
Design of Symmetric-Key Primitives for
Advanced Cryptographic Protocols

Abdelrahaman Aly1, Tomer Ashur1, Eli Ben-Sasson2, Siemen Dhooghe1, and
Alan Szepieniec1,3

1 imec-COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

2 StarkWare Industries Ltd
firstname@starkware.co

3 Nervos Foundation
firstname@nervos.org

Abstract While traditional symmetric primitives like AES and SHA3
are optimized for efficient hardware and software implementations, a
range of emerging applications using advanced cryptographic protocols
such as multi-party computation and zero-knowledge proofs require op-
timization with respect to a different metric: arithmetic complexity.
In this paper we study the design of secure cryptographic primitives op-
timized to minimize this metric. We begin by identifying the differences
in the design space between such arithmetization-oriented ciphers and
traditional ones, with particular emphasis on the available tools, effi-
ciency metrics, and relevant cryptanalysis. This discussion highlights a
crucial point — the considerations for designing arithmetization-oriented
ciphers are fundamentally different from the considerations arising from
traditional cipher design.
The natural next step is to identify sound principles to securely nav-
igate this new terrain, and to materialize these principles into concrete
designs. To this end, we present two families of arithmetization-oriented
symmetric-key primitives. By motivating our design decisions at length
with respect to the identified principles, we show that it is possible to
design secure and efficient primitives for this emerging domain.
These primitives — Vision and Rescue — are benchmarked with respect
to three use cases: the ZK-STARK proof system; proof systems based
on Rank-One Constraint Satisfaction (R1CS) systems; and Multi-Party
Computation (MPC). These benchmarks show that our ciphers achieve
a highly compact algebraic description, and thus benefit the advanced
cryptographic protocols that employ them.

Keywords: Vision · Rescue · Marvellous · arithmetization · zero-knowledge
proof · STARK · R1CS · MPC · Gröbner basis · sponge

1 Introduction

Block ciphers are a fundamental primitive of modern cryptography. They are
used in a host of symmetric-key constructions, e.g., directly as a pseudorandom

permutation to encrypt a single block of data; inside a mode of operations to
generate a stream cipher for authenticated encryption; or, after some tweaking,
in a Merkle-Damgård or sponge construction to generate hash functions. This
last example, hash functions, are a fundamental primitive in their own right for
their fitness to approximate a random oracle, and thereby admit a security proof
based on this idealization.

While the security of standard block ciphers and hash functions such as
AES, 3DES, SHA2-256, SHA3/Keccak, is well understood and widely agreed
upon, their design targets an efficient implementation in software and hardware.
The design constraints that make these primitives efficient in their niche, are
different from the constraints that would make them efficient for use in ad-
vanced cryptographic protocols such as zero-knowledge proofs, and multi-party
computation (MPC). The mismatch in design constraints has prompted a de-
parture from the standardized basic algorithms in favor of new designs, such as
LowMC [1], MiMC [3], and Jarvis [5]. The distinguishing feature of these ciphers
is the alternative target for optimization: running time, gate count, memory
footprint, power consumption, are all left by the wayside in favor of the number
of non-trivial arithmetic operations. These ciphers can thus be characterized as
arithmetization-oriented, as opposed to traditional ciphers which do not have the
alternative optimization target.

Arithmetization-oriented cipher design should not be understood from the
perspective of traditional cipher design. The relevant attacks and security ana-
lyses are different. Traditional constructions and modes of operation must be
lifted to the arithmetic setting and their security proofs must be redone. The
target applications are different and provide the designer with a new collection of
tools to secure their design against attacks without adversely affecting efficiency.
This efficiency is captured in terms of arithmetic metrics that vary subtly by ap-
plications — but jointly stand in stark contrast to traditional efficiency metrics
such as the ones mentioned above.

As a field in its own right, the design of arithmetization-oriented ciphers is
in its nascency. Rather than blindly optimize for a single vaguely defined metric
and shipping the resulting construction as soon as possible, it is worthwhile and
timely to stop and re-evaluate formerly optimal strategies with respect to this
new field. The contribution of this work is not just the proposal of two new
ciphers, although that was — and still is — certainly its motivation. The more
important contribution consists of the steps taken towards a more systematic
exploration and mapping of the problem and design landscape that these ciphers
inhabit. Our ciphers, Vision4 and Rescue5 , merely represent the Marvellous
culmination of our journey.

This paper is structured in accordance with a progressive refinement of focus.
First, in Section 2, we characterize the common features of the advanced cryp-

4 In the Marvel comics, Vision is a binary field powered android created by Tony
Stark.

5 In the Marvel comics, Pepper Potts, Chief Executive Officer of Stark Industries, is
a prime character and an occasional superhero under the name Rescue.

2

tographic protocols that arithmetization-oriented ciphers cater to and identify
and clarify the exact and various efficiency metrics that are relevant in those
contexts. Next, in Section 3 we explore the space of design considerations. In
particular, we identify important differences (compared to standard symmetric
cipher design) in terms of the security analysis as well as in terms of the tricks
and techniques that can be employed in order to marry security with efficiency.
Having surveyed the design space we then motivate our position in Section 4;
here we provide concrete answers to questions raised in the preceding sections
regarding the security rationale, potential pitfalls, and application constraints.
Lastly, in Sections 5 and 6 we present the logical consequence of these design
decisions: concrete specifications for Vision and Rescue, two families of the Mar-
vellous universe.

We use three advanced cryptographic protocols as running examples of ap-
plications, and guiding beacons, throughout this paper: zero-knowledge proof
systems for the Turing or RAM models of computation, for the circuit model
of computation, and multi-party protocols. In particular, our discussion charac-
terizes all three as arithmetic modalities of computation. We spend ample time
identifying the correct efficiency metrics along with non-trivial design tools that
these protocols enable. Finally, in Section 7 we compare Vision and Rescue to
MiMC with respect to the relevant metrics in these applications.

2 Arithmetization

Zero-knowledge proof systems for arbitrary computations, multi-party compu-
tation, and indeed, even fully homomorphic encryption, share more than just
a superficially similar characterizer of complexity. Underlying these advanced
cryptographic protocols is something more fundamental: the protocols stipulate
applying algebraic operations to mathematical objects, and somehow these op-
erations correspond to computations.

This correspondence is not new. It was originally introduced by Razborov [37]
as a mechanical method in the context of computational complexity and first
applied to cryptographic protocols by Lund et al. [32]. This method, known as
arithmetization, characterizes a computation as a sequence of natural arithmetic
operations on finite field elements.

Arithmetization translates computational problems — such as determining
whether a nondeterministic Turing machine halts in T steps — into algebraic
problems involving low-degree multivariate polynomials over a finite field. A sub-
sequent interactive proof system that establishes the consistency of these polyno-
mials, simultaneously establishes that the computation was performed correctly.
Similarly, the arithmetic properties of finite fields enable the transformation of a
computational procedure for one machine — for instance, calculating the value
of a function f(x1, x2, x3) — into a procedure to be run jointly by several in-
teractive machines. The practical benefit of this transformation stems from the
participants’ ability to provide secret inputs xi , and to obtain the function’s
corresponding value without revealing any more information about those inputs

3

than is implied by this evaluation. In both cases, the complexity of the derived
protocol is determined by that of the arithmetization.

In the remainder of this section we survey three applications of arithmetiz-
ation in cryptography: zero-knowledge proofs in the Turing or RAM models of
computation, zero-knowledge proofs in the circuit model of computation, and
multi-party computation. The purpose of this survey is to introduce the mech-
anics and to set the stage for analyzing efficiency and design techniques. These
modalities of computation provide the reference frame according to which the
rest of the paper proceeds.

The astute reader will notice that fully homomorphic encryption is frequently
listed among the target applications of arithmetization-oriented ciphers and yet
is missing from both the above discussion and the surveys below. The ciphers
proposed in this paper rely heavily on a family of techniques we call acausal
computation, in which the state of the system at the next computational step
cannot be described as having been caused by the state at the previous step
— see Section 3.1 for a more precise description of this term. To the best of
our knowledge, fully homomorphic encryption does not presently admit acausal
computations. As a result, our ciphers are ill-suited to this application scenario.
We opt to restrict focus to context and aspects relevant for Vision and Rescue;
while the design of ciphers for fully-homomorphic encryption shares much of the
context surveyed in this paper and can properly be characterized as a subfield
of arithmetization-oriented cipher design, we leave this particular question out
of the scope of the present paper and to future work.

Zero-Knowledge Proofs A zero-knowledge (ZK) proof system is a protocol
between a prover and a verifier whereby the former convinces the latter that
their common input ℓ is a member of a language L ⊂ {0, 1}∗ . The proof system
is complete and sound with soundness error ϵ if it guarantees that the verifier
accepts (outputs 1) when ℓ ∈ L and rejects with probability ≥ 1− ϵ when ℓ ̸∈ L.
When this soundness guarantee holds only against computationally bounded
provers we call it an argument system. The proof system is zero-knowledge if
the transcript is independent of the membership or non-membership relation.6
We are concerned here with languages L that capture generic computations in
different models of computation.

Scalable, transparent arguments of knowledge. Let L be a language decidable in
nondeterministic time T (n) , like the NEXP-complete bounded halting problem,

LH = {(M,T) | M is a nondeterministic machine that halts within T cycles.}

Following [10], we say that a ZK proof system for L is
– scalable if two conditions are satisfied simultaneously for all instances ℓ, |ℓ| =

n: (i) proving time scales quasi-linearly, like poly(n) + T (n) · poly logT (n) ,
and (ii) verification time scales like poly(n) + poly logT (n) .

6 Specifically, if authentic transcripts are indistinguishable from transcripts that can
be generated even when ℓ ̸∈ L by not respecting the correct order of messages.

4

– transparent if all verifier messages are public coins. These systems require
no trusted setup phase.

– argument of knowledge if there exists an extractor that efficiently recovers
a witness to membership of ℓ in L by interacting with a prover who has a
sufficiently high probability of convincing the verifier.

Argument systems that possess all of the properties above are referred to as
ZK-STARKs, and have been recently implemented in practice [10], following
theoretical constructions [11,12] (cf. [9] for a prior, non-ZK, STARK).

To reap the benefits of a scalable proof system, it is important to encode
computations succinctly, and one natural way to achieve this is via an Algebraic
Intermediate Representation (AIR), as suggested in [10]. Both Turing machines
and Random Access Memory (RAM) machines can be represented succinctly
using AIRs that we describe briefly now, and more formally in Appendix D.7

An Algebraic Execution Trace (AET) is similar to an execution trace of a
computation. It is an array with t rows (one row per time step) and w columns
(one column per register). The size of the AET is t · w . The main property
distinguishing an AET from a standard execution trace is that each entry of the
array is an element of a finite field Fq. The transition function of the computation
is now described by an Algebraic Intermediate Representation (AIR). An AIR is
a set P of polynomials over 2w variables X = (X1, . . . , Xw), X′ = (X ′

1, . . . , X
′
w),

representing, respectively, the current and next state of the computation, such
that a transition from state s = (s1, . . . , sw) ∈ Fw

q to state s′ = (s′1, . . . , s
′
w) ∈ Fw

q

is valid iff all polynomials in P evaluate to 0 when the values s, s′ are assigned
to the variables X,X′, respectively. (See appendix C for an example.)

To maximize the efficiency of ZK-STARKs, we wish to minimize the three
main parameters of the AIR: the computation time t , the state width w and the
maximal degree d of an AIR constraint (polynomial) in P. While the degree d
does not affect the size of the AET, it does affect the execution time and the
proof size.

Circuit model. Numerous ZK proof systems operate in the model of arithmetic
circuits, meaning that the language L is that of satisfiable arithmetic circuits.
Succinct computations can be “unrolled” into arithmetic circuits, and several
compilers exist that achieve this, e.g., [13, 36, 39]. Such circuits are specified by
directed acyclic graphs with labeled nodes and edges. The edges, or wires, have
a value taken from some ring; the nodes, or gates, perform some operation from
that ring on the values contained by its input wires and assign the corresponding
output value to its output wires. An assignment to the wires is valid if and only
if for every gate, the value on the output wires matches that gate’s operation
and the values on its input wires. In the context of zero-knowledge proofs, the
prover generally proves knowledge of an assignment to the input wires of a circuit
computing a one-way function, meaning that the corresponding output matches
7 Dealing with random access memory requires a variant of an AIR — a Permuted

AIR (PAIR), but all computations discussed later on in this paper can be done with
a constant number of registers.

