
Design of Symmetric-Key Primitives for
Advanced Cryptographic Protocols

Abdelrahaman Aly1, Tomer Ashur1,2, Eli Ben-Sasson3, Siemen Dhooghe1, and
Alan Szepieniec1,4

1 imec-COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

2 TU Eindhoven, Eindhoven, the Netherlands
t.[lastname]@tue.nl

3 StarkWare Industries Ltd, Netanya, Israel
firstname@starkware.co

4 Nervos Foundation, San Francisco, USA
firstname@nervos.org

Abstract While traditional symmetric algorithms like AES and SHA3
are optimized for efficient hardware and software implementations, a
range of emerging applications using advanced cryptographic protocols
such as multi-party computation and zero-knowledge proofs require op-
timization with respect to a different metric: arithmetic complexity.
In this paper we study the design of secure cryptographic algorithms
optimized to minimize this metric. We begin by identifying the differ-
ences in the design space between such arithmetization-oriented ciphers
and traditional ones, with particular emphasis on the available tools, ef-
ficiency metrics, and relevant cryptanalysis. This discussion highlights a
crucial point — the considerations for designing arithmetization-oriented
ciphers are oftentimes different from the considerations arising in the
design of software- and hardware-oriented ciphers.
The natural next step is to identify sound principles to securely navigate
this new terrain, and to materialize these principles into concrete designs.
To this end, we present the Marvellous design strategy which provides
a generic way to easily instantiate secure and efficient algorithms for
this emerging domain. We then show two examples for families following
this approach. These families — Vision and Rescue — are benchmarked
with respect to three use cases: the ZK-STARK proof system, proof
systems based on Rank-One Constraint Satisfaction (R1CS), and Multi-
Party Computation (MPC). These benchmarks show that our algorithms
achieve a highly compact algebraic description, and thus benefit the ad-
vanced cryptographic protocols that employ them. Evidence is provided
that this is the case also in real-world implementations.

Keywords: Vision · Rescue · Marvellous · arithmetization · zero-knowledge
proof · STARK · R1CS · MPC · Gröbner basis

1 Introduction

Block ciphers are a fundamental primitive of modern cryptography. They are
used in a host of symmetric-key constructions, e.g., directly as a pseudorandom
permutation to encrypt a single block of data; inside a mode of operations to
create an encryption scheme; or in a PGV or sponges to generate compression
functions which in turn can generate hash functions. This last example, hash
functions, are a fundamental primitive in their own right for their fitness to
approximate a random oracle, and thereby admit a security proof based on this
idealization.

While the security of standard block ciphers and hash functions such as
AES, 3DES, SHA2-256, or SHA3/Keccak, is well understood and widely agreed
upon, their design targets an efficient implementation in software and hardware.
The design constraints that make these primitives efficient in their domain are
different from the constraints that would make them efficient for use in ad-
vanced cryptographic protocols such as zero-knowledge proofs and multi-party
computation (MPC). The mismatch in design constraints has prompted a de-
parture from the standardized basic algorithms in favor of new designs, such as
LowMC [4], MiMC [3], Jarvis [6]. The distinguishing feature of these algorithms
is the alternative target for optimization: running time, gate count, memory
footprint, power consumption, are all left by the wayside in favor of the number
of non-linear arithmetic operations. These algorithms can thus be character-
ized as arithmetization-oriented, as opposed to hardware- or software-oriented
algorithms which do not have the alternative optimization target.

Arithmetization-oriented cipher design is different from traditional cipher
design. The relevant attacks and security analyses are different. Traditional con-
structions and modes of operation must be lifted to the arithmetic setting and
their security proofs must be redone. The target applications are different and
provide the designer with a new collection of tools to secure their design against
attacks without adversely affecting efficiency. This efficiency is captured in terms
of arithmetic metrics that vary subtly by application — but jointly stand in con-
trast to traditional efficiency metrics such as the ones mentioned above.

To illustrate this difference, consider the performance of the STARK prover
when proving the correct evaluation of a hash function. The bottleneck is inter-
polation and evaluation of a large polynomial, and its degree is the key indicator
for the complexity of this task. The STARK paper determines this degree for
SHA2 as 41,382 [12, Tab. 5]; the matching numbers for our Marvellous designs
(and even for other arithmetization-oriented designs that are not members of
the Marvellous universe) are about 100 times more efficient (see Table 2) before
even taking into account the higher throughput they offer.5 The one hundred-fold
performance improvement justifies transitioning to an arithmetization-oriented
hash function — provided that the new hash function is as secure as the old one.

Considering recent trends, arithmetization-oriented cipher design is in its
nascency. Rather than blindly optimize for a single vaguely defined metric and
5 For a recent comparison in an MPC setting, see [20].

2

shipping the resulting algorithm as soon as possible, it is worthwhile and timely
to stop and re-evaluate formerly optimal strategies with respect to this new
design space. The contribution of this work is not just the proposal of two new
ciphers, although that was — and still is — certainly its motivation. The more
important contribution consists of the steps taken towards a systematic explora-
tion and mapping of the problem and design landscape that these ciphers inhabit.
This exploration gives rise to design strategies, such as the Marvellous design
strategy which we present here or the Hades design strategy by Grassi et al. [34].

Our ciphers, Vision6 and Rescue7, merely represent a Marvellous vantage on
our journey. Some additional contributions include a novel approach to ensure
resistance to Gröbner basis attacks which is based on the difficulty of finding
any Gröbner basis. Whereas earlier works argued their resistance based on the
difficulty of polynomial reordering, our approach has now become the standard
in more recent works (see, e.g., [33]).

This paper is structured in accordance with a progressive refinement of focus.
First, in Section 2, we characterize the common features of the advanced cryp-
tographic protocols that arithmetization-oriented ciphers cater to and identify
and clarify the exact and various efficiency metrics that are relevant in those
contexts. Next, in Section 3 we explore the space of design considerations. In
particular, we identify important differences (compared to standard symmetric
cipher design) in terms of the security analysis as well as in terms of the tricks
and techniques that can be employed in order to marry security with efficiency.
Having surveyed the design space we then motivate our position in Section 4
where we introduce the Marvellous design approach; here we provide concrete
answers to questions raised in the preceding sections regarding the security ra-
tionale, potential pitfalls, and application constraints. Lastly, in Sections 5 and 6
we give specifications of two designs following the Marvellous design strategy and
are thus Marvellous designs: Vision and Rescue.

We use three advanced cryptographic protocols as running examples of ap-
plications, and guiding beacons, throughout this paper: zero-knowledge proof
systems for the Turing or RAM models of computation, for the circuit model
of computation, and multi-party protocols. In particular, our discussion charac-
terizes all three as arithmetic modalities of computation. We spend ample time
identifying the correct efficiency metrics along with non-trivial design tools that
these protocols enable. Finally, in Section 7 we compare Vision and Rescue to
other arithmetization-oriented cipher designs with respect to the relevant metrics
in these applications.

The paper includes multiple appendices: Appendices A–B provide brief back-
grounds on Gröbner basis attacks and Scalable Transparent ARguments of Know-
ledge (STARKs). These are intended for the uninformed reader and in the sequel
we assume familiarity with these concepts. In Appendix C we explain the mask-
ing techniques we considered when benchmarking our algorithms in an MPC

6 In the Marvel comics, Vision is a binary field powered android created by Tony
Stark.

7 In the Marvel comics, Rescue is a prime character and the latest armored avenger.

3

setting. Users implementing our algorithms in such a setting can consult this
appendix. Finally, Appendices D–E provide instances for Vision and Rescue.
These are offered as targets for cryptanalysis as well as for readers interested
only in “the bottom line”. We also provide an “instance generator” allowing users
to create new instances from a given parameter set. This can be found in [49].

2 Arithmetization

Zero-knowledge proof systems for arbitrary computations, multi-party compu-
tation, and indeed, even fully homomorphic encryption, share more than just a
superficially similar characterization of complexity. Underlying these advanced
cryptographic protocols is something more fundamental: the protocols stipulate
applying algebraic operations to mathematical objects, and somehow these op-
erations correspond to computations.

This correspondence is not new. It was originally introduced by Razborov [44]
as a mechanical method in the context of computational complexity and first
applied to cryptographic protocols by Lund et al. [39]. This method, known as
arithmetization, characterizes a computation as a sequence of natural arithmetic
operations on finite field elements.

Arithmetization translates computational problems — such as determining
if a nondeterministic Turing machine halts in T steps — into algebraic problems
involving low-degree multivariate polynomials over a finite field. A subsequent
interactive proof system that establishes the consistency of these polynomials,
simultaneously establishes that the computation was performed correctly. Sim-
ilarly, the arithmetic properties of finite fields enable the transformation of a
computational procedure for one machine — for instance, calculating the value
of a function f(x1, x2, x3) — into a procedure to be run jointly by several in-
teractive machines. The practical benefit of this transformation stems from the
participants’ ability to provide secret inputs xi , and to obtain the function’s
corresponding value without revealing any more information about those inputs
than is implied by this evaluation. In both cases, the complexity of the derived
protocol is determined by that of the arithmetization.

In the remainder of this section we survey three applications of arithmetiz-
ation in cryptography: zero-knowledge proofs in the Turing or RAM models of
computation, zero-knowledge proofs in the circuit model of computation, and
multi-party computation. The purpose of this survey is to introduce the mech-
anics and to set the stage for analyzing efficiency and design techniques. These
modalities of computation provide the reference frame according to which the
rest of the paper proceeds.

The astute reader will notice that fully homomorphic encryption is frequently
listed among the target applications of arithmetization-oriented ciphers and yet
is missing from both the above discussion and the surveys below. The ciphers pro-
posed in this paper rely heavily on a family of techniques we call non-procedural
computation, in which the state of the system at the next computational step
cannot be described as having been solely caused by the state at the previ-

4

ous step — see Section 3.1 for a more precise description of this term. To the
best of our knowledge, fully homomorphic encryption does not presently admit
non-procedural computations.

2.1 Zero-Knowledge Proofs

A zero-knowledge (ZK) proof system is a protocol between a prover and a verifier
whereby the former convinces the latter that their common input ℓ is a member
of a language L ⊂ {0, 1}∗ . The proof system is complete and sound with sound-
ness error ϵ if it guarantees that the verifier accepts (outputs 1) when ℓ ∈ L and
rejects with probability ≥ 1 − ϵ when ℓ ̸∈ L. When this soundness guarantee
holds only against computationally bounded provers we call it an argument sys-
tem. The proof system is zero-knowledge if the transcript is independent of the
membership or non-membership relation.8 We are concerned here with languages
L that capture generic computations in different models of computation.

Scalable, transparent arguments of knowledge. Let L be a language decidable in
nondeterministic time T (n) , like the NEXP-complete bounded halting problem,

LH = {(M,T) | M is a nondeterministic machine that halts within T cycles.}

Following [12], we say that a ZK proof system for L is

– scalable if two conditions are satisfied simultaneously for all instances ℓ, |ℓ| =
n: (i) proving time scales quasi-linearly, like poly(n) + T (n) · poly logT (n) ,
and (ii) verification time scales like poly(n) + poly logT (n) .

– transparent if all verifier messages are public coins. These systems require
no trusted setup phase.

– argument of knowledge if there exists an extractor that efficiently recovers
a witness to membership of ℓ in L by interacting with a prover who has a
sufficiently high probability of convincing the verifier.

Argument systems that possess all of the properties above are referred to as
ZK-STARKs, and have been recently implemented in practice [12], following
theoretical constructions [13,14] (cf. [11] for a prior, non-ZK, STARK).

To reap the benefits of a scalable proof system, it is important to encode
computations succinctly, and one natural way to achieve this is via an Algebraic
Intermediate Representation (AIR), as suggested in [12]. Both Turing machines
and Random Access Memory (RAM) machines can be represented succinctly
using AIRs that we describe briefly now, and more formally in Appendix B.9

An Algebraic Execution Trace (AET) is similar to an execution trace of a
computation. It is an array with t rows (one row per time step) and w columns
8 Specifically, if authentic transcripts are indistinguishable from transcripts that can

be generated even when ℓ ̸∈ L by not respecting the correct order of messages.
9 Dealing with random access memory requires a variant of an AIR — a Permuted

AIR (PAIR), but all computations discussed later on in this paper can be done with
a constant number of registers.

5

(one column per register). The size of the AET is t · w . The main property
distinguishing an AET from a standard execution trace is that each entry of the
array is an element of a finite field Fq. The transition function of the computation
is now described by an Algebraic Intermediate Representation (AIR). An AIR is
a set P of polynomials over 2w variables X = (X1, . . . , Xw), X′ = (X ′

1, . . . , X
′
w),

representing, respectively, the current and next state of the computation, such
that a transition from state s = (s1, . . . , sw) ∈ Fw

q to state s′ = (s′1, . . . , s
′
w) ∈ Fw

q

is valid iff all polynomials in P evaluate to 0 when the values s, s′ are assigned
to the variables X,X′, respectively. (See Appendix B for an example.)

To maximize the efficiency of ZK-STARKs, we wish to minimize the three
main parameters of the AIR: the computation time t , the state width w and the
maximal degree d of an AIR constraint (polynomial) in P. While the degree d
does not affect the size of the AET, it does affect the execution time and the
proof size.

Circuit model. Numerous ZK proof systems operate in the model of arithmetic
circuits, meaning that the language L is that of satisfiable arithmetic circuits.
Succinct computations can be “unrolled” into arithmetic circuits, and several
compilers exist that achieve this, e.g., [15, 43, 50]. Such circuits are specified by
directed acyclic graphs with labeled nodes and edges. The edges, or wires, have
a value taken from some ring; the nodes, or gates, perform some operation from
that ring on the values contained by its input wires and assign the corresponding
output value to its output wires. An assignment to the wires is valid if and only
if for every gate, the value on the output wires matches that gate’s operation
and the values on its input wires. In the context of zero-knowledge proofs, the
prover generally proves knowledge of an assignment to the input wires of a circuit
computing a one-way function, meaning that the corresponding output matches
a given public output. Alternatively, the prover can prove satisfiability — that
there exists a corresponding input — which makes sense in the context where it
is also possible for no such input to exist.

Recent years have seen considerable effort towards Quadratic Arithmetic Pro-
grams (QAPs) [32] and Rank-One Constraint Satisfaction (R1CS) systems [15]
for encoding circuits and wire assignments in an algebraically useful way. The
circuit is represented as a list of triples ((ai, bi, ci))i . A vector s of assignments
to all wires is valid iff ∀i , (ai

Ts) · (biTs) = ci
Ts . R1CS systems can be defined

over any ring; when this ring is Z/pZ , i.e., the field of integers modulo some
prime p , the R1CS instance captures exactly an intermediate step of the ZK-
SNARK family of proof systems [32]. Additional transparent systems such as
Ligero [5], Bulletproofs [22] and Aurora [16] also accept R1CS over different
fields as their input. For the purpose of efficient R1CS-style proofs, the degree of
the constraints describing a cipher is as important as their number: any algeb-
raic constraint of degree higher than two must first be translated into multiple
constraints of degree two, and the complexity parameter we seek to minimize is
the number of R1CS constraints needed to specify the computation.

