHOST. Next,
we revise properties about messages and state transition and
propose a revised clique oracle. We show that validators can
reach decisions with a clique oracle where 2/3 of validators by
weight are honest. Our work is verified using Isabelle/HOL.
We are currently working on a complete specification of
Casper TFG including validator rotation and a more efficient
construction to verify the DAG of messages. Future work also
includes revising our liveness proofs with a formal definition
of an adversary as well as verifying the safety oracle in
Isabelle/HOL.
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APPENDIX A
DEFINITION OF SAFETY

Theorem 1 is defined differently from [1]13. The original
definition of safety14 refers to “all properties hold at the same
time” instead of “the negation of any property is not decided
by another validator” like ours. Specifically, it is defined as
the existence of any consensus value c in C that satisfies
all properties in the union of all validators’ decisions. We
claim this is different from general definitions of safety in
a consensus protocol because there is no limitation on the
consensus value c i.e. c is allowed even if no validators can
actually have c as the estimate in the current state or future
states.

The motivation to define safety as “all properties hold at
the same time” is to remove a tricky case from the safety.
That is, the authors consider not only properties decided by
a single validator but also properties decided across multiple
validators. For example, four validators might decide on p1,
p2, p3, and p4 respectively where p1 ∧ p2 =⇒ ¬ (p3 ∧ p4)
but none of them decide on ¬ pi (1 ≤ i ≤ 4). This case
satisfies our definition of safety, but might lead to problems
in reaching consensus.

Although this issue is worth considering, we omit it as it
does not affect the safety of blockchain consensus protocols
as elaborated in in Section IV-C. From Theorem 3, we can
derive that when two validators decide on p1 and p2 such that
p1 = Pblock(b1) and p2 = Pblock(b2) respectively, b1 and b2
are not conflicting i.e. either block is the ancestor of the other
block. This means that p1 =⇒ p1 ∧ p2 or p2 =⇒ p1 ∧ p2

i.e. a decision across multiple validators is a decision of a
single validator.

13In n = 2 case, our definition is essentially the same with “Theorem 3
Two-party consensus safety” of [1], which is defined for properties of states
unlike our definition defined for properties of consensus values.

14“Theorem 5 n-party consensus safety for properties of the consensus”.
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APPENDIX B
CORRECTNESS OF CLIQUE ORACLE

In this section, we prove Theorem 2 extending the in-
progress proof and reusing lemmas in [15]. First, we introduce
the formal definition of a max driven property, modifying
the original definition so that it can be applicable to a block
membership property (see also Appendix D).

Definition 17 (Max driven property):

Max Driven(p, σ) :⇔ ∀σ ∈ Σ. σ → σ′

W (Agreeing(p, σ′)) > W (Disagreeing(p, σ′))

=⇒ ∀c ∈ E(σ′). p(c) (40)

Here Agreeing(p, σ) is defined as a set of non-equivocating
validators observed in σ whose latest estimate satisfies p and
Disagreeing(p, σ) is defined as V \Agreeing(p, σ)\E(σ) i.e.
a set of non-equivocating validators who are not observed in
σ or else have the latest estimate in σ that does not satisfy
p 15. Note that for all p, Agreeing(p, σ), Disagreeing(p, σ)
and E(σ) are subsets of V and mutually disjoint.

Then, we show the validity of the threshold.
Lemma 11: If there is a clique for a property p larger than

T (σ) and Max Driven(p, σ), p holds at σ if σ ∈ Σt.
Proof: From the Lemma 37 in [15], the clique is a subset

of Agreeing(p, σ). Therefore, we have Agreeing(p, σ) >
T (σ). From this and t− F (σ) > 0, we have:

W (Agreeing(p, σ)) > W (V)/2 + t/2− F (σ)

⇐⇒W (Agreeing(p, σ)) >

{W (V)− F (σ)}/2 + {t− F (σ)}/2
=⇒W (Agreeing(p, σ)) > {W (V)− F (σ)}/2
⇐⇒W (Agreeing(p, σ))/2 >

{W (V)−W (Agreeing(p, σ))− F (σ)}/2
⇐⇒W (Agreeing(p, σ)) >

W (V \Agreeing(p, σ) \ E(σ))

⇐⇒W (Agreeing(p, σ)) > W (Disagreeing(p, σ))
(41)

Hence, by the definition of a max driven property, we have
∀c ∈ E(σ). p(c).
Next, we prove that a clique larger than the threshold exists
for any future state where there are t equivocations or less.

