
Numerical Methods for Comparison on
Homomorphically Encrypted Numbers

Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, Keewoo Lee

Department of Mathematical Sciences, Seoul National University

Abstract. We propose a new method to compare numbers which are
encrypted by Homomorphic Encryption (HE). Previously, comparison
and min/max functions were evaluated using Boolean functions where
input numbers are encrypted bit-wisely. However, the bit-wise encryption
methods require relatively expensive computation of basic arithmetic
operations such as addition and multiplication.
In this paper, we introduce iterative algorithms that approximately com-
pute the min/max and comparison operations of several numbers which
are encrypted word-wisely. From the concrete error analyses, we show
that our min/max and comparison algorithms have Θ(α) and Θ(α logα)
computational complexity to obtain approximate values within an error
rate 2−α, while the previous minimax polynomial approximation method
requires the exponential complexity Θ(2α/2) and Θ(

√
α · 2α/2), respec-

tively. We also show the (sub-)optimality of our min/max and compari-
son algorithms in terms of asymptotic computational complexity among
polynomial evaluations to obtain approximate min/max and comparison
results. Our comparison algorithm is extended to several applications
such as computing the top-k elements and counting numbers over the
threshold in encrypted state.
Our new method enables word-wise HEs to enjoy comparable perfor-
mance in practice with bit-wise HEs for comparison operations while
showing much better performance on polynomial operations. Computing
an approximate maximum value of any two `-bit integers encrypted by
HEAAN, up to error 2`−10, takes only 1.14 milliseconds in amortized
running time, which is comparable to the result based on bit-wise HEs.

1 Introduction

Homomorphic Encryption (HE) is a cryptographic primitive which allows arith-
metic operations over encrypted data without any decryption process. From this
distinctive property, HE has received lots of attention in many privacy preserving
applications. The HE schemes can be classified as word-wise HEs [8, 14, 25, 29]
and bit-wise HEs [17, 22] according to the basic operations provided by them.
Basic operations of word-wise HEs are component-wise addition and multiplica-
tion of an encrypted array over Zp for a positive integer p > 2 [8, 25] or the field
C of complex numbers [14], and all other operations are built upon two basic op-
erations. Contrary to word-wise HEs, basic operations of bit-wise HEs are logical
gates such as NAND gate [22] and look-up table based operations [17, 18].

When input numbers are encrypted word-wisely, polynomial operations con-
sisting of additions and multiplications are quite natural, but it is rather hard
to carry out non-polynomial operations such as comparison and min/max func-
tions. On the other hand, when each bit of `-bit integers is encrypted separately
(e.g., a =

∑`−1
i=0 ai2

i is encrypted as Enc(a0), Enc(a1), ..., Enc(a`−1)), comparing
two `-bit integers is done by evaluating a Boolean function in Θ(`) homomorphic
multiplications with depth log ` [16]. However, this bit-wise encryption method
is rather inefficient for homomorphic addition and multiplication since it requires
sequential computation of each carry bit transferred from lower-bit operations.

In this paper, we propose an efficient numerical approach for comparison
and min/max functions, which can be efficiently exploited for word-wise HEs.
Instead of evaluating a Boolean function over bit-wisely encrypted inputs, we
homomorphically evaluate iterative algorithms to obtain approximate max/min
values and the comparison result over word-wisely encrypted inputs. We note
that our methods are especially effective in real-world applications which requires
several min/max or comparison operations between a large amount of polynomial
operations, such as neural network and clustering algorithms.

1.1 Our Idea

To perform non-polynomial operations over word-wise HEs, the previous works [13,
30, 36] utilized general polynomial approximation methods (e.g., Taylor, least
square, minimax approximation). To obtain the desired error bound in the given
interval, they choose an appropriate polynomial degree of approximation. As the
degree grows, the lower error is guaranteed but the higher computational cost is
required.

To obtain an approximate value within 2−α relative error through general
polynomial approximations, the approximate polynomial should have the degree
at least Θ(2α) (see Section 6). However, the evaluation of a general polyno-
mial of degree Θ(2α) requires at least exponential computational complexity
Θ(2α/2) [39]. In this respect, the general polynomial approximation methods,
which mainly consider the optimality of polynomial degree rather than compu-
tational complexity, may not be the best solution for HE applications.

To this end, our main idea is to use some special polynomials, whose struc-
ture can be exploited by iterative algorithms, rather than general polynomials
obtained by polynomial approximation methods. The evaluation of these well-
structured polynomials requires less complexity than the evaluation of general
polynomials of the same degree. To be precise, the well-structured polynomial
of degree 2Θ(d) can be evaluated with only Θ(d) multiplications while the eval-
uation of a general polynomial of the same degree requires exponentially many
multiplications.

We devise iterative (approximate) algorithms for min/max and comparison
focusing on their numerical properties and exploiting classical iterative approxi-
mation for inverse and square root as building blocks. We first consider a problem
of approximating the maximum value of two numbers without bit operations.

2

The max function can be simply expressed as following equation:

max(a, b) =
a+ b

2
+
|a− b|

2
=
a+ b

2
+

√
(a− b)2

2

Thus, we can reduce the problem of homomorphically evaluating the maximum
function to that of efficiently evaluating the square root function.

For comparison of several distinct positive numbers, we may use another
identity:

lim
k→∞

aki
ak1 + · · ·+ akn

=

{
1 if ai is maximal, and
0 otherwise.

That is, if we can efficiently evaluate the inverse function, we can exploit this to
evaluate the comparison function. For k = 2, the equation can be interpreted as a
sigmoid approximation of the step function which corresponds to the comparison
operation (see Section 5). To sum up, we can reduce the problems obtaining
comparison and min/max results to efficiently approximating square root and
inverse functions by arithmetic operations.

In our algorithms, the size of intermediate values aki grow exponentially as k
increases, so they are not easy to be computed only with additions and multi-
plications in the bounded plaintext space. Instead, we remark that several most
significant bits of aki are sufficient for the approximate computation of our al-
gorithms, and they can be obtained by an efficient bit-extraction [27, 32] or
the rounding-off operation. We utilize the (approximate) rounding-off operation
which is supported by an approximate HE scheme HEAAN [12, 14] almost for
free computational cost.

1.2 Our Result

We introduce iterative algorithms for min/max and comparison with numerical
approaches, which can be efficiently used for word-wise HEs. We further ap-
ply these algorithms to evaluate top-k maximum values and threshold counting.
Through the rigorous analysis on the error compared to the true value, we com-
pute the minimal depth and computational complexity of our algorithms, and
provide the strategies to choose the number of iterations.

Compared to general polynomial approximation methods which have been
used to deal with non-polynomial operations in HE, our method requires much
less computation to obtain min/max and comparison result within a certain
level of error. In fact, our Min/Max (resp. Comp) algorithms achieve (nearly) min-
imal asymptotic computational complexity among the polynomial evaluations
to obtain approximate min/max (resp. comparison) results.

To show the practicality of our algorithms, we present some experimental
results of our algorithms implemented on HEAAN. Specific results on our algo-
rithms are summarized as follows:

First, for min/max algorithm,

3

– To obtain an approximate min/max value of two `-bit integers a and b up
to error 2`−α for α > 0, our max algorithm denoted by Max requires Θ(α)
depth and complexity.

– Under the condition |a− b| ≥ c for some small c > 0, the required depth and
complexity are reduced to Θ(logα+ 2 log(1/c)).

– The homomorphic evaluation of Max for two 32-bit integers a and b preserving
top-10 most significant bits takes 75 seconds with 216 plaintext slots (1.14
milliseconds as the amortized running time).

Second, for comparison algorithm,

– To obtain an approximate value of comp(a, b) = (a > b?) with error bounded
by 2−α where max(a, b)/min(a, b) ≥ c for some fixed c > 1, our comparison
algorithm denoted by Comp requires Θ(log(α/ log c) · log(α + log(α/ log c)))
depth and complexity.

– The homomorphic evaluation of Comp for two 32-bit integers (whose ratio
is larger than 1.01) with 14-bit precisions takes about 230 seconds with 216

plaintext slots (3.5 milliseconds as the amortized running time).

We additionally provide some implementation results as applications of the
comparison algorithm. For example, we can compute the index of the maximum
element among 16 encrypted 7-bit integers (where the maximum is at least twice
larger than the others) with 7-bit precisions with amortized running time of
about 75.9 milliseconds. We also propose an efficient solution to the so-called
"threshold counting" problem, which aims to count the number of data exceeding
a certain value. For any 32 encrypted 7-bit integers, the amortized running time
of our solution is 135 milliseconds.

1.3 Related Works

There are a lot of works that consider comparison-related operations in HE
schemes [5, 6, 10, 16, 18, 20, 23, 37, 43]. Most of these works deal with min/max,
equality test, and sorting based on the bit-wise encryption approach. In other
words, to provide bit-wise access they encrypt each bit of numbers separately
that can be optimized using plaintext batching technique.

Chillotti et al. [18] calculate the maximum of two numbers of which each bit
is encrypted into a distinct ciphertext by a bit-wise HE scheme [17, 18]. They
express the max function by controlled Mux gates via weighted finite automata
approach, and the implementation of their max algorithm on 8-bit integers took
approximately a millisecond. Some other works [16, 20, 37, 43] implemented
a Boolean function corresponding to the comparison operation, where input
numbers are still encrypted bit-wisely. Cheon et al. [16] calculate a compari-
son operation over two 10-bit integers in 307 milliseconds using the plaintext
space Z214 . More recent work of Crawford et al. [20] takes a few seconds to com-
pute a comparison result of 8-bit integers. Since the comparison operation can
be simultaneously done in 1800 plaintext slots, the amortized running time be-
comes just a few milliseconds. These bit-wise encryption methods show very nice

4

performance on comparison operations as described above, but polynomial op-
erations including addition and multiplication of large numbers are significantly
inefficient compared to word-wise encryption methods.

