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Abstract

Game-playing proofs constitute a powerful framework for non-quantum cryptographic
security arguments, most notably applied in the context of indifferentiability. An essential
ingredient in such proofs is lazy sampling of random primitives. We develop a quantum
game-playing proof framework by generalizing two recently developed proof techniques.
First, we describe how Zhandry’s compressed quantum oracles (Crypto’19) can be used
to do quantum lazy sampling of a class of non-uniform function distributions. Second,
we observe how Unruh’s one-way-to-hiding lemma (Eurocrypt’14) can also be applied to
compressed oracles, providing a quantum counterpart to the fundamental lemma of game-
playing. Subsequently, we use our game-playing framework to prove quantum indifferen-
tiability of the sponge construction, assuming a random internal function.
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1 Introduction

The modern approach to cryptography relies on mathematical rigor: Trust in a given cryp-
tosystem is mainly established by proving that, given a set of assumptions, it fulfills a security
definition formalizing real-world security needs. Apart from the definition of security, themen-
tioned assumptions include the threat model, specifying the type of adversaries we want to be
protected against. One way of formalizing the above notions is via games, i.e. programs inter-
acting with the adversaries and outputting a result signifying whether there has been a breach
of security or not. Adversaries in this picture are also modeled as programs, or more formally
Turing machines.

The framework of game-playing proofs introduced by Bellare and Rogaway in [BR06]—
modeling security arguments as games, played by the adversaries—is especially useful because
it makes proofs easier to verify. Probabilistic considerationsmight become quite involvedwhen
talking about complex systems and their interactions; the structure imposed by games, how-
ever, simplifies them. In the game-playing framework, randomness can be, for example, con-
sidered to be sampled on the fly, making conditional events easier to analyze. A great example
of that technique is given in the proof of the PRP/PRF switching lemma in [BR06].

In this work we focus on idealized security notions; In the Random Oracle Model (ROM)
one assumes that the publicly accessible hash functions are in fact random [BR93]. This is a
very useful assumption as it simplifies proofs, but also cryptographic constructions designed
with the ROM in mind are more efficient.

We are interested in the post-quantum threat model, which is motivated by the present
worldwide efforts to build a quantum computer. It has been shown that quantum computers
can efficiently solve problems that are considered hard for classical machines. Hardness of
the factoring and discrete-logarithm problems is, e.g., important for public-key cryptography,
but these problems can be solved efficiently on a quantum computer using Shor’s algorithm
[Sho94]. The obvious formalization of the threat model is to include adversaries operating
a fault-tolerant quantum computer, which is in particular capable of running the mentioned
attacks. This model is the basis of the field of post-quantum cryptography [BBD09].

While the attacks based on Shor’s algorithm are themostwell-known ones, public-key cryp-
tography may not be the only area with quantum vulnerabilities. Many cryptographic hash
functions are based on publicly available compression functions [Mer90; Dam90; Ber+07] and
as such they could be run on a quantum machine. This fact motivates us to analyze adver-
saries that have quantum access to the public building blocks of the cryptosystem. Therefore,
the quantum threat model takes us from the Random-Oracle Model [BR93]—often used in the
context of hash functions—to the Quantum Random-Oracle Model [Bon+11] (QROM), where
the random oracle can be accessed in superposition.

Having highlighted a desirable proof structure—fitting the clear and easy-to-verify game-
playing framework—and the need of including fully quantumadversarieswith quantumaccess
to randomoracles into the threatmodel, we encounter an obvious challenge: defining a quantum
game-playing framework. In this article, we resolve that challenge and apply the resulting
framework to the setting of hash functions. In the following paragraphs we describe our results
and the main proof techniques we used to achieve them.

Our Results. We devise a quantum game-playing framework for security proofs that involve
fully quantum adversaries. Our framework is based on a combination of two recently devel-
oped proof techniques: compressed quantum random oracles by Zhandry [Zha19] and the
One-Way to Hiding (O2H) lemma by Unruh [Unr14; AHU19]. The former provides a way to
lazy-sample a quantum-accessible random oracle, and the latter is a quantum counterpart of
the Fundamental Game-Playing lemma—a key ingredient in the original game-playing frame-
work. As our first main result we obtain a clean and powerful tool for proofs in post-quantum
cryptography. The main advantage of the framework is the fact that it allows the translation of
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certain classical security proofs to the quantum setting, in a way that is arguably more straight-
forward than for previously available proof techniques.

On the technical side, we begin by re-formalizing Zhandry’s compressed oracle technique,
which, as a by-product, makes a generalization to some non-uniform distributions of oracles
relatively straightforward. In particular, we generalize the compressed-oracle technique of
[Zha19] to a class of non-uniform distributions over functions, allowing a more general form
of (quantum) lazy sampling. Our result allows to treat distributions with outputs that are
independent for distinct inputs. Subsequently, we observe that the techniques of “punctur-
ing oracles” proposed in [AHU19] can also be applied to compressed oracles, yielding a more
general version of the O2H lemma which forms the quantum counterpart of the fundamental
game-playing lemma.

We go on to apply our quantum game-playing framework by proving quantum indifferen-
tiability of the sponge construction [Ber+07] used in SHA3. More precisely, we show that the
sponge construction is indifferentiable from a random oracle in case the internal function is a
random function. We leave it as an interesting open question to extend our results to the setting
of SHA3 which uses a permutatation as internal function.

Related Work. Indifferentiability is a security notion developed by Maurer, Renner, and
Holenstein [MRH04] commonly used for hash-function domain-extension schemes [Cor+05;
Ber+08]. Here, it captures the adversary’s access to both the construction and the internal
function.

The subject of quantum indifferentiability, addressed in our work, has been recently ana-
lyzed in two articles. Carstens, Ebrahimi, Tabia, and Unruh make a case in [Car+18] against
the possibility of fulfilling the definition of indifferentiability for quantum adversaries. Assum-
ing a technical conjecture, they prove a theorem stating that if two systems are perfectly (with
zero advantage) quantumly indifferentiable then there is a stateless classical indifferentiability
simulator. In the last part of their work they show that there cannot be a stateless simulator for
domain-decreasing constructions—i.e. most constructions for hash functions. Zhandry on the
other hand [Zha19] develops a technique that allows to prove indifferentiability for theMerkle-
Damgård construction. His result does not contradict the result of [Car+18], as it handles the
imperfect case, albeit with a negligible error. The technique of that paper, compressed quantum
oracles, is one of the two main ingredients of our framework. Recent work by Unruh and by
Ambainis, Hamburg, and Unruh [Unr14; AHU19] form the second main ingredient of our re-
sult. They show the One-Way to Hiding (O2H) Lemma, which is the quantum counterpart of
the Fundamental Game-Playing lemma—a key ingredient in the original game-playing frame-
work. The O2H lemma provides a way to “reprogram” quantum accessible oracles on some set
of inputs, formalized as ”punctured” oracles in the latter paper.

The quantum security of domain-extension schemes has been the topic of several recent
works. [SY17; CHS19] study domain extension for message authentication codes and pseu-
dorandom functions. For random inner function, [Zha19] has proven indifferentiability of the
Merkle-Damgård construction which hence has strong security in the QROM. For hash func-
tions in the standard model, quantum generalizations of collision resistance were defined in
[Unr16b; Ala+20]. For one of them, collapsingness, some domain-extension schemes includ-
ing the Merkle-Damgård and sponge constructions, have been shown secure [Cza+18; Feh18;
Unr16a].

In a recent article [Unr19a] Unruh developed quantum Relational Hoare Logic for com-
puter verification of proofs in (post-)quantum cryptography. There he also uses the approach
of game-playing, but in general focuses on formal definitions of quantum programs and pred-
icates. To investigate the relation between [Unr19a] and our work in more detail one would
have to express our results in the language of the new logic. We leave it as an interesting direc-
tion for the future. The proof techniques of [Zha19] and [AHU19] have been recently used to
show security of the 4-Round Feistel construction in [HI19] and of generic key-encapsulation
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mechanisms in [JZM19] respectively. In [CEV20] the authors use compressed oracles for ran-
domness in an encryption scheme using a random tweakable permutation (that is given to the
algorithm externally).
Note. A previous version of this paper contained an additional set of results about quantum
lazy-sampling of random permutations and indifferentiability of SHA-3. Unfortunately there
was a flaw in the argument and the technique for quantum lazy sampling randompermutations
presented there does not work as claimed. The difficulty lies in the fact that that permutations
do not have independent outputs, which seems to require a completely different approach.

2 Detailed Summary

In the following, we give a detailed summary of our results, introducing the necessary back-
ground along the way.

2.1 Quantum Game-Playing Proofs

We begin by recalling the main ingredients for our game-playing-proofs framework, the
Compressed-oracle technique and the one-way to hiding lemma.
Compressed Oracles. The compressed-oracle technique, introduced by Zhandry [Zha19], is a
way of lazy sampling random functions in the quantum realm. We want to lazy sample a ran-
dom function for an adversary A that can access the oracle for this function in superposition.
Superposition access is usually modeled as Uf |x, y〉 = |x, y + f(x)〉. If the function f is cho-
sen uniformly at random according from the set F of all functions for some fixed domain and
range, it is usually treated as a random variable. Following an extremely common paradigm
in quantum information science, purification, we can include the function’s randomness into the
quantum-mechanical description of the problem. The unitary that corresponds to Uf after purifi-
cation will be called the Standard Oracle StO and works by reading the appropriate output of f
from F and adding it to the algorithm’s output register,

StO|x, y〉XY |f〉F := |x, y + f(x)〉XY |f〉F . (1)

The initial state of the oracle for uniformly random functions is
∑
f

1√
|F|
|f〉. Applied to a su-

perposition of functions as intended, StO will entangle the adversary’s registers XY with the
oracle register F .

Themain observation of [Zha19] is that if we change the basis of the initial state of the oracle
register F , the redundancy of this initial state becomes apparent. If we are interested in, e.g., an
oracle for a uniformly random function, the Fourier transform changes the initial oracle state
to a state holding only zeros |0M 〉, where 0 ∈ Y .

The oracle register ismaintained in a specificwaywhen the adversarymakes queries. Let us
start by presenting the interaction of the adversary viewed in the same basis, called the Fourier
basis. The unitary operation acting in the Fourier basis is called the Fourier Oracle FO. Another
important insight from [Zha19] is that the Fourier Oracle, instead of adding the output of the
oracle to the adversary’s output register, does the opposite: It adds the value of the adversary’s
output register to the (Fourier-)transformed truth table

FO|x, η〉XY |φ〉F := |x, η〉XY |φ− χx,η〉F , (2)

where φ is the transformed truth table f and χx,η := (0, . . . , 0, η, 0, . . . , 0) is a transformed truth
table equal to 0 in all rows except for row x, where it has the value η. Note that we subtract χx,η
so that the reverse of QFT returns addition of f(x).

Finally, it turns out that compression of φ is possible and the purification can be a meaning-
ful database of past queries. After compression, we can of course change back to the standard
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basis and see that the compressed database holds outputs of f on inputs queried by the adver-
sary. We denote the oracle after this basis change by CStOD. We call this technique quantum
lazy sampling: it provides a quantumanalogue of freshly sampling function outputs andnoting
themdown for future reference. In the next paragraphwe describe how to apply this technique.
A new formalization. We put the compressed oracle onto a new formal footing. Along the
way, we generalize the technique slightly, expanding it to the class of distributions over func-
tions D that are locally sampleable. By SampD(S) we denote the unitary that maps the oracle
register to the superposition over outputs of x ∈ S with appropriate weights—for the uni-
form distribution it is QFTN . In the case of non-uniform distributions we need the operations
SampD|f(x1)=y1,...,f(xs)=ys to be efficiently implementable for the compressed oracle to be effi-
cient. Here, D|f(x1) = y1, ..., f(xs) = ys denotes the function distribution on X \ S, with
S = {x1, ..., xs}, obtained by conditioningD on the event f(x1) = y1∧ ...∧f(xs) = ys. We write

SampD|f(x1)=y1,...,f(xs)=ys(X \ S) = SampD(X \ S | {x1, ..., xs}) (3)

where by inputting a set to SampD we mean that the operation will prepare a superposition of
outputs to elements of the set. By conditioning on a set {x1, ..., xs} we mean that pairs (xi, yi)
are input to SampD so that we get a sample of the conditional distribution. Hence we get

∀S ⊆ X :SampD(X \ S | S) ◦ SampD(S) = SampD(X ). (4)

We additionally require that SampD(X \ S | S) does not modify the output values of S and
is only controlled on them. Note that while we require that SampD is local, so fulfills Eq. (4),
and that it prepares the correct distribution when acting on |0N 〉, see Eq. (18). We also require
it to be a valid unitary. In general SampD fulfilling both requirements can be completed to a
full unitary in any way. Note that an interesting class of distributions that we know how to
quantum lazy sample are those with outputs distributed independently for every input. This
class is not the only set of distributions that are local but still the restriction of eq. (4) is pretty
severe—excluding e.g. random permutations.

The most important example remains the uniform distribution. Another example are ran-
dom Boolean functions, where on every input the probability of the outcome being 1 is λ (see
also [Ala+20; HM20]).
One-way to Hiding lemma The One-way to Hiding (O2H) lemma [Unr14] is a very useful
statement, used for reprogramming a random oracle on some inputs. The O2H lemma relates
one-wayness and hiding in the following sense. Given an algorithm that distinguishes two ora-
cles that are equal except on a certain marked set of inputs, the lemma can be used to construct
an algorithm that finds the input where the two oracles differ. As both endeavors are doomed
to fail unless the algorithms receive some information about the outputs that the two different
oracles will return upon an input from the marked set, the resulting algorithm breaks some
form of one-wayness of the function.

A new version of the lemma from [AHU19] defines puncturing: measuring the state of
the adversary after every query to check if she queries values from some given set. We restate
this lemma to be used with compressed oracles. This gives more freedom into the relations on
inputs and outputs of the oracles that we can puncture.
One-way to Hiding lemma for compressed oracles. Combining the two described techniques,
we proceed to develop a variant of the O2H lemma where the mentioned puncturing, and
therefore also the extraction of a marked set of inputs, is performed on the compressed-oracle
database instead of the adversary’s input. This allows for more complex puncturings that may
depend on the adversary’s previous queries. Such a feature is clearly impossible when just measur-
ing the adversary’s query input, and makes crucial use of the ability of the compressed oracle
to circumvent the no-cloning theorem (sometimes also called the “recording barrier” in this
context) using the randomness of the random function.
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This more general form of puncturing is most conveniently formalized using relations. A
relation R on the database of a compressed oracle is a subset of

⋃
s∈[|Y|] (X × Y)s. A relation

defines a two-outcome quantum measurementMR on the compressed oracle’s database reg-
ister, that measures whether the database fulfills the relation or not (note that in general, the
database will be in superposition of these two options). We go on to define a punctured com-
pressed oracle H\R by adding an application ofMR after each call to the compressed oracle H.
Our version of the O2H lemma reads:

Theorem 1 (Compressed oracle O2H, simplified). LetR be a relation on the database of a quantum
oracle H. Let z be a random string. R and z may have arbitrary joint distribution. Let A be an oracle
algorithm making at most q queries to H. Then the distinguishing advantage between the plain and
punctured oracles can be bounded as∣∣∣P[b = 1 : b← AH(z)]− P[b = 1 : b← AH\R(z)

∣∣∣ ≤ √(q + 1)P[Find : AH\R(z)], (5)

where Find is the event that the measurementMR succeeds at least once.

The proof of this theorem follows closely the structure of the proof of the O2H lemma for
punctured oracles from [AHU19]. In the main body, we give a proof that highlights the differ-
ences due to the different puncturing method.

The following bound on P[Find] for the collision relation is important for proving indiffer-
entiability. In the language of relations, collisions are the set of database strings (i.e. the set of
strings of input/output pairs of the considered random oracle) containing at least two entries
with distinct x parts and the same y part. In the following, let CStOY denote the compressed
oracle of a uniformly random function from X to Y .1

Lemma 2. For any quantum adversary A interacting with a punctured oracle CStOY \ Rcoll—where
Rcoll is the collision relation—the probability of Find is bounded by:

P[Find : A[CStOY \Rcoll]] ≤ 3 q
5

|Y|
, (6)

where q is the maximal number of queries made by A.

Proof sketch. First we propose a quantum state |ΨGood〉 that approximately describes the joint
state of the adversary and the decompressed database conditioned on being not in relation
Rcoll. It is much easier to calculate how CStOY \Rcoll affects |ΨGood〉 than the actual state. After
calculating the result of a single application of CStOY \Rcoll to |ΨGood〉, it is straightforward to
show that this state is in fact close to the actual state. Using that approximate characterization,
we can bound P[Find : A[CStOY \Rcoll]] with standard techniques.

We suspect that the proof technique used above generalizes to other relations.

Formalizing the game-playing proofs framework. The above two ingredients, theO2H lemma
for compressed oracles and the technique for analyzing the probability of the Find event that
plays a central role in it, are the heart of the quantum game-playing proofs framework that we
put forward in this paper. The main concept of the classical game-playing proof framework is
the idea of two games being equal, except (and until) a certain bad event happens. This idea
can already be captured in the quantum case with the O2H lemma for punctured oracles from
[AHU19], but for a very limited set of “local” events that only depend on a single query to the
oracle. The compressed-oracle O2H lemma introduced above can capture much more complex
events: Any event that only depends on the set of all queries that the algorithm hasmade can be

1We subscript the compressed oracle for a uniformly random function with the range of that function, as this
turns out to be convenient for describing the application to the indifferentiability of the sponge construction.
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formalized as a relation of the type described above. The idea of objects that are identical until
bad is therefore captured on the level of oracles via the following definition of almost identical
oracles.

Definition 3 (Almost identical oracles). Let H and G be compressed oracles andRi, i = 1, 2 relations
on their databases. We call the punctured oracles H \R1 and G \R2 almost identical if they are equal
conditioned on the events ¬Find1 and ¬Find2 respectively, i.e. for any event E, any strings y, z, and
any quantum algorithm A

P[E : y ← AH\R1(z) | ¬Find1] = P[E : y ← AG\R2(z) | ¬Find2]. (7)

The increased flexibility for defining bad events comes, however, at the cost of an increased
difficulty in analyzing the probability that a bad event happens. The technique used in Lemma2
can be used to bound that probability, completing the toolbox for quantum game-playing
proofs. In the following section, we present a concrete example of our framework in action:
a proof of quantum indifferentiability of the sponge construction (which is used, e.g., in the
SHA3 hash function).

In the main body, we illustrate how closely quantum security proofs can follow their classi-
cal counterparts when the quantum game-playing proofs framework is used: We first present
the classical proof and then the quantumone. In the next section, we summarize the application
to the sponge construction.

2.2 Indifferentiability of the Sponge Construction

Indifferentiability The tools and techniques we have described above can be used for prov-
ing quantum indifferentiability [Zha19; Car+18]. For some cryptographic constructions, es-
pecially in idealized models like the random-oracle model, security is best captured by indif-
ferentiability [MRH04]. The most prominent class of schemes where indifferentiability plays
an important role as a security definition are domain-extension schemes for hash functions. A
domain-extension scheme is an algorithm that uses a primitive that takes fixed-length inputs
to construct a primitive with similar properties that accepts inputs of arbitrary length. In the
random-oracle model, hash functions are modeled as random oracles. For a domain-extension
scheme, it is then natural to ask for the result to look like a random oracle if the fixed-length
hash function is modeled as a random oracle. Formally, this is exactly the property that is cap-
tured by indifferentiability. The adversary gets access to both the construction and the public
fixed-length random oracle and we want to prove that this situation is indistinguishable from
the adversary interactingwith a random oracle and a simulator—simulating the public internal
function. For post-quantum security, we need to allow the adversary to make quantum queries
to all the oracles [Bon+11].

The sponge construction – introduction The construction that we focus on is the sponge con-
struction, used to design variable-input-length and variable-output-length functions [Ber+07].
It works by applying the internal function ϕmultiple times to an internal state, interspersed with
simple operations processing the input and generating the output. In Algorithm 1 we present
the definition of the sponge construction, which we denote with Sponge. The internal state
s = (s̄, ŝ) ∈ A× C of Sponge consists of two parts: the outer part s̄ ∈ A and the inner part ŝ ∈ C.
The number of possible outer parts |A| is called the rate of the sponge, and |C| is called capacity.
Naturally the internal function is a map ϕ : A×C → A×C. To denote the internal functionwith
output limited to the part in A and C we use the same notation as for states, ϕ̄ and ϕ̂ respec-
tively. Note that we use a general formulation of the construction, using any finite sets for A
and C. All our results also work for Sponge defined with bit-strings and addition modulo 2, as
specified in [NIS14]. By padwe denote a padding function: an efficiently computable bijection
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mapping an arbitrary message set to strings p of elements of A. By |p| we denote the number
of characters (elements of A) in p.

In it’s most general form, the constructed function is Spongeϕ : A∗ ×N→ A∗, where A∗ :=⋃∞
n=0An, where the extra parameter determines the number of “squeezing rounds”, i.e. the

number of times ϕ is applied after the whole input was processed, and thus the number of
times the output is appended with an additional element of A.

Main result The second main result of this paper is the proof of quantum indifferentiability of
the sponge construction.

Theorem 4 (Sponge with functions, quantum indifferentiability). Spongeϕ[pad,A, C] calling a
random function ϕ is indifferentiable from a random oracle up to error ε against quantum adversaries
making q < |C| queries and

ε ≤ 288 q
5

|C|
+ 6

√
(q + 1)q5

|C|
.

The sponge construction – somemore details. To provide a proof sketch of the above theorem,
we need to introduce some more notation related to the sponge construction. For a set S ⊆
A× C, by S we denote the outer part of the set: a set of outer parts of elements of S. Similarly
by Ŝ we denote the set of inner parts of the set. We use similar notation for quantum registers
holding a quantum state in HA×C : Y is the part of the register holding elements of A and Ŷ
holds the inner parts in C.

Algorithm 1: Spongeϕ[pad,A, C]
Input :m ∈ A∗, ` ≥ 0.
Output: z ∈ A`

1 p := pad(m)
2 s := (0, 0) ∈ A× C.
3 for i = 1 to |p| do // Absorbing phase
4 s := (s̄+ pi, ŝ)
5 s := ϕ(s)
6 z := s̄ // Squeezing phase
7 while |z| < ` do
8 s := ϕ(s)
9 z := z‖s̄

10 Output z

An important feature of the sponge construction that was introduced in [Ber+07] is the
fact that interaction with it can be represented on a graph G = (V, E). The set of vertices V
corresponds to all possible states of the sponge, namely V := A×C. The outer part is controlled
by the user, meaning that she can output that part andmodify to any value in a future evaluation
by querying an appropriate message. For that reason we group the nodes with the same inner-
part value into supernodes, so that we have |C| supernodes and every of those consists of |A|
nodes. A directed edge (s, t) ∈ E from a node s to a node t exists if ϕ(s) = t. From every node
there is exactly one edge, if ϕ is a permutation, then there is also exactly one edge arriving at
every node. Note that query algorithms add edges to E query by query. Then graph G reflects
the current knowledge of this algorithm about ϕ.

In the sponge graph G a sponge path is a path between supernodes that starts at the 0-
supernode—called the root. A sponge path can be represented by a string consisting of some
number of characters fromA: following the rules of evaluating Spongewe feed those characters
to the construction as inputs, every next character shifts us in a single supernode, evaluation
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of ϕ can create an edge between any two nodes (also with different inner parts, so in different
supernodes). If the string representing a sponge path is a padding of some messagem, a path
corresponds to an input to Sponge. In the following proofs we are going to construct the input
to Sponge leading to a given node s, with a given sponge graphG. Our definition works under
the assumption that there is a series of edges ((vi, wi))i∈[`] ofG (so a ”regular” path) that leads
to s, meaning w` = s. We define the sponge path construction operation as follows

SpPath(s,G) := v̄1‖(v̄2 − w̄1)‖ · · · ‖(v̄` − w̄`−1)‖0. (8)

The output of the above function is the input to the construction Spongeϕ(., ` = 1) that yields
the output s̄.

A supernode is called rooted if there is a path leading to it that starts at the root (the 0-
supernode). The set R is the set of all rooted supernodes in G. By U we denote the set of
supernodes with a node with an outgoing edge.

In case of an adversary querying a random function ϕ we are going to treat the graph as
being created one edge per query. Graph G then symbolizes the current state of knowledge of
the adversary of the internal function. Note that this dynamical graph can be created efficiently
by focusing solely on nodes that appear in the queried edges.

A sponge graph is called saturated ifR∪U = C. It means that for every inner state in C there
is an edge in G that leads to it from 0 (the root) or leads from it to another node. Saturation
will be important in the proof of indifferentiability as the simulator wants to pick outputs of ϕ
without colliding inner parts (so not in R) and making the path leading from 0 to the output
longer by just one edge (so not in U).

Proof sketch.
We are ready to give a sketch of the proof of Theorem 4.

Proof sketch. By virtue of the quantum game-playing proofs framework introduced in Sec-
tion 2.1, our quantum proof closely mirrors (a slightly modified version of) the proof of clas-
sical indifferentiability [Ber+08]. The indifferentiability simulator we construct simulates the
inner function using a compressed oracle punctured on the collision relation.

The proof idea is to provide the adversary with outputs of ϕ that do not collide in the inner
part. If this step succeeds, every path—input to sponge or the randomoracle—is a unique input
to the construction or the random oracle. To keep the answers from colliding, the simulator has
to have access to the sponge graph, a graph of queried inputs and given outputs to ϕ. Every
path in the graph starts at the nodewith the inner part equal 0, the initial value in Spongeϕ. The
second important feature of the sponge graph that the simulator needs to take into account is
whether the graph is saturated. Saturation happens when in every supernode (a set of nodes
with the same outer part, defined above) there is a node in a path. Saturation does not happen
before |C| queries.

Quantumly we avoid collisions by puncturing the compressed oracle on collisions. Condi-
tioned on ¬Find we are certain that the adversary does not know about any inner collision.

In the quantum indifferentiability simulator we want to sample the outer part of inputs of
ϕ and the inner part separately, similarly to the classical one. To do these two sampling steps
correctly in the quantum case, we, however, need to maintain two databases: one responsible
for the outer part and another for the inner part. We denote them byD and D̂ respectively. The
simulator is given in Algorithm 2

In the classical simulator, we replace the lazy sampled outer state by the output of the ran-
domoracle. In the quantum casewewant to do the same. Unlike in the classical casewe cannot,
however, save the input-output pairs of an the random oracle H that were sampled to generate
the sponge graph, as they contain information about the adversary’s query input. An attempt
to store this data would effectively measure the adversary’s state and render our simulation
distinguishable from the real world. To get around this issue we reprepare the sponge graph
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Algorithm 2: Quantum S2 , S3 , S4 , functions
State : Quantum compressed database register D
Input : |s, v〉 ∈ H⊗2

A×C
Output: |s, v + ϕ(s)〉

1 Locate input s in D and D̂ // Using the correct Samp
2 Apply UR∪U ◦ UG to register D̂ and two fresh registers
3 if ŝ ∈ R ∧ R ∪ U 6= C then // ŝ-rooted, no saturation

4 Apply CStOXŶ D̂(s)
C , (CStOC \ (R∪ U))XŶ D̂(s) , result: t̂ // The red oracle is

punctured!
5 Construct a path to s: p := SpPath(s,G)
6 if ∃x : p = pad(x) then

7 Apply CStOXY D(s)
A , result: t̄

8 Write x in a fresh register XH , apply HXXHY D(s) , uncompute x from XH ,
result: t̄

9 else
10 Apply CStOXY D(s)

A , result: t̄

11 t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
12 else
13 Apply CStOXYD(s)D̂(s)

A×C , result: t
14 Uncompute G andR∪ U
15 Output |s, v + t〉

at the beginning of each run of the simulator. To prepare the sponge graph we query H on
all necessary inputs to ϕ̂, i.e. on the inputs that are consistent with a path from the root to a
rooted node. This is done gradually by iterating over the length of the paths. We begin with
the length-0 paths, i.e. with all inputs in the database D̂ where the inner part is the all zero
string. If the outer part of such an input (which is not changed by the application of SpPath) is
equal to a padding of an input, that input is queried to determine the outer part of the output
of ϕ, creating an edge in the sponge graph. We can now continue with length-1 paths. For each
entry of the database D̂, check whether the input register is equal to a node in the current par-
tial sponge graph. If so, the entry corresponds to a rooted node. Using the entry and the edge
connecting its input to the root, a possible padded input to Sponge is created using SpPath. If
it is a valid padding, H is queried to determine the outer part of the output of ϕ, etc.

Organization. In Section 3 we introduce the crucial classical notions we use. We provide the
necessary definitions of the classical game-playing framework and indifferentiability needed
in the remainder of the paper. In Section 4 we generalize the compressed-oracle technique of
[Zha19] to non-uniform distributions over functions. In Section 5 we prove a generalization
of the O2H lemma of [Unr14], adapted to the use with compressed oracles for non-uniform
distributions. The quantum game-playing framework is defined via the general compressed
quantum oracles that appear in security games, and we derive an upper bound on the proba-
bility of the Find event for the case of puncturing a uniform oracle on collisions. In Section 6
we use these results to prove quantum indifferentiability of the sponge construction.
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3 Preliminaries

We write [N ] := {0, 1, . . . , N − 1} for the set of size N . We denote the Euclidean norm of a
vector |ψ〉 ∈ Cd by ‖|ψ〉‖. By x ← A we denote sampling x from a distribution or getting the
output of a randomized algorithm. A summary of symbols used throughout the paper can be
found in the Symbol Index.

3.1 Classical Game-Playing Proofs

Many proofs of security in cryptography follow the Game-Playing framework, proposed
in [BR06]. It is a very powerful technique as cryptographic security proofs tend to be simpler to
follow and formulate in this framework. The central idea of this approach are identical-until-bad
games. Say gamesG andH are two programs that are syntactically identical except for code that
follows after setting a flag Bad to one, then we call those games identical-until-bad. Usually in
cryptographic proofs G and H will represent two functions that an adversary A will have oracle
access to. In the following we denote the situation when A interacts with H by AH. Then we can
say the following about the adversary’s view.

Lemma 5 (Fundamental lemma of game-playing, Lemma 2 of [BR06]). Let G and H be identical-
until-bad games and let A be an adversary that outputs a bit b. Then∣∣∣P[b = 1 : b← AH]− P[b = 1 : b← AG]

∣∣∣ ≤ P[Bad = 1 : AG]. (9)

3.2 Indifferentiability

In the Random-Oracle Model (ROM) we assume the hash function used in a cryptosystem to
be a random function [BR93]. This model is very useful in cryptographic proofs but might not
be applicable if the discussed hash function is constructed using some internal function. The
ROM can still be used in this setting but by assuming the internal function is random. The
notion of security is then indistinguishability of the constructed functions from a random oracle.
In most constructions however (such as in SHA-2 [NIS15] and SHA-3 [NIS14]), the internal
function is publicly known, rendering the security notion of indistinguishability too weak. A
notion of security dealing with this issue is indifferentiability introduced byMaurer, Renner, and
Holenstein [MRH04].

Access to the publicly known internal function and the hash function constructed from it
is handled by interfaces. An interface to a system is an access structure defined by the format
of inputs and expected outputs. Let us illustrate this definition by an example, let the system
C under consideration be a hash function Hf : {0, 1}∗ → {0, 1}n, constructed using a function
f : {0, 1}n → {0, 1}n. Then the private interface of the system accepts finite-length strings as
inputs and outputs n-bit long strings. Outputs from the private interface are generated by the
hash function, so we can write (slightly abusing notation) Cpriv = Hf . The public interface
accepts n-bit long strings and outputs n-bit strings as well. We have that Cpub = f . Often we
consider one of the analyzed systems, R, to be a random oracle. Then both interfaces are the
same and output random outputs of appropriate given length.

The following definitions and Theorem 8 are the rephrased versions of definitions and the-
orems from [MRH04; Cor+05]. We also make explicit the fact that the definitions are indepen-
dent of the threat model we consider—whether it is the classical model or the quantummodel.
To expose those two cases we write “classical or quantum” next to algorithms that can be clas-
sical or quantum machines; Communication between algorithms (systems, adversaries, and
environments) can also be of two types, where quantum communication will involve quantum
states (consisting of superpositions of inputs)—explained in more detail in the remainder of
the paper.
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Figure 1: A schematic representation of the notion of indifferentiability, Def. 6. Arrows denote
”access to” the pointed system.

Definition 6 (Indifferentiability [MRH04]). A cryptographic (classical or quantum) system C is
(q, ε)-indifferentiable fromR, if there is an efficient (classical or quantum) simulator S and a negligible
function ε such that for any efficient (classical or quantum) distinguisher D with binary output (0 or
1) the advantage∣∣∣P [b = 1 : b← D[Cpriv

k ,Cpub
k ]

]
− P

[
b = 1 : b← D[Rpriv

k ,S[Rpub
k ]]

]∣∣∣ ≤ ε(k) , (10)

where k is the security parameter. The distinguisher makes at most q (classical or quantum) queries to
C.

By efficient we mean with runtime that is polynomial in the security parameter k. The
definitions are still valid and the theorem below holds also if we interpret efficiency in terms of
queries made by the algorithms. Note that then we can allow the algorithms to be unbounded
with respect to runtime, the distinction between quantum and classical queries is still of crucial
importance though. By square brackets we denote (classical or quantum) oracle access to some
algorithm, we also use AH if the oracle is denoted by a more confined symbol. In Fig. 1 we
present a a scheme of the situation captured by Def. 6.

Definition 7 (As secure as [MRH04]). A cryptographic (classical or quantum) system C is said to
be as secure as C′ if for all efficient (classical or quantum) environments Env the following holds: For
any efficient (classical or quantum) attacker A accessing C there exists another (classical or quantum)
attackerA′ accessingC′ such that the difference between the probability distributions of the binary outputs
of Env[C,A] and Env[C′,A′] is negligible, i.e.∣∣P [b = 1 : b← Env[C,A]]− P

[
b = 1 : b← Env[C′,A′]

]∣∣ ≤ ε(k) , (11)

where ε is a negligible function.

Indifferentiability is a strong notion of securitymainly because if fulfilled it guarantees com-
posability of the secure cryptosystem. In the following we say that a cryptosystem T is compat-
ible with C if the interfaces for interacting of T with C are matching.

Theorem 8 (Composability [MRH04]). Let T range over (classical or quantum) cryptosystems com-
patible with C and R, then C is (q, ε)-indifferentiable from R if and only if for all T, T[C] is as secure as
T[R].

Note that composability that is guaranteed by the above theorem holds only for single-stage
games [RSS11].
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Indifferentiability is a strong security notion guaranteeing that a lower-level function (e.g.
a random permutation) can be used to construct a higher-level object (e.g. a variable input-
length random function) that is ”equivalent” to the ideal one—in the sense of Thm. 8. Here, an
adversary’s complexity is measured in terms of the number of queries to the oracles only, not in
terms of their time complexity. In quantum indifferentiability adversaries are allowed to access
the oracles in superposition. This is necessary in the post-quantum setting, as the building
blocks of many hash functions—like e.g those of SHA3 [NIS14]—are publicly specified and
can be implemented on a quantum computer.

3.3 Quantum Computing

Themodel of quantumadversarieswe use is quantumalgorithmsmaking q queries to an oracle.
Each query is intertwined by a unitary operation acting on the adversary’s state and all her
auxiliary states. A general introduction to quantum computing can be found in [NC11]. Here
we will only introduce specific operations important to understand the paper.

Let us define the Quantum Fourier Transform (QFT), a unitary change of basis that we will
make heavy use of. For N ∈ N>0 and x, ξ ∈ [N ] = ZN the transform is defined as

QFTN |x〉 := 1√
N

∑
ξ∈[N ]

ωξ·xN |ξ〉, (12)

where ωN := e
2πi
N is the N -th root of unity. An important identity for some calculations is∑

ξ∈[N ]
ωx·ξN · ω̄

x′·ξ
N = Nδx,x′ , (13)

where ω̄N = e−
2πi
N is the complex conjugate of ωN and δx,x′ is the Kronecker delta function.

If we talk about n qubits an identity on their Hilbert space is denoted by 1n, we also use
this notation to denote the dimension of the identity operator, the actual meaning will be clear
from the context. We write UA to denote that we act with U on register A.

4 Quantum-Accessible Oracles

In the Quantum-Random-Oracle Model (QROM) [Bon+11], one assumes that the random or-
acle can be accessed in superposition. Quantum-accessible random oracles are motivated by
the possibility of running an actual instantiation of the oracle as function on a quantum com-
puter, whichwould allow for superposition access. In this section, oracles implement a function
f : X → Y distributed according to some probability distribution D on the set F of functions
fromX toY . Without loss of generalitywe setX = ZM andY = ZN for some integersM,N > 0.

Classically, an oracle for a function f is modeled via a tape with the queried input xwritten
on it, the tape is then overwritten with f(x). The usual way of translating this functional-
ity to the quantum circuit model is by introducing a special gate that implements the unitary
Uf |x, y〉 = |x, y + f(x)〉. In the literature + is usually the bitwise addition modulo 2, but in
general it can be any group operation. We are going to use addition in ZN .2

In the case where the function f is a random variable, so is the unitary Uf . Sometimes this
is not, however, the best way to think of a quantum random oracle, as the randomness of f is
accounted for using classical probability theory, yielding a hybrid description. To capture the
adversary’s point of view more explicitly, it is necessary to switch to the mixed-state formalism.

2Note that introducing the formalism using the group ZN for some N ∈ N is quite general in the following sense:
Any finite Abelian group G is isomorphic to a product of cyclic groups, and the (quantum) Fourier transform with
respect to such a group is the tensor product of the Fourier transforms on the cyclic groups, given the natural tensor
product structure of CG.
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A mixed quantum state, or density matrix, is obtained by considering the projector onto the
one-dimensional subspace spanned by a pure state, and then taking the expectation over any
classical randomness. Say that the adversary sends the query state |Ψ0〉 =

∑
x,y αx,y|x, y〉 to the

oracle, the output state is then∑
f

P[f : f ← D] Uf |Ψ0〉〈Ψ0|U†f ⊗ |f〉〈f |F

=
∑
f

P[f : f ← D]
∑

x,x′,y,y′

αx,yᾱx′,y′ |x, y + f(x)〉〈x′, y′ + f(x′)| ⊗ |f〉〈f |F , (14)

where by ᾱ we denote the complex conjugate of α and we have recorded the random function
choice in a classical register F holding the full function table of f .

In quantum information science, a general recipe for simplifying the picture and to gain
additional insight is to purify mixed states, i.e. to consider a pure quantum state on a system
augmented by an additional register E, such that discarding E recovers the original mixed
state. In [Zha19] Zhandry applies this recipe to this quantum-random-oracle formalism.

In the resulting representation of a random oracle, the classical register F is replaced by a
quantum register holding a superposition of functions fromD. The joint state before an adver-
sarymakes the first querywith a state |Ψ0〉XY is |Ψ0〉XY

∑
f∈F

√
P[f : f ← D] |f〉F . The unitary

that corresponds to Uf after purification will be called the Standard Oracle StO and works by
reading the appropriate output of f from F and adding it to the algorithm’s output register,

StO|x, y〉XY |f〉F := |x, y + f(x)〉XY |f〉F . (15)

Applied to a superposition of functions as intended, StO will entangle the adversary’s registers
XY with the oracle register F .

The main observation of [Zha19] is that if we change the basis of the initial state of the
oracle register F , the redundancy of this initial state becomes apparent. If we are interested in,
e.g., an oracle for a uniformly random function, the Fourier transform changes the initial oracle
state

∑
f

1√
|F|
|f〉 to a state holding only zeros |0M 〉, where 0 ∈ Y . The uniform case is treated

in great detail in [Unr19b].
Let us start by presenting the interaction of the adversary viewed in the same basis, called

the Fourier basis. The unitary operation acting in the Fourier basis is called the Fourier Oracle
FO. Another important insight from [Zha19] is that the Fourier Oracle, instead of adding the
output of the oracle to the adversary’s output register, does the opposite: It adds the value of
the adversary’s output register to the (Fourier-)transformed truth table

FO|x, η〉XY |φ〉F := |x, η〉XY |φ− χx,η〉F , (16)

where φ is the transformed truth table f and χx,η := (0, . . . , 0, η, 0, . . . , 0) is a transformed truth
table equal to 0 in all rows except for row x, where it has the value η. Note that we subtract χx,η
so that the reverse of QFT returns addition of f(x).

Classically, a (uniformly) random oracle can be “compressed” by lazy-sampling the re-
sponses, i.e. by answering with previous answers if there are any, and with a fresh random
value otherwise. Is lazy-sampling possible for quantum accessible oracles? Surprisingly, the
answer is yes. Thanks to the groundbreaking ideas presented in [Zha19] we know that there
exists a representation of a quantum random oracle that is efficiently implementable.

In the remainder of this section we present an efficient representation of oracles for func-
tions f sampled from an arbitrary distribution that fulfills the quantumanalogue of the classical
condition of efficiently samplable conditional distributions. In the first part we introduce a gen-
eral structure of quantum-accessible oracles. In the second part we generalize the idea of com-
pressed randomoracles to dealwith non-uniformdistributions of functions. InAppendixA,we
provide additional details on the implementation of the procedures introduced in this section
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and step-by-step calculations of important identities and facts concerning compressed oracles.
In Appendix A.1 we recall in detail the compressed oracle introduced in [Zha19], where the
distribution of functions is uniform and the functions map bitstrings to bitstrings. We show the
oracle in different bases and present calculations that might be useful for developing intuition
for working with the new view on quantum random oracles.

4.1 General Structure of the Oracles

In this subsection we describe the general structure of quantum-accessible oracles that will
give us a high-level description of all the oracles we define in this paper. A quantum-accessible
random oracle consists of

1. Hilbert spaces for the inputHX , outputHY , and state registersHF ,

2. a procedure SampD that, on input a subset of the input space of the functions in D, pre-
pares a superposition of partial functions on that subset of inputs with weights according
to the respective marginal of the distribution D,

3. an update unitary FOD that might depend on D (in the case of compressed oracles) or
not (e.g. in the definition from Eq.(16)).

First of all, let us note that we use the Fourier picture of the oracle as the basis for our discussion.
This picture, even though less intuitive at first sight, is simpler to handle mathematically. The
distribution of the functions we model by the quantum oracle are implicitly given by the pro-
cedure SampD that when acting on the |0〉 state generates a superposition of values consistent
with outputs of a function f sampled from D.

In the above structure the way we implement the oracle—in a compressed way, or acting on
full function tables—depends on the way we define FOD.

The definition of SampD is such that SampD(X )|0M 〉 =
∑
f∈F

√
P[f ← D]|f〉 and is a unitary

operator.
Quantum-accessible oracles work as follows. First the oracle state is prepared in an all-zero

state. Then at every query by the adversarywe run FOD which updates the state of the database.
Further details are provided in the following sections.

4.2 Non-uniform Oracles

One of the main results of this paper is generalizing the idea of purification and compression
of quantum random oracles to a class of non-uniform function distributions. We show that
the compressed oracle technique can can be used to deal with distributions over functions with
outputs independent of any prior interactions. Examples of such functions are randomBoolean
functions that output one with a given probability.

We aim at the following functionality

StO|x, y〉XY
∑
f∈F

√
P[f : f ← D] |f〉F =

∑
f∈F

√
P[f : f ← D] |x, y + f(x) mod N〉XY |f〉F ,

(17)

where D is a distribution on the set of functions F = {f : X → Y}. The first ingredient we
need is an operation that prepares the superposition of function truth tables according to the
given distribution. More formally, we know a unitary that for all S ⊆ X

SampD(S)|0|S|〉F (S) =
∑

f(x):f∈F ,x∈S

√
P[f(S) : f ← D]

⊗
x∈S
|f(x)〉F (x), (18)

16



where by f(S) we denote the part of the full truth table of f corresponding to inputs from S
and by F (x) register corresponding to x. Later we give explicit examples of SampD for different
D. Applying QFT to the adversary’s register gives us the Phase Oracle PhO that changes the
phase of the state according to the output value f(x). This picture is commonly used in the
context of bitstrings but is not very useful in our context. Additionally transforming the oracle
register brings us to the Fourier Oracle, that we will focus on. This series of transformations
can be depicted as a chain of oracles:

StO
QFTYN←−−−→ PhO

QFTFN←−−−→ FO, (19)

going “to the right” is done by applying QFTN and “to the left” by applying the adjoint. Also
note that register Y holds a single value in Y and register F holds values in YM , the transform
above is an appropriate tensor product of QFTN . The non-uniform Fourier Oracle is just FO =
QFTY FN ◦ StO ◦ QFT† Y FN ,

FO|x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ〉F

= |x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ− χx,η mod N〉F .

(20)

The main difference between uniform oracles and non-uniform oracles is that in the latter, the
initial state of the oracle in the Fourier basis is not necessarily an all-zero state. That is because
the unitary SampD—that is used to prepare the initial state—is not the adjoint of the transfor-
mation between oracle pictures, like it is the case for the uniform distribution.

Before defining compressed oracles for non-uniform function distributions, let us take a step
back and think about classical lazy sampling for such a distribution. Let f be a random function
from a distributionD. In principle, lazy sampling is always possible as follows. When the first
input x1 is queried, just sample from the marginal distribution for f(x1). Say the outcome is
y1 for the next query with x2, we sample from the conditional distribution of f(x2) given that
f(x1) = y1, etc.

Whether actual lazy sampling is feasible depends on the complexity of sampling from the
conditional distributions of function values given that a polynomial number of other function
values are already fixed.

The situation when constructing compressed superposition oracles for non-uniformly
distributed random functions is very similar. In this case we need the operations
SampD|f(x1)=y1,...,f(xs)=ys to be efficiently implementable for the compressed oracle to be effi-
cient. Here, D|f(x1) = y1, ..., f(xs) = ys denotes the function distribution on X \ S, with
S = {x1, ..., xs}, obtained by conditioningD on the event f(x1) = y1∧ ...∧f(xs) = ys. We write

SampD|f(x1)=y1,...,f(xs)=ys(X \ S) = SampD(X \ S | {x1, ..., xs}) (21)

where by inputting a set to SampD we mean that the operation will prepare a superposition of
outputs to elements of the set. By conditioning on a set {x1, ..., xs} we mean that pairs (xi, yi)
are input to SampD so that we get a sample of the conditional distribution. Hence we get

∀S ⊆ X :SampD(X \ S | S) ◦ SampD(S) = SampD(X ). (22)

We additionally require that SampD(X \ S | S) does not modify the output values of S and
is only controlled on them. Note that while we require that SampD is local, so fulfills Eq. (22),
and that it prepares the correct distribution when acting on |0N 〉, Eq. (18), we also require
it to be a valid unitary. In general SampD fulfilling both requirements can be completed to a
full unitary in any way. Note that an interesting class of distributions that we know how to
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quantum lazy sample are those with outputs distributed independently for every input. This
class is not the only set of distributions that are local but still the restriction of eq. (22) is pretty
severe—excluding e.g. random permutations.

Note that for SampD(X \S | S) to be efficient, it is not sufficient that the conditional probabil-
ity distributionsD|f(x1) = y1, ..., f(xs) = ys are classically efficiently samplable This is because
running a reversible circuit obtained from a classical sampling algorithm on a superposition of
random inputs will, in general, entangle the sample with the garbage output of the reversible
circuit. The problem of efficiently creating a superposition with amplitudes

√
p(x) for some

probability distribution p has appeared in other contexts, e.g. in classical-client quantum fully
homomorphic encryption [Mah18].

An important example of a sampling procedure following the above requirements is an ex-
ternal oracle. Note that even if the oracle itself is not efficiently samplable, from the perspective
of its user it outputs values do not depend onwhat she has queried. Also, the unitary Samp = H,
where H is the external oracle, commutes for any set of inputs, just like the locality requirement
from Eq. (22) demands.

Before we state the algorithm that realizes the general Compressed Fourier Oracle CFOD we
provide a high-level description of the procedure. The oracle CFOD is a unitary algorithm
that performs quantum lazy sampling, maintaining a compressed database of the adversary’s
queries. For the algorithm to be correct—indistinguishable for all adversaries from the full
oracle—it has to respect the following invariants of the database: The full oracle is oblivious to
the order in which a set of inputs is queried. Hence the same has to hold for the compressed
oracle, i.e. we cannot keep entries (x, η) in the order of queries. We ensure this property by
keeping the database sorted according to x.

The second issue concerns the danger of storing toomuch information. If after the querywe
save (x, η) in the database but the resulting entry would map to (x, 0) in the unprepared basis,
i.e. the basis before applying Samp, then the compressed database would entangle itself with
the adversary, unlike in the case of the full oracle. Hence the database cannot contain 0 in the
unprepared basis.

CFOD: On input |x, η〉 do the following:

1. Find the index l ∈ [q] of the register into which we should insert (x, η).

2. If x 6= xl: insert x in a register after the last element of the database and shift it to position
r, moving the intermediate registers backwards.

3. Change the basis to the Fourier basis (in which the adversary’s η is encoded) and update
register l to contain (xl, ηl − η), change the basis back to original.

4. Check if register l contains a pair of the form (xl, 0), if yes subtract x from the first part to
yield (⊥, 0) and shift it back to the end of the database. Uncompute l.

If after q queries the database has a suffix of u pairs of the form (⊥, 0), we say the database has
s = q − u non-padding entries.

Up till now we have described the compressed database only on a high-level, let us now
explain the basis changes mentioned above in more detail. To deal with the difference between
the initial 0 state and the initial Fourier basis truth tableswe use yet another alphabet and define
Д (pronounced as [dε])which denotes the unprepareddatabase. We call it like that because the
initial state ofД is the all-zero state, moreover only by applyingQFTN◦SampD we transform it to
∆, i.e the Fourier basis database. Aswewill see, operations onД aremore intuitive and easier to
define. We denote an unprepared database by |Д〉D = |x1, и1〉D1 |x2, и2〉D2 · · · |xq, иq〉Dq (where
the Cyrillic letter и is pronounced as [i]). By ∆Y (x) we denote the η value corresponding to
the pair in ∆ containing x and by ДX we denote the x values kept in Д. The intuition behind
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the preparation procedure is to initialize the truth table of the correct distribution in the correct
basis. This notion is not visible in the uniform-distribution case, because there the sampling
procedure for the uniform distribution U is the Hadamard transform: SampU = HT†n2m , and the
database pictures ∆ and Д are equivalent. The following chain of databases similar to Eq. (19)
represents different pictures, i.e. bases, in which the compressed database can be viewed

|Д〉 SampD←−−−→ |D〉
QFTD

Y

N←−−−−→ |∆〉. (23)

Using this notation, Alg. 3 defines the procedure of updates of the database of the com-
pressed database. We refer to Appendix A.2 for the fully detailed description of CFOD.

Algorithm 3: General CFOD

Input : Unprepared database and adversary query: |x, η〉XY |Д〉D
Output: |x, η〉XY |Д′〉D

1 Count in register S the number of non-padding (x 6=⊥) entries s
2 if x 6∈ ДX then // add
3 Copy x to ДX in the right place and add 1 to S // Keeping ДX sorted

4 Apply QFTD
Y (x)

N SampD(x)
D (x) // Prepare the database: Д(x) 7→ ∆(x)

5 Subtract η from ∆Y (x) // update entry with x

6 Apply Samp†D(x)
D (x)QFT†D

Y (x)
N // Unprepare the database: ∆(x) 7→ Д(x)

7 In register L save location l of x in Д
8 if ДY

l = 0 then // remove or do nothing
9 Remove x from DX

l and shift register DX
l to the back // ДX

l 7→⊥
10 if ДX

l 6= x then
11 Shift DY

l to the back and subtract 1 from S

12 Uncompute l from register L // Algorithm 4
13 Uncompute s from register S
14 Return |x, η〉XY |Д′〉D // Д′ is the modified database

Below in Algorithm 4 we explain how to uncompute l in Line 12 of Algorithm 3.

Algorithm 4: Uncompute L in Line 12 of Algorithm 3
1 Control on registers AX and DX

2 for i = 1 . . . , s− 1 do
3 if ДX

i = x then
4 Subtract i from L

5 else if ДX
i < x and x < ДX

i+1 then
6 Subtract i+ 1 from L

We would like to stress that to keep the compressed oracle CFOD a unitary operation we
always keep the database of size q. This can be easily changed by always appending an empty
register (⊥, 0) at the beginning of each query of adversary A. The current formulation of CFOD

assumes that there is a bound on the number of queries made by the adversary, this is not a
fundamental requirement.

The decompression procedure for the general Compressed Fourier Oracle is given byAlg. 5.
The output of the decompression procedureφ(Д) is the state holding the prepared Fourier-basis
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Algorithm 5: General Decompressing Procedure DecD
Input : Unprepared database: |Д〉D
Output: Prepared, Fourier-basis truth table: |φ(Д)〉

1 Count in register S the number of non-padding (x 6=⊥) entries s
2 Initialize a state

⊗
x∈X |0〉F (x)

3 for i = 1, 2, . . . , s do
4 Swap register DY

i with F (xi)
5 for x = M − 1,M − 2, ..., 0 do // x ∈ X in decreasing order
6 if F (x) 6= 0 then
7 Subtract x from DX

s

8 Subtract 1 from S

9 Discard D and S
10 Apply QFTFNSampFD(X ) // Prepare the database

truth table of the functions from D, which by construction is consistent with the adversary’s
interaction with the compressed oracle.

The decompression can be informally described as follows. The first operation coherently
counts the number of x 6=⊥ and stores the result in a register S. Next we prepare a fresh all-
zero initial state of a function from X to Y , i.e. M registers of dimensionN , all in the zero state.
These registers will hold the final FO superposition oracle state. The next step is swapping
each Y -type register of the CFO-database with the prepared zero state in the FO at the position
indicated by the corresponding X-type register in the CFO database. The task left to do is
deleting x’s from D. It is made possible by the fact that the non-padding entries of the CFO
database are nonzero and ordered. That is why we can iterate over the entries of the truth table
F and, conditioned on the entry not being 0, delete the last entry of DX and reducing S by
one to update the number of remaining non-padding entries in the CFO-database. Finally, we
switch to the correct basis to end up with a full oracle of Fourier type, i.e. a FO.

Theorem 9 (Correctness of CFOD). SayD is a distribution over functions, let CFOD be as defined in
Alg. 3 and FO as in Eq.(20), then for any quantum adversary A making q quantum queries we have

|ΨFO〉 = DecD|ΨCFO〉, (24)

where |ΨFO〉 is the state resulting from the interaction of A with FO and |ΨCFO〉 is the state resulting
from the interaction of A with CFOD.

Proof. We will show that
FO ◦ DecD = DecD ◦ CFOD, (25)

this is sufficient for the proof of the theorem as |ΨFO〉 is generated by a series of the adver-
sary’s unitaries intertwined with oracle calls. If we show that FO = DecD ◦ CFOD ◦ Dec†D then
everything that happens on the oracle’s register side can be compressed.

Let us start with the action of DecD on some database state

|Д(~x,~и)〉 := |x, η〉XY |x1, и1〉D1 · · · |xs, иs〉Ds · · · |⊥, 0〉Dq , (26)

where ~x := (x1, x2, . . . , xs) and ~и := (и1, и2, . . . ,иs), additionally note that no xi in ~x is ⊥
and no иi in ~и is zero. We study the action of DecD on the above state. To write the out-
put state we need to name the matrix elements of the sampling unitary: (SampD(X ))f~и =
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af~и(X ), the column index consists of a vector of size M with exactly s non-zero entries:
~и = (0, . . . , 0, и1, 0 . . . , 0, и2, 0, . . .). The decompressed state is

|Υ(~x,~и)〉F :=DecD|Д(~x,~и)〉 =
∑
φ∈F

1√
NM

∑
f∈F

ωφ·fN af~и(X ) |φ0〉F (0) · · · |φM−1〉F (M−1), (27)

where φ ·f =
∑
x∈X φxf(x) mod N and by f(x) we denote row number x of the function truth

table f .
Using locality of SampD as defined in Eq. (22), we have that SampD(X ) = SampD(X \ {x} |

{x}) ◦ SampD(x) and we can focus our attention on some fixed x: isolate register F (x) with
amplitudes depending only on x. Let us compute this state after application of FO, note that
FO only subtracts η from F(x):

FO|x, η〉XY |Υ(~x,~и)〉F = |x, η〉XY
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N a

f ′~и′(X \ {x} | {x})

· |φ0〉F (0) · · ·

 ∑
ζ,z∈[N ]

1√
N
ωζ·zN azиx(x) |ζ − η〉F (x)

 · · · |φM−1〉F (M−1),

(28)

where ~и′ ∈ YM−1 denotes the vector of иi without the row with index x. Note that иx = 0 if x
was not in ~x before decompression and иx 6= 0 otherwise.

The harder part of the proof is showing that the right hand side of Eq. (25) actually equals
the left hand side that we just analyzed. Let us inspect |Д(~x,~и)〉 after application of the com-
pressed oracle

CFOD|x, η〉XY |Д(~x,~и)〉D = |x, η〉XY

·

∑
и6=0

α(x, η, и̃, иx) |Д′ADD/UPD〉D + α(x, η, и̃, 0) |Д′REM/NOT〉D

 (29)

where by Д′ADD/UPD we denote the database Д(~x,~и) with entry (x, иx) added or updated and
by Д′REM/NOT we denote the database where (x, иx) was removed or nothing happened. The
function α(·) denotes the corresponding amplitudes. By и̃ we denote the original и in entry x
in the database.

Before we proceed with decompression of the above state let us calculate the amplitudes α.
Again using locality of SampD we describe the action of the compressed oracle on a single x
step by step. Belowwe denote by Rem removing и = 0 from Д and by Sub subtraction of η from
database register ∆Y . We start with a database containing (x, и̃), which we can always assume
due to line 3 in Alg. 3. In the case that x was not already in Д we have и̃ = 0, otherwise it is
the value defined in previous queries. The simplification we make is describing CFOD acting
on a single-entry database. We do not lose generality by that as the only thing that changes
for q larger than one is maintaining proper sorting and padding, which can be easily done (see
Appendix A.2 for details). The calculation of CFOD on a basis state follows:

|x, η〉XY |x, и̃x〉D
SampD7→ |x, η〉XY

∑
z∈[N ]

azи̃x(x) |x, z〉D (30)

QFTD
Y

N7→ |x, η〉XY
∑
z∈[N ]

azи̃x(x)
∑
ζ∈[N ]

1√
N
ωζ·zN |x, ζ〉D (31)

Sub7→|x, η〉XY
∑

z,ζ∈[N ]
azи̃x(x) 1√

N
ωζ·zN |x, ζ − η〉D (32)

QFT†D
Y

N7→ |x, η〉XY
∑

z,ζ∈[N ]
azи̃x(x) 1√

N
ωζ·zN

∑
z′∈[N ]

1√
N
ω̄
z′·(ζ−η)
N |x, z′〉D (33)

21



=|x, η〉XY
∑
z∈[N ]

azи̃x(x)
∑

z′,ζ∈[N ]

1
N
ωζ·zN ω̄

z′·(ζ−η)
N︸ ︷︷ ︸

=ω̄−z·ηN δ(z′,z)

|x, z′〉D (34)

Samp†D
D

(x)
7→ |x, η〉XY

∑
z∈[N ]

azи̃x(x) ωz·ηN
∑

и∈[N ]
āzи(x) |x, и〉D (35)

=|x, η〉XY
∑

и∈[N ]

∑
z∈[N ]

azи̃x(x) ωz·ηN āzи(x)

︸ ︷︷ ︸
:=α(x,η,и̃,и)

|x, и〉D (36)

RemD

7→ |x, η〉XY

 ∑
и∈[N ]\{0}

α(x, η, и̃x, и) |x, и〉D + α(x, η, и̃x, 0) |⊥, 0〉D

 . (37)

As we have already mentioned, locality is necessary for us to analyze the action of CFOD on a
basis state with a small database. Note however that it is not sufficient; We also have to argue
that SampD(X \ {x} | {x}), that is applied to the database too, commutes with subtraction of η,
namely

Samp†DD (X \ {x} | {x}) ◦ QFTD
Y
x

N SubDYx QFT†D
Y
x

N ◦ SampDD(X \ {x} | {x})

=QFTD
Y
x

N SubDYx QFT†D
Y
x

N . (38)

To prove the above statement we first note that SampDD(X \ {x} | {x}) is controlled on register
DY
x , but does not act on it. Secondly, in Eq.(34) we see that QFTDYN Sub QFT†D

Y

N multiplies the
state by phase factor ωz·ηN and also does not modify register DY

x , but is controlled on it though.
Hence Eq.(38) holds. In the above equations we have defined α as

α(x, η, и̃x, и) :=
∑
z∈[N ]

azи̃x(x) āzи(x) ωz·ηN . (39)

After decompressing the state from Eq.(29), the resulting database state will be∑
и 6=0 α(x, η, и̃x, иx) |Υ(Д′ADD/UPD)〉 + α(x, η, и̃′x, 0) |Υ(Д′REM/NOT)〉D, where we overload no-

tation of |Υ(~x,~и)〉 to denote that (~x,~и) consists of values in the respective databases. We can
write down this state in more detail using Eq.(28):

DecD ◦ CFOD|x, η〉XY |Д(~x,~и)〉D =
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N a

f ′~и′(X \ {x} | {x}) |φ0〉F (0) · · ·

·

 ∑
иx 6=0

α(x, η, и̃, иx)
∑

ζ,z∈[N ]

1√
N
ωζ·zN azиx(x)|ζ〉F (x) + α(x, η, и̃, 0)

∑
ζ,z∈[N ]

1√
N
ωζ·zN az0(x)|ζ〉F (x)


︸ ︷︷ ︸

=
∑

ζ,z∈[N ]
1√
N
ωζ·zN

∑
иx∈[N ] α(x,η,и̃,иx) azиx (x) |ζ〉F (x)

· · · |φM−1〉F (M−1) = FO |x, η〉XY |Υ(~x,~и)〉 = FO ◦ DecD |x, η〉XY |Д(~x,~и)〉D. (40)

The second to last equality comes from the fact that SampD is a unitary and
∑
j∈[N ] aij ākj = δik

and therefore we have∑
и∈[N ]

α(x, η, и̃, и) azиx(x) =
∑
z′∈[N ]

∑
и∈[N ]

āz′и(x) azи(x)

︸ ︷︷ ︸
=δz′,z

az′и̃(x) ωz
′·η
N = azи̃(x) ωz·ηN . (41)

Together with changing the variable ζ 7→ ζ − η, we have derived the claimed identity.

22



4.2.1 Example distributions

The most important distribution that can be quantumly lazy sampled is the uniform distribu-
tion. It was first shown in [Zha19] how to do that. We present a lot of details and intuitions on
this matter in Appendix A.

Let us say we want to efficiently simulate a quantum oracle oracle for a random function
h : {0, 1}m → {0, 1}, such that h(x) = 1 with probability λ. Then the adding function of the
corresponding compressed oracle is ∀x ∈ {0, 1}m:

Sampλ(x) :=
( √

1− λ
√
λ√

λ −
√

1− λ

)
, (42)

independent from any previous queries. This observation comes in useful in tasks like search
in a sparse database.

5 One-way to Hiding Lemma for Compressed Oracles

The fundamental game-playing lemma, Lemma 5, is a very powerful tool in proofs that in-
clude a random oracle. A common use of the framework is to reprogram the random oracle
in a useful way. The fundamental lemma gives us a simple way of calculating how much the
reprogramming costs in terms of the adversary’s advantage—the difference between probabil-
ities of A outputting 1 when interacting with one game or the other. The lemma that provides
a counterpart to Lemma 5 valid for quantum accessible oracles is theOne-Way to Hiding (O2H)
Lemma first introduced by Unruh in [Unr14].

In the original statement of the O2H lemma, the main idea is that there is a marked subset
of inputs to the random oracle H, and an adversary tries to distinguish the situation in which
she interacts with the normal oracle from an interaction with an oracle G that differs only on
this set. The lemma states a bound for the distinguishing advantage which depends on the
probability of an external algorithm measuring the input register of the adversary and seeing
an element of the marked set. This probability is usually small, for random marked sets.

Recently this technique was generalized by Ambainis, Hamburg, and Unruh in [AHU19].
The main technical idea introduced by the generalized O2H lemma is to exchange the oracle G
with a so-called punctured oracle that measures the input of the adversary after every query. The
bound on the adversary’s advantage is given by the probability of this measurement succeed-
ing. This technique forms the link with the classical identical-until-bad games: we perform a
binary measurement on the “bad” event and bound the advantage by the probability of suc-
ceeding.

In this work we present a generalization of this lemma that involves the use of compressed
oracles. Our idea is to measure the database of the compressed oracle, which makes the lemma
more versatile and easier to use for more general quantum oracles.

Below we state our generalized O2H lemmas. Most proofs of [AHU19] apply almost word
by word so we just describe the differences and refer the reader to the original work.

5.1 Relations on databases

The key notion we use is a relation on the database of the compressed oracle.

Definition 10 (Classical relation R onD). LetD be a database of size q of pairs (x, y) ∈ X ×Y . We
call a subset R ⊆

⋃
s∈[q+1] (X × Y)s a classical relation R on D.

An example of such a relation is a collision, namely

Rcoll := {((x1, y1), · · · , (xt, yt)) ∈
⋃

s∈[q+1]
(X × Y)s : ∃i,j i 6= j, xi 6= xj , yi = yj}. (43)
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Note however, that it is only reasonable to check if the non-padding entries are inR, omitting the
(⊥, 0) pairs at the end ofD. We also write B instead of R (for some B ⊆ Y), then the relation is
defined as entries ofD that have yi ∈ B. IfD is held in a quantum register, the classical relation
R has a corresponding projective measurement JR such that ‖JR|(x1, y1), · · · , (xq, yq)〉D‖ = 1 if
and only if for some s it holds that

(
(x1, y1), · · · , (xs, ys)

)
∈ R and for the remaining i > s, the

(xi, yi) are padding entries.
A more general way to view a relation onD is by identifying it with any quantummeasure-

ment.

Definition 11 (Relation R onD). Let |D〉 be a quantum database in the Hilbert spaceHD. We call a
binary measurement onHD a relation R on |D〉.

This way of defining relations and punctured oracles will be very useful later on. An ex-
ample of a relation defined in this more general way is Rξ=0 that is fulfilled by |D〉 with DX

containing a Fourier 0.
We also state an explicit algorithm to implement the measurement of a relation R, given

that membership in R is efficiently decidable. Alg. 6 defines the measurement procedure of
measuring R.

Algorithm 6:Measurement of a relation R
Input : Unprepared database |Д〉D
Output: Outcome p and post-measurement state |Д′〉D

1 Count in register S the number of non-padding (x 6=⊥) entries s
2 Apply SampDD(S) // Prepare the database: Д 7→ D
3 Apply UR that saves a bit j := R(D) in register J // j is the outcome of the

measurement R on D

4 Apply SampD†D (S) // Unprepare the database D 7→ Д
5 Uncompute register S, measure register J , output the outcome j

The above discussion brings some new issues though, especially when we consider mea-
suring on two relations at the same time. From Heisenberg’s uncertainty principle we know
that one cannot make two non-commuting measurements at the same time. For example if the
two relations are defined on D in two different bases then the measurements do not commute
in general. Wewill not discuss the matter further, we will just limit the discussion to commuting
relations that have commuting measurements.

While not directly relevant to our applications, we keep the generality of [AHU19] by intro-
ducing the notion of query depth as the number of sets of parallel queries an algorithm makes.
We usually assume quantum algorithms make q quantum queries in total and d (as in “query
depth”) sequentially, but those queries in sequence may involve a number of parallel queries.
A parallel query of width p to an oracle H involves p applications of H to p query registers. Note
that if H is considered to be a compressed oracle, p-parallel queries are processed by sequen-
tially applying the compressed oracle unitary p times.

First we define a compressed oracle H punctured on relation R, denoted by H \R.

Definition 12 (Punctured compressed oracle H \R). Let H be a compressed oracle and R a relation
on its database. The punctured compressed oracle H \ R is equal to H, except that R is measured after
every query as described in Alg. 6. By Find we denote the event that R outputs 1 at least once among
all queries.

Full oracles can be punctured as well, the relation is then checked only on the queried en-
tries of the function table—that need to be identified (like in DecD from Alg. 5) prior to the
measurement of R.
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In many applications of punctured oracles H we might want to apply different compressed
oracles (also punctured) conditioned on some quantum state. Such an operation is not per-
mitted by quantum mechanics; We can achieve the same functionality by simply postponing
the measurement to the end of the quantum algorithm involving H controlled on a quantum
register. Note that this change can be done by just omitting the measurement of register J in
Alg. 6 and performing it at the end of the whole algorithm. After the measurement we can
uncompute the outcome register J . We are not changing notation and implicitly assume the
postponement of puncturing—e.g. in Alg. 9.

5.2 One-way to Hiding Lemma

Using this definition we can prove a theorem similar to Theorem 1 of [AHU19]:

Theorem 13 (Compressed oracle O2H). Let R1 and R2 be commuting relations on the database of
a quantum oracle H. Let z be a random string. R and z may have arbitrary joint distribution. Let A be
an oracle algorithm of query depth d, then∣∣∣P[b = 1 : b← AH\R1(z)]− P[b = 1 : b← AH\R1∪R2(z)

∣∣∣ ≤ √(d+ 1)P[Find2 : AH\R1∪R2(z)],

(44)∣∣∣∣√P[b = 1 : b← AH\R1(z)]−
√
P[b = 1 : b← AH\R1∪R2(z)

∣∣∣∣ ≤ √(d+ 1)P[Find2 : AH\R1∪R2(z)],

(45)

where Find2 is the event that measuring R2 succeeds.

Proof. The proof works almost the same as the proof of Theorem 1 of [AHU19]. Let us state the
analog of Lemma 5 from [AHU19].

For the following lemma let us first define two algorithms. Let AH(z) be a unitary quantum
algorithm with oracle access to H with query depth d. Let Q denote the quantum register of A
andD the database of the compressed oracleH. We also need a “query log” registerL consisting
of d qubits.

Let BH,R(z) be a unitary quantum algorithm acting on registers Q and L and having oracle
access to H. First we define the following unitary

UR,i|D〉D|l1, l2, . . . , ld〉L :=
{
|D〉D|l1, l2, . . . , ld〉L if R(|D〉D) = 0
|D〉D|l1, . . . , li ⊕ 1, . . . , ld〉L if R(|D〉D) = 1

, (46)

where R(|D〉D) denotes the outcome of the projective binary measurement on D. The uni-
tary exists for all relations. One can just coherently compute R(D) into an auxiliary register,
apply CNOT from that register to Li and then uncompute R(D). If the relation is efficiently
computable, then so is the unitary. We define BH,R(z) as:

• Initialize the register Lwith |0d〉.

• Perform all operations that AH(z) does.

• For all i, after the i-th query of A apply the unitary UR to registers D,L.

Let |ΨA〉 denote the final state of AH(z), and |ΨB〉 the final state of BH,R(z). Let P̃find be the
probability that a measurement of L in the computational basis in the state |ΨB〉 returns l 6= 0d,
i.e. P̃find :=

∥∥∥1Q,D ⊗ (1L − |0d〉L〈0d|)|ΨB〉
∥∥∥2
.

To deal with relation R1 we consider algorithms with all measurements postponed to the
end of their operation; Instead of performing the actual measurement we save the outcome into
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a fresh quantum register—with UR as in alg. 6, note that prior to the measurement this fresh
register can hold a superposition. Moreover we postpone the measurement of the auxiliary
register until the very end of the run of the quantum algorithm. The coherent evaluation of R1
happens in both algorithms. In addition, the proof below does not make use of the particular
form of the unitaries that are applied between the measurements ofR2, so the evaluation ofR1
can be absorbed inton the compressed oracle unitary.

Lemma 14 (Compressed oracle O2H for pure states). Fix a joint distribution for H, R, z. Consider
the definitions of algorithms A and B and their quantum states, then∥∥∥|ΨA〉 ⊗ |0d〉L − |ΨB〉

∥∥∥2
≤ (d+ 1)P̃find. (47)

Proof. This lemma can be proved in the sameway as Lemma 5 of [AHU19]. Here we omit some
details and highlight the most important observation of the proof.

First define Bcount that works in the same way as B but instead of storing L, the log of
queries with D in relation, it keeps count—in register C—of how many times a query resulted
in R(|D〉D) = 1. The state that results from running Bcount is |ΨBcount〉 =

∑d
i=0|Ψi

Bcount
)|i〉C and

similarly |ΨB〉 =
∑
l∈{0,1}d |Ψl

B)|l〉L, where |Ψ) denotes a sub-normalized state. We can observe
that |ΨA〉 =

∑d
i=0|Ψi

Bcount
). As P̃find is the probability of measuring at least one bit in the register

L of B, or counting at least one fulfilling of R in C, we have that |Ψ0d
B ) = |Ψ0

Bcount
). From the

definition we also have P̃find = 1−
∥∥∥|Ψ0

Bcount
)
∥∥∥2
. Using the above identities we can calculate the

bound

∥∥∥|ΨB〉 − |ΨA〉 ⊗ |0d〉L
∥∥∥2

=
∥∥∥∥∥
d∑
i=1
|Ψi

Bcount)
∥∥∥∥∥

2

+ P̃find
4
≤
(

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥)2

+ P̃find

J-I
≤ d

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥2

︸ ︷︷ ︸
=P̃find

+ P̃find = (d+ 1)P̃find, (48)

where 4 denotes the triangle inequality and J-I denotes the Jensen’s inequality. It is apparent
that introducing Bcount gave us a more coarse-grained look at the initial algorithm B, resulting
in a tighter bound.

The rest of the proof of the theorem follows the same reasoning as the proof of Lemma 6
in [AHU19] with the modifications shown in the above lemma. Using bounds on fidelity
(Lemma 3 and Lemma 4 of [AHU19]) and monotonicity and joint concavity of fidelity (from
Thm. 9.6 and Eq. 9.95 of [NC11]) one can generalize the results to the case of arbitrary mixed
states.

We continue by deriving an explicit formula for P[Find]. Let A be a quantum algorithmwith
oracle access to H, making at most q quantum queries with depth d. Let R be a relation on the
database of H and z an input to A. R and z can have any joint distribution. JR is the projector
from the measurement of R on D, UH

i is the i-th unitary performed by AH\R together with a
query to H, and |Ψ0〉 is the initial state of A. Then we have the formula

P[Find : AH\R(z)] = 1−
∥∥∥∥∥
d∏
i=1

(1− JR)UH
j |Ψ0〉

∥∥∥∥∥
2

. (49)

Let us now discuss the notion of “identical until bad” games in the case of compressed or-
acles. For random oracles, the notion was introduced in [AHU19]. The definition is rather
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straightforward as H and G are considered identical until bad if they had the same outputs ex-
cept for somemarked set. When using compressed oracles, the outputs ofH andG are quantum
lazy-sampled, making the definition of what it means for two oracles to be identical until bad
require more care. Here we state a definition that captures useful notions of identical-until-bad
punctured oracles.
Definition 15 (Almost identical oracles). Let H and G be compressed oracles and Ri, i = 1, 2 re-
lations on their databases. We call the oracles H \ R1 and G \ R2 almost identical if they are equal
conditioned on the events ¬Find1 and ¬Find2 respectively, i.e. for any event E, any strings y, z, and
any quantum algorithm A

P[E : y ← AH\R1(z) | ¬Find1] = P[E : y ← AG\R2(z) | ¬Find2]. (50)

Note that not punctured compressed oracles are a special case of punctured ones (for R =
∅), so the above definition can be applied to a pair of oracles where one is punctured and one is
not. We can prove the following bound on the adversary’s advantage in distinguishing almost
identical punctured oracles.
Lemma 16 (Distinguishing almost identical punctured oracles). If H \R1 and G \R2 are almost
identical according to Def.15 then∣∣∣P[y ← AH\R1(z)]− P[y ← AG\R2(z)]

∣∣∣ ≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)]. (51)

Proof. We bound∣∣∣P[y ← AH\R1(z)]− P[y ← AG\R2(z)]
∣∣∣

Def. 15=
∣∣∣P[y ← AH\R1(z) | ¬Find1]

(
P[¬Find1 : AH\R1(z)]− P[¬Find2 : AG\R2(z)]

)
+ P[y ← AH\R1(z) | Find1]P[Find1 : AH\R1(z)]

−P[y ← AG\R2(z) | Find2]P[Find2 : AG\R2(z)]
∣∣∣ (52)

4
≤

∣∣∣∣∣∣∣∣∣P[y ← AH\R1(z) | ¬Find1]︸ ︷︷ ︸
≤1

(
P[¬Find1 : AH\R1(z)]− P[¬Find2 : AG\R2(z)]

)
︸ ︷︷ ︸

=P[Find2:AG\R2 (z)]−P[Find1:AH\R1 (z)]

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[y ← AH\R1(z) | Find1]︸ ︷︷ ︸
≤1

P[Find1 : AH\R1(z)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[y ← AG\R2(z) | Find2]︸ ︷︷ ︸
≤1

P[Find2 : AG\R2(z)]

∣∣∣∣∣∣∣ (53)

4
≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)], (54)

where by4we denote the triangle inequality.
Note that forR2 = ∅, the above lemma is essentially a special case of the well knownGentle-

Measurement Lemma of [Win99].
It is a fact of quantummechanics thatmeasurements disturb the state. Considering that, one

might be curious if measuring the database does not disturb it too much. As an example, note
that after a measurement of the collision relation, eq. (43), the database does not necessarily
consist of only non-Fourier-0 entries. Even though this is true, if the disturbance of the oracle
is low enough, then the adversary will not notice it. This is exactly the case of the O2H lemma,
the disturbance is low enough so the adversary does not notice any difference in the content of
the oracle’s output.
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5.3 Calculating Find for the Collision and Preimage Relations

We state a lemma giving a bound on the probability of Find for the uniform distribution over
the set {f : X → Y}, and for the union of the collision and preimage relations. The preimage
relation is satisfied when the output of the oracle is 0:

Rpreim := {((x1, y1), · · · , (xt, yt)) ∈
⋃

s∈[q+1]
(X × Y)s : ∃i : yi = 0}. (55)

Lemma 17. For any quantum adversary A interacting with a punctured oracle CStOY \ (Rpreim ∪
Rcoll)—where Rcoll is defined in Eq. (43) and Rpreim in Eq. (55)—the probability of Find is bounded
by:

P[Find : A[CStOY \ (Rpreim ∪Rcoll)]] ≤ 36 q
5

|Y|
, (56)

where q is the maximal number of queries made by A.

Proof. Punctured oracles are defined in Definition 12. We start the proof by specifying some
operations involved in that definition. We define a “lazy” approach to calculating the number
of non-empty entries in D. In this unitary we focus on using the ordered structure of DX . We
use the phase oracle instead of the standard oracle; in detailed calculations that we do later on
in the proof, CPhO is easier to deal with than CStO.

Let us define Queries, a unitary that outputs the size of a database. It acts on an auxiliary
register S and is controlled onD. This unitary acts exactly like Alg. 3 in lines 1 and 13: counts
the number of non-padding (x 6=⊥) entries.

The full description of the measurement involves using an auxiliary register J—note the
definition of measuring a relation Def. 6—with a bit stating whether the database fulfills the
relation. Then the actualmeasurement is a computational basismeasurement of register J . The
measurement that we apply after CPhOY , in line 5 of Alg. 6 is

JR := 1⊗ |1〉J〈1|, (57)
JR := 1⊗ |0〉J〈0|, (58)

where in addition to checking R.
In the following we focus on the punctured oracle just prior to measurement JR. A unitary

that omits the last step of Alg. 6 in CPhOY \Rpreim ∪Rcoll acts on registers ADJ , we define it as

CPhOY \ UR := Queries† ◦ UR ◦ Queries ◦ CPhOY , (59)

where the unitary UR checks whether the queried values in registersD fulfill the relationR—in
our case it is the collision and preimage relations from Eqs. (43), (55)—and saves the single bit
answer to register J .

We proceed by rephrasing the definition of P[Find : A[CPhOY \Rpreim∪Rcoll]], after that we
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treat the part specific to our relation. We follow Eq. (49) to analyze the probability of Find:

P[Find : A[CPhOY \Rpreim ∪Rcoll]] = 1−

∥∥∥∥∥∥
 1∏
i=q

JRUiCPhOY \ UR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

(60)

= 1−

∥∥∥∥∥∥
 1∏
i=q−1

JRUjCPhOY \ UR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥JRUqCPhOY \ UR

 1∏
i=q−1

JRUjCPhOY \ UR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

(61)

=
q∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥
JRUiCPhOY \ UR

 1∏
j=i−1

JRUjCPhOY \ UR

 |Ψ0〉|0〉J︸ ︷︷ ︸
:=Ui−1|Φi−1〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

(62)

=
q∑
i=1
‖JRUiCPhOY \ URUi−1|Φi−1〉‖2 , (63)

where |Ψ0〉 is the initial state of the adversary. Note that in the definition of |Φi−1〉 we have
[Ui−1, JR] = 0. Here, the second and third equations follow from the fact that ‖|v〉‖2 = ‖P|v〉‖2+
‖(1− P)|v〉‖2 for all |v〉 and projectors P.

In what follows we analyze ‖JRUiCPhOY \ URUi−1|Φi−1〉‖2. Our approach to
that is to propose a state |ΨGood

i−1 〉, close to the original |Φi−1〉, for which bounding∥∥∥JRUiCPhOY \ URUi−1|ΨGood
i−1 〉|0〉J

∥∥∥2
is easy. The intuition behind |ΨGood

i−1 〉 is to have a su-
perposition over databases that do not contain y = 0 and are collision free for the queried
values.

To define the good state we specify the set of bad databasesD ∈ R. For the relationRpreim∪
Rcoll we have

B(s) := [N ]s \ {(y1, . . . , ys) ∈ [N ]s : all yi are distinct and 6= 0} , (64)
B(1 | D) := {y}y∈DY ∪ {0}. (65)

The second set defined above is the subset of the codomain of the sampled function corre-
sponding to the new value creating a collision or being a preimage of 0. To better understand
B(1 | D) let us assumeD 6∈ R and x is some input 6∈ DX . Then B(1 | D) is the set of y such that
D ∪ {(x, y)} ∈ R. We also define a coefficient b(s) defined as

b(s) := |B(1 | D)| , where D 6∈ B(s− 1), (66)

wherewe use the fact that |B(1 | D)|depends only on the size ofD and not the actual contents of
it. We define B(1 | D) in a way specific toRcoll∪Rpreim but the definition can be easily extended
to other relations. With the bad set defined for other relations let us present the corresponding
coefficient: As examples consider Rpreim, then b(s) = 1, there is just one value y = 0 that cause
a fresh query to be in relation; For Rcoll we have b(s) = s − 1, the new y can be any of the
previously queried values to make D fulfill the relation. Finally for our relation Rpreim ∪ Rcoll
we have b(s) = s, database D consists of s − 1 distinct values that 6= 0, matching any of them
or 0 causesDY ∪ {y} to be in B(s). Through the rest of this proof we do not evaluate b(s), so it
is easier to reuse the proof for other relations.

In what follows we write ~x to denote all the previous inputs asked by the adversary and
(x, η) is the last query. The state |ΨGood

i,R 〉AD corresponds to the adversary’s state just after the
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i-th query and before the application of Ui. The size of the database s depends on whether the
new query x was added to, updated, or removed from the database, it equals |~x ∪ {x}|, |~x|, or
|~x \ {x}| respectively. After i queries s can range from 0 to i and the joint state of A and the
oracle is a superposition over different database sizes. We denote the outputs given to A by
~y := (y1, . . . , ys). When we use set operations on vectors we mean a set consisting of entries of
~x, there are no repetitions in the vector as this is an invariant of the oracle. ByD(⊥) we denote
the part of the database containing empty entries. We define the good state as:

|ΨGood
i,R 〉AD :=

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s)

1√
(N − b(1))(N − b(2)) · · · (N − b(s))

ω~η·~yN |(x1, y1), . . . , (xs, ys)〉D(~x)

∑
ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥), (67)

in the case we have added x to D, the database above contains (x, yj). In the rest of the proof
we omit the subscript R, however note that |ΨGood

i 〉 does indeed depend on R.
We want to show that after any query, |Φi〉ADJ is close to |ΨGood

i 〉AD|0〉J :

Claim 18. For states defined as above we have

∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥ ≤ i(i+ 1)
2

( √
2√

N(N − q)
+ 1
N

)
. (68)

Proof. We are going to prove the statement by recursion over the number of queriesmade by the
adversary. For i = 0 the statement is true, as |ΨGood

0 〉|0〉J = |Φ0〉 = |Ψ0〉|0〉J . Next we proceed
as follows:∥∥∥|ΨGood

i 〉AD|0〉J − |Φi〉ADSJ
∥∥∥ =

∥∥∥|ΨGood
i 〉AD|0〉J − JRCPhOY \ URUi−1|Φi−1〉ADJ

∥∥∥ (69)

≤
∥∥∥|ΨGood

i 〉AD|0〉J − JRCPhOY \ URUi−1|ΨGood
i−1 〉AD|0〉J

∥∥∥
+
∥∥∥JRCPhOY \ URUi−1|ΨGood

i−1 〉AD|0〉J − JRCPhOY \ URUi−1|Φi−1〉ADJ
∥∥∥ (70)

≤ εstep(i) +
∥∥∥|ΨGood

i−1 〉AD|0〉J − |Φi−1〉ADJ
∥∥∥ ≤ i∑

j=1
εstep(j). (71)

We just need to calculate εstep(j) :=
∥∥∥|ΨGood

j 〉AD|0〉J − JRCPhOY \ URUj−1|ΨGood
j−1 〉AD|0〉J

∥∥∥
2
.

We start calculating the claimed bound by inspecting in detail the state CPhOY \
URUj−1|ΨGood

j−1 〉AD|0〉J . We distinguish different modes of operation: ADD when the queried x
is added toD, UPDwhen xwas already inD and is not removed from the database, REMwhen
we remove x from D, and NOT where register AY is in state |0〉 . These modes correspond to
different branches of superposition in CPhOY \ URUj−1|ΨGood

j−1 〉AD|0〉J . We write

Uj−1|ΨGood
j−1 〉AD|0〉J = |ξADD〉+ |ξUPD〉+ |ξREM〉+ |ξNOT〉 (72)

and analyze the action of CPhOY \ UR on the |ξi〉 separately.
For |ξNOT〉 there is no change to the state. For |ξUPD〉 and |ξREM〉, we treat the updated x as

the last one inD, this does not have to be true but it simplifies notation. Note that we want the
corresponding ys to depend on previous queries but not the other way around, this assumption
is without loss of generality as there is no set order for

∑
~y. The empty register is moved to the
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back of D, we do not write it out for simplicity but still consider it done.

UPD/REM :
CPhOY (|ξUPD〉+ |ξREM〉) =

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1))(N − b(2)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x}) ∑
ys 6∈B(1|D(~x\{x}))

1√
N − b(s)

ω
(ηs+η)ys
N |x, ys〉D(x)

− 1√
N(N − b(s))

∑
ys 6∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈[N ]

1√
N
|x, y′s〉D(x)

+ 1√
N(N − b(s))

∑
ys 6∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈[N ]

1√
N
|⊥, y′s〉D(x)


∑

ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (73)

Whether we are in the branch UPD or REM depends on whether η = −ηs or not.
When the database is updated we have the following state after the query:

UPD :
CPhOY \ UR|ξUPD〉 =

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1))(N − b(2)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x}) ∑
ys 6∈B(1|D(~x\{x}))

1√
N − b(s)

ω
(ηs+η)ys
N |x, ys〉D(x)|0〉J

+ 1
N

∑
ys∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s 6∈B(1|D(~x\{x}))

1√
N − b(s)

|x, y′s〉D(x)|0〉J

+
√

b(s)
N2(N − b(s))

∑
ys∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈B(1|D(~x\{x}))

1√
b(s)
|x, y′s〉D(x)|1〉J

− 1√
N(N − b(s))

∑
ys∈B(1|D(~x\{x}))

ω
(ηs+η)ys
N

∑
y′s∈[N ]

1√
N
|⊥, y′s〉D(x)|0〉J


∑

ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (74)

In the above state we have simplified the sum
∑
ys 6∈B(1|D(~x\{x})) = −

∑
ys∈B(1|D(~x\{x})).

After removing an element from the database we have:

REM :
CPhOY \ UR|ξREM〉 =

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s−1)

1√
(N − b(1))(N − b(2)) · · · (N − b(s− 1))

ω~η·~yN |(x1, y1), . . . , (xs−1, ys−1)〉D(~x\{x})
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√N − b(s)
N

∑
ys∈[N ]

1√
N
|⊥, ys〉D(x)|0〉J

+ b(s)
N

∑
ys 6∈B(1|D(~x\{x}))

1√
N − b(s)

ω
(ηs+η)ys
N |x, ys〉D(x)|0〉J

−
√
b(s)(N − b(s))

N

∑
ys∈B(1|D(~x\{x}))

1√
b(s)
|x, ys〉D(x)


∑

ys+1,...,yq∈[N ]

1√
N q−s

|(⊥, ys+1), . . . , (⊥, yq)〉D(⊥). (75)

Now we get to adding a new entry to the database:

ADD :
CPhOY |ξADD〉 =

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s)

1√
(N − b(1))(N − b(2)) · · · (N − b(s))

ω~η·~yN |(x1, y1), . . . , (xs, ys)〉D(~x)

∑
ys+1∈[N ]

1√
N
ω
ηys+1
N |x, ys+1〉D(x)

∑
ys+2,...,yq∈[N ]

1√
N q−s−1

|(⊥, ys+2), . . . , (⊥, yq)〉D(⊥), (76)

where for the sake of readability we again omit the proper ordering of D. Checking for R is a
simple task, note that Queries only depends on DX . The above state after applying Queries† ◦
UR ◦ Queries is:

ADD :
CPhOY \ UR|ξADD〉 =

∑
x,η,~x,~η,w

αx,η,~x,~η,w|x, η〉AXY |ψ(x, η, ~x, ~η, w)〉AW

∑
~y 6∈B(s)

1√
(N − b(1)) · · · (N − b(s))

ω~η·~yN |(x1, y1), . . . , (xs, ys)〉D(~x)√N − b(s+ 1)
N

∑
ys+1 6∈B(1|D(~x))

1√
N − b(s+ 1)

ω
ηys+1
N |x, ys+1〉|0〉J

+

√
b(s+ 1)
N

∑
ys+1∈B(1|D(~x))

1√
b(s+ 1)

ω
ηys+1
N |x, ys+1〉|1〉J


∑

ys+2,...,yq∈[N ]

1√
N q−s−1

|(⊥, ys+2), . . . , (⊥, yq)〉D(⊥), (77)

the appropriate position of register J is after D.
Now that we know how querying works for |ΨGood

j−1 〉 we distinguish two types of errors
compared to |ΨGood

j 〉: an additive error of adding a small-weight state to the original one and a
multiplicative error where one branch of the superposition is multiplied by some factor.

The additive error appears in states coming from applying CPhOY (Eq. (73)).
In the branches of the superposition where we add a new entry to the database we see that

we recover |ΨGood
j 〉|0〉J after multiplying a branch of CPhOY \URUj−1|ΨGood

j−1 〉|0〉J by
√

N−b(s+1)
N

(Eqs. (77)). We also see this type of error is some branches where we remove the entry from
D (Eqs. (73)).

Our approach to the rest of the proof is first dealing with the additive and later the mul-
tiplicative error. To this end let us define |ψ+

j 〉ADJ as the state JRCPhOY \ URUj−1|ΨGood
j−1 〉|0〉J
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with all branches classified as the additive error excluded. The new state is defined as

|ψ+
j 〉ADJ =

(∑
s

|ΨGood
j (NOT; s)〉+ |ΨGood

j (UPD; s)〉

+

√
N − b(s)

N
|ΨGood

j (REM; s)〉+

√
N − b(s+ 1)

N
|ΨGood

j (ADD; s)〉

 |0〉J , (78)

where the states above correspond to branches of superposition where we do nothing (NOT,
for η = 0), update the database, remove an entry from D, and add an entry. We add s as the
argument to specify the size of the database. The multiplicative factors come from Eqs. (74),
(75), and (77), the parts of the equations we look at are the first elements in the parentheses.

Bounding the difference of the states is done as follows∥∥∥|ΨGood
j 〉|0〉J − JRCPhOY \ URUj−1|ΨGood

j−1 〉|0〉J
∥∥∥

≤
∥∥∥|ΨGood

j 〉|0〉J − |ψ+
j 〉ADJ

∥∥∥+
∥∥∥|ψ+

j 〉ADJ − JRCPhOY \ URUj−1|ΨGood
j−1 〉|0〉J

∥∥∥ . (79)

The second term above is just the norm of all states amplifying the additive error—we call them
the bad states.

An important fact is that the joint state of the adversary and the oracle is a sum over
databases of different sizes

|ψ+
j 〉 =

∑
s

|ψ+
j (s)〉 (80)

〈ψ+
j |ψ

+
j 〉 =

∑
s

〈ψ+
j (s)|ψ+

j (s)〉 (81)

and the above is also true for |ΨGood
j 〉 =

∑
s|ΨGood

j (s)〉. To calculate the additive error we
bound the norms of all orthogonal terms adding errors, the total error is the square root
of the sum of squares of norms of these states. We write out only the part of the state
JRCPhOY \ URUj−1|ΨGood

j−1 〉|0〉J that gets modified in the branch of the superposition we fo-
cus on; We omit majority of the database and all adversary’s registers. We can do this without
loss of generality because the features that characterize the branch we analyze give rise to or-
thogonal parts of the overall states, so there is no overlap between cases we discuss; All the
other amplitudes that we omit (e.g. αx,η,~x,~η,w) sum to 1 in absolute value squared. Whenever
it is necessary to use the global features of JRCPhOY \ URUj−1|ΨGood

j−1 〉|0〉J we make it clear in
the comments to the bounds.

We list all the norms important for proving Claim 18 and the bound on P[Find]. By “bad
|0〉J〈00|” we denote the bad state multiplied by |0〉J , similarly by |01〉SJ〈01|. Note that the
second error is excluded by JR but it is useful to calculate it for for the later task of calculating
P[Find].

For updating, i.e. η 6= −ηs the first state in parentheses in Eq. (73) is the good state, the rest
is the error, with norm∥∥∥∥∥∥ 1√

N(N − b(s))
∑

ys 6∈B(1|D)
ω

(ηs+η)ys
N

− ∑
y′s 6∈B(1|D)

1√
N
|x, y′s〉+

∑
y′s∈[N ]

1√
N
|⊥, y′s〉

∥∥∥∥∥∥
≤

√
2b(s)√

N(N − b(s))
. (82)

The norm of the part of the state that is in R, where in the above we change
∑
y′s 6∈B(1|D) to∑

y′s∈B(1|D) is √
2b(s)3

N2(N − b(s)) . (83)
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For removing, i.e. η = −ηs in Eq. (73) the last state in the parentheses is the good state, the
rest is the error, with norm∥∥∥∥∥∥ 1√

N − b(s)
∑

ys 6∈B(1|D)
|x, ys〉 −

√
N − b(s)√

N

∑
y′s 6∈B(1|D)

1√
N
|x, y′s〉

∥∥∥∥∥∥ = b(s)
N

(84)

In Eq. (77) there is no additive error, we just calculate the norm of the part of the state with
database in R. The crucial quantity for checking for R in Eq. (77) is the branch multiplied by
|1〉J . The norm of this branch is bounded by√

b(s+ 1)
N

. (85)

To understand the above bound note that the state in Eq. (77) that is limited to the state we ana-
lyze here—so without the first element in the parentheses—is essentially equal to |ΨGood

j 〉with
the exception of the range of the sum

∑
ys+1∈B(1|D(~x)). Now as η is given explicitly in register

AY the inner product of registersD(x) simplifies to
∑
ys+1∈B(1|D(~x))

1
N , all other elements is the

above norm appear in 〈ΨGood
j |ΨGood

j 〉, hence are ≤ 1
The errors listed above are all weighted by the amplitudes in the state JRCPhOY \

URUj−1|ΨGood
j−1 〉|0〉J ; Hence, the total additive error is the maximal value that we calculated

above:∥∥∥|ψ+
j 〉ADJ − JRCPhOY \ URUj−1|ΨGood

j−1 〉|0〉J
∥∥∥ ≤ √

2b(s)√
N(N − b(s))

≤
√

2b(j − 1)√
N(N − b(q))

, (86)

where the bound comes from Eq. (82).
The multiplicative error is a factor that multiplies a part of the state |ψ+

j 〉ADJ . We also need
to take care of the fact that the joint state of the adversary and the oracle is a sum over databases
of different sizes, note Eq. (80). Let us write down the two parts, one affected by the error and
the second not:

|ΨGood
j 〉AD|0〉J =

∑
s

α(s)|ϕ1(s)〉+ β(s)|ϕ2(s)〉, (87)

|ψ+
j 〉ADJ =

∑
s

α(s)|ϕ1(s)〉+

√
N − b(s)

N
β(s)|ϕ2(s)〉 (88)

and we know that
∑
s |α(s)|2 + |β(s)|2 = 1, so

∑
s |β(s)|2 ≤ 1. We continue with the bound

∥∥∥|ψ+
j 〉ADJ − |Ψ

Good
j 〉AD|0〉J

∥∥∥ =

∥∥∥∥∥∥
∑
s

1−

√
N − b(s)

N

β(s)|ϕ2(s)〉

∥∥∥∥∥∥ (89)

=

√√√√√∑
s

1−

√
N − b(s)

N

2

|β(s)|2 ≤

1−

√
N − b(j)

N

 ≤ b(j)
N

(90)

From Eqs. (79), (86), and (90) the bound on the single step is

εstep(j) ≤
√

2b(j − 1)√
N(N − b(q))

+ b(j)
N

(91)

and the final bound is∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥ ≤ i∑
j=1

j

( √
2√

N(N − b(q))
+ 1
N

)
(92)

= i(i+ 1)
2

( √
2√

N(N − b(q))
+ 1
N

)
, (93)
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where we have set b(j) = j.

To calculate the probability of measuring R = Rcoll ∪Rpreim, Eq. (63) implies

P[Find] ≤
q∑
i=1
‖JRUiCPhOY \ URUi−1|Φi−1〉‖2 , (94)

and we can use the bound between |Φi−1〉 and |ΨGood
i−1 〉 using

‖JRUiCPhOY \ URUi−1|Φi−1〉‖ ≤
∥∥∥|Φi−1〉 − |ΨGood

i−1 〉
∥∥∥+

∥∥∥JRUiCPhOY \ URUi−1|ΨGood
i−1 〉

∥∥∥ , (95)

the first norm can be bounded by Eq. (93). For the second we use the maximal bound among
Eqs. (83) and (85). The maximal bound on the norm of D ∈ R comes from Eq. (85) and the
bound is

‖JRUiCPhOY \ URUi−1|Φi−1〉‖ ≤
i(i+ 1)

2

( √
2√

N(N − b(q))
+ 1
N

)
+

√
i

N
(96)

≤ 1√
N

(√
2 + 1
2 i2 +

√
2 + 3
2 i

)
. (97)

Summing the square of the above bound over 1 ≤ i ≤ q gives us the final bound:

P[Find] ≤ 1
N

3
5q(q + 1)(q + 2)(3q2 + 6q + 1) ≤ 36q

5

N
(98)

This concludes the proof of Lemma 17.

For Rcoll we use eq. (91) with b(i) = i− 1 instead of b(i) = i. The bound on the probability
of the event Find is

P[Find : A[CStOY \Rcoll]] ≤ 3 q
5

|Y|
. (99)

For Rpreim in eq. (91) we set a constant b(j) = 1. The bound on the probability of Find is then

P[Find : A[CStOY \Rpreim]] ≤ 16 q
3

|Y|
. (100)

6 Quantum Security of the Sponge Construction

We use our methods to show a detailed proof of quantum indifferentiability of the sponge
construction used with a random function as the internal function.

At the end of this section we prove that quantum indifferentiability implies collapsingness.

6.1 Sponge Construction

The sponge construction is used to design variable-input-length and variable-output-length
functions. It works by applying the internal functionϕmultiple times on the state of the function.
In Algorithm 7 we present the definition of the sponge construction, which we denote with
Sponge [Ber+07]. The internal state s = (s̄, ŝ) ∈ A×C of Sponge consists of two parts: the outer
part s̄ ∈ A and the inner part ŝ ∈ C. The number of possible outer parts |A| is called the rate of the
sponge, and |C| is called capacity. Naturally the internal function is a map ϕ : A×C → A×C. To
denote the internal functionwith output limited to the part inA and Cwe use the same notation
as for states, ϕ̄ and ϕ̂ respectively. Note that we use a general formulation of the construction,
using any finite sets for A and C. All our results also work for Sponge defined with bit-strings
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and addition modulo 2, as specified in [NIS14]. By pad we denote a padding function: an
efficiently computable bijection mapping an arbitrary message set to strings p of elements of
A. By |p| we denote the number of characters in A in p. The function constructed in that way
behaves as follows, Spongeϕ : A∗ × N → A∗, where A∗ :=

⋃∞
n=0An. In Fig. 2 we present a

scheme of the sponge construction evaluated on inputm.

0

0

m1

ϕ

m2

ϕ

m3

ϕ

z1

ϕ

z2

Absorbing phase Squeezing phase

Input: m = m1‖m2‖m3 Output: z = z1‖z2

Figure 2: A schematic representation of the sponge construction: Spongeϕ(m1‖m2‖m3) =
z1‖z2.

For a set S ⊆ A×C, by S we denote the outer part of the set: a set of outer parts of elements
of S . Similarly by Ŝ we denote the inner part of the set. We use similar notation for quantum
registers holding quantum state in HA×C : Y is the part of the register holding elements of A
and Ŷ holds the inner parts.

Algorithm 7: Spongeϕ[pad,A, C]
Input :m ∈ A∗, ` ≥ 0.
Output: z ∈ A`

1 p := pad(m)
2 s := (0, 0) ∈ A× C.
3 for i = 1 to |p| do // Absorbing phase
4 s := (s̄+ pi, ŝ)
5 s := ϕ(s)
6 z := s̄ // Squeezing phase
7 while |z| < ` do
8 s := ϕ(s)
9 z := z‖s̄

10 Output z

An important feature of the sponge construction that was introduced in [Ber+07] is the
fact that interaction with it can be represented on a graph G = (V, E). The set of vertices V
corresponds to all possible states of the sponge, namely V := A×C. The outer part is controlled
by the user, meaning that she can output that part andmodify to any value in a future evaluation
by querying an appropriate message. For that reason we group the nodes with the same inner-
part value into supernodes, so that we have |C| supernodes and each such supernode consists of
|A| nodes. A directed edge (s, t) ∈ E from a node s to a node t exists if ϕ(s) = t. From every
node there is exactly one outgoing edge, and if ϕ is a permutation, then there is also exactly one
edge arriving at every node. When a query algorithm interacts with the sponge construction,
we can think of the sponge graph starting with no edges, and the query algorithms adding
edges to E query by query. Then graphG then reflects the current knowledge of this algorithm
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about ϕ.
In the sponge graph G a sponge path is a path between supernodes that starts at the 0-

supernode—called the root. A sponge path can represented by a string consisting of some num-
ber of characters from A: following the rules of evaluating Sponge we feed those characters to
the construction as inputs, every next character shifts us in a single supernode, evaluation of
ϕ can create an edge between any two nodes (also with different inner parts, so in different
supernodes). If the string representing a sponge path is a padding of some messagem, a path
corresponds to an input to Sponge. In the following proofs we are going to construct the input
to Sponge leading to a given node s, with a given sponge graphG. Our definition works under
the assumption that there is a series of edges ((vi, wi))i∈[`] ofG (so a ”regular” path) that leads
to s, meaning w` = s. We define the sponge path construction operation as follows

SpPath(s,G) := v̄1‖(v̄2 − w̄1)‖ · · · ‖(v̄` − w̄`−1)‖0. (101)

Output of the above function is the input to the construction Spongeϕ(., ` = 1) that yields the
output s̄.

A supernode is called rooted if there is a path leading to it that starts in the root (the 0-
supernode). The set R is the set of all rooted supernodes in G. By U we denote the set of
supernodes with a node with an outgoing edge.

In the case of an adversary querying a random function ϕ we are going to treat the graph
as being created one edge per query. The graph G then symbolizes the current state of knowl-
edge of the adversary of the internal function. Note that this dynamical graph can be created
efficiently by focusing solely on nodes that appear in the queried edges.

A sponge graph is called saturated ifR∪U = C. It means that for every inner state in C there
is an edge in G that leads to it from 0 (the root) or leads from it to another node. Saturation
will be important in the proof of indifferentiability as the simulator wants to pick outputs of ϕ
without colliding inner parts (so not in R) and making the path leading from 0 to the output
longer by just one edge (so not in U).

The simulators defined in the proofs in this section are implicitly stateful. They maintain a
classical or quantum state containing a database of the adversary’s queries and the simulator’s
outputs. Using that database the simulator can always construct a sponge graph containing all
the current knowledge of ϕ.

For the proof of indifferentiabilitywe also need anupper boundon the probability of finding
a collision in the inner part of outputs of a uniformly random function ϕ : A×C → A×C. Note
that by such collision we also consider inputs that map to 0 ∈ C. We define the bound as a
function of the number of queries q to ϕ:

fcoll(q) := q(q − 1)
2 |C| , (102)

the bound can be derived by bounding the probability of finding a collision and bounds on the
natural logarithm: −2x ≥ ln(1− x) ≤ −x for 0 ≤ x < 1

2 .
As the sponge construction is used to design variable-input and variable-output functions

we define the random oracle H : A∗ × N→ A∗ accordingly:

H(x, `) :=


by′c` if (x, `′ ≥ `) ∈ D

y′‖
(
y

$← A`−`′
)

if (x, `′ < `) ∈ D

y
$← A` otherwise

, (103)

where by D we denote the database of previous queries, by primes we denote the contents of
entries of D, and by′c` denotes the first ` letters (in A) of y′. Note that such description can be
easily used to define a quantum accessible oracle for H. In the following section, we omit the
second input and we mean that we ask for a single letter H(x) = y ∈ A.
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6.2 Classical Indifferentiability of Sponges with Random Functions

In the game-playing proofs and Algorithms 8 and 9 described in this section we use the follow-
ing convention: every version of the algorithm executes the part of the code that is not boxed
and among the boxed statements only the part that is inside the box in the color corresponding
to the color of the name in the definition.

First we present a slightly modified proof of indifferentiability from [Ber+08]. We modify
the proof to better fit the framework of game-playing proofs. It is not our goal to obtain the
tightest bounds nor the simplest (classical) proof. Instead, our classical game-playing proof
paves the way to the quantum security proof which is presented in the next section.

Theorem 19 (Sponge with functions, classical indifferentiability). Spongeϕ[pad,A, C] calling a
random function ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (103), for classical adversaries
for any q < |C| and ε = 8 q(q+1)

2|C| .

Proof. The proof proceeds in six games that we show to be indistinguishable. We start with the
real world: the public interface corresponding to the internal function ϕ is a random transfor-
mation and the private interface is Spongeϕ. Then in a series of games we gradually change
the environment of the adversary to finally reach the ideal world, where the public interface is
simulated by the simulator and the private interface is a random oracle H. The simulators used
in different games of the proof are defined in Alg. 8, the index of the simulator corresponds to
the game in which the simulator is used. Explanations of the simulators follow.

Algorithm 8: Classical S2, S3 , S4 , I6 , functions
State : current sponge graph G
Input : s ∈ A× C
Output: ϕ(s)

1 if s has no outgoing edge then // new query
2 if ŝ ∈ R ∧R ∪ U 6= C then // ŝ-rooted, no saturation

3 t̂
$← C, if t̂ ∈ R ∪ U , set Bad = 1 , t̂ $← C \ (R∪ U)

4 Construct a path to s: p := SpPath(s,G)
5 if ∃x : p = pad(x) then
6 t̄

$← A

7 t̄ := H(x)

8 else
9 t̄

$← A
10 t := (t̄, t̂)
11 else
12 t

$← A× C
13 Add an edge (s, t) to E .
14 Set t to the vertex at the end of the edge starting at s
15 Output t

Game 1We start with the real world where the distinguisher A has access to a random function
ϕ : A× C → A× C and Spongeϕ using this random function. The formal definition of the first
game is the event

Game 1 := (b = 1 : b← A[Spongeϕ, ϕ]) . (104)
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Game 2 In the second game we introduce the simulator S2—defined in Alg. 8—that lazy-
samples the random function ϕ. In Alg. 8 we define all simulators of this proof at once, but note
that the behavior of S2 is not influenced by any of the conditional “if” statements (in lines 1,
2, and 5), because in the end, the output state t is picked uniformly from A × C anyway. The
definition of the second game is

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (105)
Because the simulator S2 perfectly models a random function and we use the same function for
the private interface we have

|P[Game 2]− P[Game 1]| = 0. (106)

Game 3 In the next step we modify S2 to S3. The game is then
Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (107)

We made a single change in S3 compared to S2, we introduce the “bad” event Bad that marks
the difference between algorithms. We use this event as the bad event in Lemma 5. With such
a change of the simulators we can use Lemma 5 to bound the difference of probabilities:

|P[Game 3]− P[Game 2]| ≤ P[Bad = 1]. (108)
It is quite easy to bound P[Bad = 1] as it is the probability of finding a collision or preimage of
the root in the set C having made q random samples. Then we have that

P[Bad = 1] ≤ fcoll(q), (109)
where fcoll is defined in Eq. (102). The bound is not necessarily tight as not all queries are made
to rooted nodes.
Game 4 In this step we introduce the random oracle H but only to generate the outer part of the
output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 ,SH

4 ]
)
. (110)

We observe that if Bad = 0 the outputs are identically distributed.
Claim 20. Given that Bad = 0 the mentioned games are the same:

|P[Game 4 | Bad = 0]− P[Game 3 | Bad = 0]| = 0. (111)

Proof. Note that the inner part is distributed in the same way in both games if Bad = 0, so we
only need to take care of the outer part of the output. The problem might lie in the outer part,
as we modify the output from a random sample to H(x). If Bad = 0 then t̂ is not rooted and
has no outgoing edge, also the whole graph G does not contain two paths leading to the same
supernode. Hence, xwas not queried before and is uniformly random. This reasoning is made
more formal in Lemma 1 and Lemma 2 of [Ber+07].

The two games are identical-until-bad, this implies that the probability of setting Bad to one
in both games is the same P[Bad = 1 : Game 3] = P[Bad = 1 : Game 4]. Together with the
above claim we can derive the advantage:

|P[Game 4]− P[Game 3]| Claim 20=
∣∣∣∣∣P[Game 4 | Bad = 0]

· (P[Bad = 1 : Game 3]− P[Bad = 1 : Game 4]])︸ ︷︷ ︸
=0

+ P[Game 3 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1] + P[Game 4 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1]
∣∣∣∣∣ (112)

≤ 2P[Bad = 1]. (113)
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Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same as before and the game is

Game 5 :=
(
b = 1 : b← A[H,SH

4 ]
)
. (114)

Conditioned on Bad = 0, the outputs of the simulator in Games 4 and 5 act in the same way
and are consistent with H. To calculate the adversary’s advantage in distinguishing between
the two games we can follow the proof of Lemma 16, with H \ R1 replaced by Game 5, G \ R2
replaced by Game 4, and event Find replaced by Bad = 1. As the derivation of Lemma 16
uses no quantum mechanical arguments and the assumption holds—the games are identical
conditioned on Bad = 0—the bound holds:

|P[Game 5]− P[Game 4]| ≤ 4P[Bad = 1] ≤ 4fcoll(q). (115)

Game 6 In the last game we use I6 (we call it I for ideal, that is the world we arrive in the last
step of the proof), a simulator that does not check for bad events and samples from the ”good”
subset of C. The game is

Game 6 :=
(
b = 1 : b← A[H, IH6 ]

)
(116)

and the advantage is

|P[Game 6]− P[Game 5]| ≤ P[Bad = 1] ≤ fcoll(q). (117)

following Lemma 5. as the only difference is in code but not outputs. We included this last
game in the proof because I6 is clearly a simulator that might fail only if G is saturated but
this does not happen if q < |C|. Collecting and adding all the differences yields the claimed
ε = 8fcoll(q).

6.3 Quantum Indifferentiability of Sponges with Random Functions

In this subsection we prove quantum indifferentiability of the sponge construction with a uni-
formly random internal function.

In the quantum indifferentiability simulator we want to sample the outer part of inputs of ϕ
and the inner part separately, similarly to the classical one. To do that correctly in the quantum
case though we need to maintain two databases: one responsible for the outer part and the
other for the inner part. We denote them by D and D̂ respectively.

At line 7 of the classical simulator we replace the lazy sampled outer state by the output of
the random oracle. In the quantum case wewant to do the same. Unlike in the classical case we
cannot, however, save the input-output pairs of an the random oracle H that were sampled to
generate the sponge graph, as they contain information about the adversary’s query input. An
attempt to store this data would effectively measure the adversary’s state and render our sim-
ulation distinguishable from the real world. To get around this issue we reprepare the sponge
graph at the beginning of each run of the simulator. To prepare the sponge graph we query H
on all necessary inputs to ϕ̂, i.e. on the inputs that are consistent with a path from the root to a
rooted node. This is done gradually by iterating over the length of the paths. We begin with the
length-0 paths, i.e. with all inputs in the database D̂ where the inner part is the all zero string.
If the outer part of such an input (which is not changed by the application of SpPath) is equal
to a padding of an input, that input is queried to determine the outer part of the output of ϕ,
creating an edge in the sponge graph. We can continue with length-1 paths. For each entry of
the database D̂, checkwhether the input register is equal to a node in the current partial sponge
graph. If so, the entry corresponds to a rooted node. Using the entry and the edge connecting
its input to the root, a possible padded input to Sponge is created using SpPath. If it is a valid
padding, H is queried to determine the outer part of the output of ϕ, etc.
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In the proof we will make have use of the result from Lemma (17). Let us denote the bound
on inner collisions by

fQcoll(q) := 36 q
5

|C|
. (118)

The main statement of this section is:

Theorem 21 (Spongewith functions, quantum indifferentiability). Spongeϕ[pad,A, C] calling a
random function ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (103), for quantum adversaries

for any q < |C| and ε = 288 q
5

|C| + 6
√

(q+1)q5

|C| .

Proof. Even though we allow for quantum accessible oracles, the proof we present is very sim-
ilar to the classical case. The proof follows the same structure, the biggest difference is in the
simulators that use the compressed oracle to lazy-sample appropriate answers.

We denote by UG the unitary that acting on |0〉 constructsG including edges consistent with
queries held by the quantum compressed database from register D. Similarly we define UR∪U
to temporarily create a description of the set of supernodes that are rooted or have an outgoing
edge.

In Alg. 9 we describe the simulators we use in this proof. In the quantum simulators we
also make use of the graph representation of sponges. Note however that in a single query
we only care about the graph before the query. Due to that fact we can apply the compressed
oracle defined in Alg. 3 and additionally analyzed in Lemma 17. Eq. (99) provides a bound of
the probability of Find (as defined in Section 5) in the case of compressed oracles and relations
relevant for the sponge construction.

It is important to note that the ”IF” statements are in fact quantum controlled operations.
In line 4 we apply a punctured compressed oracle controlled on the input and the database; To
correctly perform this operation we postpone the measurement to after uncomputing ofG and
R∪ U in line 14. This procedure is also discussed in the end of Section 5.

An illustration of the simulators in the quantum case is depicted in Fig. 3.

ϕ̂ :

ϕ̄ :

CStO
XŶ D̂(s)
C

CStO
XY D(s)
A

(CStOC \ (R∪ U))XŶ D̂(s)

HXXHY D(s)

S2

S3

S4

Game 3

Game 4

Figure 3: Schematics of the simulators defined in Alg. 9, horizontal arrows signify the change
introduced in the labeled game.

Game 1We start with the real worldwhere the distinguisherA has quantum access to a random
function ϕ : A × C → A × C and the Spongeϕ construction using this random function. The
definition of the first game is

Game 1 := (b = 1 : b← A[Spongeϕ, ϕ]) . (119)
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Algorithm 9: Quantum S2 , S3 , S4 , functions
State : Quantum compressed database register D
Input : |s, v〉 ∈ H⊗2

A×C
Output: |s, v + ϕ(s)〉

1 Locate input s in D and D̂ // Using the correct Samp
2 Apply UR∪U ◦ UG to register D̂ and two fresh registers
3 if ŝ ∈ R ∧ R ∪ U 6= C then // ŝ-rooted, no saturation

4 Apply CStOXŶ D̂(s)
C , (CStOC \ (R∪ U))XŶ D̂(s) , result: t̂ // The red oracle is

punctured!
5 Construct a path to s: p := SpPath(s,G)
6 if ∃x : p = pad(x) then

7 Apply CStOXY D(s)
A , result: t̄

8 Write x in a fresh register XH , apply HXXHY D(s) , uncompute x from XH ,
result: t̄

9 else
10 Apply CStOXY D(s)

A , result: t̄

11 t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
12 else
13 Apply CStOXYD(s)D̂(s)

A×C , result: t
14 Uncompute G andR∪ U
15 Output |s, v + t〉

Game 2 In the second game we introduce the simulator S2, defined in Alg. 9. This algorithm
is essentially a compressed random oracle, the only difference are the if statements, note that
the behavior of S2 is not influenced by any of the conditional “if” statements (in lines 3, and
6), because in the end, the output state t is picked uniformly from A× C anyway. The game is
defined as:

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (120)
Because the simulator S2 perfectly models a quantum random function and we use the same
function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (121)

Game 3 In the next step we modify S2 to S3. The game is then

Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (122)

With such a change of the simulators we can use Thm. 13 to bound the difference of proba-
bilities. S3 measures the relation of being an element of R ∪ U . This relation is equivalent to
Rpreim ∪Rcoll. The distinguishing advantage is

|P[Game 3]− P[Game 2]| ≤
√

(q + 1)P[Find : A[SpongeS3 ,S3]]. (123)

Using Lemma 17 we have that

P[Find : A[SpongeS3 ,S3]] ≤ fQcoll(q). (124)
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Game 4 In this step we introduce the random oracle H but only to generate the outer part of the
output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 ,SH

4 ]
)
. (125)

Thanks to the classical argument we have that S4 and S3 are identical until bad, as in Def. 15.
Then we can use Lemma 16 to bound the advantage of the adversary

|P[Game 4]− P[Game 3]| ≤ 4P[Find : A[SpongeS3 , S3]] ≤ 4fQcoll(q). (126)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. In this game the simulator is still S4, the definition is as follows:

Game 5 :=
(
b = 1 : b← A[H,SH

4 ]
)

(127)

and the advantage is

|P[Game 5]− P[Game 4]| ≤ 4P[Find : A[SpongeS4 ,SH
4 ]] ≤ 4fQcoll(q). (128)

Conditioned on ¬Find, the outputs of the private interface are the same, then the games are
identical-until-bad and we can use Lemma 16 to bound the advantage of the adversary.

As long as Find does not occur and the graph is not saturated the adversary cannot distin-
guish the simulator from a random function except for the distinguishing advantage that we
calculated. Saturation certainly does not occur for q < |C| as the database in every branch of
the superposition increases by at most one in every query. Collecting the differences between
games yields the claimed ε = 8fQcoll(q) +

√
(q + 1)fQcoll(q).

6.4 Collapsingness of Sponges

Collapsingness is a security notion defined in [Unr16b]; It is a purely quantum notion strength-
ening collision resistance. It was developed to capture the required feature of hash functions
used in cryptographic commitment protocols.

In this section we prove that quantum indifferentiability implies collapsingness. We begin
by introducing the notion of collapsing functions.

For quantum algorithms A, B with quantum access to H, consider the following games:

Collapse 1 : (S,M, h)← AH(), m← M(M), b← BH(S,M), (129)
Collapse 2 : (S,M, h)← AH(), b← BH(S,M). (130)

Here S,M are quantum registers. M(M) is a measurement of M in the computational basis.
The intuitive meaning of the above games is that part A of the adversary prepares a quantum
registerM that holds a superposition of inputs to H that all map to h. Then she sendsM along
with the side information S to B. The task of the second part of the adversary is to decide
whether measurement M of the registerM occurred or not.

We call an adversary (A,B) valid if and only if P[H(m) = h] = 1 when we run (S,M, h) ←
AH() in Collapse 1 from Eq.(129) and measureM in the computational basis asm.

Definition 22 (Collapsing [Unr16b]). A function H is collapsing if for any valid quantum-
polynomial-time adversary (A,B)

|P[b = 1 : Collapse 1]− P[b = 1 : Collapse 2]| < ε, (131)

where the collapsing-advantage ε is negligible.

43



Amore in-depth analysis of this security notion can be found in [Unr16b; Unr16a; Cza+18;
Feh18].

It was shown in [Unr16b] that if H is a random oracle then is it collapsing:

Lemma 23 (Lemma 37 [Unr16b]). Let H : X → Y be a random oracle, then any valid adversary
(AH,BH) making q quantum queries to H has collapsing-advantage ε ∈ O

(√
q3

|Y|

)
.

In the rest of this section we state and prove that any function that is indifferentiable from a
collapsing function is itself collapsing. In the context of sponges, together with thm. 21, we re-
prove the result of [Cza+18] in a modular way that might come useful when indifferentiability
of sponges with permutations is established.

Theorem 24 (Quantum indifferentiability preserves collapsingness). Let C be a construction
based on an internal function f , and let C be (q, εI(q))-indifferentiable from an ideal function Cideal
with simulator S. Assume further that Cideal allows for a collapsingness advantage at most εcoll(q) for a
q-query adversary. Then C is collapsing with advantage εcoll(qC, qf ) = 2 εI(qC + qf ) + εcoll(qC +αqf ),
where qC and qf are the number of queries to C and f , respectively, and α is the number of queries
simulator S makes (at most) to Cideal for each time it is queried.

Proof. Given a collapsingness distinguisher D̃ against C with advantage ε ≥ εcoll(qC +αqf ) that
makes qC queries to C and qf queries to f , we build an indifferentiability distinguisher D as
follows. Chose b ∈ {0, 1} at random. Running D̃, if b = 0 simulate Collapse 1, if b = 1 simulate
Collapse 2. Output 1 if D̃ outputs b, and 0 else.

In the real world, we have that

P[1← D : Real] = 1
2
(
P[0← D̃C,f : Collapse 1] + P[1← D̃C,f : Collapse 2]

)
= 1

2 + 1
2
(
P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

)
.

In the ideal world, the distinguisher together with the simulator S can be seen as a collapsing-
ness distinguisher for Cideal. Therefore we get

P[1← D : Ideal] = 1
2 + 1

2
(
P[1← D̃Cideal,S : Collapse 2]− P[1← D̃Cideal,S : Collapse 1]

)
and hence∣∣∣P[1← D : Real]−P[1← D : Ideal]

∣∣∣ = 1
2

∣∣∣P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

− P[1← D̃Cideal,S : Collapse 2] + P[1← D̃Cideal,S : Collapse 1]
∣∣∣

≥ 1
2 (ε− εcoll(qC + αqf )) .

7 Conclusions

We develop a tool that allows for easier translation of classical security proofs to the quantum
setting. Our technique shows that given the right proof structure it is relatively easy to prove
stronger security notions valid in the quantum world.

It remains open to what degree classical security implies quantum security. An important
open problem is specifying features of classical cryptographic constructions that allows con-
structions to retain their security properties in the quantum world. More concretely, tackling
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the problem of indifferentiability of other constructions will provide more evidence and possi-
bly lead towards a general answer.

Another open problem is to find a way to quantum lazy sample random permutations. An
almost completely new approach has top be devised to tackle this problem as our correctness
theorem only applies to local distributions.
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Symbol Index

|x| Cardinality of a set x / length of a string x/ absolute
value

Add Function adding x to the compressed database 55
A Distribution of outer part of outputs of a randomper-

mutation
A,B An adversary, a classical or quantum algorithm 12, 25
A The alphabet set of outer states, generalization of

{0, 1}r, outer part of s ∈ A× C denoted by s̄
Bad A "bad" event in a game. 12, 38
C Distribution of inner part of outputs of a randomper-

mutation
CFOD Compressed Fourier Oracle for distribution D 19
C The set of inner states, generalization of {0, 1}c, inner

part of s ∈ A× C denoted by ŝ
Clean Clean up function for auxiliary register 57
Collapse 1 Collapsing game 43
ComP Compression procedure
CH Compressed Oracle with oracle H as Samp
CPerO Compressed Permutation Oracle
CPhOU Compressed Phase Oracle 52
CStOD,CStOY\S Compressed Standard Oracle, for distributionD and

for a conditionally uniform distribution over Y \ S
D,∆,Д Prepared database in the standard basis (and the

database register), prepared database in the Fourier
basis, and the unprepared databse

19

DecD Decompression procedure 20
D The distinguisher 13
D A distribution. 16
D The set of outputs of queries
E The set of edges of a sponge graph 36
Find Event of measurement of the relation R returning 1 24, 26
Flip Algorithm flipping the database in the standard ba-

sis, inputs are outputs and vice versa.
FO Fourier Oracle, QFTY FN ◦ StO ◦ QFT†Y FN 15
H,G Compressed Oracle 23
HTn The Hadamard transform 49
|ψ〉 A quantum state, a normalized vector in a Hilbert

space
Larger A unitary for comparing two bit-strings 54
Locate Locate the position of x in the database 55
O (n) Complexity class "big O"
pad Padding function 36
SpPath(s,G) Function constructing an input to Sponge leading to

a given node
37

P Uniform distribution over the set of permutations
Per Permutation Oracle
P The permutation unitary 54
ϕ The map between states in Sponge. 35
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ϕ̄ The general map between states with its output lim-
ited to the set A

35

ϕ̂ The general map between states with its output lim-
ited to the set C

35

PhO Phase Oracle, QFTYN ◦ StO ◦ QFT†YN 50
JR Projector on relation R. 24
QFTN The Quantum Fourier Transform 14
Rem Removing и = 0 from the database 56
R The set of rooted supernodes 37
SampD(S) Algorithm preparing a superposition of samples of

outputs of f ← D on inputs from S .
16

S Classical and quantum simulators. 11, 38, 42
Size Calculatte tthe numbeer of non-zero entries in D
Spongeϕ[pad,A, C] Sponge construction with the internal function ϕ, ca-

pacity set C, and alphabet A
36

Spread The full set "spreading" operation.
StO Standard Oracle 15
U The uniform distribution. 49
Upd Updating η in the database 55
U The set of supernodes with outgoing edges 37
V The individual "spreading" operation.
V The set of vertices of a sponge graph 36
⊕ Bitwise XOR 50
y, η, и Values in the Y register of a database in different

bases
18

A Additional Details on Quantum-Accessible Oracles

A.1 Uniform Oracles

For ease of exposition, and to highlight the connection to the formalism in [Zha19], we present a
discussion of compressed oracles with uniform oracles that model functions sampled uniformly
at random from F := {f : {0, 1}m → {0, 1}n} . A complete formal treatment of the uniform
case, including applications, can be found in [Unr19b].

We denote the uniform distribution over F by U. The cardinality of the set of functions is
|F| = 2n2m and the truth table of any f ∈ F can be represented by 2m rows of n bits each.
Uniform oracles are the most studied in the random-oracle model and are also analyzed in
[Zha19].

The transformation we use in the case of uniformly sampled functions is the Hadamard
transform. The unitary operation to change between types of oracles is defined as

HTn|x〉 := 1√
2n

∑
ξ∈{0,1}n

(−1)ξ·x|ξ〉, (132)

where ξ ·x is the inner product modulo two between the n-bit strings ξ and x viewed as vectors.
In this section the registers X,Y are vectors in the n-qubit Hilbert space (C2)⊗n.

In what follows we first focus on full oracles, i.e. not compressed ones. We analyze in detail
the relations between different pictures of the oracles: the Standard Oracle, the Fourier Oracle,
and the intermediate Phase Oracle. Next we provide an explicit algorithmic description of the
compressed oracle and discuss the behavior of the compressed oracle in different pictures.
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For the QROM, usually the Standard Oracle is the oracle used. The initial state of the oracle
is the uniform superposition of truth tables f representing functions f : {0, 1}m → {0, 1}n. The
Standard Oracle acts as follows

StOU|x, y〉XY
1√
|F|

∑
f∈F
|f〉F = 1√

|F|
∑
f∈F
|x, y ⊕ f(x)〉XY ⊗ |f〉F , (133)

where instead of modular addition we use bitwise XOR denoted by ⊕. Note that in the above
formulation StOU is just a controlled XOR operation from the x-th row of the truth table to the
output register Y . We add the subscript U to denote that in the case of uniform distribution
we also fix the input and output sets to bit-strings and the operation the oracle performs is not
addition modulo N like we introduced it in the main body. The register F contains vectors in
(C2)⊗n2m .

The Fourier Oracle that stores the queries of the adversary is defined as

FOU|x, η〉XY |φ〉F := |x, η〉XY |φ⊕ χx,η〉F , (134)

where χx,η := (0n, . . . , 0n, η, 0n, . . . , 0n) is a table with 2m rows, among which only the x-th row
equals η and the rest are filled with zeros. Note that initially the Y register is in the Hadamard
basis, for that reason we use Greek letters to denote its value.

To model the random oracle we initialize the oracle register F in the Hadamard basis in the
all 0 state |φ〉 = |0n2m〉.

If we take the StandardOracle again and transform the adversary’s Y register instead, again
using HT, we recover the commonly used Phase Oracle. More formally, the phase oracle is
defined as

PhOU := (1Xm ⊗ HTYn )⊗ 1Fn2m ◦ StOU ◦ (1Xm ⊗ HTYn )⊗ 1Fn2m , (135)

where 1n is the identity operator acting on n qubits.
Applying the Hadamard transform also to register F will give us the Fourier Oracle

FOU = (1XY )⊗ HTFn2m ◦ PhOU ◦ (1XY )⊗ HTFn2m . (136)

The above relations show that we have a chain of oracles, similar to Eq. (19):

StOU
HTYn←−−→ PhOU

HTFn2m←−−−→ FOU. (137)

In the following paragraphs we present some calculations explicitly showing how to use
the technique and helping understanding why it is correct.

A.1.1 Full Oracles, Additional Details

In this section we show detailed calculations of identities claimed in Section A.1. First we an-
alyze the Phase Oracle, introduced in Eq. (135). We can check by direct calculation that this
yields the standard Phase Oracle,

PhOU|x, η〉XY |f〉F = (−1)η·f(x)|x, η〉XY |f〉F . (138)
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Including the full initial state of the oracle register, we calculate

PhOU|x, η〉XY
1√
|F|

∑
f∈F
|f〉F

= (1Xm ⊗ HTYn )⊗ 1Fn2mStOU|x〉X
1√
2n
∑
y

(−1)η·y|y〉Y
1√
|F|

∑
f∈F
|f〉F (139)

= (1Xm ⊗ HTYn )⊗ 1Fn2m |x〉X
1√
2n
∑
y

∑
f∈F

(−1)η·y|y ⊕ f(x)〉Y
1√
|F|
|f〉F (140)

= 1√
|F|

∑
f∈F
|x〉X

∑
ζ

1
2n
∑
y

(−1)η·y(−1)(y⊕f(x))·ζ

︸ ︷︷ ︸
=δ(η,ζ)(−1)ζ·f(x)

|ζ〉Y |f〉F (141)

= 1√
|F|

∑
f∈F

(−1)η·f(x)|x〉X |η〉Y |f〉F . (142)

Applying the Hadamard transform also to register F will give us the Fourier Oracle. In the
following calculation we denote acting on register F with HT⊗2m

n2m by HTFn2m .

HTFn2m ◦ PhOU ◦ HTFn2m |x, η〉XY |02mn〉F = HTFn2m
1√
|F|

∑
f∈F

(−1)η·f(x)|x, η〉|f〉F

= 1
|F|

∑
φ,f

(−1)φ·f (−1)η·f(x)|x, η〉|φ〉F

=
∑
φ

1
2n(2m−1)

∑
f(x′ 6=x)

(−1)φx′ ·f(x′)

︸ ︷︷ ︸
=δ(φx′ ,0n)

1
2n
∑
f(x)

(−1)φx·f(x)(−1)η·f(x)

︸ ︷︷ ︸
=δ(φx,η)

|x, η〉|φ〉F

= |x, η〉|02mn ⊕ χx,η〉 (143)

where we write f(x) and φx to denote the x-th row of the truth table f and φ respectively.

A.1.2 Compressed Oracles, Additional Details

Let us state the input-output behavior of the compressed oracle CFOU for uniform distributions.
The input-output behavior of CFOU is given by the following equation, xr is the smallest xi ∈
DX such that xr ≥ x:

CFOU|x, η〉XY |x1, η1〉D1 · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq = |x, η〉XY |ψr−1〉

⊗



|xr, ηr〉Dr · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq if η = 0n,
|x, η〉Dr |xr, ηr〉Dr+1 · · · |xq−1, ηq−1〉Dq if η 6= 0n, x 6= xr,

|xr, ηr ⊕ η〉Dr · · · |xq−1, ηq−1〉Dq−1 |⊥, 0n〉Dq if η 6= 0n, x = xr,

η 6= ηr,

|xr+1, ηr+1〉Dr · · · |xq−1, ηq−1〉Dq−2 |⊥, 0n〉Dq−1 |⊥, 0n〉Dq if η 6= 0n, x = xr,

η = ηr,

(144)

where |ψr−1〉 := |x1, η1〉D1 · · · |xr−1, ηr−1〉Dr−1 .
In the following let us change the picture of the compressed oracle to see how the Com-

pressed Standard Oracle and Compressed Phase Oracle act on basis states. Let us begin with
the Phase Oracle, given by the Hadamard transform of the oracle database

CPhOU := 1n+m ⊗ HTDYn ◦ CFOU ◦ 1n+m ⊗ HTDYn , (145)
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where by HTDYn we denote transforming just the Y registers of the database: HTDYn := (1m⊗
HTn)⊗q. Let us calculate the outcome of applyingCPhO to a state for the first time, for simplicity
we omit all but the first register of D

CPhOU|x, η〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D = 1n+m ◦ HTDYn ◦ CFOU|x, η〉XY |⊥, 0n〉D (146)

= 1n+m ◦ HTDYn ((1− δ(η, 0n))|x, η〉XY |x, η〉D + δ(η, 0n)|x, η〉XY |⊥, 0n〉D) (147)

= 1√
2n

∑
z∈{0,1}n

((1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D + δ(η, 0n)|x, 0n〉XY |⊥, z〉D) . (148)

If we defined the Compressed Phase Oracle from scratch we might be tempted to omit the
coherent deletion of η = 0n. The following attack shows that this would brake the correct-
ness of the compressed oracles: The adversary inputs the equal superposition in theX register

1√
2m
∑
x|x, 0n〉XY , after interacting with the regular CPhOU the state after a single query is

1√
2m

∑
x

|x, 0n〉XY
CPhOU7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|⊥, z〉D, (149)

but with a modified oracle that does not take care of this deleting, simply omits the term with
δ(η, 0n), let us call it CPhO′U, the resulting state is

1√
2m

∑
x

|x, 0n〉XY
CPhO′U7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|x, z〉D. (150)

Performing ameasurement of theX register in theHadamard basis distinguishes the two states
with probability 1− 1

2m .
Let us inspect the state after making two queries to the Compressed Phase Oracle

CPhOU|x2, η2〉X2Y2CPhOU|x1, η1〉X1Y1
1
2n

∑
z1,z2∈{0,1}n

|⊥, z1〉D1 |⊥, z2〉D2

= |x2, η2〉|x1, η1〉
1
2n

∑
z1,z2

(−1)η1·z1δ(η2, 0n)(1− δ(η1, 0n))|x1, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ δ(η2, 0n)δ(η1, 0n)|⊥, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ (−1)η2·z1(1− δ(η2, 0n))δ(η1, 0n)|x2, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(−1)η1·z1(−1)η2·z2(1− δ(η2, 0n))(1− δ(x1, x2))(1− δ(η1, 0n))|x1, z1〉F1 |x2, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(1− δ(η2, 0n))δ(x1, x2)δ(η1, η2)(1− δ(η1, 0n))|⊥, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψREM)

+ (1− δ(η2, 0n))δ(x1, x2)(1− δ(η1, η2))(1− δ(η1, 0n))

·(−1)(η1⊕η2)·z1 |x1, z1〉F1 |⊥, z2〉F2︸ ︷︷ ︸
=|ψUPD)

 , (151)

where by the superscripts we denote the operation performed by CPhOU on the compressed
database. By ADD we denote adding a new pair (x, η), by UPD changing the Y register of an
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already stored database entry, REM signifies removal of a database entry, and NOT stands for
doing nothing, that happens if the queried η = 0n.

Let us discuss theCompressed StandardOracle. We know that it is theHadamard transform
of the adversary’s register followed by CPhOU

CStOU = 1m ⊗ HTYn ◦ CPhOU ◦ 1m ⊗ HTYn . (152)

Let us present the action of CStO in the first query of the adversary

CStOU|x, y〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D

= 1m ⊗ HTYn ◦ CPhOU
1√
2n

∑
η∈{0,1}n

(−1)η·y|x, η〉XY
1√
2n

∑
z∈{0,1}n

|⊥, z〉D (153)

= 1m ⊗ HTYn
1√
2n

∑
η∈{0,1}n

1√
2n

∑
z∈{0,1}n

(−1)η·y
(

(1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D

+ δ(η, 0n)|x, 0n〉XY |⊥, z〉D

)
(154)

= 1
2n
∑
y′,η

1√
2n
∑
z

(−1)η·y(−1)y′·η
(

(1− δ(η, 0n))(−1)η·z|x, y′〉XY |x, z〉D

+ δ(η, 0n)|x, y′〉XY |⊥, z〉D

)
(155)

=
∑
y′

1√
2n
∑
z

1
2n
∑
η 6=0

(−1)η·y(−1)y′·η(−1)η·z

︸ ︷︷ ︸
=δ(y′,y⊕z)− 1

2n

|x, y′〉XY |x, z〉D

+
∑
y′

1√
2n
∑
z

1
2n |x, y

′〉XY |⊥, z〉D (156)

= 1√
2n
∑
z

|x, y ⊕ z〉XY |x, z〉D − 1
2n
∑
y′

|x, y′〉XY |x, z〉D + 1
2n
∑
y′

|x, y′〉XY |⊥, z〉D

 . (157)

We would like to note that a similar calculation and resulting state is presented in [HI19].

A.2 Detailed Algorithm for Alg. 3: CFOD

In Algorithm 10 we present the fully-detailed version of Algorithm 3. This algorithm runs the
following subroutines:

• Locate, Function 11: This subroutine locates the positions in Д where the x−entry coin-
cides with the x−entry of the query. The result is represented as q bits, where qi = 1 ⇐⇒
ДX
i = x. This result is then bitwise XOR’ed into an auxiliary register L.

• Add, Function 12: This subroutine adds queried x to the database and take care of appro-
priate padding. Here our padding is simply (0m, 0n).

• Upd, Function 13: This subroutine updates the database by subtracting η after a suitable
basis transformation.

• Rem, Function 14: This subroutine removes (x, 0) entries from the database and puts them
to the back in the form of padding.
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• Clean, Function 15: This subroutine cleans the auxiliary registers setting them back to
initial values.

• Larger: This subroutine determines whether one value is larger than a second value, it
works on three registers, sayDXXA and flips the bit inA if the value ofDX is larger than
the value in X , so

LargerDXXA|u〉DX |v〉X |a〉A = |u〉DX |v〉X

{
|a⊕ 1〉A if u > v

|a〉A otherwise
. (158)

In [OR07] an efficient implementation of Larger for u, v being bitstrings can be found.

In the Add and Rem subroutine the unitary P can be found. P permutes the database such that
a recently removed entry in the database is moved to the end of the database. Conversely P−1

permutes the database such that an empty entry is created in the database as to ensure the
correct ordering of the x−entries after adding the query into this newly created empty entry:

P|x1, ..., xq〉 ⊗ |y1, ..., yn〉 := |σn ◦ ... ◦ σ1(x1, ..., xq)〉 ⊗ |y1, ..., yn〉 , (159)

where σi is applied conditioned on yi = 1 and σi(x1, ..., xn) :=
(x1, ..., xi−2, xi−1, xi+1, xi+2, ..., xq, xi).

Algorithm 10: Detailed CFOD

Input : Unprepared database and adversary query: |x, η〉XY |Д〉D
Output: |x, η〉XY |Д′〉D

1 |a〉A = |0 ∈ {0, 1}〉A // initialize auxiliary register A
2 |l〉L = |0q ∈ {0, 1}q〉L // initialize auxiliary register L
3 |l〉L 7→ Locate(|x〉X |Д〉D|l〉L) // locate x in the database
4 if l = 0q then // if not located
5 |a〉A 7→ |a⊕ 1〉A // save result to register A

6 if a = 1 then // if not located
7 |Д〉D|l〉L 7→ Add(|x〉X |Д〉D) // add x−entry to the database

8 |ДY 〉DY 7→ Upd(|η〉Y |ДY 〉DY |l〉L) // update register DY

9 |Д〉D|l〉L 7→ Rem(|x〉X |Д〉D|l〉L) // remove a database entry if и = 0
10 |a〉A 7→ Clean(|y〉Y |ДY 〉DY |l〉L) // uncompute register A
11 |l〉L 7→ Locate(|x〉X |Д〉D|l〉L) // uncompute register L
12 return |x, η〉XY |Д′〉D // Д′ is the modified database
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Function 11: Locate
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д〉D|l′〉L

1 Set |a〉A = |0 ∈ X〉A // initialize auxiliary register A
2 for i = 1, ..., q do
3 if иi 6= 0 then // locate entries in the database
4 |a〉A 7→ |a+ (ДX

i − x)〉A // database entry − query
5 if ai 6= 0 then // locate matches in the database
6 |li〉Li 7→ |li ⊕ 1〉Li // save the corresponding positions

7 |a〉A 7→ |a− (ДX
i − x)〉A // uncompute register A

8 return |x〉X |Д〉D|l′〉R // l′ contains the position of x in Д

Function 12: Add
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д′〉D|l′〉L

1 Set |a〉A = |0q ∈ {0, 1}q〉A // initialize auxiliary register A
2 for i = 1, ..., q do
3 |ai〉Ai 7→ Larger(|ДX

i 〉DXi |x〉X |ai〉Ai) // check if database entry > query

4 if ДX
i 6=⊥ then // correct for empty entries

5 |ai〉Ai 7→ |ai ⊕ 1〉Ai
6 for j = i+ 1, ..., q do // flip all higher entries
7 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with one position

8 |Д〉D 7→ P−1(|Д〉D ⊗ |a〉A) // permute D to create empty entry
// P is defined in (159)

9 for i = 1, ..., q do
10 if ai = 1 then // look for this empty entry
11 |ДX

i 〉DXi 7→ |Д
X
i − x〉DXi // add x−entry to the database

12 |li〉Li 7→ |li ⊕ 1〉Li // update location register

13 if x 6= 0 then // Non zero x implies non zero a
14 for i = 1, ..., q do
15 if li = 1 then // if located
16 |ai〉Ai 7→ |ai ⊕ 1〉Ai // uncompute register A

17 return |x〉X |Д′〉D|l′〉L // Д′ is the modified database
// l′ is modified l

Function 13: Upd
Input : |η〉Y |ДY 〉DY |l〉L
Output: |η〉Y |Д′Y 〉DY |l〉L

1 Apply QFTDYN SampD // transform to the Fourier basis
2 for i = 1, ..., q do
3 if li = 1 then // if located
4 |∆Y

i 〉DYi 7→ |∆
Y
i − η〉DYi // Update the Y register of entry

5 Apply Samp†DQFT†D
Y

N // transform back to the unprepared database
6 return |η〉Y |Д′Y 〉DY |l〉L // Д′Y is modified Y register of the database
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Function 14: Rem
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д′〉D|l′〉L

1 Set |a〉A = |0q〉A // initialize auxiliary register A
2 Set |b〉B = |0〉B // initialize auxiliary register B
3 for i = 1, ..., q do
4 if li = 1 then
5 if иi = 0 then // if entry is incorrect
6 |ДX

i 〉DXi 7→ |Д
X
i − x〉DXi // remove the entry

7 |b〉B 7→ |b⊕ 1〉B // save that we have removed an entry

8 if b = 1 then // if we removed an entry
9 for i = 1, ..., q do
10 |ai〉Ai 7→ Larger(|x〉X , |ДX

i 〉DXi , |ai〉Ai) // check if query > database entry

11 if x = 0 then // Correct for x = 0
12 if ДY

i 6= 0 then // correct for empty entries
13 |ai〉Ai 7→ |ai ⊕ 1〉Ai

14 for j = i− 1, ..., 1 do // flip all lower entries
15 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with only the removed

position

16 |li〉Li 7→ |li ⊕ ai〉Li // correct for the removed entry

17 |Д〉D 7→ P (|Д〉D ⊗ |a〉A) // permute D to move the empty entry
18 for i = q, ..., 1 do // uncompute register A
19 for j = q, ..., i+ 1 do // by calculating the first position
20 |aj〉Aj 7→ |aj ⊕ ai〉Aj // such that database entry > query

21 if ДY
i 6= 0 then // as in the Add subroutine

22 |ai〉Ai 7→ |ai ⊕ 1〉Ai
23 |ai〉Ai 7→ Larger(|ДX

i 〉DXi , |x〉X , |ai〉Ai)

24 |a〉A 7→ Locate(|x〉X |Д〉D|l〉A)
25 if A = 0q then // check if we have removed
26 |b〉B 7→ |b⊕ 1〉B // Uncompute register B

27 |a〉A 7→ Locate(|x〉X |Д〉D|l〉A) // uncompute register A
28 return |x〉X |Д′〉D|l′〉L // Д′ is modified database

// l′ is modified l

56



Function 15: Clean
Input : |η〉Y |ДY 〉D|l〉L|a〉A
Output: |η〉Y |ДY 〉D|l〉L|a′〉A

1 Set |b〉B = |0 ∈ Y〉B // initialize auxiliary register B

2 Apply QFTDYN SampD // transform to the Fourier basis
3 for i = 1, ..., q do
4 if li = 1 then
5 |b〉B 7→ |b+ (∆Y

i − η)〉B // database entry − query
6 if b = 0 then // locate matches in the database
7 if η 6= 0 then // if we added
8 |a〉A → |a⊕ 1〉A

9 |b〉B 7→ |b− (∆Y
i − η)〉B // uncompute register B

10 Apply Samp†DQFT†D
Y

N // transform back to the unprepared database
11 return |η〉Y |ДY 〉D|l〉L|a′〉A // a′ is modified register A
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