Lemma 12: If there is a clique for a max driven property
p larger than T (σ), there always exists a clique for p in σ′ ∈
Futurest(σ).

Proof: First, we prove that a clique larger than the
threshold in σa exists over a minimum state transition, i.e. a

15In [15], Agreeing(p, σ) is defined to include equivocating validators
and validators who do not have any message in σ but we assume this is
a mistake. Our modification of the definition does not break the proofs
because Agreeing(p, σ) is used in the definition of clique (in this case
equivocating validators and validators who do not have any message in σ
are precluded) or the right-hand side of lemmas (in this case the lemma still
holds since our definition of Agreeing(p, σ) is a subset of the original). Also,
Disagreeing(p, σ) is defined differently but it is not used in the original
proofs.

state transition made by receiving a single message m if there
are t equivocations or less in the next state σa ∪ {m}. We
show this by the case analysis about m. Let v be Sender(m)
and σb be σa ∪ {m}. (a) If v is not a member of the clique,
the clique exists in the next state from the Lemma 16 in [15].
(b) If v is a member of the clique and m does not show the
equivocation of v, the clique exists in the next state from the
Lemma 31 in [15]. (c) If v is a member of the clique and
m shows the equivocation of v, v is removed by the clique
and the weight of the clique decreases by W(v). About the
difference of the threshold, we have:

T (σb)− T (σa) = {W (V)/2 + t/2− F (σb)}
− {W (V)/2 + t/2− F (σa)}

=− F (σb) + F (σa)

=−W(v)

(42)

This means that the threshold also decreases byW(v). Hence,
the clique is larger than the threshold in the next state even
though v is removed from the clique. From (a), (b) and (c),
we can show that a clique larger than the threshold exists over
a minimum state transition if there are t equivocations or less
in the next state.

From this result, we can prove the target lemma. When
σ = σ′, the lemma obviously holds. When σ ⊂ σ′, from
Lemma 7 and Lemma 8, we have ∃m ∈ σ′−σ. σ ∪ {m} ∈ Σ.
From this, we can derive ∃m ∈ σ′ − σ. σ ∪ {m} ∈ Σt
because σ′ ∈ Σt and hence ∀σ′′ ∈ Σ. σ′′ → σ′ =⇒ σ′′ ∈ Σt
16. By using this repeatedly, we have a set of minimum state
transitions from σ to σ′ and in all the intermediate states, there
are t equivocations or less. Because a clique larger than the
threshold exists over a minimum state transition if there are
t equivocations or less in the next state, we can inductively
show that a clique larger than the threshold exits in σ′.

Finally, we prove Theorem 2.
Proof: If there is a clique for a property p larger than

T (σ) and Max Driven(p, σ) holds, there always exists a
clique for p in σ′ ∈ Futurest(σ) because of Lemma 12. Also,
Max Driven(p, σ′) holds by the definition of Max Driven.
From this and from Lemma 11, p holds at σ′.

APPENDIX C
BYZANTINE FAULT THRESHOLD FOR CLIQUE ORACLE

We prove the lemma about the Byzantine fault threshold for
clique oracle.

Lemma 13: Let the Byzantine fault threshold t′, t′ <
W (V)/3 is a necessary and sufficient condition for the proto-
col not to get stuck i.e. there are enough non-faulty validators
that can form a clique.

Proof: Because equivocation faults are Byzantine faults,
0 ≤ t ≤ t′. The net weight of non-faulty validators is W (V)−
t′. By the clique oracle threshold,

W (V)− t′ > W (V)/2 + t/2− F (σ)

⇐⇒ −W (V)/2 + t/2 + t′ < F (σ)
(43)

16This is proved by the monotonicity of F (σ) i.e. all equivocations in a
state exists in all future states of the state.