6

2.2 Multi-Party Computation (MPC)

A multi-party computation is the joint evaluation of a function in individually
known but globally secret inputs. In recent years, MPC protocols have converged
to a linearly homomorphic secret sharing scheme whereby each participant is
given a share of each secret value such that locally adding shares of different
secrets generates the shares of the secrets’ sum. We use the bracket notation [·]
to denote shared secrets.

Using a linear sharing scheme, additions are essentially free and multiplic-
ation requires communication between the parties. The number of such mul-
tiplications required to perform a computation is a good first estimate of the
complexity of an MPC protocol.

However, while one multiplication requires one round of communication, in
many cases it is possible to batch several multiplications into a single round.
Moreover, some communication rounds can be executed in an offline phase before
receiving the input to the computation. These offline rounds are cheaper than the
online rounds, as the former does not affect the protocol’s latency and the latter
completely determines it. To assess the MPC-friendliness of a cipher one must
therefore take three metrics into account: number of multiplications; number of
offline communication rounds; and the number of online communication rounds.

An important family of techniques that have a relatively low multiplicative
count, and which can be realized with low offline and online complexities, are
masking operations such as the technique suggested by Damgård et al. [27].
The protocol raises a shared secret to a large power while offloading the bulk
of the computation to the offline phase. Suppose for instance that the protocol
wishes to compute [ae] for some exponent e, given only the shared secret [a].
The protocol generates a random nonzero blinding factor [r] and computes [r−e]
in the offline phase. In the online phase it multiplies [a] with [r], opens [ar], and
then locally raises this masked plaintext value to the power e . The result of this
exponentiation is then multiplied with [r−e] giving (ar)e[r−e] = [aerer−e] = [ae].
A similar procedure enables the computation of inverses with only a handful of
multiplications [7].

We extend this range of techniques in two ways. First, we adapt the tech-
nique of Damgård et al. for exponents of the form 1/α, with α small; while the
online complexity is the same, our technique reduces the offline complexity by
exploiting the small size of α. Second, we introduce a new technique to efficiently
evaluate the compositional inverse of sparse linearized polynomials. This novel
technique is a contribution of independent interest. We cover these masked op-
eration techniques in more detail as part of our benchmarking in Section 7. The
key observation is that some polynomials with large powers can be efficiently
computed over MPC — even when counting the offline phase.

3 Design Considerations and Concepts

Cipher design has been subject of research since the publication of the Data
Encryption Standard (DES) [46]. Since then, science has progressed to the point

7

where designing a new block cipher can be as simple as following a formula:
choose a family of basic operations (e.g., ARX) and a general structure (e.g.,
(G)Feistel, or SPN), components with known cryptographic properties (e.g., S-
boxes with high non-linearity, a linear layer with fast diffusion), add constants
to break symmetry, and set the number of rounds based on theoretical argu-
ments (e.g., the wide trail strategy) or using automatic tools (e.g., MILP and
SAT-solvers [37, 40, 41]). This approach, if used properly, results in an efficient
algorithm that is resistant to known attacks.

In contrast, arithmetization-oriented ciphers necessitate different design con-
siderations. In this section, we focus on considerations that are of special interest
when designing arithmetization-oriented algorithms. This is not to say that one
can never find these considerations in traditional cipher design, only that they
usually take a less prominent role. This section is independent of our cipher
designs. To the extent that it raises questions or concerns, we address these in
the context of the Marvellous design strategy in Section 4.

3.1 Non-Procedural Computation

In a procedural model of computation, the state of the system at any point in
time can be uniquely determined as a simple and efficiently computable function
of the system’s state at the previous point in time. The arithmetic modalities
of computation considered in this paper are capable of violating this procedural
intuition. While all participants in the protocols are deterministic and procedural
computers, some emergent phenomena are best interpreted either with respect
to a different time axis or without any respect at all to the passage of time. From
this perspective, these phenomena seem to undermine the constraining character
of procedural evolutions or violate it altogether. We call these phenomena non-
procedural computations.

It is possible to design and define ciphers in terms of non-procedural compu-
tations. Doing so can offer security against particular or general attacks without
having to increase the number of rounds. This benefits the efficiency of the ad-
vanced cryptographic protocol capable of computing the non-procedural opera-
tions. As a result of this design decision, the cipher might be more expensive to
evaluate on traditional, progressive computers; however, this is not the defining
metric to begin with.

Consider for example the inversion operation x 7→ xq−2, for some x ∈ Fq.
When the field is large, so is the exponent, and as a result a procedural evalu-
ation (e.g., by calculating a GCD or via square-and-multiply) is expensive. We
show how this operation is captured efficiently by non-procedural computation
in various arithmetic modalities.

In the case of zero-knowledge proofs, the particular variant of non-procedural
computation is known as non-determinism. The honest prover, who has evalu-
ated the cipher locally, is in possession of all the intermediate states including x
and y = xq−2, and the verifier possesses only commitments to these values. The
verifier is incapable of computing the values directly, but establishing that the

8

expressions x(1−xy) and y(1−xy) both evaluate to 0 accomplishes the desired
effect — convincing the verifier that y was computed correctly from x.

In the case of multi-party computations, the non-procedural computation
originates from the capability of masked operations to offload certain calculations
to the offline phase, where they do not affect online efficiency. In particular, in
the offline phase the protocol prepares for each inversion a shared value, [a]
satisfying a ̸= 0. Then in the online phase, [ax] is opened and the result is
inverted locally before being multiplied with [a], yielding [y] = (ax)q−2 [a]. This
description ignores the special care necessary when x = 0 but the point remains
that the number of online secret shared multiplications (which are expensive) is
independent of the power to which the shared secrets are raised.

Another example of non-procedural computation arises in the polynomial
modeling prelude to deploying a Gröbner basis attack — which is arguably
another arithmetic modality of computation. The observation here is that the
attack does not need to follow the same sequence of events involved in evaluating
the cipher procedurally. The attacker can search for x and y simultaneously and
require their consistency through the polynomial equation xy−1 = 0. Note that
the adversary may choose to ignore case x = 0 if the probability of this event is
sufficiently small, as it is when working over large fields.

The takeaway is that non-procedural computation adds another dimension
to cipher design by allowing operations that would have been expensive if im-
plemented directly in software or hardware.10

3.2 Efficiency Metrics

Unlike their traditional counterparts, arithmetization-oriented ciphers do not
attempt to minimize execution time, circuit area, energy consumption, memory
footprint, etc. — at least not as a first order consideration. Instead, these ciphers
optimize algebraic complexity as described in terms of AIR or R1CS constraints
for zero-knowledge proofs; and number of multiplications, number of offline and
online rounds of communication for MPC. The common feature of these met-
rics is the gratuitous nature of linear operations. With respect to non-linear
operations, each metric introduces its own subtleties. Even the cost of a single
multiplication differs from metric to metric depending on where in the cipher
that multiplication is located.

To illustrate this discrepancy, consider a state consisting of m field elements
in some field Fq. Suppose that we want to square one of these m elements over
a non-binary field. This would require 1 multiplication in an MPC protocol, but
would require an entire row (m entries) in the algebraic execution trace of a
STARK proof. Should we want to raise the element to a higher power α, we can
use masking techniques in MPC at a fixed online cost that is independent of α,
10 This point is actually a little more subtle. While this operation still need to run

on “traditional” hardware, the modalities of computations we are concerned with
actually abstract this part and only count the number of field operations. This is,
for better or worse, a common practice in this area of research and we follow suit.

9

and yet it would require log2(α) R1CS constraints. The exception is when α has
a small inverse in Z/(q − 1)Z; then the R1CS representation can be optimized
with a non-procedural computation.

At the risk of stating the obvious, even when restricting to zero-knowledge
proof systems, ciphers can have a different cost depending on whether they are
encoded as R1CS and AIR. For instance, raising a value to the power α requires
log2(α) R1CS constraints, meaning that the cost is the same for all values in
the range [2log2(α)−1, 2log2(α)]. In contrast, a system encoded in AIR can specify
the maximal degree d of the polynomials describing the system, giving rise to
logd(α) AIR constraints.

Importantly, and unlike in the case of traditional cipher design, the size of
the field over which the cipher is defined is virtually immaterial to its cost of
operation. For example, changing the base field of a hash function from F2128 to
F2256 doubles the digest length at no additional cost. Conversely, in traditional
cipher design and the cost metrics normally associated with it, such a change
would increase the circuit size, RAM, latency, and throughput.

The flipside of the cheapness of native field operations is the expensiveness
of non-native operations that traditional ciphers typically are composed of. For
example, the exclusive-or operation is extremely cheap for traditional ciphers
because the platforms on which they run represent everything as sequences of
bits; however, applying the same operation to elements of an odd-characteristic
field requires first computing their bit expansion, which is unnecessarily expens-
ive in our target settings. This observation rules out entire classes of designs,
e.g., ARX, or bit-oriented algorithms and arithmetization-oriented ciphers must
sacrifice the security benefits conferred by mixing algebras to achieve even the
most basic level of efficiency.

3.3 Cryptanalytic Focus

In traditional cipher design, statistical attacks — particularly, differential and
linear cryptanalysis — are considered two of the strongest tools in the cryptana-
lytic toolbox. Although other types of attacks have been shown in some cases to
deliver interesting results, they systematically receive less attention in the liter-
ature.11 However, the opposite seems to be the case for arithmetization-oriented
ciphers, for two reasons. First, the flexibility in choosing the field size, the gra-
tuitous nature of scalar multiplication, and non-procedural computation, allow
killing statistical attacks in a rather small number of rounds rendering standard
security arguments such as the wide trail strategy less important.

Second, and more importantly, the optimization of ciphers for arithmetic
modalities of computation has the unfortunate side-effect of enabling attacks
that exploit their low arithmetic complexity. Any cipher whose operations are

11 Recent times have seen some change to this trend with the rise of other types of
attacks; still, statistical attacks seem to be receiving more focus than others by a
large margin.

10

described by simple polynomials gives rise to a range of attacks that manipu-
late those same polynomials algebraically (and enjoy the speedup afforded by
non-procedural computation). While it is true that any function from finite
fields to finite fields can be represented by a polynomial, the problem is that
arithmetization-oriented ciphers attempt, as a design goal, to make this poly-
nomial representation concise and thereby reduce the complexity of algebraic
attacks that are otherwise wildly infeasible. Among this class of algebraic at-
tacks we count the interpolation attack [35], higher-order differentials [36, 38],
and the GCD attack [3, §4.2], and, warranting particularly close attention, Gröb-
ner basis attacks. For an overview on the processes involved in Gröbner basis
attacks, we refer the reader to Appendix A; we proceed here assuming familiarity
with these concepts.

The interpolation and GCD attacks rely on the univariate polynomial ex-
pression of the ciphertext in function of the plaintext (or vice versa). Their
complexity, and their countermeasures, are mostly understood. In essence, it is
sufficient to ensure that the algebraic degree of the univariate polynomial de-
scribing the algorithm is of high enough degree and the polynomial is dense for
the algorithm to be deemed secure against these attacks.

In contrast to these attacks, Gröbner basis attacks admit a multivariate poly-
nomial description and are much more difficult to quantify in terms of complex-
ity. This difficulty stems from a variety of sources:

– Arithmetization-oriented cipher design is a relatively new field, spurred by
recent progress in advanced cryptographic protocols. For ciphers not optim-
ized for arithmetic complexity, merely storing the multivariate polynomials
in memory tends to be prohibitively expensive, let alone running a Gröb-
ner basis algorithm on them. As a result, Gröbner basis attacks are rarely
considered and poorly studied.12

– There may be many ways to encode a cipher as a system of multivariate
polynomials, or more generally, to encode an attackable secret as the common
solution of a set of multivariate polynomial equations. As such, Gröbner basis
attacks do not constitute one definite algorithm but a family of attacks whose
members depend on the particular choices made while modeling the cipher
as a collection of polynomials.

– The complexity of Gröbner basis algorithms is understood only for systems
of polynomial equations satisfying a property called regularity, which cor-
responds to the algorithms’ worst-case behavior. Even if a given system of
polynomial equations is regular, it is difficult to prove that this is the case
without actually running the algorithm. The complexity of Gröbner basis
computation of irregular systems can be characterized in terms of the sys-
tem’s degree of regularity, but once again there is no straightforward way to
compute this degree without actually running the Gröbner basis algorithm.

– In some cases, the actual Gröbner basis calculation is relatively simple but
the corresponding variety contains many parasitical solutions in the field

12 Interestingly, AES, which is surprisingly arithmetizible considering that it was not
designed as such, also admits certain algebraic attacks [23].

11

closure despite having dimension zero. Additional steps are then required to
extract the correct base field solution, and these post-processing steps may
be prohibitively complex. The parasitical solutions are typically eliminated
by converting the Gröbner basis into one with a lexicographic monomial
order. Since the variety is zero-dimensional, there must be at least one uni-
variate basis polynomial at this point; factorizing this polynomial identifies
the solutions in the base field. The complexity of monomial order conversion
can be, and often is, captured via that of the FGLM algorithm [30]; how-
ever an alternative algorithm called Gröbner Walk does not have a rigorous
complexity analysis and yet is observed to outperform FGLM sometimes in
practice [21].

The dual design criteria of both having an efficient arithmetization and of-
fering security against Gröbner basis attacks seem to be fundamentally at odds
with each other. A concise polynomial description of a cipher benefits both the
algebraic attack and the advanced cryptographic protocol that uses it. Con-
sequently, the question of security against Gröbner basis attacks seems to be the
crucial concern raised by arithmetization-oriented ciphers, and no such proposal
is complete without explicitly addressing it. This is yet another difference from
traditional designs where Gröbner basis attacks are mostly irrelevant and it is
the statistical attacks that require special care by the designer.

We observe that non-deterministic encodings used in zero-knowledge proofs
have a counterpart in the cipher’s polynomial modeling and make both the zero-
knowledge proof and the Gröbner basis algorithm more efficient. Furthermore, we
conjecture that this duality is necessarily the case, even for tricks and techniques
that we may have overlooked. By linking the efficiency and security to the same
cost metric this conjecture hints towards a possible tight lower bound on the
attainable efficiency for a fixed security level (and vice versa).

The relative importance of Gröbner basis attacks is illustrated by Jarvis [6]
and MiMC [3], two arithmetization-oriented ciphers that were proposed with
explicit consideration for a wide range of attacks, but not attacks based on
computing Gröbner bases. However, shortly after its publication, a Gröbner basis
attack that requires only a single plaintext-ciphertext pair was used to discover
non-ideal properties in Jarvis [1]. An investigation of MiMC using the same
attack was argued to be infeasible [1, Sec. 6].13 While finding the Gröbner basis
is easy, the next two steps — monomial order conversion and factorization of the
resulting univariate polynomial — are not, owing to the infeasibly large number
of parasitical solutions in the field closure.

However, as a countermeasure against Gröbner basis attacks, relying on the
large number of parasitical solutions, or on the according complexity of term
order change, is a new security argument as well as a risky one. The simple
observation that using more than just one plaintext-ciphertext pair makes the
system of equations overdetermined, and thus filters out all parasitical extension
13 We note that a recently published work [28] showed that the algebraic degree of this

cipher grows slower than originally believed which may have implication still for a
Gröbner basis attack against the cipher.

12

field solutions with overwhelming probability, seems to undermine this argument.
We note that the complexity analysis of overdetermined polynomial system solv-
ing requires delicate attention and it is conceivable that the resulting attack is
also infeasible but for a different reason. However, the point is that even if this
is the case, MiMC’s security is not guaranteed by the large number of parasitical
solutions. Either way, these observations raise the question whether there is a
systematic argument for Gröbner basis security that does not depend on the
particular flavor of the attack. In Section 4.2 we answer this question positively
by developing a novel framework for providing such an argument.

3.4 Concluding Words

Our survey of the advanced cryptographic protocols employing arithmetic mod-
alities of computation is by no means complete. Consequently, our matching
survey of the design considerations induced by the advanced cryptographic pro-
tocols that we do cover, is likewise incomplete.

For example, fully homomorphic encryption is missing from our list of cryp-
tographic protocols and yet induces other design considerations. It is possible
that we overlooked other advanced cryptographic protocols employing arith-
metic modalities of computation, or that some are yet to be invented. If there is
a demand on the part of these protocols for symmetric ciphers, then the design
considerations for such ciphers ought to be re-evaluated in light of the target
protocol and application. In such an event, the points and questions raised by
our analysis provide an ample roadmap for such a reassessment.

Lastly, we note that the field of algebraic attacks against symmetric-key
algorithms appears to be underexplored for the most part. As a result, it is
difficult to make a compelling security argument valid for the entire class of
attacks. We expect third party analysis to contribute to fleshing out this field and
hope that this analysis confirms the merit of our design principle for addressing
algebraic attacks (Sections 4.2–4.2).

4 The Marvellous Design Strategy

Following the discussion in Section 3 we outline a framework for designing secure
algorithms which are efficient in arithmetization-oriented applications; this is
the Marvellous design strategy. In this section we explain and motivate the
decisions made in relation to this strategy and defer the realization of specific
families to Sections 5–6 with instances for some real world use cases provided in
Appendices D–E

4.1 General Structure and Design Approach

In essence, a Marvellous design is a substitution-permutation (SP) network para-
meterized by the tuple

(q,m, π,M, v, s).

13

The state is an element in the vector space Fm
q , with q either a power of 2

or a prime number, π = (π0, π1) the S-boxes, M an MDS matrix, v the first
step constant, and s the desired security level. For security reasons we require
m > 1 and log2(q) > 4. π = (π0, π1) should be selected in such a way that π0

(resp., π1) has a high degree when evaluated in the direction of the encryption
(resp., decryption) function. All these constraints will be motivated in the sequel.
Finally, to ensure the existence of the MDS matrix M we also require that
2m ≤ q.

Owing to the recent proliferation of arithmetization-oriented protocols in the
real world (e.g., [10,20,48]; for a more elaborate survey see [4, Sec. 2]), the design
of suitable cryptographic algorithm is of more than just academic interest. We
begin by outlining our design principles (=rationale) leading to the Marvellous
design strategy, listed by order of importance:

1. Security is more important than efficiency. The design process of a crypto-
graphic algorithm always includes a crossroad asking for a choice between
security and efficiency. Whenever facing such a crossroad we preferred se-
curity over efficiency. This design principle influenced several of our design
choices including the selection of structure, the use of a “heavy” key schedule,
and the addition of generous safety margins.

2. Simplicity and robustness. Given that the suggested designs are expected
to be used in the real-world and implemented by users coming from various
backgrounds, we tried to minimize the design strategy to a small set of simple
choices. We argue that, if followed, any compliant choice results in a secure
algorithm. Of particular importance in our opinion is the robustness against
“wrong” decisions by the user. We made it a priority to ensure that the
design is “fool-proof”, i.e., that it is hard for a user to make an accidental
parameter choice that would adversely affect the security of the resulting
instance. In other words, the designs come with no fine prints nor there are
any delicate parameter choices. Incidentally, this gives users more flexibility
to construct instances most suitable for their use cases.

3. Justifiable. Understanding that the domain of arithmetization-oriented ciphers
is rather new and mostly unexplored we aim to motivate in simple language
all design decisions and security arguments. This facilitates an easy start
for third party cryptanalysts who are interested in evaluating the security
of our algorithms, as well as for advanced users who may choose to deviate
from parts of the design strategy if they feel confident to do so. Furthermore,
in the event of a newly discovered attack, it is easy to pinpoint the failed
principle and adapt it rather than reiterate the entire design strategy.

4. Efficiency. Having the previous three design principles satisfied, we can finally
focus our attention on ensuring that the resulting algorithms are also efficient
in their respective use cases. In other words, at this point we sieved through
possible unconditionally secure, sufficiently simple and robust, and properly
justified design approaches in search for the most efficient one with respect
to our cost metric. We believe that our prudent and conservative choices at
this early stage will prove useful against third party cryptanalysis over time.

14

The state The state of a Marvellous design is viewed as a vector of m > 1 field
elements x0, . . . , xm−1, i.e., a Shark-like structure [45]. Since the main cost met-
rics are minimizing the multiplicative complexity and keeping the multiplicative
depth low, we felt that the design would benefit from the fast diffusion offered by
this structure compared to e.g., Square or (G)FN structures. The fast diffusion
of a Shark-like structure would normally increase the circuit cost. However, as
our cost metrics are not influenced by the size of the matrix or the number of
scalar multiplications, the efficiency of the design does not suffer by this choice.

In the course of our work, we observed unexpected and suspicious behavior of
some algebraic properties when setting m = 1. Investigating this further revealed
a qualitative difference between the cases of m = 1 and m > 1. In lieu of a good
explanation to this behavior and in accordance with the design rationale we
decided to restrict the designs to m > 1. Our findings were later confirmed by
third party analysis for some m = 1 designs [1, 28].

Round function Marvellous designs are formed by N iterations of a round
function which takes the previous state and a subkey as inputs and outputs a
new state. The inputs to the first round are the plaintext and the master key, and
the output of the last round is the ciphertext. Subsequent subkeys are derived
from a master key by means of a key schedule as explained in Section 4.1.

A single round consists of 2 steps. Each step employs three layers: S-box,
linear, and subkey injection. The S-box layer (Section 4.1) is full, i.e., it applies
an S-box πi to each of the m state elements. The linear layer (Section 4.1) is a
multiplication between a matrix M and the output of the S-box layer. The key
injection layer adds the output of the corresponding step in the key schedule
algorithm (Sections 4.1) into the state. Note that even for keyless algorithms,
the output of the key schedule is non-empty thus produces step constants (Sec-
tion 4.1). All algebraic operations are realized using the field’s native operations.

S-boxes In each round of a Marvellous design a pair of S-boxes (π0, π1) is used
with π0 used in the S-box layer of even steps (starting from 1) and π1 in the S-
box layer of odd steps. Each S-box is a simple power map xα possibly composed
with an affine transformation.

The difference between π0 and π1 is in their degree. They should be chosen
such that π0 has a high degree when evaluated forward (i.e., in the direction of
the encryption) and a low degree when evaluated backward (i.e., in the direction
of the decryption). The other S-box, namely π1, is chosen with the opposite goal
(i.e., to have a low degree in the forward direction and a high degree in the
backward direction). This choice serves to achieve three goals: (i) no matter
which direction an adversary is trying to attack, the degree is guaranteed to be
high; (ii) it results in the same cost for the encryption and decryption functions,
and (iii) owing to non-procedural computation, the low-degree representation of
each S-box can be evaluated efficiently.

The choice of power map S-boxes is motivated by two reasons. First, owing
to the seminal work of Nyberg [42] the cryptanalytic properties of power maps

15

are well understood and allow to make solid security arguments which have also
proved themselves in practice [26].

For algorithms intended to work over binary fields the power map is composed
with an affine transformation. For efficiency reasons, we recommend to use an
F2-affine linearized polynomial, i.e., a polynomial of the form

B(x) = b−1 +

n−1∑
i=0

bix
2i ∈ F2n [x] .

This affine transformation B is drawn randomly from the set of all F2-affine
linearized polynomials with a fixed degree in F2n [x]. Such a polynomial is a
permutation over F2n if and only if its linear part only has the root 0 in F2n .
Specifically, we suggest to generate the coefficients by employing SHAKE-256 to
expand a short seed into enough randomness from which the coefficients can be
taken (with rejection as necessary to ensure that the polynomial is invertible).
We recommend to use F2-affine polynomials of degree 4 but other degrees are
also allowed as long as B−1 is verified to be of maximal degree or very close to
it.

In the two families we present in this paper, π0 is obtained directly from π1.
In the case of Rescue we have π1 = xα and π0 = x1/α. In Vision the S-boxes take
the form π1 = B(x−1) and π0 = B−1(x−1). We stress that while we consider
such choices a good practice which positively affects the efficiency, this does not
have to be the case and the pair (π0, π1) can be chosen in other ways as long as
they jointly ensure that the degree of a single round is sufficiently high in both
directions.

Linear layer As in other designs, the purpose of the linear layer is to “spread”
locally good properties onto the entire state. Having chosen the SPN approach,
and being unable to manipulate individual bits due to the arithmetization-
oriented nature of the designs, a matrix multiplication is the natural choice
to serve as a linear layer.

A special class of matrices often used in SPN’s are MDS matrices. In our
setting, an MDS matrix ensures that each output element depends on all input
elements. The propagation of such matrices is well-studied for both statistical
and algebraic properties. Thus, MDS matrices seem Marvellous enough to be
used in our designs.

To ensure that the MDS matrix exists, we require that the native field Fq

on which it operates is at least 5-bit wide and that 2m ≤ |Fq| (i.e., log2(q) > 4
and 2m ≤ q). Following the design rationale, none of the security arguments is
sensitive to the specific MDS chosen. Since scalar multiplication bears no cost
in arithmetization-oriented ciphers, efficiency also does not play a role here.
We conclude that any MDS matrix can be used to realize the linear layer of a
Marvellous design as long as it has the right dimensions.

Stressing once more that all MDS matrices are Marvellous, we offer to use
m × 2m Vandermonde matrices using powers of an Fq primitive element. This

16

matrix is then echelon reduced after which the m×m identity matrix is removed
and the MDS matrix is obtained. This procedure was used to generate the linear
layer of all but one of the instances given in Appendices D–E.

Round constants When designing a new symmetric-key algorithm, constants
are injected into the state to thwart certain attacks (e.g., rotational cryptana-
lysis, invariant subspace attacks, etc.) by breaking possible symmetries and/or
similarities between parts of the algorithm.

The only thing we require from our constants is that they do not belong to any
subfield of Fq, nor be rotational-invariant. Concretely, we propose the following
method for generating them: we use SHAKE-256 to expand a short seed into
enough randomness from which one samples the first constant (with rejection
as necessary to ensure that the value is a member of Fq and not a member of
any subfield of Fq). All subsequent constants are obtained by applying an affine
transformation to the previous one. The first round constant and the coefficients
of the affine transformation can be generated deterministically using the code
provided in [49].

In our case, we opt to add the constants to the key schedule, resulting in a
“fresh” value injected into the state in every round. Note that even for unkeyed
constructions, (e.g., when instantiated inside a sponge function), the key schedule
still outputs a non-zero value in each step and that value is injected into the state.

Key schedule The key schedule reuses the round function. The master key
is fed through the plaintext interface and the round constants (Section 4.1)
are added where the subkey would normally be injected. The subkeys are then
determined as the value of the state immediately following the injection of the
constant.

In recent years, driven by the advent of lightweight cryptography, complex
key schedules have fallen out of favor. Following the Marvellous design rationale,
we decided to take the opposite approach here, namely using a heavy key sched-
ule (i.e., with cost of the same order as the algorithm itself). This complexity is
motivated by the following reasoning:

– The domain of arithmetization-oriented ciphers is relatively new and it pays
to err on the side of safety until the landscape of possible attacks has been
explored more thoroughly.

– One of the use cases for arithmetization-oriented ciphers is hashing and in
this case it is possible (e.g., by building a sponge function) to completely
hide the overhead of the key schedule as its input is a fixed key. In other
cases it may be possible to amortize the cost of the key schedule over the
cost of the entire execution or offset it to an offline phase.

– A straightforward Gröbner basis attack on the block cipher represents a key
recovery from one or a few plaintext-ciphertext pairs. When the key schedule
is simple — say, linear — then the same variables that are used to represent
the key in one round can be reused across all other rounds. A complex key

17

schedule introduces many more variables and equations, making the system
of equations that much more difficult to solve. Reusing the round function
in the key schedule is a conceptually simple way to require at least as many
polynomials and variables in the polynomial modeling step as are required
to attack the hash function.14

– A less straightforward Gröbner basis attack on the block cipher targets
the injected subkeys rather than the master key. However, as these injec-
ted subkeys are different, they must be treated as independent variables.
Consequently, the number of plaintext-ciphertext pairs that are necessary to
uniquely determine these subkeys must be equal to the number of subkeys.
With the resulting explosion in the number of variables and equations, even
a very mild degree of regularity makes the system of equations unsolvable in
practice.

When using a Marvellous design as an unkeyed primitive (e.g., as a permuta-
tion in a sponge function), the m field elements of the master key are all set to
zero and the key schedule is invoked to process the step constants and output
fresh values to be used as inputs to the step function.

Number of Rounds To set the number of rounds for a given parameter set, we
consider ℓ0, the maximal number of rounds that can be generically attacked by
any of the attacks in Section 4.2 (for a summary of these attacks see Table 1) and
ℓ1, the instance-specific number of rounds that can be attacked by a Gröbner
basis attack.

Our analysis shows that for reasonable parameter choices, statistical attacks,
as well as most algebraic attacks, do not extend beyond a handful of rounds.
For all parameters we considered, ℓ0 ≪ ℓ1 and we discuss the instance-specific
analysis against Gröbner basis attacks in Sections 5–6. These examples can be
consulted by users generating new Marvellous families.

Having determined ℓ0 and ℓ1, we set the number of rounds to be

2 · max(ℓ0, ℓ1, 5) ,

i.e., we take the number of rounds covered by the longest reaching attack and
double it, with a minimum of 2 · 5 = 10 rounds. We call 5 a sanity factor and
its purpose is to ensure that aggressive optimization attempts do not result in
trivially weak instances.

4.2 Security

We now give an overview of the Marvellous security countermeasures applied to
inoculate algorithms following this design strategy against attacks. In essence,
we see that for reasonable parameter sets the design strategy provides resist-
ance against statistical and structural attacks, as well as against most algebraic
14 We also mention in Section 4.2 that showing resistance to Gröbner basis attacks in

the unkeyed case implies same resistance or better for the keyed case.

18

attacks, already after a small number of rounds. We provide below a generic
security argument against these attacks with an executive summary in Table 1.

The limiting factor in determining a safe number of rounds for meaningful
instances appears to be the resistance to Gröbner basis attacks which we were not
able to argue generically. Instead, we developed a novel framework for arguing
resistance against said attacks. In Sections 5–6 we employ this framework to
determine the resistance of the Vision and Rescue families, respectively. These
analyses can be consulted by users interested in generating their own Marvellous
families after also consulting Table 1 to ensure that theirs is not the edge case
where the Gröbner basis attack is outperformed by one of the other ones.

Note that the security analysis below pertains only to the Marvellous al-
gorithm as a primitive proper. In practice, this algorithm will be used within
a mode of operations or a construction which will have their own security
claims. We envision that the most common usage would be as a primitive to
a sponge construction in which case the generic security of the sponge is given
by log2(

√
q)min(rq, cq) with rq the arithmetic rate and cq the arithmetic capa-

city; we elaborate on the proper way to employ a Marvellous algorithm in a
sponge construction in Section 4.3.

Table 1: Resistance to cryptanalytic attacks. Each row in the table denotes an
attack class with each cell describing the maximal number of rounds that can
be covered by this attack with respect to a security parameter s.

Type of attack Binary fields (x−1) Prime fields (xα)

Differential 2s
log2(q

m+1)−2·(m+1)
2s

log2(q
m+1)−log2((α−1)m+1)Cryptanalysis

Linear s
log4(q

m+1)−2·(m+1) -Cryptanalysis

Higher Order 1 -
Differentials

Interpolation 3 3

Gröbner Basis Sec. 5 Sec. 6

Statistical Attacks A common security argument for SPN’s is the wide trail
strategy [26]. The argument uses two quantities: an upper bound for the best
propagation probability of the statistical property through a single S-box, and
a lower bound for the minimal number of active S-boxes. Then, the former is
raised to the power of the latter to obtain a (lower) bound on the probability of
the best differential characteristic in the cipher.

19

Building on the work of Nyberg [42] we see that S-boxes consisting of a
power map have good differential and linear properties and that these properties
can be easily derived once Fq is fixed. An interesting observation here is that
these quantities improve directly (from the designer’s point of view) as a result
of increasing the field size. For example, the maximal difference propagation
probability of an active S-box in AES (i.e., computing 1/x for x ∈ F28) is
δ28 = 2−8+2 = 2−6. Comparing this to a hypothetical AES-like cipher where the
state consists of elements in F2128 we get δ2128 = 2−128+2 = 2−126. We see that
by merely changing the native field and nothing else, the differential uniformity
of the S-box is improved by a factor of 2−120. The situation is similar for linear
cryptanalysis.

Bounding the number of active S-boxes: The number of active S-box in a single
round follows directly from the dimensions of the MDS matrix being used in
the linear layer. For m the number of field elements in the state, at least m+ 1
S-boxes are active in every two steps (i.e., in one round).

Bounding the transition probabilities: The bound on the best propagation prob-
ability depends on the type of field being used (binary vs. prime) and is a function
of the power map α.

Binary fields (q = 2n; α = −1): In the language of [42, §4] this is the inversion
mapping

f : Fq → Fq : x 7→ xq−2 ,

or in rational form

f(x) =

{
1/x, if x ̸= 0 ;

0, otherwise,

with δ = 2− log2(q)+2 and |λ| = 2−⌈log2(q)/2⌉+1 . Since the MDS matrix activates
at least m+1 S-boxes in each round we find that the probability of any N -round
differential characteristic is at most

2N(m+1)(− log2(q)+2) . (1)

Since log2(q) > 4 ⇒ (− log2(q) + 2) < 0 and 0 < 2N(m+1)(− log2(q)+2) < 1.
Denoting the security parameter by s we seek to bound the probability of the
best differential characteristic to be at most 2−2s (2s is used in the exponent
in order to account for differential clustering effects). Substituting the security
parameter into (1) and solving for N we get

2N(m+1)(− log2(q)+2) ≤ 2−2s ⇒ N ≥ −2s

(m+ 1)(− log2(q) + 2)

⇒ N ≥ 2s

log2(qm+1)− 2 · (m+ 1)
.

(2)

20

Analogously to (1) we see that any N -round linear trail has absolute correl-
ation at most

2N(m+1)(−⌈log4(q)⌉+1) ≤ 2N(m+1)(− log4(q)+2) . (3)

Since a linear attack requires data complexity proportional to the squared inverse
of the correlation we set

(2N(m+1)(− log4(q)+2))2 ≤ 2−2s ⇒ 2N(m+1)(− log4(q)+2) ≤ 2−2s/2

⇒ N ≥ −s

(m+ 1)(− log4(q) + 2)

⇒ N ≥ s

log4(qm−1)− 2 · (m+ 1)

(4)

Prime fields (q prime; α prime; gcd(q−1, α) = 1): In this case we use the power
maps

f : Fq → Fq : x 7→ xα

and
f−1 : Fq → Fq : x 7→ x1/α

which exist and are both permutations if and only if gcd (q − 1, α) = 1. Again
from [42] we know that in this setting the α power map is (α− 1)-uniform and
has a difference propagation probability at most δ = 2− log2(q)+log2(α−1) where
the differences are taken over Fq . Having required gcd (q − 1, α) = 1, the 1/α
power map is the functional inverse of xα (i.e., x = (xα)1/α) and is therefore also
(α− 1)-uniform. Considering the m + 1 active S-boxes per round, we find that
the difference propagation probability of any N -round differential characteristic
is at most

2N(m+1)(− log2(q)+log2(α−1)) . (5)

Observing that log2(q) > log2(α − 1) is always true we have log2(α − 1) −
log2(q) < 0 ⇒
0 < 2N(m+1)(− log2(q)+log2(α−1)) < 1. Substituting the security parameter 22s into
(5) and solving for N as before, we get

2N(m+1)(log2(α−1)−log2(q)) ≤ 2−2s ⇒ N ≥ −2s

(m+ 1)(log2(α− 1)− log2(q))

⇒ N ≥ 2s

log2(qm+1)− log2((α− 1)m+1)
.

(6)

The case for linear cryptanalysis in prime fields is more complicated. Nor-
mally, linear cryptanalysis searches for a linear combination of input-, output-,
and key bits that is unbalanced. As such, linear cryptanalysis seems tailored to
work over binary fields. No obvious analogue to this behavior exists in prime
fields. However, we stress that we do not have a rigorous argument for the in-
applicability of linear cryptanalysis in this setting and the questions how to lift
linear cryptanalysis to this setting and how many rounds, if any, can be covered
by the attack, remain open.

21

Structural and Algebraic Attacks

Self-similarity attacks. Self-similarity attacks work by splitting an algorithm
into multiple sub-algorithms that are similar to one another, for some defini-
tion of similarity (hence “self-similarity”). This allows to attack one of the sub-
algorithms and use the self-similarity to cleverly link this part with the others.
A straightforward way to resist this class of attacks is to inject round constants
which break the self-similarity. In Section 4.1 we discussed the conditions that
step constants must satisfy and suggested a way to generate them.

Invariant Subfield Attacks The invariant subfield attack works if there exist two
subfields Fq1 ⊂ Fq and Fq2 ⊂ Fq such that for any input to the round function
x ∈ Fq1 , the corresponding output satisfies y ∈ Fq2 . The two subfields can be the
same or different. This invariant subfield attack is only relevant for binary fields
since, by definition, when q is prime it has no non-trivial subfields. However, for
q = 2n an adversary might be able to attack the cipher by making it work over
one of the subfields. We require that the coefficients of the affine polynomial B
used to construct (π0, π1) do not lie in any subfield of F2n thus frustrating the
attack. In addition we require that the step constants are not members of any
subfield.

Higher Order Differential Cryptanalysis. In binary fields, the algebraic degree
of a function f is defined as the degree of the monomial with the highest degree
when f is given in algebraic normal form. Ciphers which achieve a low algebraic
degree are potentially vulnerable to higher-order differential attacks [36,38]. The
resistance against this attack, for Marvellous designs which operate over binary
fields, comes from the S-box. Taking into account both B(x) and B−1(x) the
algebraic degree is n− 1 after a single round and density is assured by repeating
the round. Since n− 1 is also the maximal algebraic degree that can be reached
by a polynomial in F2n [x], the designs are resistant to higher-order differential
cryptanalysis.

Interpolation Attacks. Interpolation attacks [35] are yet another class of attacks
exploiting the low degree of an algorithm. Here, the attacker tries to reconstruct
the polynomial describing the algorithm from input/output pairs by means of
Lagrange interpolation. Due to the complexity of calculating GCD’s or Lagrange
interpolation being linear in the degree of the polynomial, a way to avoid the
attack is to ensure that the polynomial representations of the algorithm is of
high degree. In a Marvellous design, at least one of the power maps in (π0, π1) is
of high degree thus ensuring a high rational degree of the polynomial expression.
For binary fields, the affine polynomials B(x) and B−1(x) ensure this property
also for F2, i.e., for the base field. Interpolation attacks lend themselves to meet-
in-the-middle variants and we conclude that an interpolation attack is frustrated
after at most three rounds.

22

Gröbner basis attacks Gröbner basis attacks are of particular interest for
arithmetization-oriented algorithms as their complexity seem to be coupled with
the efficiency of the algorithm. In other words, since both the efficiency of the
cipher and the complexity of the attack are captured by the multiplicative com-
plexity, attempting to improve the former might also make the latter more feas-
ible. While approaches for quantifying and ensuring resistance against other
attacks have been heavily studied in the literature, the theory behind Gröbner
basis attacks does not appear to be sufficiently advanced to offer similar tools.

Unable to devise a generic security argument, what we provide instead is a
novel framework for determining the resistance against Gröbner basis attacks of
a given algorithm. Contrary to other works in this domain, our framework does
not make a-priori assumptions on either the polynomial system or the number of
parasitical solutions. Instead, it extrapolates the polynomial system’s properties
from empirical data. We offer this framework as a first step towards a systematic
approach to resisting Gröbner basis attacks.

We begin with a brief description of how Gröbner basis attacks work, referring
the interested reader to Appendix A for a more elaborate description of the
attack.

Recall that a Gröbner basis attack consists of the following steps:

(i) computing a Gröbner basis in degrevlex order;
(ii) converting the Gröbner basis into lex order;
(iii) factorizing the univariate polynomial, and back-substituting its roots.

We use the following priniciple to derive a safe number of rounds:

resistance to Gröbner basis attacks should come from the infeasible complexity
of computing the Gröbner basis in degrevlex order in step (i).

This principle guarantees that the cipher’s security against Gröbner attacks is
independent of the presence of parasitical solutions in the field closure; if present
and large in number, these parasitical solutions represent a superfluous secur-
ity argument since the attacker has to get past step (i) in order to get to step
(iii). Interestingly, with this approach, the number of parasitical extension field
solutions required for an infeasible univariate factorization is no longer a con-
straining factor in determining the number of rounds; this appears to result in
more efficient algorithms compared to other approaches.

In order to guarantee that finding the first Gröbner basis is prohibitively
expensive, we implement the algorithm and a Gröbner basis attack, and observe
the degree of regularity experimentally for a small number of rounds. We assume
a constant relation between the observed concrete degree of regularity, and the
degree of regularity of a regular system of the same number of equations, degrees,
and variables. Conservatively, setting ω = 2 as the linear algebra constant and
extrapolating from there, we set the number of rounds such that the attack
becomes more expensive than using brute-force.

The particular flavor of the Gröbner basis attack we aim to resist is a
preimage search for the arithmetic sponge-based hashing mode described in Sec-
tion 4.3. In the experiments we model the absorption of one field element and

23

extraction (“squeeze”) of the same. Other flavors of the attack induce the same
or greater complexity: a different trade-off between rate and capacity would res-
ult in variables being removed from the output side and added on the input
side, and equations which are removed from the input side and placed on the
output side. Overall, the number of variables and equations remains the same
and the attack complexity does not change. Attempting a key recovery attack
would require modeling also the key schedule algorithm, effectively doubling the
size of the polynomial system. Likewise, calling the permutation twice in order
to either absorb or squeeze another data block would again double the size of
the polynomial system.

In determining the concrete observed degree of regularity we discovered an
interesting inverse trade-off between the width of the state m and the number
of rounds N required to resist the Gröbner basis attack. We see that for higher
m, the degree of regularity grows faster in each round.

4.3 Arithmetic Sponges

A sponge construction generates a hash function from an underlying permutation
by iteratively applying it to a large state [18]. Usually, the state is thought of as
consisting of b = r + c bits, where r and c are called the rate and the capacity
of the sponge, respectively. In every iteration of the absorption phase, r bits
of the input are injected into the state until there is no more input to absorb;
in every iteration of the squeezing phase, r bits of the state are read out until
the desired output length is met. This definition is adapted to work over field
elements, see [17]. Instead of working over bits, the arithmetic rate now consists
of rq field elements in Fq. The remaining cq = m− rq field elements are said to
be the arithmetic capacity of the sponge.

Marvellous sponges To turn a Marvellous keyed algorithm into an unkeyed
permutation we suggest to fix the secret key to zero. The resulting permutation
is then used in a sponge construction to obtain a doubly-extendable output (DEC)
function, with hash functions as a private case when the output length is fixed.

A sponge function instantiated with the resulting permutation, arithmetic
rate rq, and arithmetic capacity cq absorbs (using field addition) or squeezes
up to rq field elements per permutation-call. Note that increasing rq and keep-
ing cq fixed effectively improves the throughput of the sponge function without
significantly affecting the cost and not at all the security due to the trade-off
discussed in Section 4.2. The generic security of a sponge function in this setting
is log2(

√
q)min(cq, rq) bits of security assuming that the underlying permutation

is randomly selected. It is common practice to consider a specific permutation
as being randomly selected if there is no known distinguisher against it.

Padding In case the input to the sponge is of variable length, the sponge model
also requires that a padding rule be defined. We suggest the following rule: first,
append to the end of the input the unit element 1 ∈ Fq and then, if necessary,

24

append as many zeros 0 ∈ Fq as needed until the number of field elements in the
input is divisible by rq.

4.4 Efficiency

Throughout the Marvellous design, we only use arithmetization-efficient maps or
their functional inverses. The realization of functional inverse maps is not always
efficient when implemented straightforwardly. However, all use cases targeted
by this paper enable non-procedural computations making it arithmetization-
efficient to calculate the functional inverse of an arithmetization-efficient map.

As an instructive example consider the set

Λ = {(x, y)|y is the cube root of x} .

For a given pair (x0, y0) ∈ Fq × Fq, checking if (x0, y0) ∈ Λ can be done by
calculating x

1/3
0 = x

(2q−1)/3
0 and comparing the result to y0; alternatively, by

calculating y30 and comparing the result to x0. The former method has a multi-
plicative complexity of about log2((2q−1)/3). This is much higher than log2(3),
the multiplicative complexity of the latter method. Using Marvellous designs
mostly makes sense in settings where similar tools are afforded by the advanced
cryptographic protocol. On the other hand, when such tools are available, our
designs can efficiently employ operations that would have otherwise been dis-
carded as being inefficient.

A particularly useful property of Marvellous designs is the counter-intuitive
inverse trade-off between m and N (i.e., the number of field elements in the state
and the number of rounds, respectively) described in Section 4.2. This trade-off
allows to treat m as a parameter that can be tweaked in order to improve the
throughput of a sponge function or reduce the multiplicative depth of an instance
in exchange for a larger state size. For example, a large m can be used to build an
n-ary Merkle-tree rather than a binary one to reduce the tree depth (and hence
the number of hashes per path) at the expense of larger inclusion proofs. As all
the S-boxes in a single S-box layer operate in parallel, a large m also allows to
compress more S-boxes into a single communication round in an MPC protocol.

5 Vision

We now describe the first Marvellous family, Vision. Since most aspects of the
design are directly derived from the design strategy discussed in Section 4, we
limit ourselves here to Vision-specific design decisions and provide the technical
specification of the algorithm. In Appendix D, we provide two instances of the
family.

Vision is meant to operate on binary fields with its native field F2n , i.e.,
q = 2n. The state is viewed as a column vector of m field elements and is an
element of the vector space Fm

2n . To construct the S-boxes we first select an
F2-linearized affine polynomial of degree 4 which we denote by B. Then,

π1 : F2n → F2n : x 7→ B(x−1) ,

25

and

π0 : F2n → F2n : x 7→ B−1(x−1) .

Advice on how to choose the F2-linearized affine polynomial, the step constants,
and the MDS matrix was provided in Section 4.1.

To generate the ciphertext from a given plaintext, the round function is
iterated N times with a key injection before the first round, between every
two steps, and after the last round. Users who wish to use Vision as an unkeyed
primitive in a sponge construction are referred to Section 4.3. The round function
is depicted in Figure 1 and the pseudo-code for the cipher is given in Algorithm 1.

For a desired security level of s, in bits, we set ℓ0 as the number of rounds
covered by the longest reaching attack in Table 1, ℓ1 = ⌈ s+m+8

8m ⌉ the number of
rounds which can be attacked by a Gröbner basis attack,15 and 5 a sanity factor
ensuring that aggressive optimization attempts do not result in trivially weak
instances.

Finally, the number of rounds is set to N = 2 ·max(ℓ0, ℓ1, 5), i.e., we take the
longest reaching attack and add a 100% safety margin by doubling the number
of rounds.

S2i−2

x-1

...

x-1

B-1

...

B-1

M

x-1

...

x-1

+

K2i−1

B

...

B

M S2i+

K2i

Figure 1: A single round (two steps) of Vision

15 This bound is derived from Equation (8). A previous version of this paper used a
different bound here, resulting in more rounds than what is strictly necessary. We
decided to update the bound in this version since we are not familiar with any actual
instance of Vision already in deployment. The authors apologize for the typo.

26

Algorithm 1: Vision
Input: Plaintext P , step keys Ks for 0 ≤ s ≤ 2N
Output: C = Vision (K,P)

S0 = P +K0

for r = 1 to N do
for i = 1 to m do

Interr[i] = (Sr−1[i])
−1

Interr[i] = B−1(Interr[i])
end
for i = 1 to m do

Sr[i] =
∑m

j=1 M [i, j]Interr[j] +K2r−1[i]

end
for i = 1 to m do

Interr[i] = (Sr[i])
−1

Interr[i] = B(Interr[i])
end
for i = 1 to m do

Sr[i] =
∑m

j=1 M [i, j]Interr[j] +K2r[i]

end
end
return SN

5.1 Resistance to Gröbner Basis Attacks

The resistance of Vision against most attacks can be derived from Table 1. In
this section we focus only on resistance to Gröbner Basis attacks in the setting
explained in Section 4.2.

The following system encodes one full round of Vision. Here, S2i−1 is the
intermediate state in the middle of Fig. 1, and K2i−1 and K2i represent known
fixed values coming from the key injections. Furthermore, when isolated, [m]
denotes the set {1, . . . ,m}; but when it is suffixed to a vector or matrix [i] or
[i, j] takes the indicated element, and in particular M−1[i, j] takes the (i, j)-th
element of M−1.

S2i−2[j] ·B
(

m∑
k=1

M−1[j, k] (S2i−1[k]−K2i−1[k])

)
− 1 = 0 j ∈ [m]

(S2i−1[j])
4 ·B

(
S2i−1[j]

−1
)
− (S2i−1[j])

4 ·
m∑

k=1

M−1[j, k](S2i[k]−K2i[k]) = 0 j ∈ [m]

Note that left hand side of the second line is a polynomial in S2i−1[j] as the
negative powers are canceled by the factor (S2i+1[j])

4 and as the degree of the
affine polynomial B is 4.

27

Analyzing the number of equations we see that the first step is described by
rq equations of degree 5 and cq equations of degree 4.16 The last step requires rq
equations of degree 4 and cq equations of degree 5. Each of the other 2(N − 1)
steps requires m equations of degree 5. In total, the system is modeled by rq +
cq + 2m(N − 1) + rq + cq = 2mN equations in 2mN variables.

Had the system been regular, its degree of regularity would have been given
by the Macaulay bound

dreg = 1 +

rq∑
i=1

(deg(fi)− 1) +

m∑
i=rq+1

(deg(fi)− 1)

︸ ︷︷ ︸
equations from the first step

+

m+2m(N−1)∑
j=m+1

(deg(fj)− 1)︸ ︷︷ ︸
equations excluding the first and last steps

+

m+2m(N−1)+rq∑
ℓ=m+2m(N−1)+1

(deg(fℓ)− 1) +

2mN∑
ℓ=m+2m(N−1)+rq+1

(deg(fℓ)− 1)

︸ ︷︷ ︸
equations from the last step

= 1 + 4rq + 3cq + 4 · 2m(N − 1) + 3rq + 4cq = 1 + 8mN −m.

However, as we see below, the experimental result we have suggests that the
concrete degree of regularity is actually smaller and we use the bound dreg

4 ≤ dcon
in determining a safe number of rounds.

Experimental Verification We apply the first step of the attack, i.e., finding a
Gröbner basis in degree reverse lexicographic (degrevlex) order on round-reduced
versions of Vision. We tried the attack on different algebra systems and using
different libraries, with F4 on Magma performing best.

Due to the high complexity of calculating the degree of regularity (i.e., of
performing the Gröbner basis calculation and observing the degree of the result-
ing basis) even for round reduced versions, we only have a single data point after
running the experiment for more than 60 hours. This data point has concrete
degree of regularity 9, for m = 2 and N = 2 rounds.

We estimate the complexity of constructing a Gröbner basis in degree reverse
lexicographic order to be at least(

(1 + 16mN −m)/4

2mN

)2

, (7)

16 A more recent analysis showed that it is possible to completely avoid the first step.
After much consideration the authors decided to absorb this improvement into the
safety margin to retain consistency with the case of Rescue.

28

and the number of rounds that can be attacked is calculated as

ℓ1 = min(N) subject to
(
(1 + 16mN −m)/4

2mN

)2

≥ 2s . (8)

While it is risky to argue for a constant concrete-to-regular ratio from a
single datum, we do have data in support of a similar conjecture coming from
the experimental analysis of Rescue.

6 Rescue

The second family of algorithms in the Marvellous universe is Rescue. Rescue
is similar to Vision in that it operates on field elements in Fq, but this time
q is prime rather than being a power of 2. In Appendix E, we provide several
instances of Rescue with parameter sets which were derived from real world
scenarios.

Again, the state is viewed as a column vector of m field elements and is an
element of the vector space Fm

q . To build the S-boxes we first find the smallest
prime α such that gcd (q − 1, α) = 1. Whenever possible we recommend to choose
the field such that gcd (q − 1, 3) = 1 as α = 3 was observed to result in the most
efficient design. Then, the S-boxes are set to be π0 : Fq → Fq : x 7→ x1/α and
π1 : Fq → Fq : x 7→ xα. The MDS matrix and the round constants are generated
per Section 4.1

To generate the ciphertext from a given plaintext, the round function is
iterated N times with a key injection before the first round, between every two
steps, and after the last round. A schematic description of a single round (two
steps) of Rescue can be found in Figure 2 and the pseudo-code of the cipher is
listed in Algorithm 2.

For a desired security level of s, in bits, we set ℓ0 to be the number of rounds

covered by the longest reaching attack in Table 1, ℓ1 =

{
⌈ s+2

4m ⌉ for α = 3

⌈ s+3
5.5m⌉ for α = 5

the

number of rounds which can be attacked by a Gröbner basis attack,17 and 5 for
the same reason as in Vision.

Finally, the number of rounds is set to N = 2 ·max(ℓ0, ℓ1, 5), i.e., we take the
longest reaching attack and add a 100% safety margin by doubling the number
of rounds.

17 These bounds are derived from Equation (9). Users interested in instances where
α > 5 should use the same number of rounds as in the case of α = 5 if optimizing
for security or derive ℓ1 directly from Equation (9) if optimizing for performance.

29

S2i−2

x
1
α

...

x
1
α

M

xα

...

xα

+

K2i−1

M S2i+

K2i

Figure 2: One round (two steps) of Rescue where the addition with the key is
taken over a prime field.

Algorithm 2: Rescue
Input: Plaintext P , round keys Ks for 0 ≤ s ≤ 2N
Output: Rescue (K,P)

S0 = P +K0

for r = 1 to N do
for i = 1 to m do

Interr[i] = K2r−1[i] +
∑m

j=1 M [i, j](Sr−1[j])
1/α

end
for i = 1 to m do

Sr[i] = K2r[i] +
∑m

j=1 M [i, j](Interr[j])
α

end
end
return SN

6.1 Resistance to Gröbner Basis Attacks
Similar to Vision, the resistance of Rescue against most attacks can be derived
from Table 1. Here we focus only on the resistance to Gröbner Basis attacks
which cannot be argued generically.

Like for Vision, we provide equations encoding the preimage of the Rescue
sponge function in the setting described in Section 4.2. In contrast to Vision it is
now possible to fold equations across two steps in order to reduce the number of
variables and equations.18 As before we use [m] to denote {1, . . . ,m} unless the
brackets are a suffix to a vector or matrix, in which case the indicated element
is meant.

(
m∑

k=1

M−1[j, k](S1[k]−K1[k])

)α

− S0[j]−K0[j] i = 1, j ∈ [m](
m∑

k=1

M [j, k]S2i−1[k]
α

)
+K2i[j]−

(
m∑

k=1

M−1[j, k](S2i+1[k]−K2i+1[k])

)α

= 0

i ∈ [N − 1], j ∈ [m](
m∑

k=1

M [j, k]S2N−1[k]
α

)
+K2N [j]− S2N [j] = 0 i = N, j ∈ [rq]

18 We explain in more detail how folding is done for Rescue in Section 7.1.

30

The first step introduces m equations of degree α in rq +m variables where the
first rq variables represent the unknown input and m variables the output of the
step.19 Then, every two subsequent steps introduce m equations of degree α in
m new variables. The last step adds another rq equations without introducing
additional variables. In total, the model uses rq +mN equations of degree α in
rq +mN variables.

If the system of equations were regular we would find via the Macaulay bound
dreg = 1 +

∑mN+rq
i=1 (deg(fi) − 1) = 1 + (mN + rq)(α − 1). Experimentally, for

small round numbers we observe the concrete degree of regularity fits dcon =
0.5mN(α− 1) + 2 which can be bounded as dreg

2 ≤ dcon for α ∈ {3, 5}.
In Figure 3 we extrapolate the complexity of constructing a degree reverse

lexicographic Gröbner basis of round reduced versions of Rescue for different m
and α assuming the same concrete-to-regular degree ratio holds even for larger
round numbers. For comparison, we also depict the expected complexity if the
system were random.

Experimental Verification We calculated the degree of the Gröbner basis
output by the Gröbner basis algorithm for several round-reduced versions of
Rescue in a sponge construction. Since the number of variables and the number
of equations both depend on rq, different rate values would lead to different
complexities for the attack. In all our experiments we used rq = 1 as this case
represents the simplest model, i.e., the best case scenario from the adversary’s
point of view.

The exact points we get for m = 2, α = 3 are {(N, dcon)|(2, 6), (3, 8), (4, 10)},
for m = 3, α = 3 we have the point (N, dcon) = (2, 8), and for m = 2, α = 5 we
have the points {(N, dcon)|(2, 10), (3, 14)}. Observing that these points are fitted
by 0.5mN(α − 1) + 2 we estimate the complexity of finding the first Gröbner
basis by (

mN(0.5(α− 1) + 1) + rq + 2

mN + rq

)2

,

and the number of rounds that can be attacked can be determined according to

ℓ1 = min(N) subject to
(
mN(0.5(α− 1) + 1) + rq + 2

mN + rq

)2

≥ 2s . (9)

7 Benchmarks

In this section we analyze the efficiency of Vision and Rescue with respect to
three use cases: AIR constraints for ZK-STARKs (Section 7.1), Zero-Knowledge
19 Similar to the case of Vision, a more recent analysis showed that the first step can

be avoided. The authors decided to absorb this improvement into the safety margin
to avoid inconsistencies with already deployed versions.

31

0 1 2 3 4 5 6
0

10

20

30

number of rounds

de
gr

ee
of

re
gu

la
ri

ty

regular
concrete fit
data points

(a) m = 2, α = 3

0 1 2 3 4 5 6
0

10

20

30

number of rounds

de
gr

ee
of

re
gu

la
ri

ty

regular
concrete fit
data points

(b) m = 3, α = 3

0 1 2 3 4 5 6
0

10

20

30

number of rounds

de
gr

ee
of

re
gu

la
ri

ty

regular
concrete fit
data points

(c) m = 2, α = 5

Figure 3: Concrete degree of regularity for instances of Rescue (blue) compared
to the expected degree of regularity for a random polynomial system of the same
number of equations and variables (orange). In all cases, the experimental data
fits 0.5(α− 1)mN + 2 suggesting a concrete-to-regular degree ratio dreg

2 ≤ dcon.

32

Proofs based on R1CS Systems (Section 7.2), and MPC protocols (Section 7.3).
Section 7.4 provides a comparison of the algorithms with Starkad and Pos-
eidon [33], and GMiMCerf [2].

Notation. We use the following conventions. Variables of multivariate polyno-
mials are denoted with capital letters (X,K,R, . . .) . Plain variables denote the
current state and primed variables (X ′,K ′, R′) denote variables describing the
state at the next cycle of the computation. We limit ourselves to constraints in-
volving only two consecutive states. We use [i, j] (resp., [i]) to select the indicated
element from a matrix (resp., vector). When not affixed to a vector the nota-
tion [m] is shorthand for the set {1, . . . ,m}. Furthermore, we extend set-builder
notation to indicate multiple set members for each conditional satisfaction, i.e.,
{ai, bi | i ∈ [2]} = {a1, a2, b1, b2}.

7.1 AIR Constraints for ZK-STARKs

We begin by realizing the two algorithms in AIR, the Domain-Specific Language
(DSL) used to encode ZK-STARKs. For the sake of readers not versed in the
relevant definitions related to STARKs [12] we recall those, along with a simple
motivating example in Appendix B.

Encoding of a Vision Step as a Set of AIR Constraints We present an
AIR with w = 4m , t = 2 and degree d = 2 for a single step of Vision. The
sponge-based Vision replaces the key schedule with fixed constants, and hence
has half the width of the cipher (w = 2m) and the same length. We describe only
the second step in the round in which B(X) is used. The first step, which uses
B−1(X) , is analogous. First we deal with computing the key schedule, which
requires 2m variables, denoted K[1], . . . ,K[m] and R[1], . . . , R[m] . Let M [i, j]
denote the (i, j)-entry of the MDS matrix M , let Ck[i] ∈ F2n be the i-th field
element of the k-th step constant, and let B(Z) = b0 + b1Z + b2Z

2 + b3Z
4 be

the F2-linearized affine polynomial used by Vision.

1. The first cycle is used to compute the map x 7→ xq−2 , mapping x to its
inverse when x is nonzero and otherwise keeping x unchanged. The following
set of constraints (polynomials) ensures this,

{K[i]K ′[i]−R[i],K[i](1−R[i]),K ′[i](1−R[i]) | i ∈ [m]} .

To see this, notice that when K[i] ̸= 0 the second constraint forces R[i] = 1
in which case K ′[i] = K[i]−1 due to the first constraint, and when K[i] = 0
the first constraint forces R[i] = 0 so the last constraint forces K ′[i] = 0 as
well.

2. The second cycle uses the auxiliary variable R[i] to equal K[i]2 , and so,
there exists a quadratic polynomial in K[1], . . . ,K[m] and R[1], . . . , R[m]
that computes the concatenation of the quartic polynomial B along with
the linear transformation M and the addition of the step constant Ck used

33

in the kth step. The following constraints ensure that K ′[1], . . . ,K ′[m] hold
the correct values, given K[1], . . . ,K[m] ,{

R[i]−K[i]2,K ′[i]−

(
Ck[i] +

m∑
j=1

M [i, j]
(
b0 + b1K[j] + b2R[j] + b3R[j]2

)) ∣∣∣ i ∈ [m]

}
.

A single step of the cipher is identical to the key schedule, with the main
difference being that instead of adding a step constant (denoted Ck above) we
add the k-th key expansion during that stage. It follows that with 2m additional
variables and essentially the same set of constraints as above, we have accounted
for the full AIR of the Vision round.

Vision can be transformed to a permutation and used in a sponge construc-
tion where the keys are fixed to certain known constants. The key schedule is
dropped, leading to an AIR of width w = 2m and t = 2 cycles per step.

Note that one could use different AIRs than described above to capture the
same computation, just as we could use different AIRs to capture the Fibonacci
computation of the example in Appendix B. For instance, one may increase the
number of cycles per step from 2 to 2m, while decreasing the width from 4m to 4 ,
by operating on the m state registers sequentially instead of in parallel. However,
this alternative description does not reduce the overall size of the AET which
stands at 8m per step (and 16m per round). Similar trade-offs can be applied
to Rescue, as well, which we discuss next.

S

x3

...

x3

M

x
1
3

...

x
1
3

+

K2k

M S′+

K2(k+1)−1

Step 2 of Round k Step 1 of Round k + 1

Figure 4: An adapted representation of a round of Rescue better suited for
STARK evaluation.

Encoding of a Rescue Step as a Set of AIR Constraints Rescue is quite
similar to Vision but simpler from an algebraic perspective. The result is that
each step of the Rescue key schedule or state function involves only m cubic
polynomials (or inverses thereof), so we can encode it via an AIR using d = 3
with a single cycle per step and width m.

The representation of the Rescue round function admits an optimization
owing to non-procedural computation. Consider an adapted round as shown in
Figure 4. Here, the first step of the adapted round is “folded” into its second

34

step. This leaves the first and last steps of the algorithm to be taken separately.
We connect S and S′ from the middles of rounds k and k + 1 using m cubic
equations, effectively skipping the evaluation of the state after round k.

The result is that we can encode the adapted round function via an AIR with
a single cycle per round, d = 3 and width m. The following constraints ensure
that S′[1], . . . , S′[m] hold the correct values, given S[1], . . . , S[m] , K2k−1[1], . . . ,
K2k−1[m] and K2(k+1)−1[1], . . . ,K2(k+1)−1[m] ,

{∑m
j=1 M [i, j](S[j]3 +K2k−1[i]

3)−
(∑m

j=1 M
−1[i, j]

(
S′[j]−K2(k+1)−1[j]

))3 ∣∣∣ i ∈ [m]

}
.

Where we used that K2k[i] =
∑m

j=1 M [i, j]K2k−1[i]
3 for all i ∈ [m]. We

conclude that the Rescue state function AIR has degree d = 3 , state width
w = m and requires t = 1 cycles per round. Since the above encoding does not
require K2k, the key schedule admits a similar optimization. As a result, the
Rescue key schedule AIR also has degree d = 3 , state width w = m and t = 1
cycle per round. When the cipher is used as a hash in sponge mode, Rescue does
not require an AIR for the key schedule.

7.2 Zero-Knowledge Proofs Based on R1CS Systems

In this section we evaluate the efficiency of Vision and Rescue when encoded
as rank one constraint satisfaction (R1CS) systems. Such systems are used by
many zero-knowledge proof systems that operate on arithmetic circuits, such as
Pinocchio [43], ZK-SNARK [15], Aurora [16], Ligero [5], and Bulletproofs [22].

Encoding of a Vision Step as a System of Rank-one Constraints Re-
calling the two cycles of the AIR for Vision recounted earlier for constructing
each of the key and round (Section 7.1), we convert them into a system of R1CS
constraints. Consider the key schedule first; the cipher round is identical. The
first cycle is converted into 3m R1CS constraints. The second cycle splits the
evaluation of the affine polynomial into two parts, each involving one squaring
and thus m constraints for each part, resulting in a total of 2m constraints for
the second cycle. For this latter constraint we notice that over binary fields (of
size 2k , integer k) it is the case that∑

j

M [i, j]b3R[j]2 = (
∑
j

αjR[j])2

for the constants αj satisfying α2
j = M [i, j]b3 . Since each step involves both the

key derivation and the cipher step, we observe that the cost of a Vision block
cipher step is 10m R1CS constraints, and that of a round is 20m .

When used in sponge hash mode the key schedule is fixed, and so the num-
ber of R1CS constraints per step is halved. This gives a total number of 5m
constraints per step (and twice that number per round).

35

Encoding of a Rescue Step as a System of Rank-one Constraints To
efficiently encode a step of Rescue for α = 3, we use two R1CS constraints
to compute the cube of a state variable giving a total of 2m constraints for
the cubing operations over the whole state. The step using the inverse cube
map is analogous. The linear combinations due to the MDS matrix M can be
integrated into these 2m constraints. Since the same computation is applied to
the key schedule when used as a cipher, we count 4m per step, twice as many
constraints (8m) per round, and 2m constraints per step for Rescue used in
sponge hash mode because the key schedule is fixed.

7.3 MPC with Masked Operations
In this section we explore how to implement Vision and Rescue over MPC using
masked operations. We consider three masked operation techniques: one tech-
nique to find the inverse of a shared field element due to Bar-Ilan and Beaver [7];
one technique to raise a shared element to an arbitrary but known power due
to Damgård et al. [27]; and one novel technique to compute the compositional
inverse of a low-degree linearized polynomial. Their descriptions can be found
in Appendix C.

The common strategy behind these techniques is to apply random unknown
masks to a shared secret value and opening their sum. The operation proper is
applied to the opened variable. However, due to the variable still being masked,
the opened value does not leak information on the secret. The mask on this
output value is then removed by combining it with the output of a dual operation
applied to the original shared random mask. The benefit of these techniques
comes from offloading the computation of this mask and its dual to the offline
phase, which is possible as this computation does not depend on the value to
which the operation is applied. In the online phase, the regular operation is
computed locally (i.e. without needing to communicate); the dual operation
does require communication but it is cheaper.

The first two of these techniques require zero-tests — sub-protocols that
produce a sharing of 1 if its input is a sharing of 0, and a sharing of 0 otherwise.
Our MPC implementations of Rescue and Vision are agnostic of the particular
zero-test as well as of the secret sharing mechanism. In the sequel we present
figures without taking the zero test into account.

Computing a Vision Round over MPC Recall that elements of the state
in Vision are members of the extension field F2n . Since we use a linear secret
sharing scheme, we can perform the additions and multiplications-by-constants
from Vision in a straightforward manner, namely by manipulating shares locally.
In particular, this means that applications of the MDS matrix to the working
state impose no extra cost. However, nonlinear operations do not admit such
a straightforward realization and instead require creative solutions to retain an
efficient implementation.

Only two component blocks of Vision induce a cost: the inversion operation,
and the polynomial evaluation of B and B−1 . All other operations are linear

36

and thus free. Recall that the state of Vision consists of m field elements. There-
fore, each round includes m initial inversions, m inverse-polynomial evaluations,
followed by another m inversions and m regular polynomial evaluations. These
m executions are independent and can therefore be performed in parallel. The
cipher consists of N rounds in total. The key schedule algorithm doubles these
numbers, but its cost can be amortized over the entire execution of the protocol
so we neglect it here.

To evaluate the inversion step, we use the technique from Bar-Ilan and
Beaver [7], of which pseudocode is given in Appendix C. In scenarios where
the shared value is unlikely to be zero (e.g., if the field is large enough), this
technique can be used directly. Ignoring the zero test, the total cost of this
method is 1 communication round: it is possible to merge a multiplication and
an opening call.

A similar approach can be used to compute B−1(x). To the best of our
knowledge, this masking technique is novel and is thus an independent contri-
bution of this paper. However, in the interest of brevity, we only describe it in
Appendix C.2 together with pseudo-code.

The implementation of a round of Vision follows straightforwardly from using
these building blocks, along with linear (and thus local) operations. A round of
Vision consists of 2 calls to the inversion protocol at a total cost of 2 communic-
ation rounds (ignoring the zero-test), the evaluation of B−1(x) with an overall
cost of 3 communication rounds (2 of which are be precomputed in an offline
phase), and the evaluation of B(x) at a cost of 2 communication rounds. While
these elements are performed on each of the m elements, they are performed
independently and are hence parallelizable. The total complexity of Vision is
therefore

offline rounds: 2 ,
online rounds: 2 + 1 + 2 = 5 ,
multiplications: m · (2 + 3 + 2) = m · 7 .

Computing a Rescue Round over MPC The only nonlinear operations of
Rescue to take into account are the α and inverse-α power maps. To achieve
this, We have adapted, for any arbitrary large α , the exponentiation technique
introduced by Damgård et al. [27]. This way, we can offload a portion of the
computation to an offline phase and retain a constant online complexity (i.e.,
1 communication round). A small adaptation of this technique computes the
inverse power map at the same online cost. We summarize this adaptation in
Appendix C.3.

Each procedure requires ⌈log2 α⌉+2 multiplications in total, and ⌈log2 α⌉+2
communication rounds (including the 1 online round). In the case of the inverse
alpha map, obtaining [r−1] can be combined with the exponentiation, thus re-
ducing by one the number of communication rounds. All operations on r can be
executed in parallel during an offline phase as they do not depend on the input
and on each other.

37

The implementation of Rescue is now straightforward. Each power map is
applied in parallel to all m elements of the state. The multiplication with the
public MDS matrix is free. The cost of a single round is therefore

offline rounds: ⌈log2 α⌉+ 1 ,
online rounds: 2 ,
multiplications: 2m · (⌈log2 α⌉+ 2) .

7.4 Comparison

We compare our algorithms Vision and Rescue with Starkad and Poseidon [33],
and GMiMCerf [2] as these ciphers are also optimized towards minimizing their
algebraic representations to speed up advanced cryptographic protocols. We
stress that while the nominal figures we provide serve as a comparison point
for the respective efficiencies, they completely overlook the confidence aspect,
i.e., that by design, Vision and Rescue employ much larger safety margins, com-
pared to Starkad, Poseidon, and GMiMCerf and are thus more robust against
advances in the cryptanalysis of arithmetization-oriented algorithms.

The parameters for the comparison are taken from the “STARK-Friendly
Hash Challenge” [47] as they are representative for practical applications and of
contemporary interest to both industry and academia (see e.g., [19]). We discard
the 40-bit security level puzzles of the challenge, and only consider 80, 128, and
256 bits of security using different parameter sets for these security levels. The
implementation of the instances we consider can be found in the form of Sage
code in [47].

For the purpose of the present comparison, the AIR cost is given by the
value of w · t · d. In the MPC comparison we ignore the zero-test and observe
that the offline parts can be executed in parallel for all rounds. We compare the
algorithms as sponge functions for AIR (Table 2), R1CS (Table 3), and masked
MPC (Table 4). We recall that Vision requires 2⌈(s +m + 8)/8m⌉ rounds and
Rescue requires 2⌈(s + 2)/4m⌉ rounds for α = 3, both with a minimum of 10
rounds, where s denotes the security level in bits, and m denotes the number of
state elements. We stress that the field size does not change the cost under the
metrics we consider in this paper (i.e., arithmetic complexity).

It can be seen in Table 2 that the AIR description of Rescue is significantly
more efficient than the other candidates in virtually all parameter sets. In Table 4
we see that for the MPC case Rescue always outperforms the other algorithms
in terms of online communication rounds, with Vision and Poseidon competing
for the leadership in terms of number of multiplications. This is partly due to
the larger safety margins and partly due to different optimization strategies:
while Starkad and Poseidon are optimized to minimize the number of field mul-
tiplications, Vision and Rescue are optimized to minimize the number of com-
munication rounds (i.e., circuit depth). Finally, in Table 3 we see that in most
cases Poseidon outperforms the other candidates. This result is mostly due to
the difference in the safety margins and the trend can be expected to be different

38

after normalization. Nevertheless, a comparison with Table 2 highlights that it
is possible to optimize an algorithm towards one proof system and not the other.

Note that due to the flexible nature of these algorithms, it is difficult to
directly compare them to existing algorithms such as AES and SHA2. For com-
pleteness, we refer the reader to [12, Fig. 4] with the disclaimer that the results
therein are not an apples-to-apples comparison and are in fact inferior in terms
of both security and throughput. Still, even the most efficient choice there (i.e.,
AES-128 in Davies-Meyer) induces a cost of w · c · d = 62 · 48 · 8 = 23,808 while
the worst option in Table 2 (i.e., Vision in the last row) is about 21 times more
efficient. This serves to show the usefulness of algebraic ciphers compared to
traditional ones in certain settings. A recent work by Bonte et al. compared the
running times of threshold variants of some NIST standardized signature schemes
in MPC and observed that using Rescue is 200-350 faster compared to using their
native SHA2-512/SHAK-E256 hashes. For more details, see [20, Tab. 2–3].

Table 2: Comparison of Vision, Rescue, Starkad, Poseidon, and GMiMCerf over
AIR where ℓ denotes the bit-size of the base field, c denotes the capacity of the
sponge in terms of field elements and r its rate. The efficiency is given by w · t ·d
which is the product between the length and the width of the trace together
with the degree of the constraints.

Parameters Vision Rescue Starkad Poseidon GMiMCerf

80 bit security
ℓ ≈ 80 m = 4 c = 2 r = 2 320 156 255 249 333
ℓ ≈ 160 m = 3 c = 1 r = 2 240 135 228 222 630
ℓ ≈ 160 m = 11 c = 1 r = 10 880 363 426 420 678

128 bit security
ℓ ≈ 128 m = 4 c = 2 r = 2 320 228 351 345 498
ℓ ≈ 256 m = 3 c = 1 r = 2 288 207 327 321 978
ℓ ≈ 128 m = 12 c = 2 r = 10 960 396 552 543 546
ℓ ≈ 64 m = 12 c = 4 r = 8 960 396 417 411 303
ℓ ≈ 256 m = 11 c = 1 r = 10 880 363 528 519 1026

256 bit security
ℓ ≈ 128 m = 8 c = 4 r = 4 640 456 450 444 522
ℓ ≈ 128 m = 14 c = 4 r = 10 1120 462 600 591 558

Acknowledgments The authors would like to thank Vincent Rijmen and Daira
Hopwood for their useful comments.

This research was partly funded by StarWware Industries Ltd., as part of
an Ethereum Foundation grant activity. The first author was also supported
by Research Projects Agency (DARPA) and Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070. The second
author was supported by the Research Council KU Leuven, C16/18/004 and
by an FWO post-doctoral fellowship under Grant Number 12ZH420N. Author

39

Table 3: Comparison of Vision, Rescue, Starkad, Poseidon, and GMiMCerf over
R1CS where ℓ, c, and r are as in the case of Table 2. The efficiency is given by
the overall number of constraints.

Parameters Vision Rescue Starkad Poseidon GMiMCerf

80 bit security
ℓ ≈ 80 m = 4 c = 2 r = 2 400 192 170 166 222
ℓ ≈ 160 m = 3 c = 1 r = 2 300 168 152 148 420
ℓ ≈ 160 m = 11 c = 1 r = 10 1100 440 284 280 452

128 bit security
ℓ ≈ 128 m = 4 c = 2 r = 2 400 288 234 230 332
ℓ ≈ 256 m = 3 c = 1 r = 2 360 264 218 214 652
ℓ ≈ 128 m = 12 c = 2 r = 10 1200 480 368 362 364
ℓ ≈ 64 m = 12 c = 4 r = 8 1200 480 278 274 202
ℓ ≈ 256 m = 11 c = 1 r = 10 1100 440 352 346 684

256 bit security
ℓ ≈ 128 m = 8 c = 4 r = 4 800 576 300 296 348
ℓ ≈ 128 m = 14 c = 4 r = 10 1400 560 400 394 372

Table 4: Comparison of Vision, Rescue, Starkad, Poseidon, and GMiMCerf over
MPC where ℓ, c, and r are as defined for Table 2. The efficiency is given in the
number of online communication rounds (R.) and number of field multiplications
(Mult.).

Parameters Vision Rescue Starkad Poseidon GMiMCerf

80 bit security R. Mult. R. Mult. R. Mult. R. Mult. R. Mult.
ℓ ≈ 80 m = 4 c = 2 r = 2 50 280 24 384 61 255 59 249 111 333
ℓ ≈ 160 m = 3 c = 1 r = 2 50 210 28 336 60 228 58 222 210 630
ℓ ≈ 160 m = 11 c = 1 r = 10 50 770 20 880 62 426 60 420 226 678

128 bit security
ℓ ≈ 128 m = 4 c = 2 r = 2 50 280 36 576 93 351 89 345 166 498
ℓ ≈ 256 m = 3 c = 1 r = 2 60 252 44 528 93 327 91 321 326 978
ℓ ≈ 128 m = 12 c = 2 r = 10 50 840 20 960 94 552 91 543 182 546
ℓ ≈ 64 m = 12 c = 4 r = 8 50 840 20 960 51 417 48 411 101 303
ℓ ≈ 256 m = 11 c = 1 r = 10 50 770 20 880 96 528 93 519 342 1026

256 bit security
ℓ ≈ 128 m = 8 c = 4 r = 4 50 560 36 1152 94 450 90 444 174 522
ℓ ≈ 128 m = 14 c = 4 r = 10 50 980 20 1120 94 600 91 591 186 558

40

4 is supported by a Ph.D. Fellowship from the Research Foundation - Flanders
(FWO). Author 5 was supported by an IWT doctoral grant and by the Nervos
Foundation. These supports are greatly appreciated.

References

1. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechber-
ger, C., Schofnegger, M.: Algebraic cryptanalysis of stark-friendly designs: Ap-
plication to marvellous and mimc. In: Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Crypto-
logy and Information Security, Kobe, Japan, December 8-12, 2019, Proceed-
ings, Part III. pp. 371–397 (2019). https://doi.org/10.1007/978-3-030-34618-8_13,
https://doi.org/10.1007/978-3-030-34618-8_13

2. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel structures for mpc, and more. In: Computer Se-
curity - ESORICS 2019 - 24th European Symposium on Research in Computer
Security, Luxembourg, September 23-27, 2019, Proceedings, Part II. pp. 151–
171 (2019). https://doi.org/10.1007/978-3-030-29962-0_8, https://doi.org/10.
1007/978-3-030-29962-0_8

3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicat-
ive complexity. In: ASIACRYPT 2016, Part I. pp. 191–219. LNCS (2016).
https://doi.org/10.1007/978-3-662-53887-6_7

4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Advances in Cryptology - EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. pp. 430–
454 (2015). https://doi.org/10.1007/978-3-662-46800-5_17, https://doi.org/10.
1007/978-3-662-46800-5_17

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: ACM - CCS 2017 (October 2017)

6. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic prim-
itives. IACR Cryptology ePrint Archive 2018, 1098 (2018)

7. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: ACM Symposium on Principles of Distributed
Computing 1989. pp. 201–209 (1989). https://doi.org/10.1145/72981.72995

8. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving. pp. 71–74 (2004)

9. Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5
gröbner basis algorithm. J. Symb. Comput. 70, 49–70 (2015). ht-
tps://doi.org/10.1016/j.jsc.2014.09.025

10. Ben-Sasson, E.: The state of stark tooling, https://www.youtube.com/watch?v=
UNbWFNdz95g

11. Ben-Sasson, E., Bentov, I., Chiesa, A., Gabizon, A., Genkin, D., Hamilis, M.,
Pergament, E., Riabzev, M., Silberstein, M., Tromer, E., Virza, M.: Computational
integrity with a public random string from quasi-linear pcps. In: EUROCRYPT
(3). Lecture Notes in Computer Science, vol. 10212, pp. 551–579 (2017)

41

https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/72981.72995
https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/10.1016/j.jsc.2014.09.025
https://www.youtube.com/watch?v=UNbWFNdz95g
https://www.youtube.com/watch?v=UNbWFNdz95g

12. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

13. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner,
N.: On probabilistic checking in perfect zero knowledge. CoRR abs/1610.03798
(2016), http://arxiv.org/abs/1610.03798

14. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasilinear-size zero knowledge
from linear-algebraic PCPs. In: TCC 2016. pp. 33–64. LNCS (2016)

15. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: CRYPTO 2013.
pp. 90–108. LNCS (2013)

16. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Au-
rora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I. Lecture Notes in Computer Sci-
ence, vol. 11476, pp. 103–128. Springer (2019). https://doi.org/10.1007/978-3-030-
17653-2_4, https://doi.org/10.1007/978-3-030-17653-2_4

17. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. Ecrypt Hash
Workshop 2007 (2007), https://keccak.team/files/SpongeFunctions.pdf

18. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiabil-
ity of the sponge construction. In: EUROCRYPT 2008. pp. 181–197 (2008).
https://doi.org/10.1007/978-3-540-78967-3_11

19. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of oddity - new
cryptanalytic techniques against symmetric primitives optimized for integrity proof
systems. IACR Cryptology ePrint Archive 2020, 188 (2020), https://eprint.
iacr.org/2020/188

20. Bonte, C., Smart, N.P., Tanguy, T.: Thresholdizing HashEdDSA: MPC to the
rescue. IACR Cryptology ePrint Archive 2020, 214 (2020), https://eprint.
iacr.org/2020/214

21. Buchmann, J.A., Pyshkin, A., Weinmann, R.: Block ciphers sensitive to
gröbner basis attacks. In: Pointcheval, D. (ed.) CT-RSA 2006. Lecture
Notes in Computer Science, vol. 3860, pp. 313–331. Springer (2006). ht-
tps://doi.org/10.1007/11605805_20

22. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short proofs for confidential transactions and more. In: 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA. pp. 315–334. IEEE Computer Society (2018). ht-
tps://doi.org/10.1109/SP.2018.00020, https://doi.org/10.1109/SP.2018.00020

23. Cid, C., Murphy, S., Robshaw, M.J.B.: Algebraic aspects of the advanced encryp-
tion standard. Springer (2006)

24. Collart, S., Kalkbrener, M., Mall, D.: Converting bases with the gröbner walk. J.
Symb. Comput. 24(3/4), 465–469 (1997). https://doi.org/10.1006/jsco.1996.0145

25. Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms - an introduc-
tion to computational algebraic geometry and commutative algebra (2. ed.). Un-
dergraduate texts in mathematics, Springer (1997)

26. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography, Springer (2002).
https://doi.org/10.1007/978-3-662-04722-4

42

https://eprint.iacr.org/2018/046
http://arxiv.org/abs/1610.03798
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://keccak.team/files/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2020/214
https://eprint.iacr.org/2020/214
https://doi.org/10.1007/11605805_20
https://doi.org/10.1007/11605805_20
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1006/jsco.1996.0145
https://doi.org/10.1007/978-3-662-04722-4

27. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC 2006. pp. 285–304 (2006)

28. Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C.,
Schofnegger, M., Wang, Q.: An algebraic attack on ciphers with low-degree round
functions: Application to full mimc. IACR Cryptology ePrint Archive 2020, 182
(2020), https://eprint.iacr.org/2020/182

29. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (f5). In: ISSAC 2002. pp. 75–83. ACM (2002)

30. Faugère, J., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344
(1993). https://doi.org/10.1006/jsco.1993.1051

31. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of pure and applied algebra 139(1-3), 61–88 (1999)

32. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: EUROCRYPT. Lecture Notes in Computer Sci-
ence, vol. 7881, pp. 626–645. Springer (2013)

33. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger,
M.: Starkad and poseidon: New hash functions for zero knowledge proof systems.
Cryptology ePrint Archive, Report 2019/458 (2019), https://eprint.iacr.org/
2019/458

34. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: The HADES design strategy.
IACR Cryptology ePrint Archive 2019, 1107 (2019), https://eprint.iacr.org/
2019/1107

35. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: FSE
1997. pp. 28–40. LNCS (1997). https://doi.org/10.1007/BFb0052332

36. Knudsen, L.R.: Truncated and higher order differentials. In: FSE. Lecture Notes
in Computer Science, vol. 1008, pp. 196–211. Springer (1994)

37. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 9215, pp. 161–185.
Springer (2015)

38. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis, pp. 227–233.
Springer US, Boston, MA (1994). https://doi.org/10.1007/978-1-4615-2694-0_23,
https://doi.org/10.1007/978-1-4615-2694-0_23

39. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: Foundations of Computer Science 1990. pp. 2–10. IEEE (1990)

40. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
arx: Application to salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
https://eprint.iacr.org/2013/328

41. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Inscrypt. Lecture Notes in Computer
Science, vol. 7537, pp. 57–76. Springer (2011)

42. Nyberg, K.: Differentially uniform mappings for cryptography. In: EUROCRYPT
1993. pp. 55–64. LNCS (1993). https://doi.org/10.1007/3-540-48285-7_6

43. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: IEEE Symposium on Security and Privacy 2013. pp. 238–252.
Oakland ’13 (2013)

44. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. In: Mathematical notes of the Academy of Sciences
of the USSR. vol. 41 - 4, pp. 333–338 (1987)

43

https://eprint.iacr.org/2020/182
https://doi.org/10.1006/jsco.1993.1051
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2019/1107
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://eprint.iacr.org/2013/328
https://doi.org/10.1007/3-540-48285-7_6

45. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The
cipher SHARK. In: Fast Software Encryption, Third International Work-
shop, Cambridge, UK, February 21-23, 1996, Proceedings. pp. 99–111
(1996). https://doi.org/10.1007/3-540-60865-6_47, https://doi.org/10.1007/
3-540-60865-6_47

46. of Standards, N.B.: Data encryption standard. U.S. Department of Commerce,
FIPS pub. 46 (January 1977)

47. StarkWare Industries: Stark-friendly hash challenge, https://starkware.co/
hash-challenge/

48. StarkWare Industries: STARK-friendly hash. Medium (2019), https://medium.
com/starkware/stark-friendly-hash-tire-kicking-8087e8d9a246

49. Szepieniec, A., Dhooghe, S.: Marvellous (instance generator) (2019), https://
github.com/KULeuven-COSIC/Marvellous.git

50. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: NDSS 2015. LNCS (2015)

51. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE transac-
tions on information theory 32(1), 54–62 (1986)

52. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:
Karloff, H.J., Pitassi, T. (eds.) STOC 2012. pp. 887–898. ACM (2012). ht-
tps://doi.org/10.1145/2213977.2214056

44

https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/3-540-60865-6_47
https://starkware.co/hash-challenge/
https://starkware.co/hash-challenge/
https://medium.com/starkware/stark-friendly-hash-tire-kicking-8087e8d9a246
https://medium.com/starkware/stark-friendly-hash-tire-kicking-8087e8d9a246
https://github.com/KULeuven-COSIC/Marvellous.git
https://github.com/KULeuven-COSIC/Marvellous.git
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056

A Gröbner Basis Attacks

We recall here some basic facts about attacking symmetric-key algorithms us-
ing Gröbner basis algorithms. For more general information on the underlying
mathematics, we refer the reader to Cox et al. [25]. For a specific description of
the steps involved in attacking block ciphers with Gröbner bases, we refer to the
excellent summary by Buchmann et al. [21].

An ideal I ⊆ Fq[x] = Fq[x1, . . . , xn] is the algebraic span of a list of polyno-
mials {b1(x), . . . , bm(x)}, meaning that every member f(x) ∈ I can be expressed
as a weighted sum of the basis elements with coefficients taken from the poly-
nomial ring: f(x) ∈ I ⇔ ∃c1, . . . , cn ∈ Fq[x] :

∑n
i=1 ci(x) · bi(x) = f(x). An

ideal can be spanned by many different bases; among these, Gröbner bases are
particularly useful for computational tasks such as deciding membership, equal-
ity, or consistency. The task we are interested in is polynomial system solving:
computing the ideal’s variety, or the set of common solutions when equating all
ideal members to zero.

A monomial order is a rule according to which to order a polynomial’s terms.
This rule is not just a convenience for mathematicians to read and write polyno-
mials; it also affects how the polynomials are stored on a computer as well as the
complexity of various operations on ideals. In general, the calculation of a Gröb-
ner basis is fastest with respect to degree reverse lexicographical ((de)grevlex)
order. However, whenever the variety contains a substantial number of solu-
tions, a Gröbner basis in lexicographic (lex) order is preferable. A Gröbner basis
in lex order, provided we work with zero-dimensional ideals, guarantees the pres-
ence of at least one univariate basis polynomial. Factoring this polynomial and
back-substituting its roots generates another, simpler, Gröbner basis again in
lex order; iterative back-substitution produces all solutions. The FGLM [30] and
Gröbner Walk [24] algorithms transform a Gröbner basis for one monomial order
into one for another order.

The focus on degrevlex order for computing the first Gröbner basis owes
in large part to the success of the celebrated F4 and F5 algorithms [29, 31]. In
every iteration, these algorithms extend the working set of polynomials via mul-
tiplication by monomials to a certain step degree, before reducing the extended
polynomials using linear algebra techniques — essentially Gaussian elimination
on the Macaulay matrix. The F5 algorithm stands out in this regard, partic-
ularly when applied to a worst-case class of polynomial systems called regular
systems. In that case the algorithm can be proven not to perform useless reduc-
tions to zero before the step degree reaches the ideal’s degree of regularity [8,9],
which is informally equal to the degree of the Gröbner basis (by which we mean
the maximum degree of all polynomials in the basis) in a degree-refining order
such as degrevlex (but not lex). Furthermore, after reaching this step degree, the
algorithm must terminate. If a system of polynomial equations {fi(x) = 0}i is
regular — exhibiting no non-trivial algebraic dependencies in the same sense
that non-singular matrices exhibit no linear dependencies — then the degree of
regularity is given by the Macaulay bound: dreg ≤ 1 +

∑m
i=1(deg(fi)− 1).

45

When there are more equations than unknowns, the system of equations is
incapable of being either regular or irregular, and the worst-case behavior for
F5 is captured instead by semi-regular systems. The degree of (semi-)regularity
is now defined as the degree of the first non-positive term in the power series
expansion of HS(s) =

∏m
i=1(1−zdeg(fi))

(1−z)n , where m is the number of equations and
n the number of variables. Note that when m ≤ n this formal power series is
a polynomial and the Macaulay bound indicates one more than its degree; this
is what justifies re-using the term degree of regularity. However, while F5 must
reach this degree before it terminates, for overdetermined systems the degree of
the resulting Gröbner basis is typically much smaller.

Regardless of whether the system is regular, knowledge of the degree of reg-
ularity provides a lower bound on the complexity of computing a Gröbner basis,
namely that of running Gaussian elimination on a Macaulay matrix of degree
dreg polynomials in n variables. At this point there are

(
n+dreg

n

)
monomials of

degree dreg or less, and
(
n+dreg

n

)ω therefore bounds the attack complexity, where
ω ≥ 2 is the linear algebra constant — ω = 3 for standard Gaussian elimination;
ω ≈ 2.37 if fast multiplication techniques [52] are used; and ω = 2 when sparse
linear algebra techniques such as Wiedemann’s algorithm [51] can be used.

Buchmann et al., writing before the above-mentioned results on the degree of
regularity were established, observe that for specially chosen monomial orders,
the Gröbner basis comes for free as a result of clever polynomial modeling [21].
The bottleneck of the attack then consists of the monomial order conversion
using either FGLM or Gröbner Walk.

In stark contrast to that of the ciphers analyzed by Buchmann et al., the
security rationale underlying our cipher designs is explicit about the designed
intractability of the first Gröbner basis computation step. Whatever steps come
after might be of greater or lesser complexity and are either way irrelevant to the
security consideration. In particular, the security of our ciphers is determined
with respect to the Gröbner basis calculation in degrevlex order with ω = 2. The
degree of regularity is experimentally tested against that of regular systems of
the same dimension for small round numbers.

B STARKs

This appendix provides a brief background on Scalable Transparent ARguments
of Knowledge (STARKs) [12]. We start with a motivating example in Section B.1
serving to give the reader an intuition about the way STARKs operate, deferring
more formal treatment to Section B.2.

B.1 Intuition

Scalable Interactive Oracle Proofs (IOPs) and Transparent Arguments of Know-
ledge (STARKs) like [11,12] express computations using an Algebraic Execution
Trace (AET): for a computation with t steps and internal state captured by w

46

registers, the trace is a t × w array. Each entry of this array is an element of a
finite field F.

Before presenting formal definitions, we motivate them using a simple ex-
ample. Suppose the prover wishes to prove the statement below, where p is
prime and Fp is the finite field of size p:

“∃x0, x1 ∈ Fp such that xq is the q-th element in the Fibonnacci sequence
defined recursively for i > 1 by xi = xi−1 + xi−2 mod p.”

An execution trace proving the statement above is a (q + 1)× 1 array in which
the i-th state is, supposedly, xi. Now, to verify the correctness of the statement
our verifier must check that the following two conditions hold:

– boundary constraints: the last entry equals y.
– transition relation constraints: for each i ≤ q − 1, the i-th register plus

the i+1st register equals the i+2nd register. This can be captured succinctly
by a constraint of the form

Xcurrent +Xnext −Xnext_next = 0 ,

which is applied to each consecutive triple-of-states in the trace. Satisfying
a constraint always means setting it to 0, so the right hand side above is
redundant and henceforth we shall simplify such a constraint and write only
its left hand side, namely,

Xcurrent +Xnext −Xnext_next .

Alternatively, the execution trace could be a q × 2 array in which the i-th state
supposedly contains xi, xi+1. Now, the verifier checks two constraints for each
pair of consecutive states, described next by using X,Y to denote the two re-
gisters capturing the state,

(i) Xcurrent + Ycurrent − Ynext; (ii) Xnext − Ycurrent .

The boundary constraint would now check that the [q, 2]-entry of the execu-
tion trace equals y.

Comparing the two solutions above, we see that the second one is ×2 bigger
than the first, but its constraints involve only two consecutive states, rather than
three states required in the first solution. The second solution also has a larger
set of constraints (two constraints vs. one constraint in the first solution) but
in both solutions all constraints are multivariate polynomials of degree 1. The
main takeaway message here is that the same computation can be expressed in
several ways via different execution traces and constraint systems.

B.2 Formal Description of an Algebraic Execution Trace

We start with the definition of an algebraic execution trace.

47

Definition 1 (Algebraic Execution Trace (AET)). An Algebraic Execu-
tion Trace (AET) of width w and length t over a field F is an array with t rows
and w columns, each entry of which is an element of F. The i-th row represents
the state of a computation at time i and the j-th column represents an algebraic
register. The size of the AET is t · w.

Next, we define a constraint system that checks whether an execution trace
is valid with respect to a computation. Informally, the constraints capture the
transition relation of the computation, each constraint is a polynomial, and an
assignment satisfies a constraint iff the constraint (polynomial) evaluates to 0
under the assignment.

Definition 2 (Algebraic Intermediate Representation (AIR)). An Al-
gebraic Intermediate Representation (AIR) of degree d, width w and length t
over the field F is a set of multivariate polynomials of total degree at most d,
with coefficients in F and variable set Rij , i ≤ w, j ≤ t.

We point out that the definition of AIR in [12] is slightly more complicated
(dealing with boundary constraints and neighborhood sets) but for the purpose
of the current work the simpler definition above suffices.

C Algorithms for Masked MPC

We provide here C++-like algorithms for the various masking techniques used in
Section 7.3.

C.1 Inversion

Invert(x,n) {
b = (x == 0); // log2(x) com calls
c = 0;
while(c == 0) {

r = share_random();
temp = (b + x);
temp = temp * r; // 1 com call
c = open(temp); // 1 com call

}
c = pow(c,2^n-2);
c = (r * c) - b;

return c;
}

C.2 Inverse of Sparse Linearized Polynomial

We discuss a technique to efficiently evaluate the inverse of sparse linearized
polynomials thanks to the following observations. We ignore for the sake of

48

simplicity the constant that makes B(x) affine and not linear (over F2); this
simplification makes B−1(x) linear also. In particular, this means that B−1(x+
y) = B−1(x) + B−1(y) . Noting that B(x) consists of three terms with degrees
1, 2, and 4, we can calculate the output [B−1(x)] from [x] as follows: create a
shared random mask [r] and compute [B(r)]. Then open [x−B(r)] and apply B−1

locally to this opened value. Then adding [r] back gives B−1(x− B(r)) + [r] =
[B−1(x) − r + r] = [B−1(x)] , which is exactly the desired output. Note that
the evaluation of B(r) is not tied to any input data, and can therefore be pre-
computed in an offline phase. The pseudo-code below shows this procedure more
formally.

Invert_B(x) {
r = share_random(); // offline
b_r = B(r); // trivial impl. of B (2 offline rounds)
c = x + b_r;
c = open(x + b_r); // 1 round
c = B_inv(c); // B^-1(x + B(r))
c = c - r; // B^-1(x) + B^-1(B(r)) - r
return c; // B^-1(x)

}

C.3 Alpha-power and Inverse Alpha-power

We discuss techniques to efficiently evaluate α-power maps and their functional
inverses. Both techniques are explained in a similar manner, we only discuss
the technique to evaluate the inverse-α-power map. The participants start by
generating a shared secret mask [r]. They then compute [rα] and [r−1] in the
offline phase. In the online phase, they open the masked value [xrα] and locally
raise this known value to the power 1/α . At this point, a simple multiplication-
by-constant yields (xrα)1/α[r−1] = [xαrr−1] = [xα]. The pseudo-code for both
procedures is shown below.

AlphaPower(x,alpha) {
c = 0;
while(c == 0) {
// offline phase

r = share_random();
rinv = Invert(r);
rexp = rinv^alpha;

// online phase
c = open(x * r);

}
c = pow(c,alpha);
c = c * rexp;
return c;

}

InverseAlpha(x,alpha,alpha_inv) {
c = 0;
while(c == 0) {
// offline phase

r = share_random();
rinv = Invert(r); //1 round
rexp = r^alpha; //lg(alpha)

// online phase
c = open(x * rexp);

}
c = pow(c,alpha_inv);
c = c * rinv;
return c;

}

49

D Instances of Vision

In this appendix we provide two instances of Vision. A Vision object is instan-
tiated by loading the Sage code from [49], and calling

vision_instance = Vision(s, n, m) .

with s the desired security level in bits, n the exponent of the binary field, and
m the number of field elements in the state. Given a Vision object, the MDS
matrix, the first round constant, and the affine transformation to generate the
subsequent round constants can be obtained by calling the functions in Table 5.

Table 5: Functions for obtaining the building block of a Vision instance
Function Description
vision_instance.MDS returns the MDS matrix
vision_instance.initial_constant returns the first step constant
vision_instance.constants_matrix returns the linear part of the affine

transformation generating subsequent
step constants

vision_instance.constants_constant returns the fixed part of the affine
transformation generating subsequent
step constants

vision_instance.B returns the F2-affine linearized polynomial
vision_instance.Binv returns the inverse of the F2-affine

linearized polynomial
vision_instance.Nb returns the number of rounds

We encourage users to create their own instances that are optimized for their
own use cases. The instances below can be used as a target for cryptanalysis.

D.1 Vision Mark I

The first instance we consider has parameter sets comparable to those of AES-
128. We use a binary field F2n with n = 8, and m = 16 state elements. Instances
providing for 128-, 192-, and 256-bit security can be generated by calling

vision_instance = Vision(s = 128, n = 128, m = 16);
vision_instance = Vision(s = 192, n = 128, m = 16);
vision_instance = Vision(s = 256, n = 128, m = 16),

and their building blocks as well as the required number of rounds can be ob-
tained by calling the commands we listed above.

50

D.2 Vision Mark II

The second instance uses n = 128 and m = 4 state elements in F2128 . This
instance is generated by calling

vision_instance = Vision(s = 128, n = 512, m = 4) ,

and its building blocks as well as the required number of rounds can be obtained
by calling the commands we listed above. By using it inside a sponge construction
with rq = 2 this instance is suitable for hashing and provides 128-bit collision
resistance.

E Instances of Rescue

We provide now three instances of Rescue based on real-world scenarios. As
before, a Rescue object is generated by loading the code from [49], and calling

rescue_instance = Rescue(s, q, m, alpha) ,

with s the desired security level in bits, q the field, m the number of field elements
per round, and α the S-box power map. The MDS matrix, the first round con-
stant, and the affine transformation to generate the subsequent round constants
can be obtained by calling the functions in Table 6.

Table 6: Functions for obtaining the building block of a Vision instance
Function Description
rescue_instance.MDS returns the MDS matrix
rescue_instance.initial_constant returns the first step constant
rescue_instance.constants_matrix returns the linear part of the affine

transformation generating subsequent
step constants

rescue_instance.constants_constant returns the fixed part of the affine
transformation generating subsequent
step constants

rescue_instance.Nb returns the number of rounds

Again, users are encouraged to generate their own instances using the provided
code and cryptanalysts are encouraged to evaluate their security.

E.1 Rescue Mark I

For the first instance of Rescue we take a look at a sponge construction with a
parameter set chosen by StarkWare Industries at the end of [47].20

20 The StarkWare challenge used a different MDS matrix than the one generated by
our code. Cryptanalysts are invited to attack either of the two versions.

51

The field is Fq where

q = 2**(61) + 20 * 2**(32) + 1

and the state consists of m = 12 elements. In [47] the power map is chosen to
be α = 3, the rate is r = 8 with capacity c = 4, and the number of rounds is set
to be N = 10. This provides 122 bits of security.

The instance is generated by calling

rescue_instance = Rescue(s = 122, q, m = 12, alpha = 3) ,

and its building blocks can be obtained by calling the commands we listed above.

E.2 Rescue Mark II

Our second Rescue instance uses a parameter set optimized for the HashEdDSA
Ed25519 thresholdized signature scheme. This parameter set was evaluated in [20]
and was shown to be 150–200 times faster than the same protocol when employ-
ing SHA2-512.

The field is Fq where q is the order of the curve Ed25519. We note that
log2(q) = 252, or more specifically:

q = 2**(252) + 27742317777372353535851937790883648493 .

The construction uses m = 6, α = 5, rate r = 4 and capacity c = 2. With N = 10
this instance provides s = 128 bits of security.

The instance is generated by calling

rescue_instance = Rescue(s = 128, q, m = 6, alpha = 5) ,

and its building blocks can be obtained by calling the commands we listed above.

E.3 Rescue Mark III

The third instance provides a parameter set for optimizing a sponge construction
working over the curve Ed448. It was evaluated in [20] to be 135–355 times faster
than the same protocol when employing SHAKE-256.

We use the prime field Fq where q is the order of the curve Ed448. We note
that log2(q) = 446, or more specifically

q = 2**(446)-
13818066809895115352007386748515426880336692474882178609894547503885 .

[20] uses a state consisting of m = 10 field elements, with rate r = 8 and
capacity c = 2. With n = 10 rounds this isntance provides 224 bits of security.

The instance is generated by calling

rescue_instance = Rescue(s = 224, q, m = 10, alpha = 5) ,

and its building blocks can be obtained by calling the commands we listed above.

52

	Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols

