
Chaotic Compilation for Encrypted Computing:
Obfuscation but Not in Name

Peter T. Breuer

Hecusys LLC, GA, USA, ptb@hecusys.com

Abstract. An ‘obfuscation’ for encrypted computing is quantified exactly here, leading
to an argument that security against polynomial-time attacks has been achieved for
user data via the deliberately ‘chaotic’ compilation required for security properties in
that environment. Encrypted computing is the emerging science and technology of
processors that take encrypted inputs to encrypted outputs via encrypted intermediate
values (at nearly conventional speeds). The aim is to make user data in general-
purpose computing secure against the operator and operating system as potential
adversaries. A stumbling block has always been that memory addresses are data
and good encryption means the encrypted value varies randomly, and that makes
hitting any target in memory problematic without address decryption, but decryption
anywhere on the memory path would open up many easily exploitable vulnerabilities.
This paper ‘solves (chaotic) compilation’ for processors without address decryption,
covering all of ANSI C while satisfying the required security properties and opening
up encrypted computing for the standard software tool-chain and infrastructure. That
produces the argument referred to above, which may even hold without encryption.
Keywords: Obfuscation · Compilation · Encrypted computing

1 Introduction
This article explains recent advances in understanding and practice in the emerging
technology of encrypted computing [1–6], in particular ‘chaotic compilation’ for this context
[7], which supports the security proofs and now has broken through to allow essentially
all extant ANSI C [8] source codes to be compiled (the known lacks are longjmp/setjmp),
nearly as they stand (strict typing is necessary), opening up the field. An unexpected by-
product is an argument that obfuscation safe against polynomial time attacks is produced
by this kind of compilation, perhaps even in the absence of encryption.

Encrypted computing means running on a processor that takes encrypted inputs to
encrypted outputs via encrypted intermediate values. The operator and operating system
are the potential adversaries in this context. Encrypted computing aims to:

Protect user data from the powerful operator of the system.

A subverted operating system is as much ‘the operator’ as is a human with administrative
privileges, perhaps obtained by interfering with the boot process, and this document will
use ‘the operator’ indiscriminately for both. From a systems perspective, the operator (or
operating system) are merely the operator mode of the processor. A processor starts in
operator mode when it is switched on, in order to load operating system code into reserved
areas of memory from disk. Conventional application software relies on the processor to
change from user mode to operator mode and back again for system support (e.g., disk
I/O) as required, so the operator mode of the processor presents difficulties as adversary.
Security is possible only because ‘an honest operator should not care what user data means’

mailto:ptb@hecusys.com

2 Obfuscation but Not in Name

– informally, the operator/system is there to change the tapes when the machine beeps.
The reader should take onward with them from the outset that a processor for encrypted

computing works encrypted only in user mode. In operator mode it works unencrypted
(with unrestricted access to registers and memory) entirely as usual. A good mnemonic is:

Privilege means no encryption, no privilege means encryption.

Any user data encountered while in operator mode (and also in user mode) will be in
encrypted form so the operator’s privilege of unrestricted access does not necessarily imply
understanding of what user data means, or an ability to alter it meaningfully. It can
always be copied for later analysis, or overwritten with zeros, one word substituted with
another, etc, but security proofs [9] show that cannot amount to more than guesswork.

A fundamental technical motivation in this area is the intuition that a processor that
‘works encrypted’ must inherently be not less secure than one that does not, and there
are reasons why it should not be (much) slower that have been borne out in hardware,
as described below. The non-technical motivations are manifold and should not need
enumeration. One plausible scenario for an attack by the operator is where cinematographic
animation is rendered in a server farm. The computer operators have an opportunity to
pirate for profit parts of the movie before release and they may be tempted. Another
possible scenario is where a specialized facility processes satellite photos of a foreign power’s
military installations to spot changes. If an operator (or hacked operating system) can
modify the data to show no change where there has been some, then that is an option for
espionage. Informally:

Definition 1 (Successful attack). A successful attack by the operator is one that discovers
the plaintext of user data or alters it to order.

That is meant statistically, so an attack that succeeds more often than chance also counts.
Overwriting encrypted data with zeros does not count because that does not set the

plaintext under the encryption to a value that the adversary can predict, even stochastically,
supposing the encryption itself is secure. The operator can always act chaotically or
destructively, by rewriting memory randomly or turning the machine off, for example.

Pointers (and arrays) are the major obstacle to compiling real, extant, source codes in
the encrypted computing setting. Pointers underly any practical programming language:
in C (and C++) they are explicit, but in other languages they are implicit. In Fortran 95
all variables are implicitly pointers, so passing the variable to a subroutine allows the
caller’s variable to be changed by the callee. Passing an array allows entries in the caller’s
array to be rewritten in most languages. In Java every object is a pointer, and a new
object instead of another pointer to the same object must be created via clone().

‘The problem with pointers’ is that (1) the memory unit will receive an encrypted
address (‘pointer’) and (2) it is not privy to the encryption. The rationale for (1) is that
while the processor design could accommodate address decryption on the memory path,
that opens up an attack vector in which the operator passes encrypted data as an address
in a load or store machine code instruction and checks (physically or programmatically)
where in memory it accesses, thus decrypting the data, so it is not a good idea for security.
It is also faster for hardware not to have encryption or decryption units on the memory
path. The rationale for (2) is an attacker with physical access could walk away with
the RAM chips and they might contain plaintext or keys if the memory unit could do
decryption itself (c.f., cold boot attacks [10,11], physically freezing RAM to keep data while
the chips are moved), or if the processor hardware decrypts for it.

The conclusion to draw is that memory should do without decryption both internally and
externally. But then it will receive some ciphertexts that are each a different encryption of
the same programmed address and it cannot tell they are intended to mean the same thing:
the programmer says to write x at address 123 and the encrypted value 0x123456789A of

P.T. Breuer 3

123 is passed to the memory as the ciphertext for the address at runtime; if the programmer
aspires to read it back via address 123 then a ciphertext 0xA987654321 that is an alternative
encryption of 123 may be passed as address, and content y different to x is returned from
there. One can get around that in hand-crafted fashion by specifying exactly every time
what encrypted address is to be used, but that only works for simple programs – it will
break down for programs that use arrays of pointers to other arrays of pointers to objects
which may contain pointers. In other words, programs will break, often silently. Strict
typing can limit programs to those that will work in the setting, but the programming
experience would be frustrating and porting existing programs to the platform would
require a prohibitively high degree of semantic understanding of the original.

We have now learned how to work around this hardware semantics problem via software
logic, while maintaining the security properties required. That opens up encrypted
computing for a traditional software development cycle involving high-level source language
programming and a compile, assemble, link, load tool-chain with operating system support.

This article is organized as follows. Section 2 will set out bullet points about encrypted
computing platforms to refer to in the rest of the text. The reader should defer to those
points. For example, it is not the case that the operator has access to the encryption key,
as a reader may suppose from experience with conventional platforms, and the first point
emphasizes that. Nor is encryption done in software, as the reader may have experienced,
so it does not take different times for different data. Nor do instructions aborted while
still in the processor pipeline leave a mark in cache, nor may they otherwise be detected,
etc. There is nearly a decade of research in the field, and there are no easily picked
openings. Section 3 expresses abstract terms that hopefully resonate with cryptologists,
but ready-made matches for this new field are scarce and the reader should first and
foremost take the concepts defined there on their own terms. Section 4 describes existing
platforms for encrypted computing and discusses the theory. Section 5 resumes a modified
OpenRISC (http://openrisc.io) machine code instruction set for encrypted computing
described in [7], needed for security. Section 6 first resumes the basis of chaotic compilation
restricted to integers and call by value a la [7] and then covers ramified atomic types
(long integers, floats, doubles, etc.), arrays and pointers (hence call by reference), ‘struct’
(record) and union types. Theory is developed in Section 7. It quantifies the entropy in
a runtime trace for code compiled following (T), characterizing that as ‘best possible’.
Section 8 discusses further implications for security, including the argument that this
setting has security against polynomial time (in the word-length, n) attacks on user data,
with or without encryption.

2 Reference Points
This section sets out touchstones on encrypted computing for the reader to refer to.
§2.1 Encryption key access is impossible programmatically. The key is embedded
in the processor hardware and there are no instructions that read it. Keys are either
installed at manufacture, as with Smartcards [12], or uploaded securely in public view via
a Diffie-Hellman hardware circuit [13] to a write-only and otherwise inaccessible internal
store. The privy user (which term does not include the operator) can always interpret the
encrypted data, elsewhere, for safety, as they know what the key is.
§2.2 Prototype processors for encrypted computing at near conventional speeds already
exist (see Section 4) and have existed since a first recognizable try at the idea [1] about
2012. Before that, computing systems (not processors) that operated partially encrypted
were not uncommon for commercial movie and music reproduction going back as far as
1993 [14] and 2000 [15], but their processor component operated in the ordinary way while
memory (RAM) or disk or other peripherals stored in encrypted form the media to be
safeguarded. Modern Intel SGX™ systems [16–18] are not conceptually different in that

http://openrisc.io

4 Obfuscation but Not in Name

regard, but with extra sandbox technology (memory enclaves into which the programmer
may voluntarily consign their code, with separate caches and register sets). The idea in
encrypted computing is to rely instead on encryption through-and-through as the security
barrier protecting user data. A basic question to answer is whether encrypted computing
potentially reduces the security of the encryption (‘no’, per [9]).
§2.3 Platform/hardware issues such as the real randomness of random numbers or
power side-channel information leaks [19] will not be at issue here. Existing technological
defenses for conventional processors [20] may be applied in practice, and are to be supposed.
§2.4 The intended mode of working is ‘remote processing’:

The user compiles program and data, sends both away, and gets back output.

New data means a new encoding and compilation. The word ‘encoding’ is used because
more than encryption (and more than vanilla compilation) is involved. The compilation
is ‘chaotic’, as explained below. That involves producing both a new encoding for the
data throughout the program and a new machine code program that can cope with it and
then encoding and encrypting the data and partially encrypting the machine code (only
constants in the instructions are encrypted - the ‘opcode’ and other fields are plaintext).

Continuous running may become feasible as technology for dynamic code update [21]
in this setting develops, but for the purposes of this paper a mode of use other than the
above is not contemplated.
§2.5 Key management is not an issue via this argument: if (a) user B’s key is still loaded
when user A runs, then A’s programs do not run correctly as the encryption is wrong for
them; if (b) B’s key is in the machine together with B’s program when A runs, then user
A cannot supply appropriate encrypted inputs nor interpret the encrypted output.
§2.6 Security user on user boils down in this setting to security for the user against the
operator as the most powerful potential adversary in the system, and it is proved in [9]
(the argument is reprised in the Appendix; Lemma A1), that

(i) a processor that supports encrypted computing,
(ii) an appropriate machine code instruction set architecture,
(iii) a ‘chaotic’ compiler as described below

together provide a property that parallels for this setting classic cryptographic semantic
security [22] (CSS) for encryption, better known via the semantically equivalent ciphertext
indistinguishability under chosen-plaintext attack (IND-CPA). The latter means there is no
(polynomial time) method for an adversary to tell which is which between the ciphertexts
of two plaintexts (stipulated by the adversary, both the same length), to any degree
significantly above chance (as the key/block size tends to infinity).
§2.7 An appropriate machine code instruction set as referred to above is one that
satisfies four axioms introduced in [5] and set out in Box II here. They are essentially (a)
atomicity, (b) encrypted working, (c) malleability, and (d) absence of collisions between
the ciphertext constants in program instructions and data at runtime.
§2.8 Source code language coverage for encrypted computing that extended to (32-bit
plaintext) integers, arithmetic, conditionals and call-by-value was first achieved in [7] and
is explained in Section 6. It is extended here to pointers and all of ansi C [8] (except
setjmp/longjmp), with its long long, float, double, array, struct (record) and union data
types. That ‘solves’ the practical problem of compilation for all encrypted computing.
§2.9 Primitive operations in the processor will be taken to include all encrypted 32-
bit integer arithmetic. That means for example that encrypted data can be ‘added’ by
the hardware in one operation, via an appropriate machine code instruction, producing
an encryption of x + y (mod 232) as result from encryptions of x and y as operands.
Similarly for the other primitives of the computer arithmetic, which are specified exactly
in Section 5. Careful specification is necessary because it turns out that the standard

P.T. Breuer 5

arithmetic operations in their conventional form are dangerous to security [23].
Since hardware is not the focus of this paper, encrypted 64-bit integer arithmetic will

also be taken as primitive. It is carried out on two encrypted 32-bit integers representing
the high and low bits respectively (software subroutines for each operation using the
32-bit instruction set only is an alternative). Encrypted (32-bit and 64-bit) floating point
arithmetic will only be treated in the Appendix but should also be taken as primitive.
These primitives are each supported by at least one of the prototype processors discussed
in Section 4.

Notation
Encryption (with key K understood) will be denoted xE or E [x] of plaintext value x and
should be read as a multi-valued function of x, i.e., a single-valued function E [p ·x] when
the hidden padding p is taken into account. Decryption is ζD = D[ζ], with x = D[xE].
The encryption aliases of a ciphertext ζ0 are those ζ1 with the same plaintext as it
under decryption D, i.e., ζ0≡

D
ζ1, meaning D[ζ0] = D[ζ1]. To avoid excess notation that

equivalence is written as equality on the cipherspace, so equal aliases ζ0 = ζ1, i.e., ζ0≡
D
ζ1,

may be non-identical, with ζ0 6=
id
ζ1. They are encryption alternatives or aliases of the

same plaintext x = ζD0 = ζD1 . Then xE , E [x] denote particular but unspecified aliases, and
ζ = E [D[ζ]] is true (recall that equality on the cipherspace is equivalence under decryption).
Key K may be mentioned as an extra parameter in E [K,x] and D[K, ζ]. Padding varies the
value but not the ≡

D
equivalence class, which is the equality, with E [p ·x] = E [q ·x] 6=

id
E [p ·x]

for p 6= q, and E [p ·x] 6= E [p · y] for E [x] 6= E [y].
The operation on the ciphertext domain corresponding to o on the plaintext domain

will be written [o], where xE [o] yE = E [x o y]. The relation on the ciphertext domain
corresponding to R on the plaintext domain will be written [R], where xE [R] yE iff xR y.
These are well-defined with respect to the cipherspace equality.

3 Key Security Concepts
The game-theoretic formulation of the classic IND-CPA security definition for this setting is:
G1.1 the operator selects any program p and input data d;
G1.2 the user compiles it (twice) and shows the operator the two plaintext codes p1, p2

and input data d1, d2;
G1.3 the user encrypts those to p′1, p′2 and d′1, d′2 and passes those to the encrypted

computing platform;
G1.4 the operator examines the running codes p′1(d′1), p′2(d′2), interferes, experiments,

observes intermediate and final results e′1, e′2 (all in encrypted form);
G1.5 the operator attempts to say which is which.
The argument of Lemma A1 shows that in an encrypted computing context there is no
method (in particular no polynomial time one) the operator can use to be right more often
than if they were trying plain IND-CPA against the encryption. The probability of success
given that there is no advantage against the encryption alone is not different from chance,
i.e. 1/2 (exactly).
Definition 2. That the operator cannot win the game above with different than 1/2
probability (exactly, for all lengths of the encrypted word on the platform) for this context,
given that the encryption itself is independently secure against IND-CPA, will be called
cryptographic semantic security relative to the security of the encryption (ρCSS), for user
data against operator mode as adversary.

6 Obfuscation but Not in Name

The rationale behind it is discussed below, but it is clear that it holds for certain
programs p: those that have no instructions and thus do nothing to data, passing input to
output directly, without any interference. Given that the encryption is secure, an adversary
can do nothing but guess blindly as to what the data is.

An interesting corollary (Remark 2 of [9]) has it that there is an encrypted program that
does decryption (it is the decryption algorithm for the encryption in use in the processor,
compiled for the encrypted computing environment), but the operator cannot build it
correctly, neither from scratch nor out of scavenged parts from encrypted programs, with
any probability of success above random chance. That is so though they know what the
encryption is (not the key) and the canonical structure of a program for decryption.

The property ρCSS is above all a statement about whether encrypted computing
provides additional information to the operator that might lessen the security of the
encryption (‘no’). For example, it might be possible for the operator to recognize a
computation 2 + 2 = 2 ∗ 2 (encrypted), via coincidence of the encrypted operands and
results. The operator might try inserting the same encrypted value for (supposedly) 2 at all
the places in that calculation and see the encrypted answers are identical. The argument
of Lemma A1 says that no, even though the operator thinks they have identified the
situation, in fact other interpretations of the operands and results that are consistent with
the operational semantics of the processor are possible, and all interpretations are equally
possible given the ‘right’ compiler as generator. That is a perspective from mathematical
logic and model theory, and it may be expressed for a general reader as follows: if one takes
the axioms like x+ y = y + x that describe the specially designed primitive operations of
the processor (Table 1), and chooses facts r1 = 2, r2 = 4 etc. consistent with the axioms
for the unknown values r1, . . . rn at n chosen points in the runtime trace of a program,
then there are also other, different but compatible choices such as r1 = 5, r2 = 6 etc.
that are equally plausible. That holds for n = 1 chosen point, wherever it is (Corollary 2
of [9]), and in general independently for any n chosen points, with certain exceptions
characterized in this paper (for example, measuring the input r1 and output r2 of a copy
instruction does not allow r1 and r2 to be chosen independently – one of them may be
chosen independently, and then the other must be equal to it). An informal rendering of
ρCSS might be that good security in encrypted computing boils down to good encryption.

A similar, but different, game is:

G2.1 the operator selects any program p and input data d and selects a polynomially
defined point rn in the trace (e.g., the last point at which register r changes in the
first n3 steps);

G2.2 the user compiles it for a platform that does n-bit computing beneath the encryption,
forming pn and dn, which are not shared with the operator;

G2.3 the user encrypts to p′n and d′n and passes those to the encrypted computing platform;
G2.4 the operator examines the running code p′n(d′n), interferes, experiments, observes

intermediate and final results (all in encrypted form);
G2.5 the operator tries to say what the plaintext value beneath the encryption in rn is.

The argument in Section 8 says that if the encryption is secure for IND-CPA, then the
operator cannot win this game with a probabilty above chance, as n→∞ (but what the
probability is for a given program p and word length n is not going to be known).

If the operator could win this game, then they could win the first game given at the
front of this section (for sufficiently large n), so it ought not to happen. But the argument
is independent and also suggests that encryption may not be necessary.

Chaotic compilation for encrypted computing is as follows. It is related to ‘obfuscation’
in that it makes code harder to read than it would otherwise be, but ‘obfuscation’ in
the security field refers to transforming one source code to another, while compilation
transforms source code to object code (assembler, or machine code), not source code. so
a compiler cannot be a classical obfuscator. Instead, chaotic compilation has properties

P.T. Breuer 7

Box I

(a) A fully homomorphic encryption (FHE)
E of 1-bit data lacks the cryptographic
semantic security (CSS) property.

E [0] ∗ E [0] = E [0]
E [0] ∗ E [1] = E [0]
E [1] ∗ E [0] = E [0]
E [1] ∗ E [1] = E [1]

Guessing 0 as outcome is right 75% of
the time.

(b) A FHE program that adds 2-bit
data to itself:

E [0] + E [0] = E [0]
E [1] + E [1] = E [2]
E [2] + E [2] = E [0]
E [3] + E [3] = E [2]

has output y = 2x that is 100% even,
breaking CSS.

required to prove ρCSS. It behaves stochastically: applied twice to the same source code,
it emits two (probably) different object codes. Chaotic compilation always at least:

(A) produces identically structured machine codes;
(B) produces identically structured runtime traces;
(C) varies only encrypted constants in the code;
(D) varies runtime data beneath the encryption

across different recompilations of the same source code. The aim of (A-D) is that:

The object codes and their traces look the same to an ignorant observer.

That is an observer ignorant of the encryption key and hence putatively unable to read
the plaintext of encrypted words. The same instructions (modulo different embedded
encrypted constants) will run in the same order, with the same branches and loops, but
runtime data beneath the encryption differs following a scheme known only to the user.
The math and computer science behind that is reprised in Section 4.

Chaotic compilation in particular means producing code within the framework of
(A-D) such that an adversary cannot count on 0, 1, 2, etc. occurring frequently beneath the
encryption in a program trace, which is naturally the case in a program written by a human.
That would enable statistically-based dictionary attacks [24] against the encryption. The
desired property is:

Definition 3 (Chaotic compilation). No data value beneath the encryption appears at
runtime with higher probability than another.

That is measured across recompilations, which are generated stochastically. There is no
dependence on the key/block size n in that definition (which also makes it different in kind
from classical definitions of obfuscation). The principle applies both for observations of
single words and also for simultaneous (‘vector’) observations at multiple points in a trace,
but that is much harder to achieve. This paper proves it for single words and quantifies it
for vectors. Note that the property is literally violated, e.g, in implementations [25] of fully
homomorphic encryptions [26,27] (FHE), where the output of a 1-bit AND (multiplication)
operation is 0 beneath the encryption with probability 3

4 (Box I (a)).1
What makes it hard to achieve Defn. 3 simultaneously for many different observed

values at different points in the trace is that computational semantics has rules to it. Apart
from (A-D), the ‘chaotic compiler’ is obliged to generate machine code in which:

1That 0 is a probable outcome from multiplication in a FHE E is not an extra liability because in 1-bit
arithmetic E[x] + E[x] = E[0] with certainty from any observed encrypted value E[x]. It can also be relied
on that E[1] is one of the inputs in any nontrivial calculation because ‘all-zeros’ as inputs propagates
through to all-zeros as output via E[0] + E[0] = E[0] ∗ E[0] = E[0].

8 Obfuscation but Not in Name

(E) a copy instruction preserves data exactly;
(F) the variations introduced by the compiler are equal where any two control paths join.

Any observer can deduce data beneath the encryption is copied in (E), because the same
ciphertext is seen. The condition (F) refers to the end of a loop, after conditional blocks,
at subroutine returns, at the label target of a goto. That it holds is deducible by an
adversary from basic computational principles: since the number of times through a loop is
generally not predictable at compile-time, the compiler must ensure the same conditions are
re-established at the end of each loop as prevail at the start, ready for another go-through.

The constraints (E-F) impose an underlying order on what is desired to be an apparently
chaotic scheme of variations from nominal in the plaintext data beneath the encryption in
a program trace. An overall strategy for achieving Defn. 3) is as follows (S):

Vary a machine code program’s instruction constants so every possible data
variation beneath the encryption is obtained with uniform probability. (S)

The probability is taken across traces, one for each recompilation of the same source
code. Unfortunately, modifications require knowledge of the programmer’s intention as
expressed in the source code, and reverse engineering that from machine code is in general
a known Turing Halting Problem equivalent (i.e., computationally impossible). It is up to
the compiler to provide variation, working stochastically from source code. However, the
‘uniform . . . across the range’ is a key that indicates how the compiler ought to generate
code that boils down to a particular tactic as explained below.

The compiler tactic per increment of code to implement the strategy (S) is as follows:

Every machine code instruction that writes should introduce maximal entropy. (T)

That refers to entropy introduced into the runtime trace by the compiler’s variations.
What this means is that the compiler must exercise fully the possibilities for varying

the trace at every opportunity in a compiled program. The only way to vary the trace
is via an instruction that writes something, otherwise there is no effect. ‘Writes’ means
any change that is testable, even if not observed directly – the outcome of a comparison
instruction cannot be read from registers, for example, but it is tested by where the branch
instruction jumps to, so it counts as a ‘write’. The compiler should not, for example,
always use 1 in an addition instruction if the possibility exists of using a different number
and still satisfying the programmer’s intention.

4 Background and Related Work
Several fast processors for encrypted computing are described in [28]. Those include
the 32-bit KPU [5] with 128-bit AES encryption [29], which on the industry-standard
Dhrystone [30] v2 benchmark is reported in [28] to run encrypted at the speed of a 433MHz
classic Pentium (tables equating different processors are at www.roylongbottom.org.uk/
dhrystone%20results.htm) with a 1GHz clock speed, and the older 16-bit HEROIC [3,4]
with 2048-bit one-to-one Paillier encryption [31], which runs like a 25KHz Pentium, as
well as the recently announced 32-bit CryptoBlaze [32] with one-to-many Paillier. That is
10× faster than HEROIC (but branches are farmed out for decision to the remote user
across the Internet and are not counted in that figure).
§4.1 Ascend [1] is retrospectively seen as the first exemplar of the class of processors
designed for encrypted computing. This 32 (in plaintext) bit AES-based (co)processor
aimed to work like a black box, literally: the processor was physically inaccessible and
could not be interfered with programmatically until it had finished an execution task.
It accepted encrypted program and data inputs and produced encrypted data outputs,
and internals were unobservable. To obfuscate addressing to memory, oblivious RAM

www.roylongbottom.org.uk/dhrystone%20results.htm
www.roylongbottom.org.uk/dhrystone%20results.htm

P.T. Breuer 9

(ORAM) [33] was integrated. Timing and power statistics in terms of what signals appeared
on the data pins at what time were arranged to match specifications set beforehand. The
machine code instruction set was MIPS RISC (i.e., uncomplicated – RISC stands for
‘reduced instruction set computing’ and MIPS (an autonym) is the variety taught in
undergraduate courses) beneath the encryption. The operator was considered ‘semi-
honest’, in contrast to the potential adversary of this paper. In common with the later
designs, every instruction takes the same time and power to execute no matter what
the data. As in reports on later projects (except [28]) speeds are not discussed except
with respect to the same processor running without encryption, and a 12-13.5× slowdown
is noted. The authors’ reticence is likely because security audiences do not know that
different instruction sets, processor architectures, platform technologies and compilers are
incomparable, and would be nonplussed by a benchmark that equated to a 4MHz Pentium,
but is really remarkable. A 433MHz Pentium benchmarks on Dhrystone at 114× one
DEC VAX 11/780 minicomputer from 1977, and 4MHz Pentium would ‘wax the VAX.’
§4.2 A modified arithmetic is the principle behind later processors for encrypted
computing and is known to be sufficient to generate encrypted working [2] since 2013.
HEROIC and CryptoBlaze both embed the Paillier encryption, which is partially ho-
momorphic, making the modified addition straightforward to do in hardware, with
xE [+] yE = E [x+ y] = xE ∗ yE mod m. That is multiplication of the encrypted numbers
modulo a 2048-bit integer m. HEROIC’s 2048-bit ciphertext multiplication takes 4000
cycles of the supporting 200MHz hardware, so one encrypted (16-bit plaintext) addition
takes 1/50,000s, comparable to a 25KHz Pentium (one 32-bit addition every 1/25,000s).

The KPU uses AES, not a homomorphic encryption (it is reported as having been
tried with Paillier, but the arithmetic proved impossible to pipeline advantageously), and
gets its speed by decrypting internally once in the pipeline at the start of a sequential
train of arithmetic micro-operations, taking one cycle each, and re-encrypting at the end.
The overhead is reported as 10-20 cycles per train, integrated as 10 pipeline stages. That
leads to approx. 50-60% pipeline occupation under pressure computing to/from registers
and cache only, and corresponding speed compared to a conventional machine.
§4.3 Branches are an obstacle to hardware for encrypted computing and HEROIC
implements a (signed) comparison relation xE [≤] yE via a lookup table for arithmetic sign
(positive or negative) for branch decisions. It acts as an extra key. The table reports
whether xE has x positive or negative. In order that the table be small enough, HEROIC’s
encryption is one-to-one, not one-to-many. The table still contains 215 rows of 2048 bits
(256 bytes) each, so it is 8MB. The architecture is a stack machine, not a von Neumann
machine (the conventional architecture for modern computers). That has the advantage
that local variables within a software function are accessed by a (plaintext) number in the
machine code: the stack relative offset of the variable. In a conventional architecture, the
location would be accessed via a computed memory address, which would be a 2048-bit
encrypted number because the processor does its computation encrypted, so 22048 memory
locations would be addressed and only a few of those could physically exist.

Cryptoblaze passes branching decisions across the internet to the user for resolution
(after decryption). The KPU resolves branch decisions internally in the pipeline, via the
modified arithmetic.
§4.4 Memory addressing is done encrypted in HEROIC – it connects only the last
22 bits of an encrypted address to memory address lines, which proves sufficient in
practice to disambiguate the only 216 possible different 2048-bit addresses. That is
16MB of addressable memory, consisting of 216 locations each 256B (2048 bits) wide.
Those addresses are scattered randomly through 1GB of physical RAM, but HEROIC’s
address translation unit (TLB – translation lookaside buffer) remaps them to a contiguous,
physically backed, 16MB subspace. The KPU remaps 128-bit encrypted addresses to a
designated 32-bit region.

10 Obfuscation but Not in Name

§4.5 The TLB always has to be a special design. Processors for encrypted computing
have an addressing problem – it is impossible to provide physical backing for all the
encrypted address range. Those addresses that do occur in a program must each be
remapped individually to a backed region of memory. But conventional TLB technology
remaps addresses 8192 (a ‘page’) at a time, so prototypes have to innovate.

A common solution is unit granularity in the TLB, plus dynamic remapping. Each
encrypted address is mapped when it is encountered for the first time to the next free
address in physically backed memory. Releasing defunct mappings in the TLB is one of
the problems for these processors.
§4.6 A special machine code instruction set is needed. HEROIC’s, comprises just the
one form: x←x[−]y conditionally followed by a jump to a point elsewhere in the program
if the result is not positive. That is computationally complete [34], and the aim is not only
to simplify the hardware but to make all programs look alike. Unfortunately HEROIC’s
one-to-one encryption undoes that, while compilation for the unusual instruction set is a
challenge. The newer CryptoBlaze processor adapts a more conventional architecture and
instruction set but the latter likely does not have the security properties (Box II) that are
now seen as necessary in encrypted computing in order to resist chosen instruction attack
(CIA) [23], as explained in the next paragraph. The KPU adopts one feature of HEROIC’s
instruction set (input and output may be shifted by arbitrary amounts by varying the
instruction constants) and modifies the OpenRISC (http://openrisc.io) instruction set
in line with that in order to resist CIA, as explained below.

The right machine code instruction set is pivotal when the operator may be an adversary,
as conventional instructions are not secure. The operator may, for example, observe an
(encrypted) user datum xE and put it through the machine’s division instruction to get
1E = xE [/]xE . Then any desired encrypted y may be constructed by repeatedly applying
the machine’s addition instruction for yE = 1E [+] . . . [+]1E . By using the instruction set’s
comparator instructions (testing E [231] [≤] zE , E [230] [≤] zE , . . .) on an encrypted z and
subtracting on branch, z may be obtained efficiently bitwise. That is the chosen instruction
attack (CIA) of [23]. If there is no division operator in the hardware then there will be a
library routine for it (the attacker can write one themself given an encrypted 1). Failing
that, they can try every encrypted value in a program and its trace and in practice one
of those will be 1E with probability greater than 1/232, and that gets a 1E at frequency
better than blind guessing.

The right instruction set resists such attacks. The KPU’s instruction set contains
HEROIC’s as a subset and is proved to make those attacks impossible (Theorem 1 below).
§4.7 The compiler must be involved too in order to avoid known plaintext attacks (KPAs)
[35] based either on the idea that not only do instructions like xE [−]xE predictably favor
one value over others (the result there is always xE [−]xE= 0E), but human programmers
favor values like 1. The compiler must even out the statistics.

The compiler must do so even for object code consisting of a single instruction. That
gives necessary conditions on instruction design and execution shown in Box II [7]. These
constraints must be implemented by the hardware: instructions must (IIa) execute atomi-
cally, or recent attacks such as Meltdown [36] and Spectre [37] against Intel become feasible
(in those, memory access instructions in a speculatively executed branch when aborted
leave behind a ‘halfway-done’ taint in the form of cache lines loaded), must (IIb) work
with encrypted values or an adversary could read them, and (IIc) must be adjustable via
embedded encrypted constants to offset the values beneath the encryption by arbitrary
deltas. The condition (IId) is for the security proofs and amounts to different padding or
blinding factors for encrypted program constants and runtime values.

In this document (IId) will be further strengthened to:

No collisions between constants in different instructions or different positions. (IId∗)

‘Different instruction’ means different opcodes. Padding beneath the encryption enforces

http://openrisc.io

P.T. Breuer 11

Box II: Machine code axioms. Instructions . . .

(a) Are a black box from the perspective of the programming interface, with no intermediate states.
(b) Take encrypted inputs to encrypted outputs.
(c) Are adjustable via (encrypted) embedded constants to produce any desired offset delta in the

(decrypted, plaintext) inputs and outputs at runtime.
(d) Can have no cipherspace collisions between encrypted instruction constants and runtime data.

that, and the processor silently produces nonsense on violation. The aim is to block
experiments with transplanted program constants. With (IId), moving runtime encrypted
data into instructions or vice versa was already blocked.
Remark 1. HEROIC’s x← x [−] y instruction fails (IIc) because x [+]C ← (x [+]A) [−](y [+]B)
as (IIc) requires cannot be achieved by varying the constants in the instruction, as there
are none. That is x ← x [−] y [+]K where K = A [−]B [−]C so that would be ‘fixed’
for (IIc) if the instruction included an extra additive constant K. But the subsequent
test x [≤] 0 also needs to be fixed to x [≤]A for A supplied in the instruction. With that,
HEROIC’s instruction set would work for the argument and theorem of [9] (below).
The effect of (IIa-IId) is proved (Appendix, [9]) to be:

Theorem 1. A program and its runtime trace may consistently be interpreted arbitrarily
in terms of data beneath the encryption at any one point in memory or trace.

The technical argument shows that picking any point in the trace, so far as the adversary
not privy to the encryption can tell, the word beneath the encryption may vary over a
32-bit range across recompilations, equiprobably.

‘Chaotic’ compilation always threatens the adversary that a delta offset has been
introduced into runtime data beneath the encryption by varying the constants in the
instruction before and after a point of interest, because (IIa) and (IIb) prevent the adversary
knowing and (IIc) allows the variation (note (IIa) means ‘no side-channels’).

Theorem 2 (ρCSS). Relative cryptographic semantic security holds for any one word of
data beneath the encryption and an adversary not privy to the encryption.

That is what is usually rendered as encrypted computation does not compromise encryption,
but it is really trivial. If one imagines the program that does nothing, consisting of no
instructions, which transmits input to output unchanged, all it says is that the input can
be any value (and the output will be the same any value). There is no reason or way for an
adversary to discern any tendency beneath the encryption to some proper subset of values.

But data words in a program of any size and form are individually unconstrained by
the adversary’s observations (or experiments, as a continuation of the argument deduces)
according to Theorem 1. Further, intuitively the adversary can select any two points in
the program, except a pair as remarked, and they can be varied independently via changes
in the surrounding instructions that the adversary cannot perceive because the instruction
constants are encrypted, and this paper will quantify that intuition.

A ‘chaotic’ compiler backs the threat by really varying runtime data beneath the
encryption independently and arbitrarily across recompilations to the extent the laws of
programming allow, as (S) ideates. How the compiler organizes that is encapsulated in
Box III: a new obfuscation scheme is generated at each recompilation.

Definition 4 (Obfuscation scheme). An obfuscation scheme is a plan that specifies a delta
from nominal for the data beneath the encryption in every memory and register location
per point in the program control graph, before and after every instruction.

12 Obfuscation but Not in Name

Box III: What the compiler does, in sequence:

i. Generate an obfuscation scheme of planned data offsets from nominal beneath the encryption.
ii. Vary instruction constants to implement (i), thereby leaving runtime traces unchanged in form,

but not content.
iii. Equiprobably generate all variations (ii), hence schemes (i).

A high-level, declarative, description of how a compiler works in this setting is that the
compiler C[−] translates, for example, a source code expression e of type Expr, the value
of which is to end up in register r at runtime, to machine code mc of type MC, and also
generates a 32-bit offset ∆e of (integer) type Off for r at that point in the program:

C[−]r :: Expr→ MC×Off
C[e]r = (mc,∆e) (1)

Let s(r) be the content of register r in state s of the processor at runtime. The machine
code mc’s action is to change state s0 to an s1 with a ciphertext in r whose plaintext value
differs by ∆e from the nominal value s0(e) (the arrow symbol means ‘steps eventually to’):

s0
mc
 s1 where s1(r) = E [s0(e) + ∆e] (2)

Remark 2. Bitwise exclusive-or or the binary operation of another mathematical group
are alternatives for ‘+’.
For comparison, an ‘ordinary’, non-chaotic, compiler and ordinary execution platform
would instead have the following abstract description:

C[e]r = mc

s0
mc
 s1 where s1(r) = s0(e)

The ‘nominal value’ s0(e) is formalized via a canonical construction. For the encrypted
computing context map variable x to its register rx (the runtime value is offset by a delta
∆x), checking the (ciphertext) content of rx in the state and discounting the delta from the
plaintext value to get s0(x) = D[s0(rx)]−∆x. Arithmetic in the expression is formalized
recursively, with s0(e1 + e2) = s0(e1) + s0(e2), etc. In the ‘ordinary’ context not encrypted
computing, the nominal value of the variable is instead s0(x) = s0(rx) with no offset from
the value in the register at runtime, and no encryption in the latter.

The encryption E is shared with the user and the processor but not the potential
adversaries, the operator and operating system. The obfuscation scheme is known to
the user, but not the processor and not the operator and operating system. The user
compiles the program according to the scheme and sends it to the remote processor with
the encrypted data to execute it on and needs to and does know the offsets at least on
inputs and outputs. That allows the right data to be created and sent off for processing
and allows sense to be made by the user of output received, once they have decrypted it.

5 Instruction Set
As noted in Section 4, conventional instruction sets are not safe against chosen instruction
attacks (CIAs) in an encrypted computing setting. Without knowing any encrypted
constants, it is still possible to program calculations that give a known constant as answer,
such as xE [−]xE , or are biased stochastically towards a known subset. But instruction
sets satisfying (IIa-IId) do not have that problem, by Theorem 1, so what is needed is

P.T. Breuer 13

Table 1: Integer subset of a machine code instruction set for encrypted working.

op. fields mnem. semantics

add r0 r1 r2 kE add r0←r1 [+] r2 [+] kE

addi r0 r1 kE add imm.r0←r1 [+] kE

sub r0 r1 r2 kE subtract r0←r1 [−] r2 [+] kE

mul r0 r1 r2 kE
0 kE

1 kE
2 multiply r0←(r1 [−] kE

1) [∗](r2 [−] kE
2) [+] kE

0
div r0 r1 r2 kE

0 kE
1 kE

2 divide r0←(r1 [−] kE
1) [÷](r2 [−] kE

2) [+] kE
0

. . .
mov r0 r1 move r0←r1
beq i r1 r2 kE branch if b then pc←pc+i, b⇔ r1 [=] r2 [+] kE

bne i r1 r2 kE branch if b then pc←pc+i, b⇔ r1 [6=] r2 [+] kE

blt i r1 r2 kE branch if b then pc←pc+i, b⇔ r1 [<] r2 [+] kE

bgt i r1 r2 kE branch if b then pc←pc+i, b⇔ r1 [>] r2 [+] kE

ble i r1 r2 kE branch if b then pc←pc+i, b⇔ r1 [≤] r2 [+] kE

bge i r1 r2 kE branch if b then pc←pc+i, b⇔ r1 [≥] r2 [+] kE

. . .
b i branch pc ← pc + i

sw (kE
0)r0 r1 store memJr0 [+] kE

0 K← r1
lw r0 (kE

1)r1 load r0 ← memJr1 [+] kE
1 K

jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j

Legend
r – register indices
k – 32-bit integers
pc – prog. count reg.
j – program count
‘←’ – assignment
ra – return addr. reg.
E[] – encryption
i – pc increment
r – register content
kE – encrypted value E[k]
xE [o] yE = E[x o y]
xE [R] yE ⇔ x R y

a practical instruction set architecture (ISA) conforming to (IIa-IId). HEROIC’s ‘one
instruction’ instruction set can be modified to conform by the incorporation of a couple of
encrypted constants in each instruction, as remarked in Remark 1, but it is untried and
impractical as a compilation target.

A ‘fused anything and add’ general purpose ISA suitable for encrypted computing
and satisfying conditions (IIa-IId) is put forward in [7] as a modification to OpenRISC
v1.1 http://openrisc.io/or1k.html. A subset is shown in Table 1 and in all there
are about 200 instructions, comprising single and double precision integer and floating
point and vector subsets, uniformly 32 bits long. Instructions reference up to three of 32
general purpose registers (GPRs). There are just two instructions (load/store: lw/sw) for
memory access. The instruction opcode is in the clear so the decoding unit in the processor
pipeline can act on it, but that allows an adversary to see what kind of instruction it
is, distinguishing addition from multiplication, etc. HEROIC’s instruction set can be
mimicked by emitting only instruction pairs add r0 r0 r1 k

E ; blei i r0 a
E (the latter is the

one-operand, one-constant form of the ble instruction).
To make this information concrete for the reader, a runtime trace for the Ackermann

function2 [38] compiled for this instruction set is shown in Table 2. The machine code is
shown disassembled at left, register updates at right. Encrypted constants are shown with
plaintext exposed and padding hidden. The constants in the instructions have randomized
plaintexts, not 0s, 1s, 2s, etc. as would be expected. That goes for the updates too, except
that for readability the delta in the obfuscation scheme for the return value in register
v0 is set to zero, and the (encrypted) ‘13’ result can be seen. Ackermann’s is the most
computationally complex function possible, stepping up in complexity for each increment
of the first argument, so getting the answer right is a confirmation of the correctness of the
‘chaotic’ compilation technique. It is short, but the code tests conditionals, assignments,
arithmetic, comparators, call and return.

The 32-bit word-sized instructions may need to embed 128-bit or longer encrypted
constants, so ‘prefix’ words are added as needed, carrying 29 extra bits of data each.

2Ackermann C code: int A(int m,int n) { if (m == 0) return n+1; if (n == 0) return A(m-1, 1);
return A(m-1, A(m, n-1)); }.

http://openrisc.io/or1k.html

14 Obfuscation but Not in Name

Table 2: Trace for Ackermann(3,1), result 13.

PC instruction update trace
...
35 addi t0 a0 -86921031E t0 = -86921028E

36 sub t1 t1 t1 -327157853E t1 = -327157853E

37 beq t0 t1 2 240236822E

38 sub t0 t0 t0 -1242455113E t0 = -1242455113E

39 b 1
41 sub t1 t1 t1 -1902505258E t1 = -1902505258E

42 xor t0 t0 t1 -1734761313E 1242455113E 1902505258E

t0 = -17347613130E

43 beq 9 t0 t1 167743945E

53 addi sp sp 800875856E sp = 1687471183E

54 addi t0 a1 -915514235E t0 = -915514234E

55 sub t1 t1 t1 -1175411995E t1 = -1175411995E

56 beq 2 t0 t1 259897760E

57 sub t0 t0 t0 11161509E t0 = 11161509E

...

143 addi v0 t0 42611675E v0 = 13E

...
147 jr ra # return 13E in v0

Legend
(registers)
a0 – function argument
sp – stack pointer
t0, t1 – temporaries
v0 – return value (framed).

5.1 Instruction Diddling

Condition (IIb) of Box II requires one more constant in each branch instruction, an
encrypted bit k0 that decides if the 1-bit result of the test should be inverted. The test
is observable by whether the branch is taken or not, so by (IIc) it should be modifiable
by the compiler via an encrypted instruction constant. The extra bit changes equals to
not-equals and vice versa, a less-than into a greater-than-or-equal-to, and so on. The bit
diddles the instruction. In practice, the bit is composed from the padding bits in the other
constants in the instruction, so it is not explicit in Table 1, where the branch semantics
shown are post-diddle, but the compiler knows what it is.

There is an argument that whether the first program code block after the branch
instruction is the test ‘fail’ or ‘succeed’ case is already hidden by the general method of
‘chaotic’ compilation applied to boolean expressions. That argument is pursued below.

5.2 The Contestable Equals

Diddling works well to disguise less-than instructions and other order inequalities, but not
well for equals versus not-equals. What the instruction is, equals or not-equals, may be
tested by what proportion of operands cause a jump at runtime. If almost all do then that
is a not-equals. If few do then that is an equals. Trying the same operand both sides is
almost guaranteed to cause equals to fail because of the embedded constants k1, k2 in (.=),
so if it succeeds instead, that (seeming!) equality test is (likely) diddled to not-equals.

So if the test succeeds or not at runtime is detectable in practice for an equals/not-equals
branch instruction, contradicting (IIb). To beat that, a compiler must randomly change
the way it interprets the original boolean source code expression at every level so it cannot
be told if the source code, not the object code, had an equality or an not-equals test. It
internally ‘tosses a coin’ as it works upwards through a boolean expression for if the source
code at that point is to be interpreted by a truthteller or a liar. It equiprobably generates,
at each level in the boolean expression, liar code and uses the branch-if-not-equal machine
code instruction for an equality test in the source code, or truthteller code and uses the
branch-if-equal instruction. The technique is a generalization of Yao’s garbled circuits [39],
but the compiler works with deeply structured and recursive logic as well as finite, flat,
boolean normal forms of hardware logic gates.

With that strategy, if the equals branch instruction jumps or not at runtime does not
relate statistically to what the source code says. Condition (IIc) of Box II on the output of
the instruction is effectively vacuous with respect to the source code, as an observer who

P.T. Breuer 15

sees a jump take place does not know if that is the result of a truthteller’s interpretation of
an equals test in the source code and it has come out true at runtime, or it is the result of
the liar’s interpretation and it has come out false. Still, it might be preferable to remove
equals/not-equals.

For other comparison tests, just as many operand pairs cause a branch one way as the
other,3 which makes it indistinguishable as to whether the opcode is diddled or not. An
equality test cannot be recreated by an adversary as x≤y and y≤x because only x≤y+k is
available, for an unknown constant k. Reversed operands is allowed by (IId∗) but produces
y≤x+k, not y+k≤x. An estimate for k might ensue from the proportion of pairs (x, y)
that satisfy the conjunction of the inequality and its reverse, and in particular k<0 would
be signaled by the complete absence of pairs that simultaneously satisfy both. But diddling
means the conjunctions might be x>y+k and y>x+k instead, and those have no solutions
when −k−1 is negative, not when k is negative. So equiprobably k<0 or k≥0, which gives
nothing away.
Remark 3. A boolean ‘liar’ adds a delta equal to 1 mod 2 to 1-bit data beneath the
encryption, a ‘truthteller’ adds 0 mod 2.

6 Chaotic Compilation
This section will describe in more detail but still declaratively and abstractly what a chaotic
compiler for encrypted computing does, hopefully pointing out for a security audience just
what is difficult and what is easy about it.

The point of note is that the compiler works with a ‘deltas’ database D : Loc→Off
containing an integer offset ∆l of integer type Off for data in register or memory location
l (type Loc). The offset is the delta by which the runtime data plaintext beneath the
encryption in the location is to vary from nominal at runtime, following the description in
(1,2), and the database D is the incarnation of the obfuscation scheme of Defn. 4 for this
point in the program code/control graph. The compiler has to remember the offset deltas
as it works through the code, and this database serves as scratchpad.

Routinely, the compiler (any compiler) also maintains a ‘location’ database L : Var→
Loc mapping source variables to register and memory locations. An intermediate layer in
the compiler handles that and that matter is entirely elided here.

The reader uninterested in the detail that is provided can skip it. But the detail is
required in order to prove what will be claimed, namely that the compilation method
implements the tactic (T). There is no way of doing that other than by giving detail.

6.1 Expressions

Filling in (1) in more detail, compiling an expression e to code mce that will get the result
in register r at runtime means the compiler does a computation

(mce,∆r) = CL[D : e]r (3)

where mc is machine code (type MC), a sequence of machine code instructions, and ∆r
is the integer offset (type Off) from nominal beneath the encryption that the compiler
intends for the result in r at runtime. Recall that L is the location database mapping
source code variables to register and memory locations, and D is the database containing
the ‘obfuscation vector’ at this point in the code, a list of planned delta offsets at runtime
beneath the encryption per location. The question is whether the compiler has freedom of
choice in choosing ∆r. It might be that instructions are not available in the instruction

3In 2s complement arithmetic x < y is the same as x− y = z and z < 0 and exactly half of the range
satisfies z < 0, half satisfies z ≤ 0.

16 Obfuscation but Not in Name

set by which it could vary ∆r arbitrarily and equiprobably across recompilations.
To translate x+y, where x and y are signed integer expressions, the compiler emits

machine code mc1 computing expression x in register r1 with offset ∆r1, and emits machine
code mc2 computing expression y in register r2 with offset ∆r2. By induction that is:

(mc1,∆r1) = CL[D : x]r1 (3x)
(mc2,∆r2) = CL[D : y]r2 (3y)

It decides a random offset ∆r in r for the whole expression e, emitting the compound code

mce = mc1; mc2; add r r1 r2 k
E

where add r r1 r2 k
E is the integer addition instruction, with semantics r←r1[+]r2[+]kE ,

and k = ∆r − ∆x − ∆y has been designed so the sum is returned in r with offset ∆r
beneath the encryption. That is:

(mcx+y,∆r) = CL[D : x+y]r (3+)

implementing (3). The offset ∆r is freely chosen. This construct introduces one ‘arithmetic
instruction that writes’, the add, and one arbitrarily mutable offset for it, ∆r. That
implements the tactic (T). There is nothing special about the ‘+’ here that has been taken
as an example, so (3) holds inductively of all pure expressions. The (trivial) base case is
for a simple variable reference x as expression e, which takes a single trivial ‘+0’ addition
instruction to bring it out of the register rx to which it is mapped by L and into r. The
compiler may substitute an arbitrarily chosen ‘+k’ instead of ‘+0’, thus setting the offset
∆r in r as it wills, satisfying (3).

The construction also gives (T), as ∆r for x+y is free and exactly one new ‘instruction
that writes’ to r (the add r r1 r2 k

E) is involved for it in mce and the constant in that is
freely varied without restriction, which is sufficient to vary ∆r freely by (IIc). By induction
every ‘instruction that writes’ in mcx and mcy already is freely varied without restriction.
The base case for a single instruction reference likewise involves one addition instruction
with a freely variable constant. In conclusion, (T) holds inductively of all pure expressions.

Literal constants (0-ary arithmetic operations) as expressions are implemented by a
completely random choice of value by the compiler in register r. The database D merely
records the offset from the nominal (‘intended’) value.

6.2 Statements

The compiler for statements s changes the database D of deltas at multiple locations. The
abstract, high-level description of what it does in delivering code mcs is:

D′ : mcs = CL[D : s] (4)

A less formally complete exposition will be given than for expressions, to relieve the reader.
It merely has to confirm that (T) is satisfied. Consider an assignment statement z=e
(which statement will be called s) to a source code variable z, which the location database
L binds in register r=Lz. By induction code mce for evaluating expression e in temporary
register t0 at runtime is emitted via the expression compiler as in (3) with t0 for r:

(mce,∆t0) = CL[D : e]t0 (3e)

A short form add instruction with semantics r ← t0 [+] kE is emitted to change offset ∆t0
to a new randomly chosen offset ∆′r in register r:

mcs = mce; add r t0 k
E

P.T. Breuer 17

where k = ∆′r −∆t0. That implements (4) for assignment:

D′ : mcz=e = CL[D : z=e] (4ass)

where the change in the database of offsets is at r, to D′r = ∆′r. The new offset ∆′r is
freely and randomly chosen by the compiler, supporting (T), and one new ‘arithmetic
instruction that writes,’ the add, is accompanied by one new random delta, supporting
(T) (by induction, (T) is already true of the code implementing e).

The compilation of code constructs if, while, goto, sequence, is entirely standard and
is left as an exercise for the determined reader. The model of proof above is followed
to show (T) holds. A codicil is that at the end of both branches of conditionals, at the
beginning and end of loops, at source and target of gotos, the offset deltas in the database
D must coincide for reasons of correctness of the computational semantics, which limits
the variability that the compiler can achieve. Within that constraint (T) is satisfied. The
information theory is discussed in Section 7, but the actual code constructions are skipped
here, being clear to ‘one skilled in the art’.

6.3 Ramified Types

The problem with types is that there are so many of them, and the approach to representing
them on an encrypted platform is not intrinsically obvious. A 64-bit integer could be
represented by encrypting the 64-bit plaintext into a 128-bit ciphertext, for example (the
platform we have used for prototyping is physically 128-bit). Or it could be broken into
two 32-bit parts that are encrypted separately as two 128-bit ciphertexts.

Likewise, the way the compiler ought to vary the data is not intrinsically clear. Should
a single 32-bit offset be applied simultaneously to both 32-bit parts of a 64-bit number?
Should the additive carry be passed between the parts, or ignored?

The answers lie with principle (T): every instruction that writes in the trace must vary
to the fullest extent possible. With the instruction set shown in Table 1, the same offset
when writing both 32-bit halves of a 64-bit number would mean that the second write
instruction could not vary in a way distinct from the first, contradicting (T). So the delta
offsets for the two 32-bit halves of a 64-bit number must be separate and independent.

A similar consideration says that every entry in an array (and every 32-bit part of
that entry) must have its own separate, independent, delta offset. The problem is that
the compiler does not know which array entry will be accessed at runtime, so cannot in
principle compile for any particular delta offset. A solution would be a single, shared 32-bit
delta offset for every entry in the array (and every part of every entry), so the compiler
could predict the offset to apply. But that runs foul of (T). It also means that when one
entry is changed, since by (T) the write ought to freely create a new offset, all the other
entries in the array ought to be brought into line for the new array-wide delta offset with
a ‘write storm’, even though the source says they are not being written to. That might
be useful from the point of view of disguising which entry is intended to be written to,
but it is not computationally ‘efficient’ to have linear time complexity writes to an array.
On the other hand, reads are constant time complexity, which is attractive (and what a
programmer expects).

The situation is worse again for pointers, which could point anywhere (the compiler
cannot generally predict). The argument applied above would say that therefore every
part of every data structure must all, universally, share the same delta offset, which makes
nonsense of variability. The only substantial variation in delta offsets would be in registers,
which pointers cannot reference, and memory would get a single delta offset to be applied
everywhere. Another approach is needed and the successful one is discussed below.

18 Obfuscation but Not in Name

6.3.1 Long types

Firstly, the reasoning above concluded that to satisfy (T), double length (64-bit) plaintext
integers x ought to be treated as concatenated 32-bit integer ‘halves’ x = xH . xL, the high
and low 32 bits respectively. The encryption xE of x occupies two registers or two memory
locations, containing the encrypted values E [xH], E [xL] respectively. That is not only
not obvious but also needs notation with which to express the corresponding operational
semantics, or the page would fill with H and L superscripts.

Definition 5. Encryption of 64-bit integers x comprises encryptions of the 32-bit high
and low bit halves separately:

xE = E [x] = E [xH . xL] = E [xH] . E [xL]

Instructions that operate on encrypted 64-bit types contain (encrypted) 64-bit constants
to satisfy (IIc), in order that 64-bit delta offsets across the range can be achieved. But
they may and will be ‘added’ as high+high, low+low separately, with no carry. A carry is
prohibitively difficult to manage in the compiler and it is not necessary from the point of
view of range, and it is justified by Remark 2 (any binary operation of a mathematical
group is valid).

Definition 6. Let −2 and +2 be the two-by-two independent application of respectively
32-bit addition and 32-bit subtraction to the pairs of 32-bit plaintext integer high-bit and
low-bit components of 64-bit integers, with similar notation for other operators. E.g.:

(u1 . l1) +2 (u2 . l2) = (u1 +u2) . (l1 + l2)

Definition 7. Let ∗̃, +̃ etc. denote multiplication, addition, etc. on 64-bit integers written
as two 32-bit integers.

Then a suitable atomic encrypted multiplication operation for the instruction set working
on encrypted 64-bit operands xE , yE and satisfying (IIa-IId) gives the result:

E [(x −2 k1) ∗̃ (y −2 k2) +2 k0] (∗̃)

Here k0, k1, k2 are 64-bit plaintext integer constants embedded encrypted (per Defn. 5) in
the instruction as kEi , i = 0, 1, 2. Putting it in terms of the effect on register contents, a
suitable encrypted 64-bit multiplication instruction is:

rH
0 . rL

0 ← (rH
1 . rL

1 [−2] kE1) [∗̃](rH
2 . rL

2 [−2] kE2) [+2] kE0

For 64-bit operations the processor partitions the register set into pairs referenced by a
single name. In those terms, the multiplication instruction semantics simplifies to:

r0 ← (r1 [−2] kE1) [∗̃](r2 [−2] kE2) [+2] kE0

In the instruction set, that is the primitive, atomic instruction

mull r0 r1 r2 k
E
0 k
E
1 k
E
2

following the general assembly format and nomenclature of Table 1. The l suffix means it
works on ‘long’, i.e., 64-bit, integers. The other arithmetic instructions follow the same
pattern, and compiled code for long integer expressions and statements on the encrypted
computing platform follows exactly the form for 32-bit but with ‘l’ instructions. Just as
for 32-bit, exactly one new encrypted (64-bit) ‘arithmetic instruction that writes’ is issued
per compiler construct, and through it, the 64-bit (i.e., 2× 32-bit) delta offset in the target
may be freely chosen by the compiler, supporting (S) and (T).

P.T. Breuer 19

6.3.2 Short Types

Machine code instructions that work arithmetically on ‘short’ (16-bit) or ‘char’ (8-bit) or
‘bool’ (1-bit) integers are not needed to compile the C language at least, because short
integers are immediately promoted to 32-bit for arithmetic. The compiler generates only
internal accounting for such casts.

6.3.3 Arrays and Pointers

The natural way to bootstrap integers to arrays A of n integers is to imagine a set of integer
variables A0, A1, . . . one for each entry of the array. That allows the compiler to translate
a lookup A[i] as if it were code

int t = i; (t = 0)?A0 :(t = 1)?A1 : . . .

using a temporary variable t and the C ternary operator ‘_?_:_’. A write A[i]=x can be
translated as if it were

int t = i; if(t = 0) A0 = x else if(t = 1) . . .

The entries in the array get individual offsets from nominal ∆A0, ∆A1, . . . in the obfuscation
scheme maintained by the compiler. Amazingly, that is right according to the discussion
with respect to what (T) implies at the beginning of this section, yet it is non-obvious.
One reason why it is non-obvious to a compiler expert is that both on read and write the
scheme is linear time in the size n of the array (it can, however, easily be improved to log
complexity) and array access ‘should’ be constant complexity. It is also apparently going
to be impractical for pointers, where the expressions and statements above would have to
be 232 elements long, as where pointers land at runtime cannot be predicted.

Nevertheless, the extra complexity may be acceptable in this context – array lookup
ought ideally to at least simulate looking at each entry (or many of them) in the array in
order to disguise which is read, so it should not be dismissed on that basis. Multi-core
machines may even be able to execute the component elements simultaneously.

The important technical points of the scheme above are that (a) the in-processor
equality test ignores differences between different encryption aliases of the index and (b) an
invariant set of encrypted addresses E [&A0], E [&A1], etc. are passed to memory, so lookup
is always to the same place even though memory does not decrypt addresses (c.f. the
discussion in Section 1). (Memory access can be said to be subject to hardware aliasing [40]
in the encrypted computing context: i.e., different encryption aliases of an address access
different memory locations, and (a) and (b) combined beat that.)

The scheme works for pointers p too, with lookup *p being compiled like this:

(p = &A0)?A0:(p = &A1)?A1: . . .

The pointer p must be known to be in A, so we have modified C to declare pointers along
with a global range that they point into:

restrict A int *p;

There is still a problem with the scheme in general, however, with respect to the principle
(T). That is that every access to the ith entry A[i] is via precisely the same encryption
alias E [&Ai] as address, and though it beats the hardware aliasing effect, which memory
location it accesses is visible, hence counts in itself as a ‘write’, yet it does not vary as it
might. The processor has to repeat exactly the following calculation to get the address
right again and again. An improvement can be made, but first the code involved has to be
listed explicitly (the reader can take the listing in the next few lines for granted and skip).

20 Obfuscation but Not in Name

Say A starts at the nth stack location, so A[i] is the n+ith (assuming word sized entries).
The plaintext address is sp+(n+i), where sp is the address of the base of the stack. Read
should normally be via this pattern of load word instruction:

lw r E [n+i](sp).

That causes the processor to sum (n+ i)E [+] sE where sE is the value in sp. It passes the
result as effective address. But the value in s differs from its nominal value sp by a ∆sp
planned by the compiler, so the read instruction must be:

lw r E [(n+i)−∆sp](sp)

The same ciphertext E [(n+i)−∆sp] must be used as the constant at every read.
For write, the compiler emits the corresponding store:

sw E [(n+i)−∆sp](sp) r

That works around the ‘hardware aliasing’ effect in encrypted computing but does not
support (T) because the effective address could be varied, as explained below.

6.3.4 Varying Addresses

To satisfy (T) the compiler should vary the address used at every write, by choosing a
new encryption alias for E [&Ai] so a new memory location is written. Reads will be from
there till the next write. That does satisfy (S).

An array or variable on the heap instead of stack necessitates the heap base address
register (zer) instead of sp in the load/store instructions, otherwise code is the same.

Unfortunately, using a new address all the time quickly fills the address mapping cache
(the TLB) at runtime with addresses that will never be used again yet occupy translation
slots. The solution is given below and again involves the compiler.

At the ends of loops (and after the then/else blocks of conditionals, at return from
a function, at the label target of gotos, and wherever two distinct control paths join)
the compiler issues instructions to restore the original address used by copying the data
back to there from the address currently in use. The original delta offsets also have to
be restored, but we will suppose that is done separately. Say the variable in question’s
location is nominally the nth on the stack. The resynchronization instruction sequence is

lw r κ1(sp); sw κ0(sp) r

where κ0, κ1 are the encryption aliases for E [n−∆sp] in use at the beginning and end of
the loop respectively. That reads from the one address then writes to the other.

The solution to the problem that varying the address used to access arrays and variables
fills the TLB with mappings that will not be used again is that the compiler issues an
instruction sequence to remove the mapping for the defunct address:

addi r sp κ1; mtspr UDTLBEIR r;

The addition instruction reproduces exactly the processor pipeline calculation that forms
the effective address, and the ‘move to special purpose register’ (mtspr) instruction sends
it to the special ‘user data TLB entry invalidate register’ (UDTLBEIR), which affects
the TLB.

The register needs an instruction to be executed in operator mode for access to succeed,
so a system call is required, but there is no information leak because in user mode the
same instruction would be used and it only carries the effective address, which is visible by
which memory location is accessed. The compiler can save up these sequences till the end
of a code block or the function body in order to keep defunct entries longer in the TLB
(the advantage is that of bank robbers who shake their pursuers by swapping getaway cars
in a busy car park instead of a quiet cul-de-sac).

P.T. Breuer 21

Table 3: Trace for sieve showing hidden padding bits in data (right). Stack read and write
instruction lines are in red, address base (register content, right) in violet and address
displacement (instruction constant, left) in blue.
PC instruction trace updates | hidden
...
19300 addi t1 sp E[-407791003] t1 ← E[-866593752|1532548040] # write local array
19320 sw E[866593746](t1) t0 mem[E[-6|-712377144]] # a[7] at sp+40

← E[-866593745|1800719299]
...
20884 addi t1 sp E[-1763599776] t1 ← E[2072564771|-1935092797] # write local variable
20904 sw E[-2072564772](t1) t0 mem[E[-1|1518992593]] # i at sp+45

← E[2072564779|-1773201679]
...
22340 addi t1 sp E[-418452205] t1 ← E[-877254954|1532548040]
22360 bne t0 t1 84
22384 addi t1 sp E[-407791003] t1 ← E[-866593752|1532548040] # read local array
22404 lw t0 E[866593746](t1) t0 ← E[-866593745|1800719299] # a[7] at sp+40
22424 addi t0 t0 E[-1668656853] t0 ← E[1759716698|1081155516]
22444 b 540
22988 addi t1 zer E[1759716697] t1 ← E[1759716697|1325372150]
23008 bne t0 t1 44
...
23128 addi t0 sp E[-1763599776] t0 ← E[2072564771|-1935092797] # read local variable
23148 lw t0 E[-2072564772](t0) t0 ← E[2072564779|-1773201679] # i at sp+45
23168 addi t0 t0 E[1723411350] t0 ← E[-498991167|-981581771]
23188 addi t0 t0 E[-1862832992] t0 ← E[1933143137|-1629507929]
23208 addi v0 t0 E[-1933143130] v0 ← E[7 |1680883739] # return
...
23272 jr ra
STOP

6.3.5 Structs and Unions

C ‘structs’ are records with fixed fields. They cause no problem for the compiler at all. It
treats each field in a variable of struct type like a separate variable. That is, for a variable
x of struct type with fields .a and .b the compiler invents variables, x.a and x.b.

For an array A with N entries that are structs, the compiler invents 2N variables Ai.a
and Ai.b. Access to A[i].b causes the compiler to emit code that tests only the .b addresses
in the range dedicated to A, half of the total.

Unions have a surprise. The correct code for accessing a union member is exactly that
for accessing a variable x.b sited at the start of the union x. But they also provide another
indication that the correct way to treat arrays and other long types is via one delta offset
per entry, not one delta offset shared for every entry, despite the compiler problems and
inefficiencies it causes. The reason is that a union of an array with a struct (a common
programming meme) would force all the struct’s fields to the same (single, unique) delta
offset as the array. That goes against the principle (T).

6.4 Memory Example

Running a Sieve of Eratosthenes program4 for primes shows up well how memory accesses
are affected by encrypted address aliasing.

The final part of the trace is shown in Table 3 with two reads from elements on the
stack shown in red. The address base (in register) and address displacement (a constant
in the load/store word instruction) are shown in violet. The assignments to these stack
locations are up-trace and do have the same address base and displacements as in the
later reads. The plaintext addresses -6, -1 reflect the fact that the stack grows down from
top of memory (-1), but it is the E [-6|-712377144] (address -6, padding -712377144) and
E [-1|1518992593], the encryptions of the compound of address and hidden bits, that are

4Sieve C code: int S(int n) { int a[N]={[0. . . N-1]=1,}; if (n>N||n<3) return 0; for (int i=2; i<n;
++i) { if (!a[i]) continue; for (int j= 2*i; j<n; ++j) a[j]=0; }; for (int i=n-1; i>2; --i) if (a[i]) return i;
return 0; } .

22 Obfuscation but Not in Name

passed as the effective addresses to the memory unit.

7 Information Theory of Obfuscation
In this section the degree of independence of data beneath the encryption in a runtime
trace for a program compiled satisfying (S) and (T) will be quantified, improving on the
known ρCSS result in [9]. A trace T is the runtime sequence of writes to registers and
memory locations. If a location is read for the first time without it having previously been
written in the trace, then that is an input. There are no relevant differences in instruction
order or kind (opcode) in this context B.

Trace T is a stochastic random variable, varying across recompilations of the same
source code by a chaotic compiler. The compiler chooses obfuscation schemes as described in
previous sections, and the probability distribution for T depends on the distribution of those
choices. After an assignment to a register r, the trace is longer by one: T ′ = T_〈r=vE〉.
Let H(T) be the entropy of trace T in this setting. I.e., let fT be the probability distribution
of T , the entropy is the expectation

H(T) = E[− log2 fT] (5)

The increase in entropy from T to T ′ (it cannot decrease as T lengthens) is informally the
number of bits of unpredictable information added. Only these fragments of information
theory will be required:

Fact 1. The flat distribution fX=1/k constant is the one with maximal entropy H(X)= log2 k,
on a signal X with k values.

Fact 2. Adding a maximal entropy signal to any random variable on a n-bit space (2n

values) gives another maximal entropy, i.e., flat, distribution.

If the offset ∆r beneath the encryption is chosen randomly and independently with flat
distribution by the compiler, so it has maximal entropy, then H(T ′) = H(T) + 32, because
there are 32 bits of unpredictable information added via the 32-bit delta to the 32-bit
value beneath the encryption, so the 32-bit sum of value plus delta varies with (32-bit)
maximal entropy.

Although per instruction the compiler has free choice in accord with (T), not all the
register/memory write instructions issued by the compiler are jointly free as to the offset
delta for the target location – it is constrained to be equal at the beginning and end of a
loop, and in general at any point where two control paths join (F):

Definition 8. An instruction emitted by the compiler that adjusts the offset in location l
to a final value common with that in a joining control path is a trailer instruction.

Trailer instructions come in sets for each location l at a control path join, with one member
on each path. Each is last to write to l before the join. In particular, there are trailer
instructions before return from a subroutine.

Because running through the same instruction or a different instruction with the same
delta offset for the target location a second time does not add any new entropy (the delta is
determined by the first encounter), the total entropy in a trace can be counted as follows:

Lemma 1. The entropy of a trace compiled according to (T) is 32(n+m) bits, where n
is the number of distinct arithmetic instructions that write in the trace, counted once only
per set if they are one of a set of trailer instructions for the same location, and once each
if they are not, and m is the number of input words.

P.T. Breuer 23

Recall ‘input’ is provided by those instructions that read first in the trace from a location
not written earlier in it.

Observing data at any point in the trace sees variation across recompilations. The
principle (T) asserts that every opportunity provided by an arithmetic instruction that
writes is taken by the compiler to introduce new variation. At ‘trailers’ the compiler
organizes several instructions to synchronize final deltas in different paths but that is
sometimes unnecessary because a location will be rewritten before it is ever read again.
In such cases, the variation the compiler introduces is not maximal because it could be
increased by varying deltas independently. So consider that compiler constructions might
be embedded in a context that reads all locations. Then trailer synchronization is necessary
and the compiler introduces the maximal entropy possible:

Proposition 1. The trace entropy of context-free compiler constructions that conform to
(T) is maximal with respect to varying the constants in the machine code.

The proposition implies at least 32 bits of entropy in the variation beneath the encryption
must exist in any location l where (1) the location has been written, or (2) read without
a prior write. In (1) the datum is written by an instruction and the compiler generates
variations in the obfuscating delta D′l in the obfuscation scheme D′ after the instruction,
or is copied exactly from somewhere else that the compiler influences in that way. In (2)
it is an input, which is subject to planned variations D0l that must be satisfied by the
provider of the input.

The following is obtained by structural induction in [7]:

Corollary 1. (S) The probability across different compilations by a compiler that follows
principle (T) that any particular 32-bit value has encryption E [x] in a given register or
memory location at any given point in the program at runtime is uniformly 1/232.

That formally implies Theorem 2, relative to the security of the encryption. But a stronger
result can now be obtained from the lemma and proposition above:

Definition 9. Two data observations in the trace are (delta) dependent if they are of
the same register at the same point, input and output of a copy instruction, or the same
register after the last write to it in a control path before a join and before the next write.

The variation in the trace observed at two (or n) independent points is maximal possible:

Theorem 3. The probability across different compilations by a compiler that follows
principle (T) that any n particular 32-bit values in the trace have encryptions E [xi],
provided they are pairwise independent, is 1/232n.

Each dependent pair reduces the entropy by 32 bits.

8 Discussion
Theorem 3 quantifies exactly the correlation that exists in data beneath the encryption
in a trace where the compiler follows the principle (T) (every arithmetic instruction that
writes is varied to the maximal extent possible across recompilations). It names the points
in the trace where the compiler’s variations are weak and statistical influences from the
original source code may show through. For example, if the code runs a loop summing the
same value again and again into an accumulator, then looking at the accumulator shows an
observer E [a+ ib+ δ] for a constant offset δ and increasing i. That is an arithmetic series
with unknown starting point a + δ and constant step b and it is likely to be one of the
relatively few short-stepping paths, with small b. That knowledge can be leveraged into
a stochastically based attack on the encryption. But if the encryption has no weakness

24 Obfuscation but Not in Name

to that vector then there is no danger. Such a characteristic of the encryption would be
expressed as ‘there is no polynomial time method that determines a or b from a sequence
E [a+ ib] with probability significantly greater than chance’ (as block size n→∞).

A compiler following the principle (T) does as well as any may to avoid weaknesses
based on relations such as the above between data at different points in the runtime
program trace. The only way to eliminate them completely is to have no loops or branches
in the object code, by Theorem 3. That would be a finite-length calculation or unrolled
bounded loop with branches bundled as E [tx + (1 − t)y] into the calculation, where xE
and yE are the outcomes from the two branches executed separately, and t is the boolean
test result. (Those are essentially the calculations available via FHEs.)

That speaks to classical concepts of obfuscation and security via the following argument,
which shows that the operator does not win game G2 of Section 3.

Claim. Encrypted computing as described in this paper is resistant to polynomial time (in
the block/word size n) attacks by the operator on the runtime data beneath the encryption,
provided the encryption itself is resistant to such attacks.

Proof sketch. Suppose the adversarial operator has a polynomial time (in the number of
bits n in a word on the platform) method of working out what the data beneath the
encryption is in register r at some identified point in the trace of program P . That point
of interest may even move (polynomially) with n, being specified perhaps as ‘the point
of last change in r in the first n3 steps’. The operator knows program P and may have
suggested it themself, before the user compiles it. The operator can see the compiled
maximal entropy code C[P], and see it running and probe it by running it at will.

The user readies a sequence of compilations C[Pn] of P , as described in this paper, with
the nth being for a n-bit platform as target, and P having been partially or completely
unrolled as Pn with no loops or branches in the first en (i.e., super-polynomially many)
machine code instructions. If the program predictably ends before then, it is to be unrolled
completely. These are compilations of the same program P all with the same end-to-
end semantics that could be produced entirely automatically by a monolithic compiler
incorporating the unrolling and branch bundling in its front end. The operator is invited
to apply their method and predict the values beneath the encryption at the chosen points
in the runtime trace(s) of these compiled codes, which may differ only in consequence of
the number n of bits in a word on the platform (i.e., the theory of arithmetic mod 2n).

Theorem 3 implies the operator’s method cannot exist as follows. There are no loops
or branches (hence no delta dependencies, per the terminology of the theorem and Defn. 9)
in the part of the trace the observer has time to examine. The theorem says the compiler
will have arbitrarily and independently varied what is meant by the values throughout
that length of the trace by varying the deltas from the nominal value independently across
each instruction in turn. So there is no reliable relation between the data and the operator
cannot use it as a decryption aid. The operator is reduced to attacking the encryption
with no further information. The encryption on its own is hypothesized to be resistant to
polynomial time attacks, and the claim is proved by contradiction.

The credibility of the argument is supported by the trivial case in which the program
unrolls completely. Then it is equivalent to a logic circuit in hardware, but with the
data on every pin and wire converted to encrypted form. It is known from the theory
of Yao’s garbled circuits [39] that the intended values cannot be deciphered without the
garbling scheme, which equates to an obfuscation scheme of deltas here: ‘+1 mod 2’ is
boolean negation on a 1-bit boolean value, while ‘+0 mod 2’ leaves the 1-bit boolean value
unchanged. The obfuscation scheme is known only to the user, not the operator.

The argument could have been made in 1986 (the year of publication of [39]), if the
hardware and electronic engineers had moved their idea on into general computation.

P.T. Breuer 25

A subtlety is that encryption appears not to be necessary for the argument if one
substitutes for ‘data beneath the encryption’ with ‘value as really intended by the user’.
Yao’s garbled circuits are already garbled without any encryption and equally the code
produced by the chaotic compiler is ‘obfuscated’, with an obfuscation scheme determining
randomly chosen offsets from nominal at every point in the trace. It is a matter of
conjecture for an observer as to what the user/programmer really meant when 2 is in the
trace, because if the obfuscation scheme has -1 as delta at that point, then 3 was really
meant by the user, and if -12 is the delta, then 14 was really meant. All options are equally
feasible, and the compiler has rendered them equally probable. The practical problem is
that the mode of compilation – with exponential unrolling – in the argument for the Claim
of this section leads to unfeasibly long machine code programs, and in any case there is
no guarantee that any particular word size n is not vulnerable, only that in the limit any
particular attack method fails. But that may be moot too as hardware platforms are not
arbitrarily extensible in word length (perhaps they may become so). Simulating a platform
with word length n on a 32 bit platform does not satisfy the axiom of atomicity in Box II.

As a codicil, the treatment of short integer types here (they are promoted to standard
integer length) prompts the question of whether entropy could be increased by changing
to 64-bit or 128-bit plaintext words beneath the encryption, instead of 32-bit, and corre-
spondingly sized delta offsets from nominal. That logic appears correct. The 32-bit range
of variation of standard-sized integers would be swamped by a 64-bit delta introduced
by the compiler and the looped stepping example E [a+ ib+ δ] at the beginning of this
section would have a 64-bit δ, so would have 264 possible origin points for the path for any
hypothetical step b, not 232.

Implementation
At the current stage of development, our own prototype compiler (see http://sf.net/p/
obfusc) has near total coverage of ansi C with GNU extensions, including statements-
as-expressions and expressions-as-statements. It lacks longjmp, and computed goto. It
is being debugged via the venerable gcc ‘c-torture’ test-suite v2.3.3 (http://ftp.nluug.
nl/languages/gcc/old-releases/gcc-2/gcc-2.3.3-testsuite.tar.bz2), and we are
presently about one quarter way through that.

9 Conclusion
How to compile all of ansi C for encrypted computing without decryption on the memory
address (or data) path has been set out here. That opens up the field for software
development using the canonical toolchain of compiler, assembler, linker, loader with
operating system support. It allows processors for encrypted computing to access memory
at normal speeds. The only hardware support needed is a unit granularity address
translation lookaside buffer that remaps encrypted addresses first-come, first-served to
physically backed memory. The compiler inserts instructions that release the mappings.

The technical difficulty is that encrypted addresses vary for the same plaintext address
and distinct calculations for the same address produce a different ciphertext variant. A
systematic coding discipline is followed that overcomes that. The downside of the compiler
solution is that array and pointer access are linear or log time in the array size, not constant
time, but the upside is that all modes of access, e.g., via pointer or displacement in array,
are as compatible as the programmer expects them to be, to any structural depth.

Further, the compiler has to randomly vary the code it generates as much as possible in
order to provide security guarantees. A single principle for the compiler to follow has been
enunciated – any arithmetic instruction that writes must be varied by the compiler to the

http://sf.net/p/obfusc
http://sf.net/p/obfusc
http://ftp.nluug.nl/languages/gcc/old-releases/gcc-2/gcc-2.3.3-testsuite.tar.bz2
http://ftp.nluug.nl/languages/gcc/old-releases/gcc-2/gcc-2.3.3-testsuite.tar.bz2

26 Obfuscation but Not in Name

maximal extent possible. It has been shown that then the compiler is ‘best possible’ in terms
of introducing maximal possible entropy across recompilations to the data beneath the
encryption in a runtime trace, and that swamps biases introduced by human programmers
or other agencies. The theory quantifies exactly an existing ‘cryptographic semantic
security relative to the security of the encryption’ result for encrypted computing, and
implies that the adversarial operator or operating system cannot guess what user data is
beneath the encryption, to any degree better than chance. That is perhaps so even in the
absence of encryption, thanks to an ‘obfuscation scheme’ the compiler modifies the user’s
data with, which an adversary has no basis for distinguishing from the user’s intention.

References
[1] C. W. Fletcher, M. van Dijk, and S. Devadas, “A secure processor architecture for encrypted computation

on untrusted programs,” in Proc. 7th ACM Work. Scal. Trust. Comp. (STC’12). New York: ACM, 2012,
pp. 3–8.

[2] P. Breuer and J. Bowen, “A fully homomorphic crypto-processor design: Correctness of a secret computer,”
in Proc. Int. Symp. Eng. Sec. Softw. Sys. (ESSoS’13), ser. LNCS, no. 7781. Heidelberg/Berlin: Springer,
Feb. 2013, pp. 123–138.

[3] N. G. Tsoutsos and M. Maniatakos, “Investigating the application of one instruction set computing for
encrypted data computation,” in Proc. Int. Conf. Sec., Priv. Appl. Crypto. Eng. Springer, 2013, pp.
21–37.

[4] ——, “The HEROIC framework: Encrypted computation without shared keys,” IEEE Trans. CAD IC
Sys., vol. 34, no. 6, pp. 875–888, 2015.

[5] P. Breuer, J. Bowen, E. Palomar, and Z. Liu, “A practical encrypted microprocessor,” in Proc. 13th Int.
Conf. Sec. Crypto. (SECRYPT’16), C. Callegari et al., Eds., vol. 4. SCITEPRESS, Jul. 2016, pp. 239–250.

[6] ——, “The secret processor will go to the ball: Benchmark insider-proof encrypted computing,” in Proc.
3rd Euro. Symp. Sec. Priv. & Affil. Works. (EuroS&PW’18). CA, USA: IEEE Comp. Soc., Apr. 2018,
pp. 145–152.

[7] ——, “On obfuscating compilation for encrypted computing,” in Proc. 14th Int. Conf. Sec. Crypto. (SE-
CRYPT’17), P. Samarati, M. S. Obaidat, and E. Cabello, Eds., INSTICC. Port.: SCITEPRESS, Jul.
2017, pp. 247–254.

[8] ISO/IEC, “Programming languages – C,” International Organization for Standardization, 9899:201x Tech.
Report n1570, Aug. 2011, JTC 1, SC 22, WG 14.

[9] P. Breuer, J. Bowen, E. Palomar, and Z. Liu, “On security in encrypted computing,” in Proc. 20th Int.
Conf. Info. Comm. Sec. (ICICS’18), ser. LNCS, D. Naccache et al., Eds., no. 11149. Cham, Ger.:
Springer, Oct. 2018, pp. 192–211.

[10] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten, “Lest we remember: cold-boot attacks on encryption keys,” Commun.
ACM, vol. 52, no. 5, pp. 91–98, 2009.

[11] M. Gruhn and T. Müller, “On the practicability of cold boot attacks,” in Proc. 8th Int. Conf. Availability,
Rel. and Sec. (ARES’13). IEEE, Sep. 2013, pp. 390–397.

[12] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard processors,” in Proc.
USENIX Work. Smartcard Tech., May 1999, pp. 9–20.

[13] M. Buer, “CMOS-based stateless hardware security module,” Apr. 2006, USPat. App. 11/159,669.

[14] R. Hartman, “System for seamless processing of encrypted and non-encrypted data and instructions,”
Jun. 29 1993, US Patent 5,224,166.

[15] M. Hashimoto, K. Teramoto, T. Saito, K. Shirakawa, and K. Fujimoto, “Tamper resistant microprocessor,”
2001, US Patent 2001/0018736.

[16] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for CPU-based attestation and
sealing,” in 2nd Int. Work. Hard. Arch. Sup. Sec. Priv. (HASP’13), 2013.

[17] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo, “Using innovative instructions to
create trustworthy software solutions.” HASP@ ISCA, vol. 11, 2013.

[18] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R. Savagaonkar,
“Innovative instructions and software model for isolated execution.” HASP@ ISCA, vol. 10, no. 1, 2013.

[19] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side channels and their use to extract
private keys,” in Proc. ACM Conf. Comp. and Commun. Sec. (CCS’12). New York: ACM, 2012, pp.
305–316.

[20] K. Kissell, “Method and apparatus for disassociating power consumed within a processing system with
instructions it is executing,” Mar. 9 2006, US Patent App. 11/257,381.

P.T. Breuer 27

[21] M. Hicks and S. Nettles, “Dynamic software updating,” ACM Trans. Program. Lang. Syst., vol. 27, no. 6,
pp. 1049–1096, Nov. 2005. [Online]. Available: http://doi.acm.org/10.1145/1108970.1108971

[22] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental poker keeping secret all partial
information,” in Proc. 14th Ann. ACM Symp. Th. Comp., ser. STOC’82. ACM, 1982, pp. 365–377.

[23] S. Rass and P. Schartner, “On the security of a universal cryptocomputer: The chosen instruction attack,”
IEEE Access, vol. 4, pp. 7874–82, 2016.

[24] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. CRC
press, 1996, chapter 10, section 2.2.

[25] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the
integers,” in Proc. 29thAnn. Int. Conf. Th. Appl. Crypto. Tech. (EUROCRYPT’10). Springer, 2010, pp.
24–43.

[26] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,” Foundations
of Secure Computation, Academia Press, pp. 169–179, 1978.

[27] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. 41st Ann. ACM Symp. Th. Comp.
(STOC’09), NY, 2009, pp. 169–178.

[28] P. Breuer, J. Bowen, E. Palomar, and Z. Liu, “Superscalar encrypted RISC: The measure of a secret
computer,” in Proc. 17th Int. Conf. Trust, Sec. & Priv. in Comp. & Comms. (TrustCom’18). CA,
USA: IEEE Comp. Soc., Aug. 2018.

[29] J. Daemen and V. Rijmen, The Design of Rijndael: AES – The Advanced Encryption Standard. Springer,
2002.

[30] R. Weicker, “Dhrystone: A synthetic systems programming benchmark,” Commun. ACM, vol. 27, no. 10,
pp. 1013–1030, Oct. 1984.

[31] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Proc. Int. Conf.
Th. Appl. Crypto. Tech. (EUROCRYPT’99), ser. LNCS, J. Stern, Ed., no. 1592. Heidelberg/Berlin:
Springer, 1999, pp. 223–238.

[32] F. Irena, D. Murphy, and S. Parameswaran, “Cryptoblaze: A partially homomorphic processor with multiple
instructions and non-deterministic encryption support,” in Proc. 23rd Asia S. Pac. Des. Autom. Conf.
(ASP-DAC). IEEE, 2018, pp. 702–708.

[33] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in Proc. 22nd Ann. ACM Symp. Th. Comp.,
ACM. ACM, 1990, pp. 514–523.

[34] J. H. Conway, “Fractran: A simple universal programming language for arithmetic,” in Open Problems in
Commun. and Comp., T. M. Cover and B. Gopinath, Eds. Springer, 1987, pp. 4–26.

[35] A. Biryukov, “Known plaintext attack,” in Encyclopedia of Cryptography and Security, H. C. A. van
Tilborg and S. Jajodia, Eds. Boston, MA: Springer, 2011, pp. 704–705.

[36] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown,” ArXiv e-prints, Jan. 2018.

[37] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[38] Y. Sundblad, “The Ackermann function. a theoretical, computational, and formula manipulative study,”
BIT Num. Math., vol. 11, no. 1, pp. 107–119, Mar. 1971.

[39] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Ann. Symp. Found. Comp. Sci. IEEE,
1986, pp. 162–167.

[40] M. Barr, “Memory,” in Programming Embedded Systems in C and C++, 1st ed., A. Oram, Ed. Sebastopol,
CA: O’Reilly & Associates, Inc., 1998, ch. 6, pp. 64–92.

[41] W. J. Cody, “Analysis of proposals for the floating-point standard,” Computer, no. 3, pp. 63–68, 1981.

[42] D. Goldberg, “What every computer scientist should know about floating-point arithmetic,” ACM Comput.
Surv., vol. 23, no. 1, pp. 5–48, Mar. 1991.

[43] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic of approximate
numbers,” Cryptology ePrint Archive, Report 2016/421, 2016, https://eprint.iacr.org/2016/421.

[44] A. Costache, N. Smart, S. Vivek, and A. Waller, “Fixed point arithmetic in she scheme,” Cryptology ePrint
Archive, Report 2016/250, 2016, https://eprint.iacr.org/2016/250.

[45] S. Arita and S. Nakasato, “Fully homomorphic encryption for point numbers,” in Proc. Int. Conf. Info.
Sec. Crypto. (InSCrypt’16), ser. LNCS, K. Chen, D. Lin, and M. Yung, Eds., vol. 10143. Cham, Ger.:
Springer, 2017.

http://doi.acm.org/10.1145/1108970.1108971
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/250

28 Obfuscation but Not in Name

Appendix
This appendix contains proofs from work that cannot be referred to without breaking the anonymity
rules, and/or that it seems better to avoid interrupting the text with. Accordingly, the referees
should perhaps regard it as additional material that may be incorporated into a final text or
referenced from there, as they may require.

A Proofs
Proposition A0. No method of observation exists by which the operator (who does not possess
the key) may decrypt program output from the ‘fixed’ HEROIC instruction set of Remark 1.

Proof. (Sketch) Suppose program C is written using only the instructions addition of a constant
y←x[+]kE and branches based on comparison with a constant x[<]KE (a ‘fixed’ HEROIC set),
which satisfy (IIa-IId) of Box II. The hypothetical method takes as inputs the trace T and code
C. But a modified code C∗ is constructed below such that (i) it has a trace T ∗ that ‘looks the
same’ as T to the operator, modulo encrypted data, and (ii) the new code C∗ ‘looks the same’ as
C, modulo embedded encrypted constants, so the operator’s method must give the same result
applied to C∗ and T ∗ as it does applied to C and T , which is yE , say. But the code C∗ gives the
output E [y+7] when run, not yE . So the method does not work.

The program C∗ differs from C only in the encrypted constants KE in the branch instructions.
Otherwise it is the same as C. The constants K need changing to match x taking a value that is
7 more than before beneath the encryption. Changing K to K∗ = K+7 achieves that. Branches
jump (or not) as they did before the increase of the plaintext data everywhere by 7. The addition
instructions are consistent as they are with the plaintext increase in both input and output. So
the code does the same at runtime as C does, but on data that is everywhere x[+]7E instead of x,
as required for the contradiction.

Corollary A0. There is no method by which the privileged operator can alter program C using
just add and compare with constant instructions to get output yE for known y.

Proof. Suppose for contradiction that the operator builds program C∗=f(C) that returns yE .
Then its constants kE and KE are found in C, because f has no way of arithmetically combining
them (the no collisions condition (IId) means they cannot be combined arithmetically in the
processor and the operator does not have the encryption key). Proposition A0 says the operator
cannot read y from the output of C∗, yet knows what it is. Done by contradiction.

Theorem A1. There is no method by which the privileged operator can read plaintext runtime
data from a program C built from instructions satisfying (IIa-IId), nor deliberately alter it to give
an intended output yE with y known.

Proof. (Sketch) A modified code C∗ is constructed that looks the same modulo encrypted constants,
and has runtime trace T ∗ that looks the same as the original T modulo encrypted data. The
argument goes as for Proposition A0 and Corollary A0.

In program C, every arithmetic instruction of the form

r0←(r1[−]kE1) [Θ](r2 [−] kE2) [+] kE0

for operator Θ can be changed for C∗ via adjustments in its embedded constants to accommodate
every data value passing through registers and memory to be +7 more beneath the encryption
than it used to be, as in the proof of Theorem A0 and Corollary A0. The change is from ki to
k∗i =ki + 7, i = 0, 1, 2.

A branch instruction in C with test (r1 [−] kE1) [R](r2 [−] kE2) for relation R, the instruction is
changed for C∗ to (r1 [−] E [k∗1]) [R](r2 [−] E [k∗2]) with k∗i = ki + 7, i = 1, 2, and the branch goes
the same way at runtime in trace T ∗ for C∗ as it did originally in trace T for C. Unconditional
jumps are unaltered.

The outcome is a trace T ∗ that is the same as T modulo the encrypted data values, which
by hypothesis cannot be read by the adversary (they differ by 7 from the originals, beneath the
encryption). Code C∗ looks the same too, apart from the embedded (encrypted) constants, which

P.T. Breuer 29

also cannot be read by the adversary. As in the earlier proof, a method f(C, T) for decryption
must give the same result as f(C∗, T ∗), yet the answers (the decrypted data) are different by 7 in
the two cases, so method f cannot exist.

Lemma A1. There is a compile strategy for machine code instruction sets satisfying (IIa-IId)
such that the probability across different compilations that any particular 32-bit value x has its
encryption xE in a given register or memory location at any given point in the program at runtime
is uniformly 1/232.

Proof. Consider the arithmetic instruction I in the program. Suppose that by modifying the
embedded constants in the other instructions in the program it is already possible for all other
locations l other than that written by I and at all other points in the program to vary the
value xl = x+∆x, where xEl is stored in l, randomly and uniformly across compilations, taking
advantage of the properties of the instruction set as the compiler described in the text does. Let
I write value yE in location l. By design, I has a parameter kE that may be tweaked to offset y
from the nominal result f(x + ∆x) by any chosen amount ∆y. The compiler chooses k with a
distribution such that ∆y is uniformly distributed across the possible range. The instructions in
the program that receive yE from I may be adjusted to compensate for the ∆y change by changes
in their controlling parameters. Then p(y=Y)=p(f(x+∆x)+∆y=Y) and the latter probability
is p(y=Y)=

∑
Υ

p(f(x+∆x)=Υ ∧∆y=Y−Υ). The probabilities are independent (because ∆y is

newly introduced just now), so that sum is p(y=Y)=
∑
Υ

p(f(x+∆x)=Υ)p(∆y=Y−Υ). That is

p(y=Y)= 1
232

∑
Υ

p(f(x+dx)=Υ). Since the sum is over all possible Υ, the total of the summed

probabilities is 1, and p(y=Y)=1/232. The distribution of E [xl] = E [x+∆x] in other locations l is
unchanged. At a point where two control paths join the choice of ∆y is not free, but instead must
coincide in the second path to be compiled with the choice already made by the compiler in the
first path to be compiled, which was, however, free. If the first path does not write l at all then
let an ‘add zero’ instruction be inserted in it. Done by structural induction on the machine code
program.

That compile strategy proves Theorem 1 of the text, and also:

Theorem A2 (2 of the main text). Runtime user data beneath the encryption is semantically
secure against the operator for programs compiled by the chaotic compiler of Lemma A1.

Proof. Consider a probabilistic method f that guesses for a particular runtime value beneath the
encryption ‘the top bit b is 1, not 0’, with probability pC,T for program C with trace T . The
probability that f is right is

p((bC,T =1 and f(C, T)=1) or (bC,T =0 and f(C, T)=0))

Splitting the conjunctions, that is

p(bC,T =1)p(f(C, T)=1 | bC,T =1)
+ p(bC,T =0)p(f(C, T)=0 | bC,T =0)

But the method f cannot distinguish the compilations it is looking at as the codes and traces are
the same, modulo the (encrypted) values in them, which the adversary cannot read. The method
f applied to C and T has nothing to cause it to give different answers but incidental features of
encrypted numbers and its internal spins of a coin. Those are independent of if the bit b is 1 or 0
beneath the encryption, supposing the encryption is effective. So

p(f(C, T) = 1 | bC,T = 1) = p(f(C, T) = 1) = pC,T

p(f(C, T) = 0 | bC,T = 0) = p(f(C, T) = 0) = 1− pC,T

By Lemma A1, 1 and 0 are equally likely across all possible compilations C, so the probability f
is right reduces to

1
2 pC,T + 1

2 (1− pC,T) = 1
2

since p(bC,T =1) = p(bC,T =0) = 1
2 .

30 Obfuscation but Not in Name

The information theory in the text is based on the idea that instructions are varied by the
compiler by changing the (encrypted) constants embedded in them, which additively varies
the difference from ‘nominal’ of the result of the instruction through the full possible (32-bit)
range (IIb). The viewpoint is that of an observer who can see the plaintext values beneath the
encryption, because an encrypted word depends one-to-one on the plaintext when padding is
taken into account.

Lemma A2 (Lemma 1 of text). The entropy of a trace is that from the instructions that appear
for a first time in it.

Proof. The delta ∆s from the nominal state s in the experienced state s+∆s is what contributes
to entropy, because the nominal values s themselves are determined. The delta is introduced by an
instruction f that nominally has semantics s0

f7→ s1 but has been varied by the compiler to semantics
f ′ such that s0+∆s0

f ′
7→ s1+∆s1 with s1 = f(s0). The compiler arranges the perturbation ∆f in

the constants of the instruction so that

∆s1 = D′ = f ′(s0)− f(s0)

where D′ is the obfuscation scheme at the point in the program just after the instruction, and
∆s0 = D is that just before it. Both D, D′ are independent of s0, s1. The state change experienced

(s1 + ∆s1)− (s0 + ∆s0)

is the part of the trace due to the instruction and, substituting, it is

f(s0)− s0 + D′ −∆s0

The ∆s0 is produced by previous instructions and f(s0) − s0 is the ‘nominal’ trace from an
unperturbed instruction semantics f , leaving D′ as the source of the entropy contribution by this
instruction. At a second appearance in the trace of the instruction the variation D′ is the same,
and could have been predicted, so contributes no entropy.

For an instruction that reads input x + ∆x from memory location l for the first time, to
register r, say, the data is offset by ∆x = Dl from the nominal value x, where D is the compiler’s
obfuscation scheme at the point in the program just before the instruction runs, and the same
argument applies.

B Floating Point
A practical instruction set for encrypted computing must also manipulate floating point numbers
and this is how it works. Let single precision floating point instructions addf, subf, mulf etc. be
denoted by a trailing f. They work on registers containing (encrypted) 32-bit integers that encode
single precision floating point numbers (‘float’) per the IEEE754 standard [41,42].

Definition B1. Let .
∗,

.
+ etc. denote the floating point operations on plaintext integers encoding

IEEE 754 floats.

Let [.
∗], [

.
+] etc. be the corresponding operations in the ciphertext domain, in the convention noted

at end of Section 2.0.0.9. The multiplication mulf r0 r1 r2 kE1 kE2 kE0 has semantics conforming to
(IIa-IId) as follows:

r0 ← (r1 [−] kE1) [.
∗] (r2 [−] kE2) [+] kE0 (.

∗)
The − and + are the ordinary integer subtraction and addition operations respectively, and
[−] and [+] are the corresponding operations in the ciphertext domain. The insight is that the
semantics fits the theory, and it is as ‘easy’ for this hardware to implement the complex IEEE
operation as any other, notwithstanding contemporary efforts to simplify and adapt floating point
(for homomorphic encryption settings), c.f. [43–45]. It would also not be impractical to do in
software (IEEE floating point emulation compiled encrypted performs well in tests).

The branch-if-equal instruction beqf r1 r2 kE1 kE2 tests

(r1 [−] kE1) [.=] (r2 [−] kE2) (.=)

P.T. Breuer 31

where .= is the floating point comparison on floats via IEEE754, and [.=] is the corresponding test
in the ciphertext domain, with xE [.=] yE iff x

.= y. The subtraction is as integers on the encoding,
not floating point. The instruction is atomic, per (IIa), with embedded encrypted constants kEi ,
i = 1, 2.

Representation of double precision 64-bit floats (‘double’) as 64-bit integers is also specified by
IEEE754. Let instructions that manipulate those (encrypted) be denoted by a d suffix. Registers
are referenced in pairs in the instruction by naming the first of the pair only, its successor in the
processor’s register indexing scheme being understood as the second of the pair. The first of a
pair contains an encrypted integer representing the 32 high bits of the IEEE754 encoding of a
double float, the second contains an encrypted integer encoding 32 low bits.

Definition B2. Let +̈, ∗̈, etc. denote double precision floating point addition, multiplication,
etc. on IEEE754 encodings of doubles as 64-bit (i.e., 2× 32-bit) integers.

Let [∗̈] be the corresponding multiplication operation in the cipherspace domain on two pairs
of encrypted 32-bit integers. Then the multiplication instruction on encrypted double precision
floats has the following semantics, remembering registers are referenced in pairs for double length
operations, and using the pairwise integer add and subtract operators of Definition 6:

r0 ← (r1 [−2] kE1) [∗̈] (r2 [−2] kE2) [+2] kE0 (∗̈)

That satisfies (IIa-IId). It takes encrypted 64-bit double precision float operands in the (pair)
registers r1, r2 and writes to the (pair) register r0. The kEi , i = 0, 1, 2 are encrypted 64-bit
constants each embedded as two concatenated encrypted 32-bit constants in the instruction, which
is written muld r0 r1 r2 kE0 kE1 kE2 .

	Introduction
	Reference Points
	Key Security Concepts
	Background and Related Work
	Instruction Set
	Instruction Diddling
	The Contestable Equals

	Chaotic Compilation
	Expressions
	Statements
	Ramified Types
	Memory Example

	Information Theory of Obfuscation
	Discussion
	Conclusion
	Proofs
	Floating Point