Since this hold for any F (σ) such that 0 ≤ F (σ) ≤ t,
−W (V)/2 + t/2 + t′ < 0

⇐⇒ t < W (V)− 2t′
(44)

Since this hold for any t such that 0 ≤ t ≤ t′,
t′ < W (V)− 2t′

⇐⇒ t′ < W (V)/3
(45)

APPENDIX D
MAX DRIVEN BLOCK MEMBERSHIP PROPERTY

IN LMD GHOST
In this section, we prove that block membership properties

are max driven if the estimator is based on LMD GHOST.
Lemma 14: A block membership property is max driven at

a state σ i.e. Max Driven(Pblock(b), σ) when b is observed
at σ i.e. ∃m ∈ σ. b = Estimate(m) if the estimator does
not allow blocks other than the head blocks decided by LMD
GHOST or the children of them.

Proof: About a state σ′ such that σ → σ′, b is also
observed at σ′. By the definition of Max Driven, we assume:

W (Agreeing(Pblock(b), σ′)) >

W (Disagreeing(Pblock(b), σ′)) (46)

Validators agreeing on Pblock(b) are also agreeing on
Pblock(b′) if b′ is the ancestor of b. Hence we have:

Agreeing(Pblock(b), σ′) ⊆ Agreeing(Pblock(b′), σ′)

=⇒W (Agreeing(Pblock(b′), σ′)) >

W (Agreeing(Pblock(b), σ′))

(47)

From this and the assumption, we have:

W (Agreeing(Pblock(b′), σ′)) >

W (Disagreeing(Pblock(b), σ′)) (48)

Also, we can derive:

W (Agreeing(Pblock(b′), σ′)) >

W (Agreeing(Pblock(b), σ′))

=⇒W (V \Disagreeing(Pblock(b′), σ′) \ E(σ′)) >

W (V \Disagreeing(Pblock(b), σ′) \ E(σ′))

=⇒W (V)−W (Disagreeing(Pblock(b′), σ′))

− F (σ′) > W (V)

−W (Disagreeing(Pblock(b), σ′))− F (σ′)

=⇒W (Disagreeing(Pblock(b), σ′)) >

W (Disagreeing(Pblock(b′), σ′))
(49)

From these, we can derive:

W (Agreeing(Pblock(b′), σ′)) >

W (Disagreeing(Pblock(b), σ′))

=⇒ W (Agreeing(Pblock(b′), σ′)) >

W (Disagreeing(Pblock(b′), σ′))

(50)

In LMD GHOST, the score of b′ is
W (Agreeing(Pblock(b′), σ′)) and the score of the other
block at the same height is W (Disagreeing(Pblock(b′), σ′))
or less. From this and b′ is observed in σ′, b′ is the best child
of its parent block17. From this, all the ancestor blocks of b
are the best child of their parent block and hence the head
blocks decided by LMD GHOST are b or the descendant
blocks of b. Because the estimator does not allow blocks
other than the head blocks decided by LMD GHOST or the
children of them, we can derive ∀c ∈ E(σ′). Pblock(b)(c).

APPENDIX E
IMPROVEMENTS OF THE MINIMAL CBC CASPER PAPER

We list the improvements and errors we found in the
Minimal CBC Casper paper [1].

1) Subset membership of messages The type of M is de-
fined as the strict subset of C×V×Σ but we proved that
when the estimator is constant function which returns C
for any input, M = C×V×Σ. Therefore, the type should
be states as M ⊆ C × V × Σ.

2) Types of functions We modified the type of Later From
from M × V × P(M) to M × V × P(M) → P(M).
Also, we proposed the modification of the type of E
from Σ→ P(C) \ ∅ to Σ→ P(C) \ {∅}.

3) Blocks In is not defined We pointed out that the func-
tion Blocks In used in the instantiation of Casper the
Friendly CBC Finality Gadget is not defined.

4) Definition of epoch score function We modified the def-
inition of Epoch Score(e, σ) by replacing an unknown
variable e with b.

17We formally verified this in Isabelle/HOL.
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