5

a given public output. Alternatively, the prover can prove satisfiability — that
there exists a corresponding input — which makes sense in the context where it
is also possible for no such input to exist.

Recent years have seen a concentration of effort towards Quadratic Arith-
metic Programs (QAPs) [28] and Rank-One Constraint Satisfaction (R1CS) sys-
tems [13] for encoding circuits and wire assignments in an algebraically useful
way. The circuit is represented as a list of triples ((ai, bi, ci))i . A vector s of
assignments to all wires is valid iff ∀i . (ai

Ts) · (biTs) = ci
Ts . R1CS systems can

be defined over any ring; when this ring is Z/pZ , i.e., the field of integers modulo
some prime p , the R1CS instance captures exactly an intermediate step of the
ZK-SNARK family of proof systems [28]. Additional transparent systems such
as Ligero [4], BulletProofs [17] and Aurora [14] also accept R1CS over different
fields as their input. For the purpose of efficient R1CS-style proofs, the degree of
the constraints describing a cipher is as important as their number: any algeb-
raic constraint of degree higher than two must first be translated into multiple
constraints of degree two, and the complexity parameter we seek to minimize is
the number of R1CS constraints needed to specify the computation.

Multi-Party Computation (MPC) A multi-party computation is the joint
evaluation of a function in individually known but globally secret inputs. In
recent years, MPC protocols have converged to a linearly homomorphic secret
sharing scheme whereby each participant is given a share of each secret value
such that locally adding shares of different secrets generates the shares of the
secrets’ sum. We use the bracket notation [·] to denote shared secrets.

Using a linear sharing scheme, additions are essentially free and multiplic-
ation requires communication between the parties. The number of such mul-
tiplications required to perform a computation is a good first estimate of the
complexity of an MPC protocol.

However, while one multiplication requires one round of communication, in
many cases it is possible to batch many multiplications into a single round.
Moreover, some communication rounds can be executed in an offline phase before
receiving the input to the computation. These offline rounds are cheaper than the
online rounds, as the former does not affect the protocol’s latency and the latter
completely determines it. To assess the MPC-friendliness of a cipher one must
therefore take three metrics into account: number of multiplications; number of
offline communication rounds; and the number of online communication rounds.

An important family of techniques that have a relatively low multiplication
count, offline, and online complexity is masked operations such as the technique
suggested by Damgård et al. [23]. The protocol raises a shared secret to a large
power while offloading the bulk of the computation to the offline phase. Suppose
for instance that the protocol wishes to compute [ae] for some exponent e, given
only the shared secret [a]. The protocol generates a random nonzero blinding
factor [r] and computes [r−e] in the offline phase. In the online phase they
multiply [a] with [r], open [ar], and then locally raise this known number to the
power e . The result of this exponentiation is then multiplied with [r−e] giving

6

(ar)e[r−e] = [aerer−e] = [ae]. A similar procedure enables the computation of
inverses with only a handful of multiplications [6].

We extend this range of techniques in two ways. First, we adapt the technique
of Damgård et al. for exponents of the form 1/α; while the online complexity is
the same, our technique reduces the offline complexity by exploiting the concise
representation of α . Second, we introduce a new technique to efficiently evaluate
the compositional inverse of sparse linearized polynomials. This novel technique
is a contribution of independent interest. We cover these masked operation tech-
niques in more detail as part of our benchmarking. The key observation is that
some polynomials with large powers can be efficiently computed over MPC —
even when counting the offline phase.

3 Design Considerations and Concepts

Cipher design has been subject of research since the publication of the Data
Encryption Standard (DES) [20]. Since then, science has progressed to the point
where designing a new block cipher can be as simple as following a formula:
choose a family of basic operations (e.g., ARX) and a general structure (e.g.,
(G)Feistel, or SPN), components with known cryptographic properties (e.g., S-
boxes with high non-linearity, a linear layer with fast diffusion), add constants to
break symmetry, and set the number of rounds based on theoretical arguments
(e.g., the wide trail strategy) or using automatic tools (e.g., MILP and SAT-
solvers [31,33,34]). This approach, if used properly, results in a secure algorithm
that is resistant to known attacks.

In contrast, arithmetization-oriented ciphers necessitate different design con-
siderations and cannot be understood in the context of traditional cipher design.
While such a design formula could exist in principle, the field has not yet pro-
gressed to the point where it can be articulated. In this section, we highlight and
discuss the considerations identified during our design process that are unique
to arithmetization-oriented algorithms. This section is independent of our cipher
designs. To the extent that it raises questions or concerns, these are answered and
addressed in the context of Marvellous universe’s designs of ciphers in Section 4.

3.1 Acausal Computation

In a procedural model of computation, the state of the system at any point in
time can be uniquely determined as a simple and efficiently computable function
of the system’s state at the previous point in time. The arithmetic modalities
of computation considered in this paper are capable of violating this procedural
intuition. While all participants in the protocols are deterministic and procedural
computers, some emergent phenomena are best interpreted either with respect
to a different time axis or without any respect at all to the passage of time. From
this perspective, they seem to undermine the constraining character of causality
or violate it altogether. We call these phenomena acausal computations.

7

It is possible to design and define ciphers in terms of acausal computations.
Doing so can offer security against particular or general attacks without having
to increase the number of rounds. This benefits the efficiency of the advanced
cryptographic protocol capable of computing the acausal operations efficiently.
As a result of this design strategy, the cipher might be more expensive to evaluate
on traditional, progressive computers; however, this is not the defining metric to
begin with.

Consider for example the inversion operation x 7→ xq−2, for some x ∈ Fq.
When the field is large, so is the exponent, and as a result a progressive evalu-
ation is expensive. We show how this operation is captured efficiently by acausal
computation in various arithmetic modalities.

In the case of zero-knowledge proofs, the particular variant of acausal com-
putation is known as non-determinism. The honest prover, who has evaluated
the cipher locally, is in possession of all the intermediate states including x and
y = xq−2, and the verifier possesses only commitments to these values. The
verifier is incapable of computing the values directly, but establishing that the
expressions x(1−xy) and y(1−xy) both evaluate to 0 accomplishes the desired
effect — convincing the verifier that y was computed correctly from x.

In the case of multi-party computations, the acausal computation originates
from the capability of masked operations to offload certain calculations to the
offline phase, where they do not affect online efficiency. In particular, in the
offline phase the protocol prepares two shared values, [a] and [b] satisfying a ̸= b
and b = a−(q−2). Then in the online phase, [ax] is opened and the result is
inverted locally before being multiplied with [b], yielding [y] = (ax)q−2 [b]. This
description ignores the special care necessary when x = 0 but the point remains
that the number of online multiplications (which are expensive) is independent
of the power to which the shared secrets are raised.

Another example of acausal computation arises in the polynomial modeling
prelude to deploying a Gröbner basis attack — which is arguably another arith-
metic modality of computation. The observation here is that the attack does not
need to follow the same sequence of events involved in evaluating the cipher.
The attacker can search for x and y simultaneously and require their consist-
ency through the polynomial equation xy− 1 = 0. Note that the adversary may
choose to ignore case x = 0 if the probability of this event is sufficiently small,
as it is when working over large fields.

The takeaway is that acausal computation adds another dimension to cipher
design, and opens the door to completely new types of constructions. While
all algorithms presented in this paper (and, to the best of our knowledge, all
published algorithms in this space) follow a traditional, progressive structure of
an iterative cipher, acausal computation admits a departure from this strategy.
Since progressive evaluation is no longer necessary, one can go a step further
and consider operations whose progressive evaluation is expensive. The space of
admissible ciphers extends even beyond functions to relations between pairs of
objects, or of tuples even, whose defining computations admit an efficient acausal

8

representation. We leave the design of relational ciphers, along with a compelling
selling point therefor, as an open question.

3.2 Efficiency Metrics

Unlike their traditional counterparts, arithmetization-oriented ciphers do not
attempt to minimize execution time, circuit area, energy consumption, memory
footprint, etc. — at least not as a first order consideration. Instead, these ciphers
optimize algebraic complexity as described in terms of AIR or R1CS constraints
for zero-knowledge proofs; and number of multiplications, number of offline and
online rounds of communication for MPC. The common feature of these met-
rics is the gratuitous nature of linear operations. With respect to non-linear
operations, each metric introduces its own subtleties. Even the cost of a single
multiplication differs from metric to metric depending on where in the cipher
that multiplication is located.

To illustrative this discrepancy, consider a state consisting of m field elements
in some field Fq. Suppose that we want to square one of these m elements over
a non-binary field. This would require 1 multiplication in an MPC protocol, but
would require an entire row (m entries) in algebraic execution trace of a STARK
proof. Should we want to raise the element to a higher power α, we can use
masking techniques in MPC at a fixed online cost that is independent of α, and
yet it would require log2(α) R1CS constraints. The exception is when α has a
small inverse in Z/(q−1)Z; then the R1CS representation can be optimized with
an acausal computation.

At the risk of stating the obvious, even when restricting to zero-knowledge
proof systems, ciphers can have a different cost depending on whether they are
encoded as R1CS and AIR. For instance, raising a value to the power α requires
log2(α) R1CS constraints, meaning that the cost is the same for all values in the
range]2log2(α)−1, 2log2(α)]. In contrast, a system encoded in AIR can specify the
maximal degree d of the polynomials describing the system, giving rise to a cost
of logd(α) AIR constraints.

Another subtlety is introduced by the introduction of acausality, which is used
precisely because its effect on the relevant efficiency metrics is small. In particu-
lar, low-degree power maps, low-degree affine polynomials, and their functional
inverses, all have efficient acausal computations.

Importantly, and unlike in the case of traditional cipher design, the size of the
field over which the cipher is defined, is immaterial to its cost of operation. For
example, changing the base field of a hash function from F2128 to F2256 doubles
the digest length at no additional cost.

The flipside of the cheapness of native field operations is the expensiveness
of non-native operations that traditional ciphers typically are composed of. For
example, the exclusive-or operation is extremely cheap for traditional ciphers
because the platforms on which they run represent everything as sequences of
bits; however, applying the same operation to elements of an odd-characteristic
field requires first computing this bit expansion, which is prohibitively expensive.

9

Arithmetization-oriented ciphers must sacrifice the security benefits conferred by
mixing algebras.

3.3 Cryptanalytic Focus

In traditional cipher design, statistical attacks — particularly, differential and
linear cryptanalysis — are considered to be the main threat. The alternatives
to statistical attacks, algebraic attacks, seldom deliver better results despite be-
ing a subject of active research. However, the opposite seems to be the case for
arithmetization-oriented ciphers, for two reasons. First, the flexibility in choosing
the field size, the gratuitous nature of scalar multiplication, and acausal compu-
tation, allow killing statistical attacks in a rather small number of rounds.

Second, and more importantly, the optimization of ciphers for arithmetic
modalities of computation has the unfortunate side-effect of enabling attacks
that exploit their low arithmetic complexity. Any cipher whose operations are
described by simple polynomials gives rise to a range of attacks that manipu-
late those same polynomials algebraically (and enjoy the speedup afforded by
acausal computation). While it is true that any function from finite fields to finite
fields can be represented by a polynomial, the problem is that arithmetization-
oriented ciphers make this polynomial representation concise and thereby reduce
the complexity of algebraic attacks that are otherwise wildly infeasible. Among
this class of algebraic attacks we count the interpolation attack [29] and the GCD
attack [3, §4.2], and, warranting particularly close attention, Gröbner basis at-
tacks. For an overview on the processes involved in Gröbner basis attacks, we
refer the reader to Appendix A; we proceed here assuming familiarity with these
concepts.

The interpolation and GCD attacks rely on the univariate polynomial ex-
pression of the ciphertext in function of the plaintext (or vice versa). Their
complexity, and their countermeasures, are mostly understood. In essence, it is
sufficient to ensure that the algebraic degree of the univariate polynomial de-
scribing the algorithm is of high enough degree and dense for the algorithm to
be deemed secure against these attacks.

In contrast to these attacks, Gröbner basis attacks admit a multivariate poly-
nomial description and are much more difficult to qualify in terms of complexity.
This difficulty stems from a variety of sources:

– The field of arithmetization-oriented cipher design is a relatively new field,
spurred by recent progress in advanced cryptographic protocols. For ciphers
not optimized for arithmetic complexity, merely storing the multivariate
polynomials in memory tends to be prohibitively expensive, let alone run-
ning a Gröbner basis algorithm on them. As a result, Gröbner basis attacks
are rarely considered and poorly studied.8

– There may be many ways to encode a cipher as a system of multivariate
polynomials, or more generally, to encode an attackable secret as the common

8 Interestingly, AES, which is surprisingly arithmetizible considering that it was not
designed as such, also admits certain algebraic attacks [18].