On the other hand, Boura et al. [5] compute absolute function and sign
function, which correspond to min/max and comparison respectively, over word-
wisely encrypted numbers by approximating the functions via Fourier series over
a target interval. This method has an advantage on numerical stability compared
to general polynomial approximation methods: Since Fourier series is a periodic
function, the approximate function does not diverge to∞ outside of the interval,
while approximate polynomials obtained by polynomial approximation methods
diverge. The homomorphic evaluation of the sign function over wide-wisely en-
crypted inputs is also described in [6], which implemented the evaluation phase
of discretized neural network based on HE. It utilizes the bootstrapping tech-
nique of [17] to homomorphically extract the sign value of the input number and
bootstrap the corresponding ciphertext in the same time.

When applying min/max and comparison functions on real-world applica-
tions such as machine learning, there have been some attempts to detour these
functions by substituting them with other HE-friendly operations. For example,
Gilad-Bachrah et al. [30] expressed the max of positive numbers a1, ..., an as
limk→∞(

∑n
i=1 a

k
i)1/k; however, they substituted the max function by the simple

summation
∑n
i=1 ai due to the hardness of evaluating x1/k for large k in HE.

In general, polynomial evaluation methods including Horner’s method and
Paterson-Stockmeyer method [39] can also be viewed as iterative algorithms,
but they require Θ(d) or Θ(

√
d) computational complexity for the polynomial

degree d. In the rest of our paper, the context "iterative algorithm" refers to
an algorithm with a log-degree complexity. In [15], for example, Cheon et al.
apply an iterative method that efficiently computes a trigonometric function
for bootstrapping of HEAAN. Since evaluating an approximate polynomial of
trigonometric function over the large interval [−B,B] requires very large com-
putational complexity Θ(

√
B), they first compute an approximate polynomial

of the trigonometric function over the sufficiently small interval [−B/2r, B/2r],
and then apply the double-angle formula r times iteratively. From this iterative
method, they could reduce the computational complexity for the evaluation of
trigonometric functions to the log-scale complexity Θ(logB).

1.4 Road Map

In Section 2, we introduce some notations used in our paper and basics of HE. In
Section 3, we introduce iterative algorithms for inverse and square root opera-
tions with analyses on the approximation error. In Section 4 and 5, we propose it-
erative algorithms to compute the approximate min/max and comparison results
with concrete error analyses. In Section 6, we compare our methods with general
polynomial approximation methods verifying the computational efficiency and
the optimality of our methods. In Section 7, we apply the proposed algorithms
to solve the threshold counting problem and obtain the top-k max, and show
some implementation results on our algorithms based on HEAAN in Section 8.

5

2 Preliminaries

2.1 Notations

All logarithms are base 2 unless otherwise indicated. For a real-valued function
f defined over R and a domain I ⊂ R, we denote the infinite norm of f over the
domain I by ||f ||∞,I := maxx∈I |f(x)|. If I = R, then we omit the second term
of the subscript.

For a power-of-two integer N , we define a polynomial ring R := Z[X]/(XN +
1). For an integer q ≥ 0, a quotient polynomial ring R/qR is denoted by Rq. A
positive integer d denotes the number of iterations in inverse and square root
algorithms, and d′ and t denote the numbers of iterations in the comparison
algorithm.

2.2 Homomorphic Encryption

Homomorphic Encryption (denoted as HE afterwards) is a cryptographic primi-
tive which allows arithmetic operations such as an addition and a multiplication
over encrypted data without decryption process. HE is regarded as a promising
solution which prevents private information leakage during analyses on sensi-
tive data such as biomedical data and financial data. A number of HE schemes
[4, 7, 8, 14, 17, 19, 21, 22, 25, 28, 29] have been suggested following Gentry’s
blueprint [26], and achieving successes in various applications [5, 11, 15, 30, 35].

An HE scheme consists of the following algorithms:

• Setup(1λ, L). For a level parameter L and a security parameter λ, output
the parameters params for the given HE scheme to achieve λ-bit security and
be able to evaluate a depth-L circuit.

• KeyGen(params). For parameters params, output a public key pk, a secret key
sk, and an evaluation key evk.

• Encpk(m). For a message m, output the ciphertext ct of m.
• Decsk(ct). For a ciphertext ct of m, output the message m.
• Addevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the cipher-

text ctadd of m1 +m2.
• Multevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the ci-

phertext ctmult of m1 ·m2.

3 Iterative Algorithms for Inverse and Square root

In this section, we first introduce approximate algorithms computing the inverse
and the square root of a real number through additions and multiplications, so
that they can be efficiently computed based on word-wise HEs. We additionally
analyze the error rate of each algorithm to measure the quality of the approxi-
mation.

6

3.1 Inverse Algorithm

One of the most common iterative algorithms to compute the inverse of a (pos-
itive) real number is Goldschmidt’s division algorithm [31]. For x ∈ (0, 2), the
main idea of Goldschmidt’s algorithm Inv(x; d) is

1

x
=

1

1− (1− x)
=

∞∏
i=0

(
1 + (1− x)2

i
)
≈

d∏
i=0

(
1 + (1− x)2

i
)
.

Since x ∈ (0, 2), the value 1 + (1 − x)2
i

converges to 1 as i → ∞ so that the
approximation holds for sufficiently large d > 0. The inversion algorithm for an
input x and the number of iterations d, denoted by Inv(x; d), is described in
Algorithm 1.

Algorithm 1 Inv(x; d)

Input: 0 < x < 2, d ∈ N
Output: an approximate value of 1/x (refer Lemma 1)
1: a0 ← 2− x
2: b0 ← 1− x
3: for n← 0 to d− 1 do
4: bn+1 ← b2n
5: an+1 ← an · (1 + bn+1)
6: end for
7: return ad

Lemma 1. For x ∈ (0, 2) and a positive integer d, the error rate of the output
of Inv(x; d) compared to the true value 1/x is bounded by (1 − x)2

d+1

. In fact,
the error is always negative, i.e., the output of Inv(x; d) is always smaller than
1/x.

Proof. We can simply compute |ad−1/x1/x | = 1− x · ad = (1− x)2
d+1

. ut

Remark 1. Lemma 1 implies that if we have tighter lower/upper bound of x,
then it guarantees an exponential convergence in the number of iteration d. For
example, assuming that x ∈ [2−n, 1) for some n ∈ N, the error rate of Inv(x; d)

is bounded by (1 − 2−n)2
d+1

which implies that only d = Θ(logα + n) number
of iterations suffice for Algorithm 1 to achieve the error bound 2−α.

3.2 Square Root Algorithm

In order to compute the square root of a positive real number, we exploit a
two-variable iterative method proposed by Wilkes in 1951 [44]. The algorithm
consists of simple addition and multiplication operations for each iteration, and
it has an exponential convergence rate depending on the input value.

7

Algorithm 2 Sqrt(x; d)

Input: 0 ≤ x ≤ 1, d ∈ N
Output: an approximate value of

√
x (refer Lemma 2)

1: a0 ← x
2: b0 ← x− 1
3: for n← 0 to d− 1 do
4: an+1 ← an

(
1− bn

2

)
5: bn+1 ← b2n

(
bn−3

4

)
6: end for
7: return ad

Lemma 2. For x ∈ (0, 1) and a positive integer d, the error rate of the output
of Sqrt(x; d) compared to the true value

√
x is bounded by (1− x

4)2
d+1

. In fact,
the error is always negative, i.e., the output of Sqrt(x; d) is always smaller than√
x.

Proof. Since −1 ≤ b0 ≤ 0, we can easily check that −1 ≤ bn ≤ 0 for all n ∈ N.
Then, |bn+1| = |bn| · | bn(bn−3)4 | ≤ |bn|, gives |bn+1| ≤ |bn|2 · (1− x

4), and it holds
that |bd| ≤ |b0|2

d · (1− x
4)2

d−1 < (1− x
4)2

d+1

.
From the definition of an and bn, the equality x(1+bn) = a2n can be obtained

by simple induction. Hence, the error rate is∣∣∣∣an −√x√
x

∣∣∣∣ = 1−
√

1 + bn < |bn| ,

which implies the result of the lemma. ut

Remark 2. Similarly to Remark 1, Lemma 2 implies that if we have tighter
lower/upper bound of x, it guarantees an exponential convergence rate, e.g., if
x ∈ [2−n, 1), then d = Θ(logα + n) iterations are sufficient for Algorithm 2 to
achieve the error bound 2−α.

Absolute value. By observing |x| =
√
x2, we can also compute the absolute

value of−1 ≤ x ≤ 1 by Sqrt(x2; d) for some sufficiently large d > 0. By Lemma 2,

the error rate compared to the true value |x| is bounded by
(

1− x2

4

)2d+1

.

4 Approximate min/max Algorithms

In this section, we describe approximate algorithms for min/max operations
applying the square root algorithm described in the previous section. Our main
goal is to obtain the min/max value and the comparison result between `-bit
positive integers (or `-bit precision positive real numbers) for some given integer
` > 0. Since our inverse and square root algorithms require input value to be

8

contained in a prefixed interval (e.g., [0, 1]), we need to scale down the large
input values into small range. For this reason, when two inputs ā, b̄ ∈ [0, 2`) are
given, we first scale down

(a, b)←
(
ā

2`
,
b̄

2`

)
so that a, b ∈ [0, 1). After running the algorithms we desired, we will scale up
the output value by the factor 2`. For example, after we obtain an approximate
value x of max(a, b), then we can compute 2` · x ≈ max(ā, b̄). Note that this
scaling procedure preserves the error rate compared to the true value.

4.1 min/max Algorithm for two numbers

In this subsection, we describe the Min and Max algorithms which approximately
compute the minimum and maximum values of given two inputs contained in
[0, 1), respectively. The approximate min/max algorithms, which we denote by
Min and Max, respectively, can be directly obtained from the following observa-
tions.

min(a, b) =
a+ b

2
− |a− b|

2
=
a+ b

2
−
√

(a− b)2
2

and

max(a, b) =
a+ b

2
+
|a− b|

2
=
a+ b

2
+

√
(a− b)2

2
.

For the square root part of the formula we will use the square root algorithm
described in Section 3.2 as a subroutine, which leads us to the algorithms:

Min(a, b; d) =
a+ b

2
− Sqrt((a− b)2; d)

2
, and

Max(a, b; d) =
a+ b

2
+

Sqrt((a− b)2; d)

2
.

Algorithm 3 Min(a, b; d), Max(a, b; d)

Input: a, b ∈ [0, 1), d ∈ N
Output: an approximate value of min(a, b) and max(a, b) (refer Theorem 1,2)
1: x = a+b

2 and y = a−b
2

2: z ← Sqrt(y2; d)
3: return x− z for Min(a, b; d)

x+ z for Max(a, b; d)

Assume that one would like to obtain a good enough approximate values
of min/max of a, b ∈ [0, 1). Roughly speaking, we can obtain an approximate
min/max value with an error up to 2−α in about 2α iterations.

9

Theorem 1. If d ≥ 2α− 3 for some α > 0, then the error of Max(a, b; d) (resp.
Min(a, b; d)) from the true value max(a, b) (resp. min(a, b)) is bounded by 2−α

for any a, b ∈ [0, 1).

Proof. By Lemma 2, we obtain
∣∣Sqrt((a− b)2; d)− |a− b|

∣∣ < (1− (a−b)2
4

)2d+1

·
|a−b|. Therefore, the error of Max(a, b; d) (resp. Min(a, b; d)) from max(a, b) (resp.

min(a, b)) is bounded by 1
2 ·
(

1− (a−b)2
4

)2d+1

· |a− b|.
Considering |a − b| as a variable x, let us find the maximal value of f(x) =

(1− x2

4)2
d+1 ·x for x ∈ [0, 1). By a simple computation, one can check that f ′(x) =

(1− x2

4)2
d+1−1 ·

(
1−

(
1
4 + 2d

)
x2
)

= 0 has a unique solution x0 = 1/
√

2d + 1
4 in

[0, 1) so that x0 is the maximal point of f(x). Hence, we obtain the following
inequality(

1− (a− b)2

4

)2d+1

· |a− b| ≤
(

1− 1

2d+2 + 1

)2d+1

· 1√
2d + 1

4

<
1(

1 + 1
2d+2

)2d+1 · 2−
d
2 < 2−

d+1
2 ,

using the fact that (1 + x)1/x ≥ 2 for x ∈ [0, 1). Therfore, under the condition
d > 2α− 3, the error of Max(a, b; d) (and Min(a, b; d)) is upper bounded by 2−α.

ut

By Theorem 1, we can select an appropriate parameter d depending on α,
i.e., the quality of the approximation. For example, let ` = 64 so that ā and b̄
are 64-bit positive integers. If one aims to obtain exact maximum value between
ā and b̄, then one can set d = 2 · 64 − 3 = 125. But if one only aims to obtain
an approximate value within an error less than 248, i.e., obtain the top 16 bits
of the maximum value in 64-bit representation, one can set much smaller d as
d = 2 · 16 − 3 = 29. In this case, the output would be a 64-bit integer of which
top-16 bits coincide with those of the true maximum value.

Parameter Reduction over the Restricted Domain. We can improve the
condition on the parameter d in Theorem 1 from Θ(α) to Θ(logα) by adding
some conditions on a and b: |a − b| ≥ c for some constant 0 < c < 1. In
other words, d = Θ(logα) provides appropriate min/max results with probability
(1− c)2 for uniform randomly chosen a and b from [0, 1).

Theorem 2. If d ≥ logα + 2 log(1/c) + 1 for some α > 0 and 0 < c < 1, then
the error of Max(a, b; d) (resp. Min(a, b; d)) from the true value max(a, b) (resp.
min(a, b)) is bounded by 2−α for any a, b ∈ [0, 1) satisfying |a− b| ≥ c.

Proof. We resume at the upper bound 1
2 ·
(

1− (a−b)2
4

)2d+1

· |a− b| of the error
of Max(a, b; d) (resp. Min(a, b; d)) from max(a, b) (resp. min(a, b)) as in the proof
of Theorem 1.

10

Since |a− b| ≥ c, we obtain

1

2
·
(

1− (a− b)2

4

)2d+1

· |a− b| ≤
(

1− c2

4

)2d+1

.

Since (1 − x)1/x < 1
e <

1
2 for 0 < x < 1, if d ≥ logα + 2 log(1/c) + 1, it holds

that

(
1− c2

4

)2d+1

=

((
1− c2

4

)4/c2
)2(d+2 log c−1)

< 2−2
(d+2 log c−1)

≤ 2−α,

which is the conclusion we wanted. ut

Note that the area of the bad region {(a, b) ∈ [0, 1)× [0, 1) : |a− b| ≤ c}, where
the theorem does not hold, is 1 − (1 − c)2 (≈ 2c if c is very small). Consider
a, b as a uniform random variable in [0, 1), and assume that we want to obtain
an appropriate output of Max(a, b; d) and Min(a, b; d) with probability 1 − ε for
0 < ε < 1. Then by combining the results from Theorem 1 and Theorem 2, it
suffices to set d ≈ min(2α− 3, logα+ 2 log(1/c) + 1).

Depth and Complexity of Min/Max Algorithms. Since the depth of the
Sqrt(·; d) algorithm is 2d+ 1, the depth of Min(·, ·; d) and Max(·, ·; d) algorithms
is also 2d+ 1. Since the algorithm is iterative, the complexity is indeed Θ(d).

4.2 Min/max Algorithm for Several Numbers

With a basic min/max algorithm for two numbers in Section 4.1, we are able
to construct a min/max algorithm for several numbers. Let a1,0, a2,0, ..., an,0
be given numbers contained in [0, 1), and our aim is to obtain an approxi-
mate value of the maximum value among them. For convenience of analysis,
assume that n is a power-of-two integer. For some positive integer d > 0,
we first run Max(a2i−1,0, a2i,0; d) for 1 ≤ i ≤ n/2 and denote the outputs by
ai,1, respectively. Repeatedly, we obtain the outputs ai,2 of Max(a2i−1,1, a2i,1)
for 1 ≤ i ≤ n/4. Then, we can inductively construct a binary tree structure
{ai,j}0≤j≤logn,1≤i≤n/2j , and a1,logn would be the desired approximate maximum
value. The same argument can be applied to the case of Min algorithm.

The following theorem shows the error bound of ArrayMax and ArrayMin
algorithms.

Theorem 3. Let n be a power-of-two integer. The numbers a1, a2, ..., an ∈ [0, 1)
satisfying |ai − aj | ≥ c > 0 for any 1 ≤ i < j ≤ n are given. When d ≥ log(α+
log log n) + 2 log(1/c) + 1, the error of the output of ArrayMax(a1, a2, ..., an; d)
(resp. ArrayMin(a1, a2, ..., an; d)) from the true value max(a1, a2, ..., an) (resp.
min(a1, a2, ..., an)) is bounded by 2−α. Note that the error is always negative,
i.e., the output value is always smaller than the true value.

Proof. Refer to Appendix A. ut

11

Algorithm 4 ArrayMax(a1, a2, ..., an; d)

Input: a1, a2, ..., an ∈ [0, 1), d ∈ N
Output: an approximate value of max(a1, a2, ..., an; d) (refer Theorem 3)
1: (a1,0, a2,0, ..., an,0)← (a1, a2, ..., an)
2: d← n
3: for j ← 0 to blog nc do
4: if d is odd then
5: add/2e,j+1 ← ad,j
6: end if
7: d← bn/2c
8: for i← 1 to d do
9: ai,j+1 ← Max(a2i−1,j , a2i,j ; d)

10: end for
11: end for
12: return a1,dlogne

Theorem 2 was applied in this theorem for the good region {(ai)1≤i≤n ∈
[0, 1)n : |ai − aj | ≥ c for any 1 ≤ i < j ≤ n and some c > 0}. Note that
we can also apply Theorem 1 to obtain the worst-case analysis: In this case,
d should be set as d = 2(α + log log n) − 3. The area of the good region, is
exactly (1− (n− 1)c)

n (≈ 1 − n(n − 1)c when c is very small) referring to [9].
Therefore, if one want to obtain an output of ArrayMax or ArrayMin within error
2−α with probability 1 − ε for 0 < ε < 1, then by Theorem 3 it suffices to set
d ≈ min(2(α+ log log n)− 3, log(α+ log log n) + 2 log(1/c) + 1).

Remark 3. We set n be a power-of-two integer for convenience of the error anal-
ysis, but the theorem still holds for a non-power-of-two integer n.

Depth and Complexity of ArrayMin/ArrayMax Algorithms. Since we con-
structed a binary tree of depth log n with the number of nodes n, the depth is
log n · (2d+ 1) and the complexity is Θ(nd).

5 Approximate Comparison Algorithms

In this section, we propose approximate comparison algorithms for various pur-
poses. The core idea of algorithms starts with a simple fact that the comparison
result of two numbers a and b can be evaluated as comp(a, b) := χ(0,∞)(a − b)
where χ(0,∞) is a step function over R defined as

χ(0,∞)(x) :=

{
1 when x > 0,

0 otherwise.

However, it is challenging to evaluate discontinuous functions such as χ(0,∞) in
word-wise HE. To overcome this problem, we first approximate the step function

12

by a globally smooth function called sigmoid σ(x) = 1/(1 + e−x). The error
between the sigmoid and χ(0,∞) can be controlled by scaling the sigmoid as
σk(x) := σ(kx). Following the notation, it holds that

lim
k→∞

||χ(0,∞) − σk||∞,R−{0} = 0.

In other words, we can approximately evaluate the step function χ(0,∞) through
the scaled sigmoid function σk for sufficiently large k.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

σ4(x)

σ16(x)

σ64(x)
χ(0,∞)

Fig. 1. Approximation of the step function χ(0,∞) by scaled sigmoid functions

Though a scaled sigmoid function is a continuous function contrary to χ(0,∞),
σk(a− b) = eka/(eka + ekb) still requires exponential function evaluations which
cannot be easily done in HE. This obstacle can be simply overcome by taking
logarithm on each input of comparison. Since the log function is a strictly in-
creasing function, it does not reverse the order, i.e., log a > log b if and only
if a > b. Therefore, the evaluation of χ(0,∞) on x = log a − log b also outputs
the correct comparison result of a and b. As a result, we obtain the following
approximation formula:

comp(a, b) ≈ σk(log a− log b) =
ek log a

ek log a + ek log b
=

ak

ak + bk
.

5.1 Comparison between two numbers

In this subsection, we discuss how to efficiently evaluate the approximate com-
parison equation ak/(ak+bk) ≈ comp(a, b) with basic operations such as addition
and multiplication. For given two `-bit positive integers ā and b̄, we first scale
them down to a, b ∈

[
1
2 ,

3
2

)
via the mapping x̄ 7→ x := 1

2 + x
2`

which is order-
preserving, i.e., x > y if and only if x̄ > ȳ. We may scale those `-bit integers to

13

[0, 1) as in min/max algorithms, but note that the range
[
1
2 ,

3
2

)
is more suitable

than [0, 1) to exploit Inv algorithm.
From the observation in the beginning of Section 5, the following equations

hold:

lim
k→∞

max(a, b)k

ak + bk
= 1, and lim

k→∞

min(a, b)k

ak + bk
= 0 if a 6= b, (1)

so that we obtained the approximate values if we set sufficiently large k > 0.
Our comparison algorithm denoted by Comp is described as Algorithm 5.

Algorithm 5 Comp(a, b; d, d′, t,m)

Input: distinct numbers a, b ∈
[
1
2 ,

3
2

)
, d, d′, t,m ∈ N

Output: an approximate value of comp(a, b) (refer Theorem 4)
1: a0 ← a

2 · Inv
(
a+b
2 ; d′

)
2: b0 ← 1− a0
3: for n← 0 to t− 1 do
4: inv ← Inv(amn + bmn ; d)
5: an+1 ← amn · inv
6: bn+1 ← 1− an+1

7: end for
8: return at

The first preparatory stage of the algorithm is to (1-norm) normalize the
given input into the new pair (a, b) with a, b ∈ [0, 1] satisfying a + b = 1. This
normalization provides lower and upper bounds 1/2k−1 ≤ ak + bk ≤ 1 so that
ak + bk can be an appropriate input of Inv algorithm. The next step is to
approximate the value of ak/(ak + bk). One naive approach could be to compute
ak · Inv(ak + bk; d) for some positive integer d > 0. However, since the ak + bk

could be as small as 1/2k−1, it requires a large parameter d for sufficiently nice
approximation of 1/(ak+bk) with Inv algorithm (See Remark 1). Since the level
parameter L of HE linearly grows to the parameter d, this large d is definitely
an obstacle to the performance of the comparison algorithm based on HE.

In order to overcome this bottleneck we approximate the value of ak/(ak+bk)
by performing the operation am · Inv(am + bm; d) repeatedly for small m. The
additional parameter m, which we normally choose as a power-of-two integer,
satisfies mt = k. As an illustration, let us take the two steps of the iteration.
We first compute (a1, b1) = (am

am+bm ,
bm

am+bm) applying Inv(am + bm; d), and
then compute (a2, b2) = (

am1
am1 +bm1

,
bm1

am1 +bm1
) = (a2m

a2m+b2m ,
b2m

a2m+b2m) again using

Inv(am1 + bm1 ; d). Then, in t steps we arrive at am
t

amt+bmt
= ak

ak+bk
.

This modification requires more Inv algorithms to be used, but it allows us
to set much smaller d for Inv algorithm, because am + bm at each steps is in the
range [1/2m−1, 1] while an + bn is in the range [1/2n−1, 1]. Therefore, it makes
a trade-off between the number of iterations t and the parameter d.

14

Theorem 4. Let a, b ∈
[
1
2 ,

3
2

)
satisfying max(a, b)/min(a, b) ≥ c for some fixed

1 < c < 3. When t ≥ 1
logm [log(α+ 1)− log log c], d ≥ log(α+ t+ 2) +m− 2, and

d′ ≥ log(α+2)−1, the error of (the vector) Comp(a, b; d, d′, t,m) compared to the
true value comp(a, b) is bounded by 2−α. Note that the error is always toward
1/2, i.e., the output value is always in between 1/2 and the true value.

Proof. Without loss of generality we may assume that a > b. Note that the
step 1 and 2 of our algorithm scales a, b to non-negative numbers a0, b0 with
a0 + b0 = 1. Let us execute the first round of iteration. Note that∣∣∣∣am0 Inv(am0 + bm0 ; d)− am0

am0 + bm0

∣∣∣∣ = am0 · |Inv(am0 + bm0 ; d)− (am0 + bm0)−1|

≤ (1− (am0 + bm0)−1)2
d+1

· am0
am0 + bm0

.

Since (1 − (am0 + bm0)−1)2
d+1

< e−2
d+1/2m−1

< 2−2
d−m+2

from the lower bound
estimate am0 +bm0 ≥ 2−m+1, we can conclude that the error rate for one iteration
is bounded by K = 2−2

d−m+2

. Thus, the error rate for t iterations is bounded by
1− (1−K)t ≤ tK < 2tK. Since we want this bound to be smaller than 2−α−2

we get the desired lower bound for d, namely d ≥ log(α+ t+ 2) +m− 2.
Now we wish to bound the difference∣∣∣∣∣1− am

t

amt + bmt

∣∣∣∣∣ = 1− 1

1 + (b/a)mt
≤
(
b

a

)mt
≤ c−m

t

by 2−α−1, which leads us to the condition t ≥ 1
logm [log(α+ 1)− log log c].

Finally, we examine the step 1 and 2 of our algorithm, whose error rate is
bounded by 2−2

d′+1

. If we require this bound to be smaller than 2−α−2, we get
the condition d′ ≥ log(α+ 2)− 1, which is implied by our assumption on d′.

Summing up all the error rate, we get the conclusion we wanted.
ut

Remark 4. We note that introducing the condition on the ratio of inputs with
the constant c is not unrealistic or harsh. In the case of n-bit integers, setting
the lower bound c = a/b ≥

(
1
2 + 2n−1

2n

)
/
(
1
2 + 2n−2

2n

)
allows us to compare any

two n-bit integers. Similar argument also applies to the case of real numbers,
if we consider finite precision and input bounds. To sum up, an appropriate c
generally exists in real-world applications.

Depth and Complexity of Comp Algorithm. The depth and complexity of
Comp is d′+1+t(d+logm+2) and Θ(d′+t(d+logm)) respectively. When we set
m = 2 which roughly gives t = log(α/ log c) and d = log(α+log(α/ log c)), those
depth and complexity are optimized as Θ(log(α/ log c) · log(α + log(α/ log c))).
For c = 1 + 2−α, it is simplified as Θ(α logα).

15

5.2 Max Index of several numbers

Given several distinct numbers a1, a2, ..., an ∈
[
1
2 ,

3
2

)
, assume that we want to

obtain the index of the maximum value. This problem can be easily solved
by observing Equation (1) with another point of view. As the exponent k in-
creases, then the gap between max(a, b)k and min(a, b)k becomes larger so that
max(a, b)k becomes a dominant term of ak+bk. This observation is also applica-
ble to the comparison of several numbers, i.e., max(a1, a2, ..., an)k is a dominant
term of

∑n
i=1 a

k
i when k is large enough. As a result, Equation (1) can be gen-

eralized as followings:

lim
k→∞

akj
ak1 + ak2 + · · ·+ akn

= 1⇐⇒ aj = max(a1, ..., an),

lim
k→∞

akj
ak1 + ak2 + · · ·+ akn

= 0⇐⇒ aj 6= max(a1, ..., an).

From these properties, we construct the algorithm MaxIdx of which the output
indicates the index of the maximum value, as a simple generalization of the
comparison algorithm Comp in the previous section. The output is a vector of
length n and contains a unique non-zero (which is very close to 1) component
which indicates the index of the maximum value.

Algorithm 6 MaxIdx(a1, a2, ..., an; d, d′,m, t)

Input: n distinct numbers (a1, a2, ..., an) with ai ∈
[
1
2 ,

3
2

)
, d, d′,m, t ∈ N

Output: (b1, b2, ..., bn) where bi is close to 1 if ai is the largest among aj ’s and
is close to 0 otherwise (refer Theorem 5)

1: inv ← Inv(
∑n
j=1 aj/n; d′)

2: for j ← 1 to n− 1 do
3: bj ← aj/n · inv // Initial 1-norm normalization
4: end for
5: bn ← 1−

∑n−1
k=1 bj

6: for i← 1 to t do
7: inv ← Inv(

∑n
j=1 b

m
j ; d)

8: for j ← 0 to n− 1 do
9: bj ← bmj · inv

10: end for
11: bn ← 1−

∑n−1
k=1 bj

12: end for
13: return (b1, b2, ..., bn)

Theorem 5. Let a1, a2, . . . , an ∈
[
1
2 ,

3
2

)
be n distinct elements, and the ratio of

maximum value over the second maximum value be 1 < c < 3. If t ≥ 1
logm [log(α+

log n + 1) − log log c] and min(d, d′) ≥ log(α + t + 2) + (m − 1) log n − 1, the

16

error of the output of MaxIdx(a1, ..., an; d, d′,m, t) compared to the true value is
(component-wisely) bounded by 2−α. Note that the error is always toward 1/2,
i.e., the output value is always in between 1/2 and the true value.

Proof. Refer to Appendix A. ut

Depth and Complexity of MaxIdx Algorithm. The depth and complexity
of MaxIdx is d′+ 1 + t(d+ logm+ 2) and Θ(n+ d′+ t(d+n logm)) respectively,
as that of Comp, and is again optimized when m = 2 roughly giving t = log((α+
log n)/ log c), d = log(α+log((α+log n)/ log c))+log n. Note that when log n ≤ α,
depth of MaxIdx (asymptotically) does not exceed the depth of Comp.

Remark 5. Under the same condition on d, d′, m and t with Theorem 5, we can
obtain an approximate maximal value among n distinct numbers a1, a2, ..., an by
computing

∑n
i=1 biai for (b1, b2, ..., bn)← MaxIdx(a1, .., an; d, d′,m, t). This idea

is basically derived from the equality

lim
k→∞

ak+1
1 + ak+1

2 + · · ·+ ak+1
n

ak1 + ak2 + · · ·+ akn
= max(a1, a2, ..., an).

Let a1 be the unique maximum element without loss of generality, then 1−2−α ≤
b1 ≤ 1 and 0 ≤ bi ≤ 2−α for 2 ≤ i ≤ n. Then, the error of

∑n
i=1 biai compared to

the true value max(a1, ..., an) is bounded by 2−α ·max(a1,
∑n
i=2 ai) ≤

3n
2 · 2

−α.

6 Asymptotic Optimality of our Methods

In this section, we compare the efficiency of our min/max and comparison algo-
rithms with general polynomial approximation methods, in terms of computa-
tional complexity. As a result, we prove the (sub-)optimality of our algorithms
in terms of asymptotic computational complexity among polynomial evaluations
to obtain approximate min/max and comparison results.

There have been various approaches on dealing with non-polynomial homo-
morphic operations in many applications of word-wise HE [13, 30, 36], and those
works commonly use polynomial approximation. Since our algorithms are based
on addition and multiplication, they can be also viewed as polynomial eval-
uations. However, the main difference is that our polynomial evaluations are
represented as recursive algorithms so that the complexity is significantly lower
than that of general polynomial evaluation of the same degree.

As described in Theorem 1–5, we estimated an approximation error of our
methods (Algorithm 3–6) through the infinite norm, i.e, the maximal error over
the domain. Therefore, theminimax polynomial approximation [40] which targets
the (degree-)optimal polynomial approximation with respect to the error mea-
sured by the infinite norm should be compared with our methods. The upper
bound of the error of minimax polynomial approximation is given by Jackson’s
inequality [41] which is a well-known result in approximation theory. The in-
equality originally covers both algebraic and trigonometric polynomial approx-
imation of general functions, but it can be simplified fitting into our case as

17

following [38]. If a function f defined on [−1, 1] satisfies L-Lipschitz condition,
i,e, |f(x1)− f(x2)| ≤ L · |x1 − x2| for any x1, x2 ∈ [−1, 1], then it holds that

||f − pk||∞,[−1,1] ≤
Lπ

2(k + 1)
(2)

where pk is the degree-k minimax polynomial of f over the interval [−1, 1].
Namely, the maximal error between the degree-k minimax polynomial and the
original Lipschitz function is O(1/k).

6.1 Min/max from Minimax Approximation

As described in Section 4, the min/max functions are simply described with the
absolute function as

min(a, b) =
a+ b

2
− |a− b|

2
, max(a, b) =

a+ b

2
+
|a− b|

2
.

Since the absolute function can also be expressed as |x| = x− 2 ·min(x, 0) = 2 ·
max(x, 0)−x, the evaluation of min and max functions are actually equivalent to
the evaluation of the absolute function with some additional linear factors. Hence
it suffices to consider the minimax polynomial approximation of the absolute
function f(x) = |x|. Here we assume that a and b are scaled numbers contained
in [0, 1) as discussed in Section 4.

In the case of f(x) = |x|, it is proved that the error upper bound O(1/k)
of Jackson’s inequality is quite tight in terms of asymptotic complexity. To be
precise, it holds that

lim
k→∞

k · |||x| − pk||∞,[−1,1] = β

for some constant β ≈ 0.28 [3]. For more details of experimental results on
the equation above, we refer the readers to [38, p.19]. As a result, to obtain
an approximation error at most 2−α for f(x) = |x|, it requires the degree of
the minimax polynomial to be at least Θ(2α). Since general polynomial of de-
gree n requires at least

√
n multiplications [39], the evaluation of the minimax

polynomial requires at least Θ(2α/2) multiplications. In contrasts, our min/max
algorithms require only Θ(α) complexity by Theorem 1. Note that the depths of
minimax polynomial evaluation and our min/max algorithms are α+O(1) and
4α− 6, respectively, both of which are Θ(α).

Even without asymptotic point of view, our method outperforms the mini-
max approximation in terms of the required number of multiplications when α
is larger than 13. Easy computations show that the required number of multi-
plications in our iterative method and the minimax approximation method to
achieve certain error bound 2−α are 3 · (2α − 3) = 6α − 9 and (approximately)√

2β · 2α/2, respectively (refer Figure 2). Here 2α− 3 is the minimal number of
iterations in Min/Max, and 3 is the number of multiplications in each iteration.

18

6 8 10 12 14 16 18 20

200

400

600

α

#
m
ul
ti
pl
ic
at
io
ns
.

Minimax Approx.
Our Iterative Method

Fig. 2. The actual number of multiplications in minimax approximation and our
iterative method for Max

6.2 Comparison from Minimax Approximation

Since the comparison equation is expressed as comp(a, b) = χ(0,∞)(a − b), one
needs to find a minimax polynomial of the step function χ(0,∞). Note that the
evaluations of comp and χ(0,∞) are equivalent since the step function can also be
expressed as χ(0,∞)(x) = Comp(x, 0). Let a and b be scaled numbers contained
in
[
1
2 ,

3
2

)
as discussed in Section 5. Then the range of (a − b) is (−1, 1), so we

can still consider the approximation over the interval [−1, 1].
Contrary to the absolute function |x|, the minimax polynomial approximation

of χ(0,∞) over an interval [−1, 1], which contains 0, never gives a nice error bound
||χ(0,∞)−pk||∞,[−1,1] since the step function is discontinuous on x = 0. Therefore,
it is inevitable to abandon a good polynomial approximation of χ(0,∞) over an
interval (−ε, ε) for some small ε > 0, and our goal should be reduced to find an
approximate polynomial p of χ(0,∞) which minimizes ||χ(0,∞)− p||∞,[−1,−ε]∪[ε,1].
Namely, we should aim to obtain a nice approximate result of comparison on a
and b satisfying |a− b| ≥ ε, not for all a, b ∈

[
1
2 ,

3
2

)
.

Let us denote by qk,ε the degree-k approximate polynomial which minimizes
||χ(0,∞) − p||∞,[−1,−ε]∪[ε,1]. For the step function χ(0,∞), there exists a tighter
upper bound on the approximation error than Jackson’s inequality as following:

lim
k→∞

√
k − 1

2
·
(

1 + ε

1− ε

) k−1
2

· ||χ(0,∞) − qk,ε||∞,[−1,−ε]∪[ε,1] =
1− ε
2
√
πε
,

which was proved by Eremenko and Yuditskii [24]. Assume that k is large enough

so that
√

k−1
2 ·

(
1+ε
1−ε

) k−1
2 · ||χ(0,∞) − qk,ε||∞,[−1,−ε]∪[ε,1] is sufficiently close to

the limit value. To obtain an approximation error at most 2−α for χ(0,∞) over

19

[−1,−ε] ∪ [ε, 1], the degree k should be chosen to satisfy√
k − 1

2
·
(

1 + ε

1− ε

) k−1
2

· 2
√
πε

1− ε
> 2α.

Let us consider those two cases: ε = ω(1) and ε = 2−α. In the case of ε =
ω(1), i.e., ε is a constant with respect to α, the polynomial degree k should
be at least Θ(α). Therefore, the required depth and computational complexity
of qk evaluation considering the Paterson-Stockmeyer method are Θ(logα) and
Θ(
√
α), respectively. In the case of ε = 2−α, the polynomial degree k should be

at least Θ(α · 2α), needing Θ(α) depth and Θ(
√
α · 2α/2) multiplications with

the Paterson-Stockmeyer method.
For a fair comparison between the above polynomial approximation and our

comparison method, we set c = 3
3−2ε where 1 < c < 3 is a constant defined in

Theorem 4 so that the domain D1 := {(a, b) ∈
[
1
2 ,

3
2

)2
: |a−b| ≥ ε} for the above

polynomial approximation is completely contained in the domain D2 := {(a, b) ∈[
1
2 ,

3
2

)2
: max(a, b)/min(a, b) ≥ c} for our method. In this setting, the depth and

complexity Θ(log(α/ log c)·log(α+log(α/ log c))) of our Comp algorithm becomes
Θ(log2 α) if ε = ω(1) and Θ(α logα) if ε = 2−α.

0.5 1 1.5

0.5

1

1.5

a

b

D1

D2

ε

ε

0

Fig. 3. Regions D1 ⊂ D2 for ε = 3
2 ·
(
1− 1

c

)
As a result, the comparison results on the complexity of our methods and

minimax polynomial approximation are summarized as following Table 1. As
discussed above, we set two cases ε = ω(1) and ε = 2−α for the comparison
operation.
(Sub-)optimality of our Methods. The comparison of computational com-
plexity on our method and minimax approximation method implies the (sub-
)optimality of our Min/Max and Comp algorithms in terms of asymptotic compu-
tational complexity. What Jackson’s inequality implies is that any polynomial
evaluation to obtain an absolute value (hence a min/max result) within 2−α

20

Minimax Approx. Our Method
min/max Θ(2α/2) Θ(α)

comparison
ε = ω(1) Θ(

√
α) Θ

(
log2 α

)
ε = 2−α Θ

(√
α · 2α/2

)
Θ (α logα)

Table 1. Complexity of our methods and minimax approximation method

error requires ω(2α) degree. Regardless of how the polynomial of degree ω(2α) is
well-structured, the complexity of the polynomial evaluation should be at least
the depth ω(α). In this respective, our Min/Max algorithm is optimal in asymp-
totic complexity among the polynomial evaluations to obtain an approximate
min/max result. In the same manner, any polynomial evaluation to obtain a
comparison result within 2−α error requires at least ω(logα) and ω(α) com-
plexity for the cases ε = ω(1) and ε = 2−α, respectively. Therefore, our Comp
algorithm achieves a kind of sub-optimal asymptotic complexity with an addi-
tional factor logα.

Remark 6. In [5], Boura, Gama and Georgieva proposed a different approach for
evaluating the absolute function and the step function applying Fourier approx-
imation, and the evaluations can be efficiently done in HEAAN which supports
operations of complex numbers. For the fair comparison with our method, we
look into the theoretical upper bound of errors in Fourier approximation. By
Jackson’s inequality for Fourier approximation [33], the upper bound for error
of the Fourier approximation of an Lipschitz function f is given as

||f − Skf ||∞ ≤ K ·
log k

k

for some K > 0 where Skf(x) :=
∑k
n=−k f̂(n) · einx is the k-th Fourier approxi-

mation of f , which can be viewed as a polynomial of eix = cosx + i · sinx and
e−ix.

We note that the upper bound of the Fourier approximation error for the ab-
solute function can be reduced to Θ(1/k). As a result, to make the error upper
bound less than 2−α following theoretical results, one needs at least Θ(2α)-th
(resp.Θ(α · 2α)-th) Fourier approximation for the absolute function (resp. step
function). Moreover, exponential functions eix and e−ix should be also approxi-
mately evaluated which derives an additional error. Therefore, this Fourier ap-
proximation approach still requires exponential computational complexity with
respect to α. To sum up, in asymptotic complexity sense, the Fourier approxi-
mation approach in [5] requires more computations than our method to obtain
the result within a certain level of error.

21

7 Applications of Comparison Algorithms

In this section, we exploit our comparison algorithms proposed in Section 5 for
several applications: Threshold Counting and Top-k Max.

7.1 Threshold Counting

In this subsection, we give a solution to the problem asked at the very beginning
of HE. In 1978, Rivest et al. [42] first proposed the concept of HE and listed
some problems to be solved with HE:

· · · This organization permits the loan company to utilize the storage facilities of
the time—sharing service, but generally makes it difficult to utilize the compu-
tational facilities without compromising the privacy of the stored data. The loan
company, however, wishes to be able to answer such questions as:

– What is the size of the average loan outstanding?
– How much income from loan payments is expected next month?
– How many loans over $5,000 have been granted?

While the first two problems can be answered with simple arithmetic operations,
the last problem requires comparison-like operation intrinsically. We propose
a solution to the third problem with our Comp algorithm. First, we abstract
the problem to "Threshold Counting" problem. The goal of threshold counting
problem is to find the number of ai’s larger than b for given (a1, a2, ..., an) and b.
The algorithm is rather simple. We compare ai’s with b and sum up the values
comp(ai, b). We can use usual packing method of HE to compare several elements
in a single operation. We remark that if ai = b then ai is counted as 1/2, not
0 or 1, but in real-world applications this error may be ignored or adjusted by
subtracting a very small constant to the threshold b.

Algorithm 7 Threshold(a1, a2, .., an; b; d, d′, t,m)

Input: n numbers (a1, a2, ..., an) with ai ∈ [0, 1), b ∈ [0, 1), d, d′,m, t ∈ N
Output: an approximate value of the number of ai’s larger than b
1: for i← 1 to n do
2: ci ← Comp(ai, b; d, d

′,m, t) // Can be done in a SIMD manner via HE.
3: end for
4: sum← 0
5: for j ← 1 to k do
6: sum← sum+ ci
7: end for
8: return sum

22

7.2 Top-k Max

Applying the MaxIdx algorithm in Section 5.2 recursively, we can obtain top-k
maximum values which we call top-k max algorithm. For given distinct numbers
a1, a2, ..., an ∈

[
1
2 ,

3
2

)
and some positive integers d, d′,m, t ≥ 0, let (b1, b2, ..., bn)←

MaxIdx(a1, a2, ..., an; d, d′,m, t). Then as noted in Remark 5,
∑n
i=1 biai is an ap-

proximate maximum value of a1, ..., an since bi ≈ 1 if and only if ai is the
maximum. Now, to compute the second maximum value, let aj be the (unique)
maximum value, and define ci := (1−bi)ai for 1 ≤ i ≤ n. Then ci = (1−bi)ai ≈ ai
for all i 6= j and cj = (1−bj)aj ≈ 0. Since we assume that ai’s are positive num-
bers, the output of MaxIdx(c1, c2, ..., cn; d, d′,m, t) indeed indicates the index of
the second maximum value. This algorithm can be generalized as following.

Algorithm 8 Top-k-Max(a1, a2, .., an; d, d′,m, t)

Input: n distinct numbers (a1, a2, ..., an) with ai ∈ [0, 1), d, d′,m, t ∈ N
Output: (m1,m2, ...,mk) where mi denotes an approximate value of the ith

largest number among {a1, a2, ..., an}
1: for i← 1 to n do
2: ci ← ai
3: end for
4: for j ← 1 to k do
5: (b1, b2, ..., bn)← MaxIdx(c1, c2, ..., cn; d, d′,m, t)
6: mj ←

∑n
i=1 bici

7: (c1, c2, ..., cn)← ((1− b1)c1, (1− b2)c2, ..., (1− bn)cn)
8: end for
9: return (m1,m2, ...,mk)

Theorem 6. Let a1, a2, . . . , an ∈ [1/2, 3/2] be n distinct elements, and let the
ratio of i-th maximum value over the (i+ 1)-th maximum value maxi

maxi+1
is larger

than ci for 1 ≤ i ≤ k. For some c > 1 and α > 0 satisfying 2α · (1 −
2−α)

k(k−1)
2 > ck, assume that ci = c/(1 − 2−α)i−1 and (1−2−α)kmaxk+1

2−αmax1
> c.

If t, d and d′ satisfy the same conditions in Theorem 5, the output (m1, ...,mk)
of Top-k-Max(a1, ..., an; d, d′,m, t) satisfies (1 − 2−α)j maxj ≤ mj ≤ maxj for
1 ≤ j ≤ k.

Proof. Refer to Appendix A. ut

8 Experimental Results

This section illustrates some implementation results of the algorithms we de-
scribed in the previous sections based on an approximate HE scheme called

23

HEAAN [14]. Though HEAAN is specialized for iterative (large-depth) compu-
tations by supporting approximate calculations, one might wonder if our iterative
algorithms proceed well regardless of the errors caused by some operations of
HEAAN. We claim that it is indeed so, which can be backed up by the paper [34],
which proves that certain classical algorithms for inversion and square root are
still stable under floating point rounding as long as we do not experience un-
der/overflow during the computation given the similarity between floating point
calculations and HEAAN. In addition, we propose some reasonable parameters
and implementation results for each algorithms, and show that they can be car-
ried out with HEAAN very well.

We first show the performance of Max algorithm for several setups based on
HEAAN. We also implement Comp algorithm based on HEAAN and show that
it can be exploited to solve the threshold counting problem efficiently. Lastly, we
show the performance of our MaxIdx algorithm.

8.1 An Approximate Homomorphic Encryption Scheme HEAAN

Cheon et al. [14] proposed a homomorphic encryption scheme HEAAN which
supports approximate arithmetic of numbers. That is, an encryption ct of plain-
text m ∈ R by a secret key sk for a ciphertext modulus q will have a decryption
structure of the form 〈ct, sk〉 = m+ e (mod q) for some small e. By abandoning
the exact computation, HEAAN achieved big advantages in ciphertext/plaintext
ratio and speed of algorithms. Since many real-world applications require real
number computations, HEAAN has a strength in various real-world problems,
which usually deal with approximate computation of real numbers, compared to
the other HE schemes. Indeed, there have been proposed a lot of works on real-
world applications which requires privacy preservation such as machine learn-
ing [15, 35, 36] and cyber physical system [11] based on HEAAN. The simple
description of HEAAN is as following.

• KeyGen(L, 1λ).

- Given the level parameter L and the security parameter λ, output the
ring dimension N and the largest ciphertext modulus Q which are power-
of-two.

- Set the small distributions χkey, χerr, χenc over R.
- Sample a secret s ← χkey, a random a ← RQ and an error e ← χerr.
Set the secret key as sk← (1, s) and the public key as pk← (b, a) ∈ R2

Q

where b← −as+ e (mod Q).
• KSGensk(s′). For s′ ∈ R, sample a random a′ ← RQ2 and an error e′ ← χerr.

Output the switching key as swk← (b′, a′) ∈ R2
Q2 where b′ ← −a′s+e′+Qs′

(mod Q2).
- Set the evaluation key as evk← KSGensk(s2).

• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output v · pk +

(m+ e0, e1) (mod Q).
• Decsk(ct). For ct = (c0, c1) ∈ R2

2` , output c0 + c1 · s (mod 2`).

24

• Add(ct1, ct2). For ct1, ct2 ∈ R2
2` , output ctadd ← ct1 + ct2 (mod 2`).

• Multevk(ct1, ct2). For ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
2` , let (d0, d1, d2) =

(b1b2, a1b2+a2b1, a1a2) (mod 2`). Output ctmult ← (d0, d1)+bQ−1 · d2 · evke
(mod 2`).

• ReScale(ct; p). For a ciphertext ct ∈ R2
2` and a scaling bit p, output ct′ ←

b2−p · cte (mod 2`−p).

For any power-of-two integer k ≤ N/2, HEAAN supports the packing method
which pack k complex numbers each into different slots in a single ciphertext via
some mapping φ : Ck → R derived from the complex canonical embedding. The
packing method enables us to perform parallel computations over encryption,
yielding a better amortized running time. In addition, HEAAN provides the
rotation operation on plaintext slots, i.e., it enables us to securely obtain an
encryption of the shifted plaintext vector (wr, . . . , wk−1, w0, . . . , wr−1) from an
encryption of (w0, . . . , wk−1). Using log k rotations and additions, we can obtain
the following operation.

• RotateSum(ct). For a ciphertext ct, an encryption of (w0, . . . , wk−1) via pack-

ing method, output ct′, an encryption of
(∑k−1

i=0 wi, · · · ,
∑k−1
i=0 wi

)
via pack-

ing method.

Refer [14] for the technical details and noise analysis.

8.2 Implementations of various non-polynomial Operations

All experiments on our method were implemented in C++ on Linux with Intel
Xeon CPU E5-2620 v4 at 2.10GHz processor with multi-threading (8 threads)
turned on for speed acceleration. Note that we checked the security level of
HEAAN parameters we used in our implementation through a security estima-
tor constructed by Albrecht [1, 2]. More precisely, we set the level parameter L
to be the minimum required considering the depth of algorithms (without boot-
strapping), the dimension N to be the minimum ensuring the security parameter
λ ≥ 128, and the scaling bit p to be 40 or around.

In the rest of the section, we present both the actual running time and the
amortized running time considering the plaintext batching technique of HEAAN.
We note that the amortized running time is important as much as the actual
running time in various applications which require a number of same operations.
For example, even a basic task such as threshold counting can be performed
simultaneously with only a single homomorphic comparison. More seriously, k-
nearest neighbor algorithm for classification and k-means algorithm for clustering
requires substantial numbers of min/max and comparison, which can also be
parallelized in the same manner with the above threshold counting.

Max of two integers. We first show the performance of Algorithm 3 (Max)
which outputs an approximate value of the maximum value given two large

25

integers. Since HEAAN supports at most N/2 operations simultaneously in a
SIMD manner, the actual experiment is to compute max(ai, bi) for 1 ≤ i ≤ N/2.
In Table 2, minimal iteration d required for Max to achieve each bit precision α
is provided. The number of iterations are chosen empirically considering worst
case, instead of considering the theoretical expectation of Theorem 1. We can see
that the empirical requirement of d is a bit smaller than theoretical expectation.
For example, when α = 10, then d = 14 suffices while theoretical requirement is
d ≥ 17. The amortized running time is measured by dividing total running time
by the number of plaintext slots.

We remark that our performance only depends on the precision α, not on the
input bitsize `. It provides us much flexibility when we need only approximate
maximum value. For example, our implementation shows that we can obtain an
approximate maximum value of any two 32-bit integers with an error up to 222

in 1.14 milliseconds (with amortized time sense). Also, the performance of our
algorithm does not linearly depend on the number of threads. When we use only
a single thread, the performance is worsened by 2–3 times.

The performance of our Max algorithm is comparable, in amortized running
time sense, to the previous results of which input numbers are encrypted bit-
wisely. For example, the max algorithm from [18] based on a bit-wise HE, which
expressed the max function by a number of logical gates via weighted finite
automata, takes about 1 millisecond to compute the maximum of two 8-bit
integers.

Comparison of two integers. We also implemented our Comp algorithm for
various setups on the number of precision bits α and the lower bound c of
the ratio max(a,b)

min(a,b) . As in the previous subsection, we put integers in full N/2
plaintext slots of HEAAN ciphertext so that the Comp algorithm supports N/2
simultaneous comparison operations. For each setup, we empirically chose opti-
mal parameters m = 4, d, d′ and t. Refer to Algorithm 5 for definitions of the
parameters.

Algorithm
precision bits # iterations Running time

α d Total (s) Amortized (ms)

Max

8 11 48a) 0.73
10 14 75b) 1.14
12 17 127c) 1.94
16 23 237d) 3.62

Table 2. HEAAN implementation of Max algorithm for several precision
bits. HEAAN parameters (logN,Q, λ) were chosen as a) (17, 930, 192.2), b)

(17, 1170, 147.0), c) (17, 1410, 131.5), and d) (17, 1890, 107.7).

26

In Table 3, Comp (exact) denotes the comparison experiment considering the
worst case, i.e, comparing any of two α-bit integers scaled into

[
1
2 ,

3
2

)
with α-

bit precision, which corresponds to c =
(
1
2 + 2α−1

2α

)
/
(
1
2 + 2α−2

2α

)
. For the cases

c = 1.01 and c = 1.05, we took 32-bit integers satisfying the ratio lower bound
as input.

As same as Max, our empirically chosen parameters d, d′ and t and are smaller
than the theoretical expectation from Theorem 4. For example, for 7-bit precision
of Comp (exact), it was expected to be d, d′ > 5.9 and t > 5.5 from the theorem,
but we found that a bit smaller parameters were sufficient.
The result shows that when we do not need exact comparison, i.e., when we are
given that two inputs has enough difference, we can get more efficient parameters.
For example, the same iteration (d′, d, t) = (5, 5, 5) guarantees 14, or 24 bit
precision when c is 1.01 or 1.05, respectively, while it only guarantees 7-bit
precision if we need exact comparison. When c is 1.05, only (d′, d, t) = (5, 4, 4)
iteration suffices for 8-bit precision. Note that each result shows high performance
of Comp showing less than 5 milliseconds of amortized running time considering
216 number of plaintext slots in one ciphertext.

In [20], Crawford et al. reported some recent implementation results on the
comparison operation based on HElib, where the input integers were bit-wisely
encrypted. We referred their comparison experiment on 8-bit integers which uses
the 15709-th cyclotomic polynomial, and it took about a second with 8 threads.
Considering ciphertexts over 15709-th cyclotomic polynomial have 682 plaintext
slots, the amortized running time is around 1.5 milliseconds. This shows that
the performance of our word-wise comparison is comparable, in amortized time,
to that of a bit-wise comparison which has been regarded to be one of the most
natural approaches to compare numbers.

Max Index for several numbers. We present an experimental evaluation of
the MaxIdx algorithm. For experiment, we compute max index of 16 encrypted 7-
bit integers. We assume that the maximum integer has non-zero most significant

Algorithm
precision bits # iterations Running time

α (d′, d, t) Total (s) Amortized (ms)

Comp (exact)
7 (5, 5, 5) 225a) 3.43
8 (5, 5, 6) 310b) 4.72

Comp (c = 1.01) 14 (5, 5, 5) 230a) 3.50

Comp (c = 1.05) 24 (5, 5, 5) 259a) 3.94

Table 3. Implementation of Comp for several precision bits. HEAAN parameters
(logN,Q, λ) were chosen as a) (17, 1600, 121, 6), and b) (17, 1870, 108.9).

27

bit, while other integers have most and 2nd-most significant bits zero. This
condition corresponds to the lower bound c =

(
1
2 + 26

27

)
/
(

1
2 + 25−1

27

)
= 128

95 .
The parameter chosen by considering worst-case is a little better than the

theoretical estimation (Theorem 5) that t > 2 and d > 14. Total running time
is about 311 seconds, and we can run 216/24 = 212 number of Max index algo-
rithms with one ciphertext resulting amortized running time to be only about
75 milliseconds.

As an example, assume that we are given many ciphertexts each encrypting
vectors, and we want to choose a vector whose first component is maximum
among that of the other vectors in encrypted state. This problem can not be
resolved by max algorithm, since the output of it does not contain any informa-
tion about its index. On the other hand, we can extract the desired ciphertext
simply multiplying output of MaxIdx algorithm to each ciphertext and summing
them up.

Threshold Counting. For Threshold algorithm, we assume that the threshold
b is encrypted. This is because in some scenarios the threshold could be private
information or trade secret. If b is not secret, the algorithm shows a better perfor-
mance since a constant multiplication is faster than a ciphertext multiplication
in HE.

For a power-of-two integer k ≤ N/2, HEAAN supports a packing method
which packs k real numbers in a single ciphertext, enabling us to perform parallel
computations over encryption. As mentioned in the Section 7.1, we utilize this
packing method to solve threshold counting with exactly one Comp query and
then use RotateSum to sum up the results of the Comp.

For experimental results, we assume that given 25 number of 7-bit integers,
we want to calculate the number of elements bigger than an encrypted 7-bit
threshold. Then, we can take the lower bound c =

(
1
2 + 26−1

26

)
/
(

1
2 + 26−2

26

)
=

191
190 , and it suffices to bound error size to be smaller than 2−α = 2−6 for each
result of comparison, since we evaluate the addition of 25 comparison results,
whose true value is an integer. In Table 3, we can see that it takes about 278
seconds to get the number of elements bigger than the given threshold. Since we

Algorithm
precision bits # iterations Running time

α (d′, d, t) Total (s) Amortized (ms)

MaxIdx 7 (3, 11, 3) 311 75.9

Threshold 6 (3, 5, 5) 278 135

Table 4. Implementation of MaxIdx and Threshold for 24 and 25 encrypted
7-bit integers, respectively. HEAAN parameters (logN,Q, λ) were chosen as
(17, 1800, 111.3).

28

can pack at most 216 numbers in one ciphertext, we can manage 211 threshold
counting problems for 25 numbers with only a single ciphertext, resulting about
135 milliseconds of amortized running time. If we allow some errors in the final
result, or we are given that the gap between threshold and other numbers are
large, we can get more efficient result than above.

References

1. M. R. Albrecht. A Sage Module for estimating the concrete security of Learning
with Errors instances., 2017. https://bitbucket.org/malb/lwe-estimator.

2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

3. S. Bernstein. Sur la meilleure approximation de| x| par des polynomes de degrés
donnés. Acta Mathematica, 37(1):1–57, 1914.

4. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-
based fully homomorphic encryption scheme. In Cryptography and Coding, pages
45–64. Springer, 2013.

5. C. Boura, N. Gama, and M. Georgieva. Chimera: a unified framework for b/fv,
tfhe and heaan fully homomorphic encryption and predictions for deep learning.
Cryptology ePrint Archive, Report 2018/758, 2018. https://eprint.iacr.org/
2018/758.

6. F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast homomorphic evaluation
of deep discretized neural networks. In Annual International Cryptology Confer-
ence, pages 483–512. Springer, 2018.

7. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

8. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Proc. of ITCS, pages 309–325. ACM, 2012.

9. K. Brown. Probability of intersecting intervals. https://www.mathpages.com/
home/kmath580/kmath580.htm.

10. A. Chatterjee and I. SenGupta. Sorting of fully homomorphic encrypted cloud
data: Can partitioning be effective? IEEE Transactions on Services Computing,
2017.

11. J. H. Cheon, K. Han, S. M. Hong, H. J. Kim, J. Kim, S. Kim, H. Seo, H. Shim,
and Y. Song. Toward a secure drone system: Flying with real-time homomorphic
authenticated encryption. IEEE Access, 6:24325–24339, 2018.

12. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for approximate
homomorphic encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 360–384. Springer, 2018.

13. J. H. Cheon, J. Jeong, J. Lee, and K. Lee. Privacy-preserving computations of
predictive medical models with minimax approximation and non-adjacent form.
In International Conference on Financial Cryptography and Data Security, pages
53–74. Springer, 2017.

14. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arith-
metic of approximate numbers. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 409–437. Springer, 2017.

15. J. H. Cheon, D. Kim, Y. Kim, and Y. Song. Ensemble method for privacy-
preserving logistic regression based on homomorphic encryption. IEEE Access,
2018.

29

https://bitbucket.org/malb/lwe-estimator
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758
https://www.mathpages.com/home/kmath580/kmath580.htm
https://www.mathpages.com/home/kmath580/kmath580.htm

16. J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In
International Conference on Financial Cryptography and Data Security, pages 142–
159. Springer, 2015.

17. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 3–33.
Springer, 2016.

18. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed homo-
morphic operations and efficient circuit bootstrapping for tfhe. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 377–408. Springer, 2017.

19. A. Costache and N. P. Smart. Which ring based somewhat homomorphic en-
cryption scheme is best? In Cryptographers’ Track at the RSA Conference, pages
325–340. Springer, 2016.

20. J. L. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup. Doing real work
with fhe: The case of logistic regression. 2018.

21. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In H. Gilbert, editor, EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010.

22. L. Ducas and D. Micciancio. Fhew: Bootstrapping homomorphic encryption in
less than a second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–
640. Springer, 2015.

23. N. Emmadi, P. Gauravaram, H. Narumanchi, and H. Syed. Updates on sorting of
fully homomorphic encrypted data. In Cloud Computing Research and Innovation
(ICCCRI), 2015 International Conference on, pages 19–24. IEEE, 2015.

24. A. Eremenko and P. Yuditskii. Uniform approximation of sgn x by polynomials
and entire functions. Journal d’Analyse Mathématique, 101(1):313–324, 2007.

25. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

26. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

27. C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic
encryption. In Public Key Cryptography–PKC 2012, pages 1–16. Springer, 2012.

28. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology - CRYPTO
2012, volume 7417 of Lecture Notes in Computer Science, pages 850–867. Springer,
2012.

29. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

30. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine Learning, pages 201–210,
2016.

31. R. E. Goldschmidt. Applications of division by convergence. PhD thesis, Mas-
sachusetts Institute of Technology, 1964.

32. S. Halevi and V. Shoup. Bootstrapping for helib. In Advances in Cryptology–
EUROCRYPT 2015, pages 641–670. Springer, 2015.

33. D. Jackson. The theory of approximation, volume 11. American Mathematical
Soc., 1930.

30

http://crypto.stanford.edu/craig

34. M. Joldes, O. Marty, J.-M. Muller, and V. Popescu. Arithmetic algorithms for
extended precision using floating-point expansions. IEEE Trans. Computers,
65(4):1197–1210.

35. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Medical Genomics,
11(4):83, Oct 2018.

36. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR Med Inform, 6(2):e19,
Apr 2018.

37. O. Kocabas and T. Soyata. Utilizing homomorphic encryption to implement secure
and private medical cloud computing. In Cloud Computing (CLOUD), 2015 IEEE
8th International Conference on, pages 540–547. IEEE, 2015.

38. R. Pachón and L. N. Trefethen. Barycentric-remez algorithms for best polynomial
approximation in the chebfun system. BIT Numerical Mathematics, 49(4):721,
2009.

39. M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

40. G. M. Phillips. Best Approximation, pages 49–118. Springer New York, New York,
NY, 2003.

41. M. J. D. Powell. Approximation theory and methods. Cambridge university press,
1981.

42. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

43. M. Togan, L. Morogan, and C. Plesca. Comparison-based applications for fully
homomorphic encrypted data. Proceedings of the Romanian Academy-series A:
Mathematics, Physics, Technical Sciences, Information Science, 16:329, 2015.

44. M. V. Wilkes. The Preparation of Programs for an Electronic Digital Computer:
With special reference to the EDSAC and the Use of a Library of Subroutines.
Addison-Wesley Press, 1951.

31

A Proofs

Proof of Theorem 3. By Theorem 2, the error of Max(·, ·; d) algorithm from
the true value is bounded by 2(−α−log logn) = 2−α/ log n. Note from the proof
of Lemma 2 that the output of the square root algorithm Sqrt(x; d) always
smaller than the true value

√
x, so that the same holds for the max algorithm

Max(·, ·; d). This means that ai,1 = Max(a2i−1,0, a2i,0; d) can be written ai,1 =
max(a2i−1,0, a2i,0)− εi for 1 ≤ i ≤ n/2 with 0 ≤ εi ≤ 2−α/ log n. Now we have

max(a2i−1,1, a2i,1) = max(max(a4i−3,0, a4i−2,0)− ε2i−1,max(a4i−1,0, a4i,0)− ε2i)
≥ max(a4i−3,0, a4i−2,0, a4i−1,0, a4i,0)−max(ε2i−1, ε2i)

≥ max(a4i−3,0, a4i−2,0, a4i−1,0, a4i,0)− 2−α/ log n,

which implies that the error of ai,2 = Max(a2i−1,1, a2i,1; d) from max(a2i−1,1, a2i,1)
is bounded by 2 · 2−α/ log n for 1 ≤ i ≤ n/4. We can repeat the above procedure
to get the conclusion that the error of a1,logn from max(a1, ..an) is bounded by
log n · 2−α/ log n = 2−α.

For the case of min algorithm we note that the approximate values are larger
than the true values and we can apply a similar approach to the above with
reversed inequalities. ut

Proof of Theorem 5. Note that MaxIdx is a natural generalization of Comp. With-
out loss of generality, we assume that a1 is the unique maximum element, and
we only consider the error between the output b1 of MaxIdx and the real value 1.
At Step 1–4, (ai)

n
i=1 is scaled to (bi)

n
i=1 whose sum is 1. Moreover, every input

of Inv is bounded by n
2m since

∑n
k=1 bj is always set to be 1 before the Inv

algorithm. Note that each bj from the iterations is nothing but am
t

j /
∑n
i=1 a

mt

i

with t being increased by one as the iteration go. The error of MaxIdx algorithm
is also composed of three parts as theorem 4; an error from the convergence of
limm→∞ am1 /

∑n
i=1 a

m
i = 1, and an error from the approximation of 1/(

∑n
i=1 b

m
i)

by our Inv algorithm and an error coming from Step 1–4.
Now, the error analysis is almost the same as the proof of Theorem 4 with

minor differences in the values of errors. The first part of the error is bounded by
n·(1/c)mt since 1− aN1∑n

i=1 b
N
i

= 1− 1
1+

∑n
i=2(bi/a1)

N ≤ n/cN . The second part of the

error (from the Inv algorithm) is bounded by (1−n−(m−1))2d+1

since n−(m−1) is
the lower bound of the denominators

∑n
i=1 b

m
i by Cauchy-Schwartz inequality. As

a result, we can conclude that the conditions t ≥ 1
logm [log(α+log n+1)−log log c]

and d, d′ ≥ log(α + t + 1) + (m − 1) log n − 1 suffice to make the total error of
MaxIdx less than 2−α by a similar argument as in Theorem 4. ut

Proof of Theorem 6. Without loss of generality, let ai be the ith maximum value
maxi for 1 ≤ i ≤ n.

For 1 ≤ i < k, since (1 − 2−α)iai+1 > (1 − 2−α)kak+1, we first obtain
(1−2−α)iai+1

2−αa1
> c. For j = 1, the statement holds directly by Theorem 5. After

32

obtaining m1, the algorithm takes (ε1a1, (1− ε2)a2, ..., (1− εn)an) as an input of
MaxIdx(· · · ; d, d′,m, t), where 0 ≤ εi ≤ 2−α. Since the following inequalities

(1− ε2)a2 ≥ (1− 2−α) · 2−α

1− 2−α
· ca1 ≥ c · ε1a1, and

(1− ε2)a2 > (1− ε2)c2a3 ≥ ca3 ≥ c · (1− εj)aj for 3 ≤ j ≤ n

hold, the output m2 satisfies (1− 2−α)2a2 ≤ m2 ≤ a2 by Theorem 5.
Inductively, assume that we have obtained m1,m2, ...,mj−1 satisfying the

statement condition. After obtaining an approximate value mj−1 of the (j−1)th

maximum value aj−1, the next input of MaxIdx algorithm is (δ1a1, δ2a2, ..., δnan)
where 0 ≤ δi ≤ 2−α for i < j and (1 − 2−α)j ≤ δi ≤ 1 for otherwise. From the
following inequalities

δjaj ≥ (1− 2−α)j · 2−α

(1− 2−α)j
· ca1 ≥ c · δiai for 1 ≤ i < j, and

δjaj > δjcjaj+1 ≥ caj+1 ≥ c · δiai for i > j,

by Theorem 5 the output mj+1 satisfies (1− 2−α)δjaj ≤ mj ≤ δjaj so that the
statement also holds for j. Therefore, the theorem is proved by induction. ut

33

	Numerical Methods for Comparison on Homomorphically Encrypted Numbers
	Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, Keewoo Lee

