
Improving Speed of Dilithium’s Signing
Procedure

Prasanna Ravi1, Sourav Sen Gupta2, Anupam Chattopadhyay2, and Shivam
Bhasin1

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 School of Computer Science and Engineering
Nanyang Technological University, Singapore

prasanna.ravi@ntu.edu.sg sg.sourav@ntu.edu.sg anupam@ntu.edu.sg

sbhasin@ntu.edu.sg

Abstract. In this short note, we propose an optimization to improve the
signing speed of Dilithium’s signing procedure. Our optimization works by
reducing the number of computations in the rejected iterations through
Early-Evaluation of the rejection condition. We would like to note that this
straightforward algorithmic optimization only reduces the computational
overhead in every rejected iteration, without having any effect on the
rejection rate. We perform experimental validation of our optimization
through software implementation on an Intel(R) Core(TM) i5-4460 CPU
and observe observe a speed up of about 7-8% of Dilithium’s signing
procedure for recommended parameter sets of Dilithium. Moreover, this
optimization is also implementation agnostic and hence can be ported to
all implementation platforms.

1 Introduction

NIST has called for proposals for standardization of post-quantum cryptographic
schemes for public-key encryption, digital signatures, and key establishment
protocols [8]. This initiative is partly driven by the onset of the era of practical
and scalable quantum computers [9,3,2], which has motivated the cryptographic
community to develop cryptographic schemes that are immune to cryptanalytic
efforts using quantum algorithms. A total sum of 69 valid submissions (20 digital
signature schemes and 49 Public key encryption/Key Establishment schemes)
from various different types of post quantum cryptography were submitted for the
first round of the standardization process. For the first round evaluation process,
NIST identified three broad aspects of evaluation criteria for comparison of the
submitted candidates. They are Security, Cost & Performance and Algorithm
and Implementation Characteristics.

After intense scrutiny by NIST and based on public feedback, NIST selected
26 algorithms for the second round of the standardization process. The Dilithium
lattice-based signature scheme, part of the CRYSTALS (Cryptographic Suite for
Algebraic Lattices) package based on the ”Fiat-Shamir with Aborts” framework

is also one of the second-round candidates. The security of Dilithium is based
on the Module-Learning With Errors (MLWE) problem and offers good security
and efficiency guarantees since most of the computations involves polynomials in
a cyclotomic ring.

One of the main features of the signing procedure of Dilithium is the use
of rejection sampling to generate secure signatures that do not leak the distri-
bution of the secret key. The signing procedure loops over multiple iterations
until it generates a signature that satisfies certain conditions. Let’s say, for a
given secret key and message input, the signing algorithm runs for L iterations
(0, . . . , L− 1), the computations performed in all except the last iterations are
un-necessary overheads, since they are rejected by the signing procedure. While
the computations involved in Dilithium are straightforward, the overhead due to
computations in the rejected iterations hamper the performance of Dilithium’s
signing procedure.

In this small note, we would like to propose an optimization involving a
straightforward early evaluation of the rejection condition so as to reduce the
computational overhead in the rejected iterations. We would like to note that
this straightforward algorithmic optimization only reduces the computational
overhead in every rejected iteration, without having any effect on the rejection
rate.

2 Preliminaries

Notation: Let q ∈ N be a prime. Elements in ring Z or Zq are denoted by regular
font letters viz. a, b ∈ Z or Zq. For an integer r and an even positive integer α,
we define centered reduction modulo q denoted as r (mod ± α), to be the unique
integer r0 such that, r ≡ r0 (mod α) and −α2 < r0 ≤ α

2 . The usual modulo

reduction is denoted by r (mod q). For a set X, we write x
$← X to denote

that x is chosen uniformly at random from X. We denote the polynomial ring
Zq[X]/〈Xn + 1〉 as Rq. Polynomials in ring Rq are also represented as equivalent
vectors of length n such that a ≡ (a0,a1, . . . ,an−1) for ai ∈ Zq. For an element
a ∈ Rq, we define ‖a‖∞ = max

0≤i≤n−1
‖ai‖∞, where ‖ai‖∞ = |ai (mod ± q)|. While

matrices and vectors with elements in Zq are denoted by bold upper case letters
(A ∈ Znq), polynomials in Rq or matrices and vectors with elements in Rq are

denoted using bold lower case letters (a ∈ Rq, b ∈ R`q). Multiplication of two
polynomials a,b ∈ Rq is denoted as a ·b or ab ∈ Rq. Due to the special structure
(cyclotomic nature) of the factor polynomial used in Rq, multiplication can also be
alternatively viewed as a matrix-vector multiplication such that a·b = a·B = b·A
wherein the columns of the matrices A,B ∈ Zn×nq are anti-cyclic rotations of
a,b ∈ Rq respectively. Point-wise multiplication (scalar product) is represented
as a ∗ b ∈ Rq. For a given η ∈ N, define Sη = {a ∈ Rq | ‖a‖∞ ≤ η}. Individual
polynomials in a module a ∈ Rk×lq are denoted as ai,j with i ∈ {0, k − 1} and
j ∈ {0, `− 1}.

Lattice-based Cryptography: Most of the efficient lattice-based cryptographic
schemes derive their hardness from two average-case hard problems, known as
the Ring-Learning With Errors problem (RLWE) [6] and the Ring-Short Integer
Solutions problem (RSIS) [7]. Both the problems reduce to worst-case hard
problems over structured ideal lattices. Given a public key (a, t) ∈ (Rq, Rq), an
RLWE attacker is asked to find two small polynomials s1, s2 ∈ Rq with s1, s2 ∈ Sη
such that t = a · s1 + s2. Given m uniformly random elements ai ∈ Rq, an MSIS
attacker is asked to find out a non-zero vector z with a small norm z ∈ Smη such
that

∑m
i ai · zi = 0 ∈ Rq.

The more generalized versions of these problems known as Module-LWE
(MLWE) and Module-SIS (MSIS) respectively deal with computations over
the space Rk×`q = Zk×`q [X]/(Xn + 1) for k, l > 1 (as opposed to Rq for their
ring variants) and also provide better security guarantees compared to their
corresponding ring variants. Any change in the security of a scheme (based
on either MLWE or MSIS) only requires changes in the value of the module
parameters (k, `) while keeping the underlying structure of the ring fixed, thus
warranting very minimal changes from a designer’s perspective.

2.1 Dilithium

Dilithium is a deterministic lattice-based signature scheme whose security is based
on MLWE and MSIS problems. In particular, security against key-recovery attack
under the classical random oracle model is based on the hardness assumption of
the MLWE problem; and the security against existential signature forgery is based
on the MSIS hardness assumption. The scheme’s security against strong signature
forgery attack, under the quantum random oracle model, is also discussed by the
authors [5].

2.1.1 Description of Dilithium In the following, we recall the details of the
Dilithium signature scheme [5]. The underlying approach of the scheme is based
on the “Fiat-Shamir with Aborts” framework [4] while the scheme in itself is
an improved variant of the lattice-based signature scheme proposed by Bai and
Galbraith[1]. The scheme operates over the base ring Rq with n, q = (256, 8380417)
while offering flexibility with the module parameters (k, `) allowing to operate
over varying dimensions (k × `) for different security levels. The key generation,
signing and verification algorithms for Dilithium are presented in Algorithm 1.
For these individual procedures, please refer [5].

Key Generation: The key generation algorithm, KeyGen(), generates the pub-
lic constant a ∈ Rk×`q by expanding a given seed ρ←{0, 1}256 such that a =

ExpandA(ρ). Next, the secret module s1 ∈ S`η and the error module s2 ∈ Skη are

sampled after which the MLWE instance t ∈ Rkq is computed as t = a · s1 + s2.
The LWE instance is not directly output as the public key but is decomposed
into t0, t1 such that t1 = HBq(t, 2

d) and t0 = LBq(t, 2
d). Subsequently, t1 is

published as part of the public key while t0 is kept secret. Subsequently, the
published public key is (ρ, t1) while the secret key sk is (ρ,K, tr, s1, s2, t0).

Signing: The signing procedure is iterative in nature with a number of conditional
checks and it exits with a valid signature only when all the conditional checks are
successfully passed. This is done to primarily ensure that the output signatures
do not leak the distribution of the secret key. Moreover, these selective rejections
in the signing procedure are also performed to ensure 100% correctness of the
signature scheme.

Similar to the DSA and ECDSA signature schemes, the most important
component of the signing procedure in case of Dilithium (apart from the secret key)
is the ephemeral nonce y ∈ R`q. Knowledge of a single value of y or reuse of y for
different messages leads to a trivial break of the signature scheme. Moreover, the
method of generation of the ephemeral nonce y also determines the deterministic
nature of the signature scheme. In Dilithium, y ∈ S`η is deterministically generated
using the ExpandMask function which takes as input, the message µ to be signed,
the secret key component K and the iteration count (Line 6 of Sign in Algorithm
1). Further, the product w = a ·y ∈ Rkq is computed and decomposed into w1 and
w0 such that w = w1 · 2γ2 + w0. The signing procedure requires the verifier to
recover the value of w1 for successful signature verification. To facilitate the same,
a hint vector h ∈ Rkq with coefficients in {0, 1} is also generated and output as
part of the signature. Furthermore, a challenge polynomial c (sparse polynomial
with only 60 non-zero coefficients in either ±1) is also generated by hashing the
ephemeral nonce along with the public key information and the message. The
product cs1 is computed which is subsequently masked with the ephemeral nonce
y through addition and the result is output as the primary signature component
z ∈ R`q (Line 10 of Sign in Figure 1). The details of the verification procedure of
Dilithium are provided for completeness in Algorithm 1.

3 Early Evaluation Optimization

Referring to the Sign procedure in Alg.1, we provide the following terminologies
for the various rejection checks. It is important to note that all these checks have
to be passed in a single iteration in order to output a valid signature.

• ‖z‖∞ ≤ γ1 − β: Chk Norm(z)
• ‖r0‖∞ ≤ γ2 − β: Chk Norm(r0)
• ‖ct0‖∞ ≤ γ2: Chk Norm(ct0)
• wt(h) < w: Chk Norm(h)

Based on the specifications of Dilithium, we make the following observations
over the afore mentioned rejection checks in the signing procedure:

• The first three checks (Chk Norm(z), Chk Norm(r0) and Chk Norm(ct0)) con-
tribute the maximum number of rejections in the signing procedure and they
are all infinity norm checks (Chk Norm) over modules consisting of multiple
polynomials.

• Individual polynomials in the module can be computed in an independent
manner. For eg. every polynomial zi for i ∈ {0, L− 1} in the module z can
be computed independently during the signing procedure and thus the same
also applies to the corresponding computation of their Chk Norm conditions.

Infinity norm checks are necessary conditions (i.e) Chk Norm condition of all
the individual polynomials zi for i ∈ {0, L−1} of z have to be satisfied to pass the
rejection check. Hence, an iteration can be immediately rejected upon detecting a
violation in any of the polynomials. In the reference implementation of Dilithium,
the whole of z is evaluated before checking the validity of the Chk Norm(z)
condition over the whole of z. Lets assume a case where the first polynomial of
z1 violates the condition Chk Norm(z). Though the violation can be detected
only by computing the first polynomial z1 of z, the reference implementation
computes all the polynomials of z before starting the rejection check. The same
also applies for other polynomials r0 and ct0 which are also required to pass the
rejection checks. This results in performing un-necessary computations in every
rejected iteration.

Hence, we alternately propose to compute z one polynomial at a time and
immediately check its corresponding Chk Norm before proceeding onto the com-
putation of the other subsequent polynomials of z. Considering the same example
where z1 consists of a violation, we can immediately reject the iteration only upon
calculating a single polynomial of z thus avoiding un-necessary computations
related to the other polynomials of z. As stated before, the same technique can
also be applied to the computation of other polynomials r0, ct0 whose infinity
norms are also checked for rejection.

Refer to Fig.1 and Fig.2 for the C-Code snippet corresponding to computa-
tion of z in the reference implementation and optimized implementation respec-
tively. Please note that we have also incorporated another micro-optimization
wherein we have combined the three consecutive point-wise functions polyvecl add,
polyvecl freeze and polyvecl chknorm (Line 6,7 and 8 of Listing 1) into a single
function poly add freeze chk norm (Line 5 in Listing 2) so that we only compute
until the coefficient which is rejected and thus immediately abort the iteration to
avoid unnecessary computation of all the coefficients of the polynomial. We note
the the same approach also applies for the computation of other intermediate
components r and ct0. We henceforth refer to these set of optimizations as the
Early-Eval optimizations.

4 Experimental Results

We implemented our improved signing procedure incorporating our Early-Eval
optimization by modifying the reference implementation of Dilithium that was
submitted to the first round of the NIST standardization process. We believe
that our optimization would yield almost similar speedup if not exactly the same,
even with the updated implementation of Dilithium submitted for the second
round. The results were obtained for about 107 runs of the signing procedure

1 f o r (i = 0 ; i < L ; ++i)
2 {
3 poly pointwise invmontgomery (z . vec+i , &chat , s1 . vec+i) ;
4 poly invntt montgomery (z . vec+i) ;
5 }
6 po lyvec l add (&z , &y , &z) ;
7 p o l y v e c l f r e e z e (&z) ;
8 i f (polyvecl chknorm(&z , GAMMA1 − BETA))
9 {

10 goto r e j ;
11 }

Fig. 1: C-Code snippet of computation of z according to the reference implemen-
tation

1 f o r (i = 0 ; i < L ; ++i)
2 {
3 poly pointwise invmontgomery (z . vec+i , &chat , s1 . vec+i) ;
4 poly invntt montgomery (z . vec+i) ;
5 i f (po ly add f r eeze chk norm (z . vec+i , z . vec+i ,
6 y . vec+i , GAMMA1 − BETA))
7 {
8 goto r e j ;
9 }

10 }

Fig. 2: C-Code snippet of computation of z according to our improved implemen-
tation with Early-Eval optimization

on an Intel(R) Core(TM) i5-4460 CPU 3.20GHz and compiled with gcc-4.2.1
without modifying the compiler flags set for the reference implementation.

Our early evaluation optimization yields a speed up of about 7.6% in the
number of clock cycles for the recommended parameter settings of Dilithium’s
signing procedure. This optimization only reduces the computations performed
in the rejected iterations and hence demonstrates improved speed without any
change in the rejection rate. Since the optimization is performed at the algorithmic
level and does not exploit any device specific features, it can be easily ported to
multiple implementation platforms.

5 Conclusion

In this short note, we have presented an algorithmic optimization on Dilithium’s
signing procedure which reduces the computations done in the rejected iterations
through early-evaluation of the rejection sampling condition. Our optimization

yields a speed up of about 7.6% (in clock cycles) for recommended parameter
sets of Dilithium. Our optimization does not exploit any device-specific feature
and hence can be readily included in Dilithium’s implementations across multiple
implementation platforms.

References

1. Bai, S., Galbraith, S.D.: An Improved Compression Technique for Signatures Based
on Learning with Errors. In: CT-RSA. vol. 8366, pp. 28–47 (2014)

2. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C.,
Mutus, J., Fowler, A.G., Campbell, B., et al.: Superconducting quantum circuits at
the surface code threshold for fault tolerance. Nature 508(7497), 500–503 (2014)

3. Harty, T., Allcock, D., Ballance, C.J., Guidoni, L., Janacek, H., Linke, N., Stacey, D.,
Lucas, D.: High-fidelity preparation, gates, memory, and readout of a trapped-ion
quantum bit. Physical review letters 113(22), 220501 (2014)

4. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 598–616. Springer (2009)

5. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler,
G., Stehle, D.: CRYSTALS-Dilithium. Tech. rep., National Institute of Stan-
dards and Technology (2017), available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions

6. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

7. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions. computational complexity 16(4), 365–411 (2007)

8. NIST: Post-Quantum Crypto Project. http://csrc.nist.gov/groups/ST/

post-quantum-crypto/ (2016)
9. Preskill, J.: Reliable quantum computers. In: Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences. vol. 454, pp. 385–410.
The Royal Society (1998)

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

Algorithm 1: Dilithium Signature scheme

1 Procedure KeyGen()
2 ρ, ρ′ ← {0, 1}256
3 K ← {0, 1}256
4 N = 0
5 for i from 0 to `− 1 do
6 s1[i] = Sample(PRF(ρ′, N))
7 N := N + 1

8 end
9 for i from 0 to k − 1 do

10 s2[i] = Sample(PRF(ρ′, N))
11 N := N + 1

12 end

13 a ∼ Rk×`q = ExpandA(ρ)
14 t = a · s1 + s2
15 t1 = Power2Roundq(t, d)
16 tr ∈ {0, 1}384 = CRH(ρ||t1)
17 return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

18

1 Procedure Sign(sk,M)

2 A ∈ Rk×`q := ExpandA(ρ)
3 µ = CRH(tr‖M)
4 κ = 0, (z,h) = ⊥
5 while (z,h) = ⊥ do

6 y ∈ S`γ1−1 := ExpandMask(K‖µ‖κ)
7 w = A · y
8 w1 = HBq(w, 2γ2)
9 c ∈ B60 = H(µ‖w1)

10 z = y + c · s1
11 (r1, r0) := Dq(w − c · s2, 2γ2)
12 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1 then
13 (z,h) = ⊥
14 else
15 h = MHq(−c · t0,w − c · s2 + c · t0, 2γ2)
16 if ‖c · t0‖∞ ≥ γ2 or wt(h) > ω then
17 (z,h) = ⊥
18 end
19 κ = κ+ 1

20 end
21 return σ = (z,h, c)

22

1 Procedure Verify(pk,M, σ = (z,h, c))

2 a ∈ Rk×`q := ExpandA(ρ)
3 µ = CRH (CRH(ρ‖t1)‖M)

4 w1 := UHq(h,a · z− c · t1 · 2d, 2γ2)
5 if c = H(µ,w1) and ‖z‖∞ < γ1 − β and wt(h) ≤ ω then
6 return 1
7 else
8 return 0
9 end

	Improving Speed of Dilithium's Signing Procedure