10

solution of a set of multivariate polynomial equations. As such, Gröbner basis
attacks do not constitute one definite algorithm but a family of attacks whose
members depend on the particular choices made while modeling the cipher
as a collection of polynomials.

– The complexity of Gröbner basis algorithms is understood only for systems
of polynomial equations satisfying a property called regularity, which cor-
responds to the algorithms’ worst-case behavior. Even if a given system of
polynomial equations is regular, it is difficult to prove that this is the case
without actually running the algorithm. The complexity of Gröbner basis
computation of irregular systems can be characterized in terms of the sys-
tem’s degree of regularity, but once again there is no straightforward way to
compute this degree without actually running the Gröbner basis algorithm.

– In some cases, the actual Gröbner basis calculation is relatively simple but
the corresponding variety contains parasitical solutions in the field closure.
Additional steps are then required to extract the correct base field solution,
and these post-processing steps may be prohibitively complex. The para-
sitical solutions are typically eliminated by converting the Gröbner basis
into one with a lexicographic monomial order, at which point at least one
basis polynomial is univariate; factorizing this polynomial identifies the solu-
tions in the base field. The complexity of monomial order conversion can
be, and often is, captured via that of the FGLM algorithm [26]; however
an alternative algorithm called Gröbner Walk does not have a rigorous com-
plexity analysis and yet is observed to outperform FGLM sometimes in prac-
tice [16]. More fundamentally, the diverse range of options afforded to the
attacker when modeling the cipher in terms of polynomials as well as during
other steps of the Gröbner basis attack, suggest that this typical strategy
of monomial order conversion and factorization may be merely one out of
many: it is eminently plausible that there are alternative strategies to filter
out parasitical extension field solutions.

The dual design criteria of both having an efficient arithmetization and of-
fering security against Gröbner basis attacks seem to be fundamentally at odds
with each other. A concise polynomial description of a cipher benefits both the
algebraic attack and the advanced cryptographic protocol that uses it. Con-
sequently, the question of security against Gröbner basis attacks is the crucial
concern raised by arithmetization-oriented ciphers, and no such proposal is com-
plete without explicitly addressing it.

We observe that non-deterministic encodings used in zero-knowledge proofs
have a counterpart in the cipher’s polynomial modeling and make both the zero-
knowledge proof and the Gröbner basis algorithm more efficient. Furthermore, we
conjecture that this duality is necessarily the case, even for tricks and techniques
that we may have overlooked.

The relative importance of Gröbner basis attacks is illustrated by Jarvis [5]
and MiMC [3], two arithmetization-oriented ciphers that were proposed with
explicit consideration for a wide range of attacks, but not attacks based on
computing Gröbner bases. However, shortly after its publication, a Gröbner basis

11

attack that requires only a single plaintext-ciphertext pair was used to discover
non-ideal properties in Jarvis [2]. An investigation of MiMC using the same
attack was argued to be infeasible [2, Sec. 6]. While finding the Gröbner basis is
easy, the next two steps — monomial order conversion and factorization of the
resulting univariate polynomial — are not, owing to the infeasibly large number
of parasitical solutions in the field closure.

However, relying on the large number of parasitical solutions for security
against Gröbner basis attacks is a new security argument and a risky one. The
simple observation that using more than just one plaintext-ciphertext pair makes
the system of equations overdetermined, and thus filters out all parasitical ex-
tension field solutions with overwhelming probability, seems to undermine this
argument. We note that the complexity analysis of overdetermined polynomial
system solving requires delicate attention and it is conceivable that the result-
ing attack is also infeasible but for a different reason. However, the point is that
even if this is the case, MiMC’s security is not guaranteed by the large number of
parasitical solutions. Either way, these observations raise the question whether
there is a systematic argument for Gröbner basis security that does not depend
on the particular flavor of the attack. In Section 4.5 we answer this question
positively by providing such an argument.

3.4 Translation of Existing Cryptographic Constructions

Cryptographic primitives are generally not used directly but as part of a larger
scheme (e.g., a mode of operation). When using an arithmetization-oriented
primitive as part of such a scheme, it is important to address several concerns,
starting with efficiency. Consider for example AES-CTR — it is easy to see that
this mode of operation mixes two algebras: F28 for the block cipher part and Z
for the counter. The result is a mode of operation with a prohibitively inefficient
arithmetization.

Another important aspect that is easy to overlook is that the interface of the
scheme may not be properly defined to work with field elements. As an instructive
example we consider sponge constructions. A sponge construction generates a
hash function from an underlying permutation by iteratively applying it to a
large state. The state of a sponge function is defined to consist of b = r+ c bits,
where r and c are called the rate and the capacity of the sponge, respectively. In
other words, sponge functions are inherently defined to work over vector spaces of
F2 (with the exclusive-or and conjunction operations as their native operations).
We show in Section 4.4 how to fix this mismatch of algebras specifically for the
case of sponges; however, such a straightforward fix might not always be possible.

Perhaps most importantly is to note that even if the security of a construc-
tion is well understood in the traditional setting, this knowledge may not be
transferable to the arithmetized variant. A case in support of this point is the
Merkle-Damgård construction in the face of Gröbner basis attacks. We observe
that in certain cases the degree of regularity grows slowly but surely as a function
of the round number when Davies-Meyer is used, whereas the degree of regu-
larity remains constant(!) when Miyaguchi-Preneel is used. This is a surprising

12

observation since PGV hash functions are believed to be interchangeable in prac-
tice. We conjecture that absence of growth is due to the interface through which
the unknowns are introduced. In particular, in Miyaguchi-Preneel the chaining
value is introduced via the key interface and since this value is initially known,
the key schedule does not contribute to the complexity of the resulting system
of equations. We suspect that this vulnerability has an analogue in traditional
cryptanalysis. We note that the practical interchangeability of the PGV con-
structions remains an open question.

The key takeaway from this section is that using schemes that are well un-
derstood in the traditional model may not be straightforward in the arithmetic
model. Before instantiating a primitive in an existing construction, it is import-
ant to check that the construction is efficient with respect to the application at
hand, properly defined, and that its security proof translates to the computa-
tional model being considered.

3.5 Concluding Words

Our survey of the advanced cryptographic protocols employing arithmetic mod-
alities of computation is by no means complete. Consequently, our matching
survey of the design considerations induced by the advanced cryptographic pro-
tocols that we do cover, is likewise incomplete.

For example, fully homomorphic encryption is missing from our list of cryp-
tographic protocols and yet induces other design considerations, starting with
the conjectured unavailability of acausal operations. Another difference is that
multiparty computations and zero-knowledge proofs tend to be flexible with re-
spect to the operating field, and in principle this field is not an input to the
security calculation. By contrast, the field of choice in fully-homomorphic en-
cryption is intricately linked to the security provided by the encryption scheme.
A third difference with fully homomorphic encryption is that both additions and
multiplications accrue noise, although the noise increase due to multiplication is
much greater. As a result, additions are not free but merely much cheaper than
multiplications.

It is possible that we overlooked other advanced cryptographic protocols
employing arithmetic modalities of computation, or that other are yet to be in-
vented. If there is a demand on the part of these protocols for symmetric ciphers,
then the design considerations for such ciphers ought to be re-evaluated in light
of the target protocol and application. In such an event, the points and questions
raised by our analysis provide an ample roadmap for such a reassessment.

Lastly, we note that the field of algebraic attacks seems rather underexplored.
As a result, it is difficult to make a compelling security argument valid for
the entire family of attacks. We expect third party analysis to contribute to
fleshing out this field and hope that this analysis confirms the merit of our
design principle for addressing algebraic attacks (Section 4.5).

13

4 Design Decisions

Following the discussion in Section 3 it is clear that designing an arithmetization-
oriented cipher is different from designing a traditional one and that the different
considerations lead to different design decisions. In this section we explain and
motivate the design decisions we made in the course of developing the Marvellous
designs Vision (Section 5) and Rescue (Section 6). We begin by explaining our
motivating principles.

4.1 General Structure

Vision and Rescue are two primitives based on substitution-permutation net-
works operating over fields of even and odd order, respectively. Both families
manipulate a state of m > 1 elements seen as a column vector. A round of the
function includes two steps. In every step an S-box is applied to each of the m
state elements, followed by an MDS matrix which mixes the elements together.

The S-box consists of a power map, possibly composed with an affine layer.
The exact maps used are detailed in the parts specific to Vision and Rescue and
so is the difference between the the odd and even step within each round. The
cipher is an iterative application of the round function N times with different
round keys derived from the key schedule.

4.2 Key Schedule

The key schedule of the algorithms reuses the round function. The master key is
fed through the plaintext interface and random round constants are used where
the subkey is normally injected. The subkeys are then determined as the value
of the state immediately following the constant injection.

The round constants are derived in the following way: we use SHAKE256
to expand a short seed into enough randomness from which one samples the
first round constant (with rejection as necessary to ensure that the bit string
does not represent a subfield element nor an integer larger than or equal to the
prime modulus). All subsequent constants are obtained by applying an affine
transformation to the previous one. The first round constant and the coefficients
of the affine transformation can be generated deterministically using the code
provided in [38].

In recent years, driven by the advent of lightweight cryptography, complex
key schedules have fallen out of favor. For the Marvellous designs we have decided
to take the opposite approach, namely a heavy (i.e., non-linear) key schedule.
This complexity is motivated by the following arguments:

– The domain of arithmetization-oriented ciphers is relatively new and it pays
to err on the side of safety until the landscape of possible attacks has been
explored more thoroughly.

14

– One of the use cases of arithmetization-oriented ciphers is hashing; and in
this case it is possible to completely hide the complexity overhead of the key
schedule as its input is a known IV or fixed key. In other cases it may be
possible to amortize the cost of the key schedule over the cost of the entire
execution.

– A straightforward Gröbner basis attack on the block cipher represents a key
recovery from one or a few plaintext-ciphertext pairs. When the key schedule
is simple — say, linear — then the same variables that are used to represent
the key in one round can be reused across all other rounds. A complex key
schedule introduces many more variables and equations, making the system
of equations that much more difficult to solve. Reusing the round function
in the key schedule is a conceptually simple way to require at least as many
polynomials and variables in the polynomial modeling step as are required
to attack the hash function.

– A less straightforward Gröbner basis attack on the block cipher targets the
injected subkeys rather than the master key. However, as these are different
and have no attackable relation, they must be treated as independent vari-
ables. Consequently, at least 2N plaintext-ciphertext pairs (one per step)
are necessary to uniquely determine these subkeys. With the resulting ex-
plosion in the number of variables and equations, even a very mild degree of
regularity makes the system of equations unsolvable in practice.

4.3 Efficiency

Throughout the Marvellous design, we only use arithmetization-efficient maps
or the functional inverse of one. The realization of functional inverse maps is
not always efficient when implemented straightforwardly. However, all advanced
protocols considered in this paper enable acausal computations that make the
functional inverse of an arithmetization-efficient operation itself arithmetization-
efficient as well.

A particularly useful property of our designs is the inverse trade-off between
m and N (i.e., the number of field elements in the state and the number of
rounds, respectively). We see that for higher m, the degree of regularity grows
faster in each round. This allows to treat m as a parameter that can be tweaked
in order to favor a lower multiplicative depth in exchange for a lower base field
size. For example, a large m can be used to build an n-ary Merkle-tree rather
than a binary one and thus shrink the authentication paths. As the S-boxes
operate in parallel, a large m allows to compress m multiplications into a single
communication round in an MPC protocol.

4.4 Arithmetic Sponge

A sponge construction generates a hash function from an underlying permutation
by iteratively applying it to a large state [15]. Traditionally, the state is thought
of as consisting of b = r + c bits, where r and c are called the rate and the
capacity of the sponge, respectively. In every iteration of the absorbing phase,

15

r bits of the input are injected into the state until there are no new input bits
left; in every iteration of the squeezing phase, r bits of the state are read out
until the desired output length is met. We slightly adapt this definition to allow
for hashing of field elements. Instead of working over bits, the rate part now
consists of rq field elements in Fq. The remaining cq = m − rq elements of the
state constitute the capacity and their size determines the security of the sponge.

To turn the block ciphers into permutations, the secret key is fixed to zero.
The resulting permutation is then used in a sponge construction to obtain an
extendable output function and, if the output length is fixed, a hash function.
We note that the sponge mode can also be used to turn the permutations into
stream ciphers. However, exploring this option is beyond the scope of this paper.

The resulting sponge absorbs (using field addition) and squeezes rq field
elements per iteration and offers log2(cq) bits of security. Note that increasing rq
and keeping cq fixed increases the throughput of the sponge without significantly
affecting the cost and not at all the security.

4.5 Security

We now give a high-level overview of the algorithms’ security countermeasures
applied to inoculate them against attacks. A more rigorous description of how
each attack is prevented can be found in Appendices G–H.

Statistical Attacks In the design of traditional symmetric-key primitive, res-
istance to differential and linear cryptanalysis is of utmost importance. Building
on the work of Nyberg [35] we see that S-boxes consisting of a power map have
good differential and linear properties and that these properties can be easily
derived once the field is specified. Using the wide trail strategy we bound the
maximum differential probability and linear correlation of an active S-box.

An interesting observation here is that these quantities improve directly (from
the designer’s point of view) as a function of the field size. Since the state is
treated as a column vector (rather than a matrix as in AES) fast diffusion is
also achieved since the MDS guarantees that if at least one S-box is active before
the MDS, m+ 1 S-boxes would be active afterwards.

We require that the field Fq is at least 4-bit wide and that 2m ≥ q such that
a state-wide MDS matrix exists, which offers resistance against differential and
linear cryptanalysis after four rounds. We refer the interested reader to [22] for
a more elaborate description of the wide trail strategy, and to Appendices G–H
for the exact derivation in our case.

It is unclear how linear cryptanalysis would look like for ciphers operating
over elements of Fp with p prime. Normally, linear cryptanalysis searches for
a linear combination of input-, output-, and key bits that is unbalanced, i.e.,
biased towards 0 or towards 1. As such, linear cryptanalysis seems tailored to
work over the field F2. No analogue to this behavior exists for Fp. All reasonable
extensions of linear cryptanalysis to this case would treat an element in Fp as we
would normally treat bits and search for a expression approximating a ciphertext

16

(which is an element in Fm
p) as a multivariate linear polynomial in Fp. Since the

polynomial is dense and of high degree, there is no straightforward way to go
about finding such a linear approximation. However, we stress that we do not
have a rigorous argument for the inapplicability of linear cryptanalysis in this
setting and the dual questions — how to lift linear cryptanalysis to this setting,
and how many rounds can be attacked — remains open.

Structural Attacks Self-similarity attacks work by splitting a cipher into mul-
tiple sub-ciphers that are similar to one another, for some definition of similarity.
This allows to attack one of the sub-ciphers and use the self-similarity to cleverly
link this part with the other ones.

The invariant subspace attack works by observing that all the values of a
certain subspace that enter the round function are mapped to outputs within a
subspace. The input and output subspaces do not have to be the same.

The standard way to resist these attacks is to inject round constants which
break the similarity between different parts of the algorithms, and lift the state
out of the subspace being attacked. In our case, we opt to add these constants
to the key schedule, resulting in a “fresh” value injected into the state in every
round. Note that even when instantiated inside a sponge function, the key sched-
ule still outputs a non-zero value in each step and that value is injected into the
state. The improved efficiency in this case is due to the fact that the constants
can be precomputed and hard-coded into the realization of the algorithm.

Algebraic Attacks The way to resist most algebraic attacks is to ensure that
the polynomial describing the output of the primitive is dense and of high degree.
Initially, having a high degree polynomial appears to be at odds with having an
efficient arithmetization-oriented primitive. We resolve this apparent contradic-
tion by using maps of high degree that can be computed efficiently owing to
acausal operations and operating on m ≥ 2 state elements. The MDS matrix
thus ensures a good mixing, resulting in a dense polynomial.

Gröbner basis attacks are of particular interest here. Recall that a Gröbner
basis attack consists of the following steps:

(i) computing the Gröbner basis in degrevlex order;
(ii) converting the Gröbner basis into lex order;
(iii) factorizing the univariate polynomial, and back-substituting its roots.

We use the following design principle to argue security against Gröbner basis
attacks:

the security of arithmetization-oriented ciphers against Gröbner basis attacks
should come from the infeasible complexity of computing the Gröbner basis in

degrevlex order.

This principle guarantees that the Gröbner security is independent of the pres-
ence of parasitical solutions in the field closure; if present and large in number,

17

these parasitical solutions represent a superfluous security argument because the
attacker has to get past step (i) in order to get to step (iii). More importantly,
with this principle, the number of parasitical extension field solutions required
for an infeasible univariate factorization is no longer a constraining factor in
determining of the number of rounds.

In order to guarantee that finding the first Gröbner basis is prohibitively
expensive, we implement the cipher and an attack and observe the degree of
regularity experimentally for small round numbers. We assume a constant re-
lation between the observed concrete degree of regularity, and the degree of
regularity of a regular system of the same number of equations, degrees, and
variables. Conservatively, assuming ω = 2 as the linear algebra constant and
extrapolating from there, we set the number of rounds such that this Gröbner
basis attack has the required complexity.

This Gröbner basis attack represents a preimage search attacking the sponge-
based hashing mode as described in Section 4.4 with m = 2, in which one data
block is absorbed and one digest block is squeezed out. Alternative Gröbner
basis attacks induce a greater complexity due to the increase in the number of
variables without a disproportionate increase in the number of equations. When
used as a block cipher instead of as a hash function, variables and equations need
to be introduced to account for the key schedule. Since this key schedule is as
complex as the sponge-based hash function, the resulting Gröbner basis attack
must be at least as expensive. These attacks on Vision and Rescue are discussed
in more detail in Appendices G–H.

Number of Rounds To set the number of rounds for each primitive we con-
sider ℓ, the maximal number of rounds that can be attacked by any of the at-
tacks above. Our analysis shows that algebraic attacks other than Gröbner basis
ones do not extend beyond three rounds, and that statistical attacks can be
used against four rounds at most. For most parameters we considered, the most
dangerous attack is the Gröbner basis attack and we discuss its analysis when
determining the number of rounds in the respective sections. Having determined
ℓ, we set the number of rounds to be 2ℓ with a minimum of 10 rounds.

4.6 Concluding Words

Given the present state of development of arithmetization-oriented cipher design,
our design choices can hardly be argued to be the right ones or to enjoy wide-
spread consensus as being good ones. However, the common theme throughout
all choices is the preference for erring on the side of safety, thereby minimizing
the risk of unforeseen fatal attacks. As we see in the sequel, even with this conser-
vative approach, our ciphers are extremely efficient in the use cases we identified.
Still, we hope that independent third-party analysis reaches the conclusion that
our design choices were indeed too conservative, and that the complexity and
security margins can safely be reduced.

18

5 Vision

We now describe the first family of the Marvellous universe of ciphers, Vision,
whose design is inspired by that of AES. Since we already discussed the design
decisions leading to Vision in Section 4, we only discuss here the technical spe-
cification of the algorithm.

The State The native field in which Vision operates is F2n/m where n is the
security level desired (in bits) and m is the number of field elements in the state.
The state is viewed as a column vector of m field elements and is an element of
the vector space Fm

2n/m .

S-Box The S-box of Vision consists of two operations composed with one an-
other. The first is the inverse power map which is expressed as the following
power map

f : F2n/m → F2n/m : x 7→ x2n/m−2 ,

or in rational form

f(x) =

{
1/x, if x ̸= 0 .

0, otherwise .

Similar to the S-Box of Rijndael, the multiplicative inverse is followed by an
affine polynomial. Recall that an F2-linearized affine polynomial is of the form

B(x) = b−1 +

n/m−1∑
i=0

bix
2i ∈ F2n/m [x] .

Such a polynomial is a permutation over F2n/m if and only if its linear part only
has the root 0 in F2n/m .

In fact, two S-boxes (π1, π2) are used in Vision. The first S-box, π1, consists
of the inversion function composed with the functional inverse of the F2-affine
polynomial. The second S-box, π2, uses the multiplicative inversion composed
with a direct evaluation of the same polynomial. When evaluated in the forward
direction (i.e., in encryption mode), π1 ensures that the algebraic degree of
the polynomial description of the algorithm is sufficiently high. Similarly, when
evaluated backwards (i.e., in decryption mode), π2 achieves the same goal.

Round Function The round function consists of two steps. In each step, the
state goes through a non-linear layer followed by a multiplication with an MDS
matrix. The non-linear layer applies π1 to each of the m elements if this is the
first step of the round, and applies π2 if it is the second. Followed by the non-
linear step, an MDS matrix which is the same for both steps is used to mix the

19

state. A schematic description of a single round (two steps) of Vision is depicted
in Figure 1 and the pseudo-code of the cipher is listed in Algorithm 1.

Algorithm 1: Vision
Input: Plaintext P , round keys Ks for 0 ≤ s ≤ 2N
Output: Vision (K,P)

State0 = P +K0

for r = 1 to N do
for i = 1 to m do

Interr[i] = (Stater−1[i])
−1

Interr[i] = B−1(Interr[i])
end
for i = 1 to m do

Stater[i] =
∑m

j=1 M [i, j]Interr[j] +K2r−1[i]

end
for i = 1 to m do

Interr[i] = (Stater[i])
−1

Interr[i] = B(Interr[i])
end
for i = 1 to m do

Stater[i] =
∑m

j=1 M [i, j]Interr[j] +K2r[i]

end
end
return StateN

To generate the ciphertext from a given plaintext, the round function is
iterated N times with a key injection before the first round, between every two
steps, and after the last round.

S2i−2

x−1

...

x−1

B−1

...

B−1

M

x−1

...

x−1

+

K2i−1

B

...

B

M S2i+

K2i

Figure 1: A single round (two steps) of Vision

Choosing the Number of Rounds As explained in Section 4, the number
of rounds is determined by the Gröbner basis attack. Experiments on reduced
parameters show that the base-2 logarithm of the complexity of such an attack is
lower-bounded by 5.5mN . Accounting for a factor 2 security margin, we recom-
mend 2⌈n/5.5m⌉ rounds, with a minimum of 10 rounds, for ciphers operating
on a state of m elements and targeting an n-bit security level.

20

6 Rescue

The second family of algorithms in the Marvellous universe is Rescue. Rescue
is similar to Vision, but this time operating on elements of prime fields rather
than binary ones.

The State The native field in which Rescue operates is Fp. The state is viewed
as a column vector of m field elements and is seen as an element of the vector
space Fm

p . The security level afforded by the algorithm is m · log2(p).

S-Box Similar to Vision, Rescue uses a pair of S-boxes π1 and π2. The S-boxes
consist of the power maps x1/α and xα, respectively, where α is the smallest
prime such that gcd (p− 1, α) = 1 .

For most fields, α = 3 suffices. When possible we recommend to choose
the field such that α = 3 is viable. In some cases the field is determined by the
intended application and cannot be chosen freely. For example, the 255-bit prime
field Fr, which is used for the multiplications made over the BLS12-381 curve
used by ZCash, does not satisfy gcd (r − 1, 3) = 1 making α = 3 unsuitable for
this case. Instead, to use this field one can choose α = 5 since gcd (r − 1, 5) = 1.

The map x1/α is the function f : Fp → Fp such that ∀x ∈ Fp : f(xα) = x or
f(x)α = x . We note that this power map exists since gcd(p− 1, α) = 1 . More
specifically, 1/α · α ≡ 1 (mod p− 1) .

Round Function The round function of Rescue consists of two steps. In the
first step, π1 is used, followed by and MDS matrix. In the second step, π2 is
used, again followed by an MDS matrix.

To generate the ciphertext from a given plaintext, the round function is
iterated N times with a key injection before the first round, between each two
steps, and after the last round.

A schematic description of a single round (two steps) of Rescue can be found
in Figure 2 and the pseudo-code of the cipher is listed in Algorithm 2. Note

21

that here, similar to Vision, both steps are efficient for prover and multi-party
computations owing to the low degree of xα .

Algorithm 2: Rescue
Input: Plaintext P , round keys Ks for 0 ≤ s ≤ 2N
Output: Rescue (K,P)

State0 = P +K0

for r = 1 to N do
for i = 1 to m do

Interr[i] =
∑m

j=1 M [i, j](Stater−1[j])
1/α +K2r−1[i]

end
for i = 1 to m do

Stater[i] =
∑m

j=1 M [i, j](Interr[i])
α +K2r[i]

end
end
return StateN

S2i−2

x
1
α

...

x
1
α

M

xα

...

xα

+

K2i−1

M S2i+

K2i

Figure 2: One round (two steps) of Rescue where the addition with the key is
taken over a prime field.

Choosing the Number of Rounds Similar to the case Vision we see that
the most prominent attack is the Gröbner basis attack. We find that the base-2
logarithm of the attack complexity is lower-bounded by 4mN . Accounting for a
factor two security margin, we set the number of rounds to 2⌈log2(p)/4⌉ with a
minimum of 10 rounds, for a security level of m log2(p).

7 Benchmarks

In this section we analyze the efficiency of Vision and Rescue with respect to
three use cases: AIR constraints for ZK-STARKs (Section 7.1), Zero-Knowledge
Proofs based on R1CS Systems (Section 7.2, and MPC protocols (Section 7.3).
Section 7.4 provides a comparison of the algorithms with MiMC-q/q and MiMC-
2p/p.

Notation. We use the following conventions. Variables of multivariate polyno-
mials are denoted with capital letters (X,K,R, . . .) . Plain variables denote the
current state and primed variables (X ′,K ′, R′) denote variables describing the

22

state at the next cycle of the computation. We limit ourselves to constraints
involving only two consecutive states. We use [i, j] (or [i]) to select the indicated
element from a matrix (resp. vector). When not affixed to a vector the nota-
tion [m] is shorthand for the set {1, . . . ,m}. Furthermore, we extend set-builder
notation to indicate multiple set members for each conditional satisfaction, i.e.,
{ai, bi | i ∈ [2]} = {a1, a2, b1, b2}.

7.1 AIR Constraints for ZK-STARKs

We begin by realizing the two algorithms in AIR, the Domain-Specific Language
(DSL) used to encode ZK-STARKs. For the sake of readers not versed in the
relevant definitions related to STARKs [10] we recall those, along with a simple
motivating example in Appendices C and D.

Encoding of a Vision Step as a Set of AIR Constraints We present an AIR
with w = 4m , t = 2 and degree d = 2 for a single step of Vision. The sponge-
based Vision hash replaces the key schedule with fixed constants, and hence has
half the width of the cipher (w = 2m) and the same length. We describe only
the second step in the round in which B(X) is used. The first step, which uses
B−1(X) , is analogous. First we deal with computing the key schedule, which
requires 2m variables, denoted K[1], . . . ,K[m] and R[1], . . . , R[m] . Let M [i, j]
denote the (i, j)-entry of the MDS matrix M , let Ck[i] ∈ F2n/m be the ith field
element of the kth step constant, and let B(Z) = b0 + b1Z + b2Z

2 + b3Z
4 be the

quartic polynomial used by Vision.

1. The first cycle is used to compute the map x 7→ xq−2 , mapping x to its
inverse when x is nonzero and otherwise keeping x unchanged. The following
set of constraints (polynomials) ensures this,

{K[i]K ′[i]−R[i],K[i](1−R[i]),K ′[i](1−R[i]) | i ∈ [m]} .

To see this, notice that when K[i] ̸= 0 the second constraint forces R[i] = 1
in which case K ′[i] = K[i]−1 , and when K[i] = 0 the first constraint forces
R[i] = 0 so the last constraint forces K ′[i] = 0 as well.

2. The second cycle uses the auxiliary variable R[i] to equal K[i]2 , and so,
there exists a quadratic polynomial in K[1], . . . ,K[m] and R[1], . . . , R[m]
that computes the concatenation of the quartic polynomial B along with
the linear transformation M and the addition of the step constant Ck used
in the kth step. The following constraints ensure that K ′[1], . . . ,K ′[m] hold
the correct values, given K[1], . . . ,K[m] ,{

R[i]−K[i]2,K ′[i]−

(
Ck[i] +

m∑
j=1

M [i, j]
(
b0 + b1K[j] + b2R[j] + b3R[j]2

)) ∣∣∣ i ∈ [m]

}
.

A single step of the cipher is identical to the key schedule, with the main
difference being that instead of adding a step constant (denoted Ck above) we
add the kth key expansion during that stage. It follows that with 2m additional

23

variables and essentially the same set of constraints as above, we have accounted
for the full AIR of the Vision round.

The Vision hash is a sponge construction and so the keys are fixed to certain
known constants. The key schedule is dropped, leading to an AIR of width
w = 2m and t = 2 cycles per step.

Note that one could use different AIRs than described above to capture the
same computation, just as we could use different AIRs to capture the Fibonacci
computation of the example in Appendix C. For instance, one may increase the
number of cycles per step from 2 to 2m, while decreasing the width from 4m to 4 ,
by operating on the m state registers sequentially instead of in parallel. However,
this alternative description does not reduce the overall size of the AET which
stands at 8m per step (and 16m per round). Similar trade-offs can be applied
to Rescue, as well, which we discuss next.

S

x3

...

x3

M

x
1
3

...

x
1
3

+

K2k

M S′+

K2(k+1)−1

Step 2 of Round k Step 1 of Round k + 1

Figure 3: An adapted representation of a round of Rescue better suited for
STARK evaluation.

Encoding of a Rescue Step as a Set of AIR Constraints Rescue is quite
similar to Vision but simpler from an algebraic perspective. The main difference
between the two ciphers is that the inverse step of Vision is replaced with a
cubing operation (i.e., α = 3) and the quartic polynomial is removed. The result
is that each step of the Rescue key schedule or state function involves only m
cubic polynomials (or inverses thereof), so we can encode it via an AIR using
d = 3 with a single cycle per step and width m.

The representation of the Rescue round function admits an optimization
owing to acausal computation. Consider an adapted round as shown in Fig-
ure 3. Here, the first step of the adapted round is “folded” into its second
step. This leaves the first and last steps of the entire primitive to be taken
separately. We connect S and S′ from the middles of rounds k and k + 1
using m cubic equations, effectively skipping the evaluation of the state after
round k. The result is that we can encode the adapted round function via an
AIR with a single cycle per round, d = 3 and width m. The following con-
straints ensure that S′[1], . . . , S′[m] hold the correct values, given S[1], . . . , S[m] ,
K2k−1[1], . . . ,K2k−1[m] and K2(k+1)−1[1], . . . ,K2(k+1)−1[m] ,{∑m

j=1 M [i, j](S[j]3 +K2k−1[i]
3)−

(∑m
j=1 M

−1[i, j]
(
S′[j]−K2(k+1)−1[j]

))3 ∣∣∣ i ∈ [m]

}
.

24

Where we used that K2k[i] =
∑m

j=1 M [i, j]K2k−1[i]
3 for all i ∈ [m]. We conclude

that the Rescue state function AIR has degree d = 3 , state width w = m and
t = 1 cycle per round. Since the above encoding does not require K2k, the key
schedule admits a similar optimization. As a result, the Rescue key schedule AIR
also has degree d = 3 , state width w = m and t = 1 cycle per round. When the
cipher is used as a hash in sponge mode, Rescue does not require an AIR for the
key schedule; this was also the case for Vision.

7.2 Zero-Knowledge Proofs Based on R1CS Systems

In this section we evaluate the efficiency of Vision, Rescue and MiMC when en-
coded as rank one constraint satisfaction (R1CS) systems. Such systems are used
by many zero-knowledge proof systems that operate on arithmetic circuits, such
as Pinocchio [36], ZK-SNARK [13], Aurora [14], Ligero [4], and Bulletproofs [17].

Encoding of a Vision Step as a System of Rank-one Constraints Re-
calling the two cycles of the AIR for Vision recounted earlier for constructing
each of the key and round (Section 7.1), we convert them into a system of R1CS
constraints. Consider the key schedule first; the cipher round is identical. The
first cycle is converted into 3m R1CS constraints. The second cycle splits the
evaluation of the affine polynomial into two parts, each involving one squaring
and thus m constraints for each part, resulting in a total of 2m constraints for
the second cycle. For this latter constraint we notice that over binary fields (of
size 2k , integer k) it is the case that∑

j

M [i, j]b3R[j]2 = (
∑
j

αjR[j])2

for the constants αj satisfying α2
j = M [i, j]b3 .Since each step involves both the

key derivation and the cipher step, we observe that the cost of a Vision block
cipher step is 10m R1CS constraints, and that of a round is 20m .

When used in sponge hash mode the key schedule is fixed, and so the num-
ber of R1CS constraints per step is halved. This gives a total number of 5m
constraints per step (and twice that number per round.).

Encoding of a Rescue Step as a System of Rank-one Constraints To
efficiently encode a step of Rescue for α = 3, we use two R1CS constraints
to compute the cube of a state variable giving a total of 2m constraints for
the cubing operations over the whole state. The step using the inverse cubing
map is analogous. The linear combinations due to the MDS matrix M can be
integrated into these 2m constraints. Since the same computation is applied to
the key schedule when used as a cipher, we count 4m per step, twice as many
constraints (8m) per round, and 2m constraints per step for Rescue used in
sponge hash mode because the key schedule is fixed.

25

7.3 MPC with Masked Operations

In this section we explore how to implement Vision and Rescue over MPC using
masked operations.9 We consider three masked operation techniques: one tech-
nique to find the inverse of a shared field element due to Bar-Ilan and Beaver [6];
one technique to raise a shared element to an arbitrary but known power due
to Damgård et al. [23]; and one new technique to compute the compositional
inverse of a low-degree linearized polynomial. The last two techniques are novel
and their descriptions can be found in Appendix E.

The common strategy behind these techniques is to apply random and un-
known masks to a shared secret value and opening their sum. The operation
proper is applied to the opened variable giving a known but still-masked output
value. The mask on this output value is then removed by combining it with the
output of a dual operation applied to the original shared random mask. The
benefit of these techniques comes from shifting the computation of this mask
and its dual to the offline phase, which is possible as this computation does not
depend on the value to which the operation is applied. In the online phase, the
regular operation is computed locally (i.e. without needing to communicate);
the dual operation does require communication but it is cheaper.

The first two of these techniques require zero-tests — sub-protocols that
produce a sharing of 1 if its input is a sharing of 0, and a sharing of 0 otherwise.
Our MPC implementations of Rescue and Vision are agnostic of the particular
zero-test as well as of the secret sharing mechanism. In the sequel we present
figures without taking the zero test into account.

Computing a Vision Round over MPC Recall that elements of the state
in Vision are members of the extension field F2n/m . Since we use a linear secret
sharing scheme, we can perform the additions and multiplications-by-constants
from Vision in a straightforward manner, namely by manipulating shares locally.
In particular, this means that applications of the MDS matrix to the working
state impose no extra cost. However, nonlinear operations do not admit such
a straightforward realization and instead require creative solutions to retain an
efficient implementation.

Only two component blocks of Vision induce a cost: the inversion operation,
and the polynomial evaluation of B and B−1 . All other operations are linear
and thus free. Recall that the state of Vision consists of m field elements. There-
fore, each round includes m initial inversions, m inverse-polynomial evaluations,
followed by another m inversions and m regular polynomial evaluations. These
m executions are independent and can therefore be performed in parallel. The
cipher consists of N rounds in total. The key schedule algorithm doubles these
numbers, but its cost can be amortized over the entire execution of the protocol
so we neglect it here.

9 For the sake of completeness, we also consider MPC implementations based on the
more straightforward square-and-multiply algorithm in Appendix F.

26

To evaluate the inversion step, we use the technique due to Bar-Ilan and
Beaver [6], of which pseudocode is given in Appendix E. This procedure requires 2
communication rounds and works for all non-zero elements x ∈ F2n . In scenarios
where the shared value is unlikely to be zero (i.e., if the field is large enough),
this technique can be used directly. Ignoring the zero test, the total cost of this
method is 1 communication round: it is possible to merge a multiplication and
an opening call.

A similar approach can be used to compute B−1(x). To the best of our
knowledge, this masking technique is novel and is thus an independent contri-
bution of this paper. However, in the interest of brevity, we only describe it in
Appendix E.2 together with pseudo-code.

The implementation of a round of Vision follows straightforwardly from using
these building blocks, along with linear (and thus local) operations. A round of
Vision consists of 2 calls to the inversion protocol at a total cost of 2 communic-
ation rounds (ignoring the zero-test), the evaluation of B−1(x) with an overall
cost of 3 communication rounds (2 of which are be precomputed in an offline
phase), and the evaluation of B(x) at a cost of 2 communication rounds. While
these elements are performed on each of the m elements, they are performed
independently and are hence parallelizable. The total complexity of Vision is
therefore

offline rounds: 2 ,
online rounds: 2 + 1 + 2 = 5 ,
multiplications: m · (2 + 3 + 2) = m · 7 .

Computing a Rescue Round over MPC The only nonlinear operations of
Rescue to take into account are the α and inverse-α power maps. To achieve
this, We have adapted, for any arbitrary large α , the exponentiation technique
introduced by Damgård et al. [23]. This way, we can offload a portion of the
computation to an offline phase and retain a constant online complexity (i.e., 1
round). A small adaptation of this technique computes the inverse power map
at the same online cost. We summarize this adaptation in Appendix E.3.

Each procedure requires ⌈log2 α⌉+2 multiplications in total, and ⌈log2 α⌉+2
communication rounds (including the 1 online round). In the case of the inverse
alpha map, obtaining [r−1] can be combined with the exponentiation, thus re-
ducing by one the number of communication rounds. All operations on r can be
executed in parallel during an offline phase as they do not depend on the input
and on each other.

The implementation of Rescue is now straightforward. Each power map is
applied in parallel to all m elements of the state. The multiplication with the
public MDS matrix is free. The cost of a single round is therefore

offline rounds: ⌈log2 α⌉+ 1 ,
online rounds: 2 ,
multiplications: 2m · (⌈log2 α⌉+ 2) .

27

7.4 Comparison

To compare MiMC with Vision and Rescue, we set m = 2 , n = 128 , p = 264+13 ,
q = 2129−45 and α = 3. For the purpose of the present comparison, the number
of AIR constraints (of degree d) is given by the value of w · t, we ignore the
zero-test for MPC and observe that the offline parts can be done in parallel for
all rounds. We stress that in the interest of a fair comparison with MiMC, we
provide figures of merit only for the case of m = 2, which is on the one hand, the
smallest m we deem secure, and on the other hand, the largest m that allows for
such comparison. However, noting that our designs achieve an inverse trade-off
between m and the number of rounds, setting m to a higher value would show
that the Marvellous designs are even more efficient than how they are portrayed
here.

We compare the three algorithms for AIR (Table 1), R1CS (Table 2) and
masked MPC (Table 3) in two scenarios: as block ciphers and as sponge functions.
For 128-bit block cipher security, we require 24 rounds of Vision; 32 rounds
of Rescue; 82 rounds of MiMC-q/q; and 164 rounds of MiMC-2p/p. Since the
absorption and squeezing of inputs and outputs in the case of MiMCHash-q/q
are not native operations to the working field, they require complex arithmetic to
achieve. By contrast, MiMCHash-2q/q is much better suited to arithmetization
and thus what we compare our algorithms (in hash mode) against. In sponge
mode these parameters offer only 32 bits security against collisions; nevertheless
they allow for an apples-to-apples comparison with the same rate and capacity.
Note that the field size does not change the cost under the metrics we consider
in this paper (i.e., arithmetic complexity).

Table 1: Comparison of Vision, Rescue, MiMC-q/q and MiMC-2p/p over AIR.
With m = 2 , n = 128 , p = 264 + 13 , α = 3 , q = 2129 − 45. We see that when
evaluated as a block cipher, MiMC significantly outperforms both Vision and
Rescue. When evaluated as a hash function Rescue outperforms both MiMC and
Vision.

Mode Degree (d) Width (w) Cycles (t) w · t
Vision BC 2 8 96 768
Rescue BC 3 4 33 132
MiMC-q/q BC 3 1 82 82
Vision Hash 2 4 96 384
Rescue Hash 3 2 33 66
MiMC-2p/p Hash 3 2 82 164

8 Conclusion

This paper explores the design of secure and efficient symmetric-key primitives
for advanced cryptographic protocols based on arithmetization. It starts by sur-
veying three protocols that fit this description — zero-knowledge proofs for the

28

Table 2: Comparison of Vision, Rescue, MiMC-q/q and MiMC-2p/p over R1CS.
With m = 2 , n = 128 , p = 264 + 13 , α = 3 , q = 2129 − 45. We see that when
evaluated as a block cipher, MiMC significantly outperforms both Vision and
Rescue. When evaluated as a hash function Rescue outperforms both MiMC and
Vision.

Mode Constraints per Step Steps Total
Vision BC 20 48 960
Rescue BC 8 64 512
MiMC-q/q BC 2 82 164
Vision Hash 10 48 480
Rescue Hash 4 64 256
MiMC-2p/p Hash 2 164 328

Table 3: Comparison of the Vision, Rescue, MiMC-q/q and MiMC-2p/p over
MPC using masked operations. With m = 2 , n = 128 , p = 264 + 13 , α = 3 ,
q = 2129−45. We see that when comparing the number of multiplications, MiMC
has the lowest count as a block cipher, with Vision as close second. For the hash
case, it is Vision which has the lowest multiplication count. When considering the
number of online rounds, which determines the execution time of the protocol,
Rescue beats the other two algorithms both as a block cipher and as a hash
function.

Mode Offline Rounds Online Rounds Multiplications
Vision BC 2 120 336
Rescue BC 3 64 512
MiMC-q/q BC 3 82 328
Vision Hash 2 120 336
Rescue Hash 3 64 512
MiMC-2p/p Hash 3 164 656

29

Turing or RAM models of computation, for the circuit model, and multi-party
computations.

The design considerations unique to designing arithmetization-oriented prim-
itives are discussed. We show that the set of efficient building blocks available to
the designer of an arithmetization-oriented cipher is different from those avail-
able to designers of a traditional cipher. We also observe that the efficiency
metrics are different, as well as the security concerns. This last point we discuss
at length, particularly in the context of Gröbner basis attacks, and we propose a
strategy to ensure that an arithmetization-oriented cipher is secure against this
class of attacks.

After this discussion we turn to designing two new families of arithmetization-
oriented ciphers — Vision and Rescue — new members of the Marvellous uni-
verse. These primitives are benchmarked with respect to three use cases: the
ZK-STARK proof system; proof systems based on Rank-One Constraint Sat-
isfaction (R1CS) systems; and Multi-Party Computation (MPC), and we com-
pare them in these settings to MiMC. We see that the Marvellous algorithms
are extremely efficient. Despite the conservative nature of these designs, they
outperform MiMC in all but a few cases.

Acknowledgments The authors would like to thank Vincent Rijmen and Daira
Hopwood for their useful comments.

This research was partly funded by Starkware Industries Ltd., as part of
an Ethereum Foundation grant activity. The first author was also supported
by Research Projects Agency (DARPA) and Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070. The second
author was supported by the Research Council KU Leuven, C16/18/004. Author
4 is supported by a Ph.D. Fellowship from the Research Foundation - Flanders
(FWO). Author 5 was supported by an IWT doctoral grant and by the Nervos
Foundation. These supports are greatly appreciated.

References

1. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. Cryptology ePrint Archive, Report 2016/687 (2016), http:
//eprint.iacr.org/2016/687

2. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechber-
ger, C., Schofnegger, M.: Algebraic cryptanalysis of stark-friendly designs: Applica-
tion to marvellous and mimc. Cryptology ePrint Archive, Report 2019/419 (2019),
https://eprint.iacr.org/2019/419

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicat-
ive complexity. In: ASIACRYPT 2016, Part I. pp. 191–219. LNCS (2016).
https://doi.org/10.1007/978-3-662-53887-6_7

4. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: ACM - CCS 2017 (October 2017)

5. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic prim-
itives. IACR Cryptology ePrint Archive 2018, 1098 (2018)

30

http://eprint.iacr.org/2016/687
http://eprint.iacr.org/2016/687
https://eprint.iacr.org/2019/419
https://doi.org/10.1007/978-3-662-53887-6_7

6. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: ACM Symposium on Principles of Distributed
Computing 1989. pp. 201–209 (1989). https://doi.org/10.1145/72981.72995

7. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving. pp. 71–74 (2004)

8. Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5
gröbner basis algorithm. J. Symb. Comput. 70, 49–70 (2015). ht-
tps://doi.org/10.1016/j.jsc.2014.09.025

9. Ben-Sasson, E., Bentov, I., Chiesa, A., Gabizon, A., Genkin, D., Hamilis, M.,
Pergament, E., Riabzev, M., Silberstein, M., Tromer, E., Virza, M.: Computational
integrity with a public random string from quasi-linear pcps. In: EUROCRYPT
(3). Lecture Notes in Computer Science, vol. 10212, pp. 551–579 (2017)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

11. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: On probabilistic checking in perfect zero knowledge. arXiv preprint
arXiv:1610.03798 (2016)

12. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasilinear-size zero knowledge
from linear-algebraic PCPs. In: TCC 2016. pp. 33–64. LNCS (2016)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: CRYPTO 2013.
pp. 90–108. LNCS (2013)

14. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. Cryptology ePrint Archive,
Report 2018/828 (2018), http://eprint.iacr.org/2018/828

15. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiabil-
ity of the sponge construction. In: EUROCRYPT 2008. pp. 181–197 (2008).
https://doi.org/10.1007/978-3-540-78967-3_11

16. Buchmann, J.A., Pyshkin, A., Weinmann, R.: Block ciphers sensitive to
gröbner basis attacks. In: Pointcheval, D. (ed.) CT-RSA 2006. Lecture
Notes in Computer Science, vol. 3860, pp. 313–331. Springer (2006). ht-
tps://doi.org/10.1007/11605805_20

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Efficient range proofs for confidential transactions. Cryptology ePrint Archive, Re-
port 2017/1066 (2007), http://eprint.iacr.org/2017/1066

18. Cid, C., Murphy, S., Robshaw, M.J.B.: Algebraic aspects of the advanced encryp-
tion standard. Springer (2006)

19. Collart, S., Kalkbrener, M., Mall, D.: Converting bases with the gröbner walk. J.
Symb. Comput. 24(3/4), 465–469 (1997). https://doi.org/10.1006/jsco.1996.0145

20. Coppersmith, D.: The data encryption standard (DES) and its strength against
attacks. IBM Journal of Research and Development 38(3), 243–250 (1994)

21. Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms - an introduc-
tion to computational algebraic geometry and commutative algebra (2. ed.). Un-
dergraduate texts in mathematics, Springer (1997)

22. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography, Springer (2002).
https://doi.org/10.1007/978-3-662-04722-4

31

https://doi.org/10.1145/72981.72995
https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/10.1016/j.jsc.2014.09.025
https://eprint.iacr.org/2018/046
http://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/11605805_20
https://doi.org/10.1007/11605805_20
http://eprint.iacr.org/2017/1066
https://doi.org/10.1006/jsco.1996.0145
https://doi.org/10.1007/978-3-662-04722-4

23. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC 2006. pp. 285–304 (2006)

24. Damgård, I., Keller, M.: Secure multiparty AES. In: FC 2010, Tenerife. pp. 367–
374. LNCS (2010). https://doi.org/10.1007/978-3-642-14577-3_31

25. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (f5). In: ISSAC 2002. pp. 75–83. ACM (2002)

26. Faugère, J., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344
(1993). https://doi.org/10.1006/jsco.1993.1051

27. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of pure and applied algebra 139(1-3), 61–88 (1999)

28. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: EUROCRYPT. Lecture Notes in Computer Sci-
ence, vol. 7881, pp. 626–645. Springer (2013)

29. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: FSE
1997. pp. 28–40. LNCS (1997). https://doi.org/10.1007/BFb0052332

30. Knudsen, L.R.: Truncated and higher order differentials. In: FSE. Lecture Notes
in Computer Science, vol. 1008, pp. 196–211. Springer (1994)

31. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 9215, pp. 161–185.
Springer (2015)

32. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: Foundations of Computer Science 1990. pp. 2–10. IEEE (1990)

33. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
arx: Application to salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
https://eprint.iacr.org/2013/328

34. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Inscrypt. Lecture Notes in Computer
Science, vol. 7537, pp. 57–76. Springer (2011)

35. Nyberg, K.: Differentially uniform mappings for cryptography. In: EUROCRYPT
1993. pp. 55–64. LNCS (1993). https://doi.org/10.1007/3-540-48285-7_6

36. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: IEEE Symposium on Security and Privacy 2013. pp. 238–252.
Oakland ’13 (2013)

37. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. In: Mathematical notes of the Academy of Sciences
of the USSR. vol. 41 - 4, pp. 333–338 (1987)

38. Szepieniec, A., Dhooghe, S.: Marvellous (instance generator) (2019), https://
github.com/KULeuven-COSIC/Marvellous.git

39. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: NDSS 2015. LNCS (2015)

40. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE transac-
tions on information theory 32(1), 54–62 (1986)

41. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:
Karloff, H.J., Pitassi, T. (eds.) STOC 2012. pp. 887–898. ACM (2012). ht-
tps://doi.org/10.1145/2213977.2214056

32

https://doi.org/10.1007/978-3-642-14577-3_31
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1007/BFb0052332
https://eprint.iacr.org/2013/328
https://doi.org/10.1007/3-540-48285-7_6
https://github.com/KULeuven-COSIC/Marvellous.git
https://github.com/KULeuven-COSIC/Marvellous.git
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056

A Gröbner Basis Attacks

We recall here some basic facts about attacking symmetric primitives using Gröb-
ner basis algorithms. For more general information on the underlying mathem-
atics, we refer the reader to Cox et al. [21]. For a specific description of the steps
involved in attacking block ciphers with Gröbner bases, we refer to the excellent
summary by Buchmann et al. [16].

An ideal I ⊆ Fq[x] = Fq[x1, . . . , xn] is the algebraic span of a list of polyno-
mials {b1(x), . . . , bm(x)}, meaning that every member f(x) ∈ I can be expressed
as a weighted sum of the basis elements with coefficients taken from the poly-
nomial ring: f(x) ∈ I ⇔ ∃c1, . . . , cn ∈ Fq[x] :

∑n
i=1 ci(x) · bi(x) = f(x). An

ideal can be spanned by many different bases; among these, Gröbner bases are
particularly useful for computational tasks such as deciding membership, equal-
ity, or consistency. The task we are interested in is polynomial system solving:
computing the ideal’s variety, or the set of common solutions when equating all
ideal members to zero.

A monomial order is a rule according to which to order a polynomial’s terms.
This rule is not just a convenience for mathematicians to read and write polyno-
mials; it also affects how the polynomials are stored on a computer as well as the
complexity of various operations on ideals. In general, the calculation of a Gröb-
ner basis is fastest with respect to degree reverse lexicographical ((de)grevlex)
order. However, whenever the variety contains a substantial number of solutions,
a Gröbner basis in lexicographic (lex) order is preferable. A Gröbner basis in lex
order guarantees the presence of at least one univariate basis polynomial. Factor-
ing this polynomial and back-substituting its roots generates another, simpler,
Gröbner basis again in lex order; iterative back-substitution produces all solu-
tions. The FGLM [26] and Gröbner Walk [19] algorithms transform a Gröbner
basis for one monomial order into one for another order.

The focus on degrevlex order for computing the first Gröbner basis owes
in large part to the success of the celebrated F4 and F5 algorithms [25, 27]. In
every iteration, these algorithms extend the working set of polynomials via mul-
tiplication by monomials to a certain step degree, before reducing the extended
polynomials using linear algebra techniques — essentially Gaussian elimination
on the Macaulay matrix. The F5 algorithm stands out in this regard, because
in this case it can be proven not to terminate before the step degree reaches the
ideal’s degree of regularity [7, 8], which is informally equal to the degree of the
Gröbner basis in a degree-refining order such as degrevlex (but not lex). If a sys-
tem of polynomial equations {fi(x) = 0}i is regular — exhibiting no non-trivial
algebraic dependencies in the same sense that non-singular matrices exhibit no
linear dependencies — then the degree of regularity is given by the Macaulay
bound: dreg ≤ 1 +

∑m
i=1(deg(fi)− 1).

When there are more equations than unknowns, the system of equations is
incapable of being either regular or irregular, and the worst-case behavior for
F5 is captured instead by semi-regular systems. The degree of (semi-)regularity
is now defined as the degree of the first non-positive term in the power series

33

expansion of HS(s) =
∏m

i=1(1−zdeg(fi))
(1−z)n , where m is the number of equations and

n the number of variables. Note that when m ≤ n this formal power series is
a polynomial and the Macaulay bound indicates one more than its degree; this
is what justifies re-using the term degree of regularity. However, while F5 must
reach this degree before it terminates, the degree of the resulting Gröbner basis
is typically much smaller.

Regardless of whether the system is regular, knowledge of the degree of reg-
ularity provides a lower bound on the complexity of computing a Gröbner basis,
namely that of running Gaussian elimination on a Macaulay matrix of degree
dreg polynomials in n variables. At this point there are

(
n+dreg
dreg

)
binomials of

degree dreg or less, and
(
n+dreg
dreg

)ω
therefore bounds the attack complexity, where

ω ≥ 2 is the linear algebra constant — ω = 3 for standard Gaussian elimination;
ω ≈ 2.37 if fast multiplication techniques [41] are used; and ω = 2 when sparse
linear algebra techniques such as Wiedemann’s algorithm [40] can be used.

Buchmann et al., writing before the above-mentioned results on the degree of
regularity were established, observe that for specially chosen monomial orders,
the Gröbner basis comes for free as a result of clever polynomial modeling [16].
The bottleneck of the attack then consists of the monomial order conversion
using either FGLM or Gröbner Walk.

In stark contrast, the security rationale underlying our cipher designs is ex-
plicit about the designed intractability of the first Gröbner basis computation
step. Whatever steps come after might be of greater or lesser complexity and
are either way irrelevant to the security consideration. In particular, the security
of our ciphers is determined with respect to the Gröbner basis calculation in
degrevlex order with ω = 2. The degree of regularity is experimentally tested
against that of regular systems of the same dimension for small round numbers.
In the case of Vision we observe that the experimental degree of regularity and
the degree of regularity of regular systems are equal; in the case of Rescue, we
observe a linear relation and extrapolate from there.

B Experimental Results Using Gröbner Bases

Vision Due to the high complexity of calculating the degree of regularity (i.e.,
of performing the Gröbner basis calculation and observing the degree of the
resulting basis) even for round reduced versions, we have few results even after
running the experiment for 60 hours. The one observed data point, coupled with
the prohibitive complexity of obtaining more, justify the assumption that the at-
tacked system behaves like a regular system of the same number of equations and
variables. We extrapolate this finding and show the complexity of constructing
a degree reverse lexicographic Gröbner basis of Vision providing for a different
number of rounds and parameters m. We found these results were independent
of the field size.

34

0 5 10 15 20 25 30

0

100

200

300

ratio: 1.00

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(a) m = 2

0 5 10 15

0

100

200

300

ratio: 1.00

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(b) m = 3

Figure 4: Experimental results of round reduced Vision for parameters m. The
bottom left graphs show on the vertical axis the degree of regularity with exper-
iments denoted by asterisks. The upper graph shows the resulting complexity
of constructing a Gröbner basis assuming the system is regular with the grey
dotted lines showing 128, 192 and 256-bits of complexity.

Rescue We made the same experiments for Rescue. We calculated the degree
of the Gröbner basis output by the Gröbner basis algorithm for several round-
reduced versions of Rescue and found that this concrete degree was exactly half
the degree of regularity of regular systems, independently of the field size. We
show the complexity of constructing a degree reverse lexicographic Gröbner basis
of round reduced versions of Rescue for different m assuming the same concrete-
to-regular degree ratio holds even for larger round numbers. For comparison, we
also show the complexity if the system were regular.

C STARK Intuition

We start be recalling the relevant definitions from [10], along with a simple
motivating example.

Scalable Interactive Oracle Proofs (IOPs) and Transparent Arguments of
Knowledge (STARKs) like [9,10] express computations using an Algebraic Exe-
cution Trace (AET): for a computation with t steps and internal state captured
by w registers, the trace is a t × w array. Each entry of this array is an element
of a finite field F.

Before presenting formal definitions, we motivate them using a simple ex-
ample. Suppose the prover wishes to prove the statement below, where p is
prime and Fp is the finite field of size p:

“∃x0, x1 ∈ Fp such that y is the qth element in the Fibonnacci sequence
defined recursively for i > 1 by xi = xi−1 + xi−2 mod p.”

35

0 5 10 15 20 25 30 35

0

100

200

300

ratio: 1.00
ratio: 0.50

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(a) m = 2

0 5 10 15 20 25

0

100

200

300

400

ratio: 1.00
ratio: 0.50

number of rounds

de
gr

ee
of

re
gu

la
ri

ty
/

at
ta

ck
co

m
pl

ex
ity

(lo
g 2

)

(b) m = 3

Figure 5: Experimental results of round reduced Rescue for parameters m. The
bottom left graphs show on the vertical axis the degree of regularity of regular
systems (in blue), and half that number (in green), with experimental observa-
tions denoted by asterisks. The upper graph shows the resulting complexity of
constructing a Gröbner basis with the grey dotted lines showing 128, 192 and
256-bits of complexity.

An execution trace proving the statement above is a (q + 1)× 1 array in which
the ith state is, supposedly, xi. Now, to verify the correctness of the statement
our verifier must check that the following two conditions hold:

– boundary constraints: the last entry equals y.
– transition relation constraints: for each i ≤ q − 1, the ith register plus

the i+1st register equals the i+2nd register. This can be captured succinctly
by a constraint of the form

Xcurrent +Xnext −Xnext_next = 0 ,

which is applied to each consecutive triple-of-states in the trace. Satisfying
a constraint always means setting it to 0, so the right hand side above is
redundant and henceforth we shall simplify such a constraint and write only
its left hand side, namely,

Xcurrent +Xnext −Xnext_next .

Alternatively, the execution trace could be a q × 2 array in which the ith state
supposedly contains xi, xi+1. Now, the verifier checks two constraints for each
pair of consecutive states, described next by using X,Y to denote the two re-
gisters capturing the state,

(i) Xcurrent + Ycurrent − Ynext; (ii) Xnext − Ycurrent .

The boundary constraint would now check that the [q, 2]-entry of the execution
trace equals y.

36

Comparing the two solutions above, we see that the second one is ×2 bigger
than the first, but its constraints involve only two consecutive states, rather than
three states required in the first solution. The second solution also has a larger
set of constraints (two constraints vs. one constraint in the first solution) but
in both solutions all constraints are multivariate polynomials of degree 1. The
main takeaway message here is that the same computation can be expressed in
several ways via different execution traces and constraint systems.

D Formal Description of an Algebraic Execution Trace

We start with the definition of an algebraic execution trace.

Definition 1 (Algebraic Execution Trace (AET)). An Algebraic Execu-
tion Trace (AET) of width w and length t over a field F is an array with t rows
and w columns, each entry of which is an element of F. The ith row represents
the state of a computation at time i and the jth column represents an algebraic
register. The size of the AET is t · w.

Next, we define a constraint system that checks whether an execution trace
is valid with respect to a computation. Informally, the constraints capture the
transition relation of the computation, each constraint is a polynomial, and an
assignment satisfies a constraint iff the constraint (polynomial) evaluates to 0
under the assignment.

Definition 2 (Algebraic Intermediate Representation (AIR)). An Al-
gebraic Intermediate Representation (AIR) of degree d, width w and length t
over the field F is a set of multivariate polynomials of total degree at most d,
with coefficients in F and variable set Rij , i ≤ w, j ≤ t.

We point out that the definition of AIR in [10] is slightly more complicated
(dealing with boundary constraints and neighborhood sets) but for the purpose
of the current work the simpler definition above suffices.

E Algorithms for Masked MPC

We provide here C++-like algorithms for the various masking techniques used in
Section 7.3.

37

E.1 Inversion

Invert(x,n) {
b = (x == 0); // log2(x) com calls
c = 0;
while(c == 0) {

r = share_random();
temp = (b + x);
temp = temp * r; // 1 com call
c = open(temp); // 1 com call

}
c = pow(c,2^n-2);
c = (r * c) - b;

return c;
}

E.2 Inverse of Sparse Linearized Polynomial

We discuss a technique to efficiently evaluate the inverse of sparse linearized
polynomials thanks to the following observations. We ignore for the sake of
simplicity the constant that makes B(x) affine and not linear (over F2); this
simplification makes B−1(x) linear also. In particular, this means that B−1(x+
y) = B−1(x) + B−1(y) . Noting that B(x) consists of three terms with degrees
1, 2, and 4, we can calculate the output [B−1(x)] from [x] as follows: create a
shared random mask [r] and compute [B(r)]. Then open [x−B(r)] and apply B−1

locally to this opened value. Then adding [r] back gives B−1(x− B(r)) + [r] =
[B−1(x) − r + r] = [B−1(x)] , which is exactly the desired output. Note that
the evaluation of B(r) is not tied to any input data, and can therefore be pre-
computed in an offline phase. The pseudo-code below shows this procedure more
formally.

Invert_B(x) {
r = share_random(); // offline
b_r = B(r); // trivial impl. of B (2 rounds) -- and offline
c = x + b_r;
c = open(x + b_r); // 1 round
c = B_inv(c); // B^-1(x + B(r))
c = c - r; // B^-1(x) + B^-1(B(r)) - r
return c; // B^-1(x)

}

E.3 α-power and Inverse-α-power

We discuss techniques to efficiently evaluate α-power maps and their functional
inverses. Both techniques are explained in a similar manner, we only discuss
the technique to evaluate the inverse-α-power map. The participants start by

38

generating a shared secret mask [r]. They then compute [rα] and [r−1] in the
offline phase. In the online phase, they open the masked value [xrα] and locally
raise this known value to the power 1/α . At this point, a simple multiplication-
by-constant yields (xrα)1/α[r−1] = [xαrr−1] = [xα]. The pseudo-code for both
procedures is shown below.

AlphaPower(x,alpha) {
c = 0;
while(c == 0) {
// offline phase

r = share_random();
rinv = Invert(r);
rexp = rinv^alpha;

// online phase
c = open(x * r);

}
c = pow(c,alpha);
c = c * rexp;
return c;

}

InverseAlpha(x,alpha,alpha_inv) {
c = 0;
while(c == 0) {
// offline phase

r = share_random();
rinv = Invert(r); //1 round
rexp = r^alpha; //lg(alpha)

// online phase
c = open(x * rexp);

}
c = pow(c,alpha_inv);
c = c * rinv;
return c;

}

F MPC with Square-and-Multiply

In Section 7.3 we presented a method to compute families of the Marvellous uni-
verse in an MPC protocol using masked operations. In this section, we explore a
more straightforward alternative: square-and-multiply. The main difference with
our masked approaches relies on the fact that there is no mechanism to out-
source computation to a pre-processing phase. In fact, all multiplications have
to be performed online.

The exponents for all nonlinear operations for both Vision and Rescue (as
well as MiMC) are publicly available. The complexity of square-and-multiply
over MPC is upper bounded by 2ℓ multiplications and ℓ communication rounds,
where ℓ is the bit length of the exponent. We refer the reader to Damgård and
Keller for a more detailed treatment on the use of square-and-multiply over
MPC [24]. For the treatment here, we assume the existence of a functionality
square_multiply(x,e) that takes a shared secret [x] and outputs [xe] with the
stated complexity.

Vision. To implement the inversion of Vision using square-and-multiply, observe
that x−1 = x2n/m−2 and no zero-test is required; the inverse can therefore be
computed with square_multiply([x], 2n/m− 2). The complexity of this expo-
nentiation is thus n/m communication rounds and 2n/m multiplications. The
evaluation of B and of B−1 requires 2 and n/m − 1 sequential multiplications,
respectively. The linear components of Vision do not contribute to its cost. The

39

total complexity of one round of this implementation of Vision is therefore

offline rounds: 0 ,
online rounds: 3n/m+ 1 ,
multiplications: m · (5n/m+ 1) .

Rescue. For Rescue, the use of square-and-multiply does not require any specific
protocol adaptation. Both power maps can be obtained from an invocation of
square_multiply([x],e), where e = α or e = α−1 mod p− 1. Like for Vision,
the linear components do not contribute to the cost. Consequently, the total
complexity of one round of this implementation of Rescue is

offline rounds: 0 ,
online rounds: ⌈log2 α⌉+ ⌈log2 p⌉ ,
multiplications: 2m · (⌈log2 α⌉+ ⌈log2 p⌉) .

MiMC. The most straightforward implementation of a MiMC-q/q encryption is
already using square-and-multiply. For the decryption mode, inverse cube map
can be computed with square-and-multiply by invoking square_multiply([x],e),
where e = 3−1 mod q − 1. The total cost of one round of MiMC in this imple-
mentation is therefore

Encryption:
offline rounds: 0
online rounds: 2
multiplications: 2

Decryption:
offline rounds: 0 ,
online rounds: ⌈log2 q⌉ ,
multiplications: 2⌈log2 q⌉ .

Comparison. Like before, we consider 24 rounds of Vision with n = 128 and
m = 2; 34 rounds of Rescue with p = 264 +13, α = 3 and m = 2; and 82 rounds
of MiMC-q/q with q = 2129 − 45; each a parameter set targeting 128 bits of
security. This consideration gives rise to the following table of comparison.

Table 4: Comparison of Vision, Rescue, and MiMC-q/q over MPC using square-
and-multiply.

Vision Rescue MiMC-q/q Enc. MiMC-q/q Dec.
offline rounds 0 0 0 0
online rounds 4632 4420 164 10496
multiplications 15408 17680 164 20992

G Cryptanalytic Strength of Vision

In this section we explain the security of Vision and how it resists certain attacks.

40

The Wide Trail Strategy In order to argue the security of Vision, we follow
the same line of reasoning as was done for Rijndael and apply the wide trail
strategy to our construction. From Nyberg [35] we find the differential and linear
properties of the inversion function over arbitrary binary fields. For the field
F2n/m we have δ = 2−n/m+2 and |λ| = 2−⌈n/2m⌉+1 . Since our diffusion layer
is an MDS matrix applied on m state elements, we have at least m + 1 active
S-Boxes every two steps. When requiring that n/m ≥ 4 we find that a four
round trail has a maximal differential probability of

24(m+1)(−n/m+2) < 2−2n ,

and maximum absolute correlation

2−4(m+1)⌈n/2m⌉+4(m+1) < 2−n ,

which is sufficient to resist potential differential and linear attacks given that a
large enough security margin was taken.

Algebraic Degree The algebraic degree of a function f is defined as the degree
of the largest monomial in the algebraic normal form of f . Ciphers which achieve
a low algebraic degree are potentially vulnerable against higher-order differential
attacks as introduced by Knudsen [30]. For our construction, the S-Box has
algebraic degree n/m − 1 after two steps (taking into account both B(x) and
B−1(x)). The maximal algebraic degree that can be reached by a polynomial in
F2n/m is n/m − 1 , thus this is achieved already in one round as per our design
strategy following [35].

Interpolation Attacks Jakobsen and Knudsen introduced in [29] the interpol-
ation attack. Here the attacker constructs polynomials using input/output pairs
of the cipher. Due to the complexity of calculating GCD’s or Lagrange inter-
polation being linear in the degree of the polynomial, one needs the polynomial
representations of the cipher to have a high degree to avoid this attack. These
attacks lend themselves to meet-in-the-middle variants where the attacker tries
to find a concise rational expression in the plaintext or ciphertext. Since B−1(x)
is of full degree and dense, we expect that two rounds of Vision are sufficient to
create a complex rational expression between the plaintext and the ciphertext.
To thwart potential meet-in-the-middle attacks we consider three rounds of the
cipher to be sufficient in order to resist interpolation attack variants.

Invariant Subfield Attacks Finally, we consider attacks which make use of an
invariant subfield. To recall, for F2n/m , any field F2s where s is a divisor of n/m
is a subfield. An adversary might be able to attack the cipher by making it work
over one of the subfields. This would involve the adversary inputting a value of
a subfield and receiving an output which is again in a subfield. We require that
the affine polynomial has coefficients which do not lie in any subfield of F2n/m

thus frustrating this attack.

41

Attacks Using Gröbner Bases To deploy an attack on Vision hash, one
compiles a list of polynomial equations associated with one sponge permutation
absorbing one unknown data block and squeezing out one known block. We focus
on this case as it captures pertinent use cases.

The following system encodes one full round of Vision. Here S2i−1 is the
intermediate state in the middle of Fig. 1, and K2i and K2i−1 represent known
constants coming from the key injections. Furthermore, when isolated, [m] de-
notes the the set {1, . . . ,m}; but when it is suffixed to a vector or matrix [i] or
[i, j] takes the indicated element, and in particular M−1[i, j] takes the (i, j)th
element of M−1.

S2i−2[j] ·B
(

m∑
k=1

M−1[j, k]S2i−1[k]−K2i−1[k]

)
− 1 = 0 j ∈ [m]

S2i−1[j]
4 ·B

(
S2i−1[j]

−1
)
− S4

2i−1 ·
m∑

k=1

M−1[j, k](S2i[k]−K2i[k]) = 0 j ∈ [m]

Note that left hand side of the second line is a polynomial in S2i−1[j] as the
negative powers are cancelled by the factor S2i−1[j]

4 and as the degree of the
affine polynomial B is 4.

In total, this system represents 2m polynomial equations of degree 5 in 2m
extra variables per round. The state at the end gives one equation, as one element
is squeezed out; and m − 1 variables, as the value of the one that is squeezed
out is known. The state at the start gives one variable representing the unknown
absorbed data block and m− 1 equations equating parts of the state to zero. So
in total there are 2mN variables and as many equations, with N the number of
rounds and all polynomials are of degree 5. Assuming the system is regular we
find via the Macaulay bound that dreg = 1 +

∑2mN
i=1 (deg(fi) − 1) = 8mN + 1.

Our experiments confirm this degree of regularity for small round numbers.10

H Cryptanalytic Strength of Rescue

We now discuss the security of Rescue.

Wide Trail Strategy over Fm
p We look at the difference propagation probab-

ility of the function xα . In other words, we are interested in solutions a, b such
that

(x+ a)α − xα − b = 0 ,

Since the α power map is (α− 1)-uniform, the map has a difference propagation
probability of at most δ = 2− log2(p)+log2(α−1) where the differences are taken over
Fp . Since this map is a permutation, its inverse has the same property. From
the use of an MDS matrix as diffusion layer between subsequent steps, we know
that every two steps consist of minimally m + 1 active S-Boxes. Following the
stochastic equivalence assumption with the condition that log2(p) ≥ 2 log2(α −
10 For more details on our experiments we refer to Appendix B.

42

1) , we find that for four rounds, or eight steps, of Rescue, a differential trail has
a maximal differential probability

2−4(m+1) log2(p)+4 log2(α−1)(m+1) .

We require that log2(p) ≥ 2 log2(α− 1) , thus

2−4(m+1) log2(p)+4 log2(α−1)(m+1) ≤ 2−2s ,

with s = m log2(p) the bit-level security. This bound is sufficient to argue the
algorithm’s security against differential attacks.

When α is kept small such that n ≤ 2(m+ 1)(log2(p)− log2(α)) with n the
bit-level security, the previously discussed security analysis still holds. When α
increases, the difference propagation probability increases for xα and x

1
α as now

δ = 2− log2(p)+log2(α−1) . Thus by increasing α , the number of rounds might need
to be adapted in order to attain similar security levels.

For a discussion about linear cryptanalysis in prime fields see 4.5.

Interpolation Attacks We look at polynomial descriptions of the cipher over
Fm
p after several rounds. Due to the α-inverse power map being of high degree,

two rounds of the cipher already attain the maximum polynomial degree p.
Moreover, due to this power map, the polynomial expression is dense. From [29],
we know that meet-in-the-middle variants of the interpolation attack are pos-
sible, however this attack becomes infeasible after three rounds.

Gröbner Bases Like for Vision, we provide equations encoding the preimage of
the Rescue sponge function where a single unknown message block was absorbed
and one known message block was squeezed out. In contrast to Vision it is now
possible to fold equations across two steps in order to reduce the number of
variables and equations.11 Like before we use [m] to denote {1, . . . ,m} unless
the brackets are a suffix to a vector or matrix, in which case the indicated element
is meant.

(
m∑

k=1

M−1[j, k](S2i−1[k]−K2i−1[k])

)α

− P [j]−K0[j] i = 1, j ∈ [m](
m∑

k=1

M [j, k]S2i−1[k]
α

)
+K2i[j]−

(
m∑

k=1

M−1[j, k](S2i+1[k]−K2i+1[k])

)α

= 0

i ∈ [N − 1], j ∈ [m](
m∑

k=1

M [j, k]S2i−1[k]
α

)
+K2N [j]− S2N = 0 i = N, j ∈ [m]

This encoding introduces m new variables and as many new equations of degree
α per extra full round. The first step introduces one variable and m equations,
whereas the last step introduces no variables and one equation. So along with
m variables representing a single state to start from, we have in total 1 +mN

11 We explain in more detail how folding is done for Rescue in Section 7.1.

43

variables and 1 + mN equations. If the system of equations were regular we
would find via the Macaulay bound dreg = 1 +

∑1+mN
i=1 (deg(fi) − 1) = (α −

1)(mN + 1) + 1. Experimentally, we observe the concrete degree of regularity
dcon = ⌈dreg

2 ⌉ for small round numbers.12 We extrapolate from here, assuming a
constant concrete-to-regular ratio of 2.

12 The experiments can be viewed in Appendix B.

44

	Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols

