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Abstract

Bent functions are optimal combinatorial objects and have been attracted their research for four

decades. Secondary constructions play a central role in constructing bent functions since a complete

classification of this class of functions is elusive. This paper is devoted to establish a relationship

between the secondary constructions and the composition of Boolean functions. We firstly prove that

some well-known secondary constructions of bent functions, can be described by the composition of

a plateaued Boolean function and some bent functions. Then their dual functions can be calculated

by the Lagrange interpolation formula. By following this observation, two secondary constructions

of bent functions are presented. We show that they are inequivalent to the known ones, and may

generate bent functions outside the primary classes M and PS. These results show that the method

we present in this paper is genetic and unified and therefore can be applied to the constructions of

Boolean functions with other cryptographical criteria.

Keywords : Secondary constructions, Composition of Boolean functions, Bent, Lagrange

interpolation formula

1 Introduction

Nonlinearity is a primary requirement for Boolean functions used in cryptosystems (see e.g. [4, 6]). The

nonlinearity of a Boolean function f is the minimum Hamming distance between f and affine functions. A

bent function is a Boolean function with an even number of variables which achieves the maximum possible

nonlinearity. Such functions have been extensively studied for their wide applications in cryptography,

spread spectrum, coding theory, and combinatorial design [6, 8].

∗During the revision process of this manuscript an independent work on the same topic has appeared on eprint archive

https://arxiv.org/abs/1809.07390.
†The work of G. Gao and D. Lin are supported by National Nature Science Foundation of China under Grant 61872381

and 61872359.
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Since the complete classification of bent functions seems elusive, many researchers turn to design

constructions of bent functions and numerous bent functions have been obtained. Constructions of bent

functions from scratch are called primary constructions [7, 16], and constructions of bent functions from

known ones are called secondary constructions [6]. The two well known primary constructions are the

Maiorana-McFarland classM of bent functions [16] and the PS class of bent functions [7]. The classM
consists in concatenating affine functions while the PS class consists of functions whose support is the

union of 2k−1 or 2k−1 +1 summing (modulo 2)the indicators of pairwise disjoint k-dimensional subspaces

of GF (2)2k. However, there are only a few primary constructions in literature, and thus secondary

constructions are necessary to obtain new bent functions. The two interesting secondary constructions of

bent functions among others are from Rothaus [18] with extension of the number of variables and from

Carlet [1–3] without extension of the number of variables. A series of constructions have been obtained

by revisiting or generalizing these results [5,11–13,15,19,20]. But it seems hard to determine that if these

constructed bent functions belong to the completed versions of primary classes up to affine equivalence.

For more details, the readers can refer to the survey on four-decade research on bent functions [5] and

the recent book [12].

This paper is devoted to design new secondary constructions of bent functions under the framework

of “composition of Boolean functions”. The paper is organized as follows. After introducing some formal

definitions and necessary preliminaries in Section 2, we give the framework of composition of Boolean

functions in Section 3. It shows that some well-known secondary constructions of bent functions can be

described from the view point of the composition of bent functions. Consequently, their duals can be

obtained by the famous Lagrange interpolation formula. By this observation, we present two secondary

constructions of bent functions in Section 4. We show that these two constructions are inequivalent to

the known ones, and may generate bent functions outside the primary classes M and PS. We conclude

this paper in Section 5.

2 Preliminaries

Let GF(2)n be the n-dimensional vector space over the finite field GF(2) = {0, 1}. We shall distinguish

in the paper between the additions of integers in Z, denoted by + and the additions in GF(2), denoted

by ⊕. An n-variable Boolean function f(x), where x = (x1, . . . , xn) ∈ GF(2)n, is a mapping from GF(2)n

to GF(2), which can be represented in a unique way as an n-variable polynomial whose degree relative

to each variable is at most 1, called its algebraic normal form (ANF):

f(x1, . . . , xn) =
⊕

u∈GF(2)n

aux
u, au ∈ GF(2),

where xu = xu1
1 · · ·xunn . The binary sequence defined by (f(v0), f(v1), ..., f(v2n−1)) is called the truth

table of an n-variable Boolean function f , where v0 = (0, ..., 0, 0), v1 = (0, ..., 0, 1), ..., v2n−1 = (1, ..., 1, 1)

are ordered by lexicographical order. The Lagrange interpolation formula in terms of Boolean function

is defined as:

f(x1, . . . , xn) =

2n−1⊕
i=0

f(vi)(x1 ⊕ vi,1 ⊕ 1)(x2 ⊕ vi,2 ⊕ 1) · · · (xn ⊕ vi,n ⊕ 1). (1)

By applying the Lagrange interpolation method, it is a simple matter to obtain the ANF of every Boolean

function from its truth table. The Hamming weight wH(x) of a binary vector x ∈ GF (2)n is the number

of its nonzero coordinates, and the Hamming weight wH(f) of a Boolean function f is the size of its

support {x ∈ GF(2)n : f(x) = 1}. If wH(f) = 2n−1, we call f(x) balanced.
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We say that two n-variable Boolean functions f(x) and g(x) are affinely equivalent if g(x) = f(xA⊕b)
where b ∈ GF(2)n, A is an n × n nonsingular binary matrix and xA is the product of the row-vector x

and A. An important tool for studying Boolean functions is the Walsh transform. Given x = (x1, . . . , xn)

and w = (w1, w2, . . . , wn) ∈ GF(2)n, let w ·x be an inner product on GF(2)n, for instance the usual inner

product w1x1 ⊕ · · · ⊕ wnxn. The “sign” function of f is the integer-valued function, usually denoted by

χf (x) = (−1)f(x). The Walsh transform of f is the discrete Fourier transform of χf associated with this

inner product, which is the following real-valued function over GF(2)n:

Wf (w) =
∑

x∈GF(2)n

(−1)f(x)⊕w·x.

The inverse Walsh transform is given by

(−1)f(x) =
1

2n

∑
w∈GF(2)n

Wf (w)(−1)w·x.

The Walsh spectrum of f is the multiset of values Wf (w) where w ranges over GF(2)n. Throughout

this paper, we denote by Sf = {w ∈ GF(2)n : Wf (w) 6= 0} the Walsh support of f . We say two

Walsh supports Sf and Sg are complementary if they have the same cardinality and Sf
⋂
Sg = ∅,

Sf
⋃
Sg = GF(2)n. The nonlinearity of an n-variable Boolean function is given by

Nf = 2n−1 − 1

2
max

w∈GF(2)n
|Wf (w)|.

From the Poisson summation formula, we can derive the Parseval’s relation:

∑
w∈GF(2)n

Wf
2(w) = 22n.

By this relation, we have the upper bound of the nonlinearity of a Boolean function Nf ≤ 2n−1 − 2n/2.

Bent functions are those Boolean functions with maximal nonlinearity, in even numbers of variables.

Definition 1 Let n = 2m be even. A Boolean function f is bent if its Walsh coefficients satisfy:

Wf (w) = ±2m, for all w ∈ GF(2)n.

If f is bent, then the dual function f̃ of f , defined on GF(2)n by: Wf (w) = 2n/2(−1)f̃ is also bent

and its own dual is f itself.

An n-variable Boolean function is said to be plateaued if its Walsh transform takes at most the three

values 0 and ±2k, where k is a positive integer with n/2 ≤ k ≤ n [21]. We call 2k the amplitude

of the function. Thanks to the Parseval’s relation, the cardinality of Walsh support Sf is 22(n−k).

Let n,m be two positive integers. Given any (n,m)-function F (x), there exist Boolean functions

f1(x), f2(x), . . . , fm(x) such that F (x) = (f1(x), f2(x), . . . , fm(x)). When the numbers m,n are not

specified, (n,m)-functions are also called multi-output Boolean functions, vectorial Boolean functions or

S-boxes [4]. When m = 1, we call the (n, 1)-functions Boolean functions for simplicity. For any positive

integer n,m, let F (x) be any (n,m)-function with m coordinate functions f1(x), f2(x), . . . , fm(x) of n

variables. Let G(z1, z2, . . . , zm) be any Boolean function of m variables. The composition of F and G,

denoted by G ◦ F is an n-variable Boolean function, defined by G(F (x)) = G(f1(x), f2(x), . . . , fm(x)).
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3 Composition of Boolean Functions

Composition of Boolean functions was firstly studied in [10] to construct resilient Boolean functions and

bent functions in the form of f(x) ⊕ g(y) ⊕ ϕ(h1(x), h2(y)), where ϕ is a 2-variable Boolean function.

Nyberg in [17] considered the cases of its applications to cryptanalysis of block ciphers and stream ciphers.

Gupta and Sarkar [9] continued to generalize Nyberg’s work and obtained the Walsh spectrum of the

composition of Boolean functions by computing the corresponding inverse Walsh transform as:

Theorem 1 Let G(z), z = (z1, z2, . . . , zk) be any k-variable Boolean function, and f1(x), f2(x), . . . , fk(x)

be Boolean functions of n variables. Denote by F = (f1(x), f2(x), . . . , fk(x)), which is an (n, k)−function.

Then the Walsh coefficient of the composition function G(f1(x), f2(x), . . . , fk(x)) is

WG(f1,f2,...,fk)(w) =
1

2k

∑
v∈GF(2)k

WG(z)(v) ·Wv·F (w), w ∈ GF(2)n. (2)

It is interesting to note that secondary construction builds new Boolean functions from known ones,

this can be viewed as a composition of Boolean functions. Therefore, we may derive new secondary

constructions of bent functions by researching the well-known methods in terms of compositions of bent

functions.

3.1 Secondary Constructions of Bent Functions

1. The first secondary construction is given by J. Dillon [7] and O. Rothaus [18] as: let f be a bent

function on GF(2)m (m even) and g be a bent function on GF(2)n (n even), then the function h

defined on GF(2)m+n by h(x, y) = f(x)⊕g(y) is bent. It is obvious that if we let G(z1, z2) = z1⊕z2,

then h(x, y) = G(f(x), g(y)).

2. Rothaus’s construction A more interesting result from Rothaus is the following theorem, and we

reprove it from the view point of the composition of Boolean functions.

Theorem 2 If g, h, k and g ⊕ h ⊕ k are bent functions on GF(2)m (m even), then the function,

defined on any element (xn+1, xn+2, x) of GF(2)n+2 ((xn+1, xn+2, x) ∈ GF(2)n+2) by:

f(xn+1, xn+2, x) = g(x)h(x)⊕g(x)k(x)⊕h(x)k(x)⊕(g(x)⊕h(x))xn+1⊕(g(x)⊕k(x))xn+2⊕xn+1xn+2

is bent.

Proof Now we take G(z1, z2, z3, z4, z5) = z1z2 ⊕ z1z3 ⊕ z2z3 ⊕ z4(z1 ⊕ z2) ⊕ z5(z1 ⊕ z3) ⊕ z4z5.

With a computation, the nonzero Walsh coefficients of G(z) are

WG(z)(0, 0, 1, 1, 0) = 16,WG(z)(0, 1, 0, 0, 1) = 16,

WG(z)(1, 0, 0, 0, 0) = 16,WG(z)(1, 1, 1, 1, 1) = −16.

with its support supp(WG(z)) = {(0, 0, 1, 1, 0), (0, 1, 0, 0, 1), (1, 0, 0, 0, 0), (1, 1, 1, 1, 1)}. Let z1 =

g(x), z2 = h(x), z3 = k(x), z4 = xn+1, z5 = xn+2, then for any w ∈ GF(2)n and (wn+1, wn+2) ∈
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GF(2)2, we obtain the following relations from Relation (2)

WG(g,h,k,xn+1,xn+2)(w,wn+1, wn+2) =
1

2

(
Wg(w,wn+1, wn+2) +Wk⊕xn+1(w,wn+1, wn+2)

+Wh⊕xn+2
(w,wn+1, wn+2)−Wg⊕h⊕k⊕xn+1⊕xn+2

(w,wn+1, wn+2)
)

=


2Wg(w), wn+1,= 0, wn+2 = 0

2Wk(w), wn+1,= 1, wn+2 = 0

2Wh(w), wn+1,= 0, wn+2 = 1

−2Wg⊕h⊕k(w), wn+1,= 1, wn+2 = 1

.

(3)

It is clearly an (n+ 2)-variable bent function if h, g, k and h⊕ g ⊕ k are bent functions �

3. Carlet’s construction Rothaus’ construction depends on the bentness of g⊕h⊕ k, it was shown by

Carlet in [3]:

Let f1, f2 and f3 be three Boolean functions on GF(2)n. Denote by σ1 the Boolean function

equal to f1 ⊕ f2 ⊕ f3 and by σ2 the Boolean function equal to f1f2 ⊕ f1f3 ⊕ f2f3. It holds that

f1 + f2 + f3 = σ1 + 2σ2. This implies

Wf1 +Wf2 +Wf3 = Wσ1
+ 2Wσ2

.

From this formula, it derives that:

Theorem 3 [3] Let n be any positive even integer. Let f1, f2 and f3 be three bent functions on

GF(2)n. Denote by σ1 the Boolean function f1⊕ f2⊕ f3 and by σ2 the function f1f2⊕ f1f3⊕ f2f3.

Then:

if σ1 is bent and if σ̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then σ2 is bent and σ̃2 = f̃1f̃2 ⊕ f̃1f̃3 ⊕ f̃2f̃3.

Proof Let G(z1, z2, z3) = z1z2 ⊕ z1z3 ⊕ z2z3 be a 3-variable Boolean function. By a direc-

t computation, the Walsh spectrum of G(z) is WG = {0, 4, 4, 0, 4, 0, 0,−4} and its support is

supp(WG) = {(001), (010), (100), (111)}. Since σ2 = G(f1, f2, f3), then from Relation (2), we have

WG(f1,f2,f3)(w) =
1

8

∑
v∈GF(2)3

WG(z)(v)Wν1f1⊕v2f2⊕v3f3(w)

=
1

2

(
Wf1(w) +Wf2(w) +Wf3(w)−Wf1⊕f2⊕f3(w)

)
= 2

n
2−1

(
χ(f̃1(w)) + χ(f̃2(w)) + χ(f̃3(w))− χ(σ̃1(w))

)
.

(4)

If σ̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, we have the following table:

Table 1: truth table of Boolean function σ̃2
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f̃1(w) f̃2(w) f̃3(w) Wσ2
(w) σ̃2(w)

0 0 0 2
n
2 0

0 0 1 2
n
2 0

0 1 0 2
n
2 0

0 1 1 −2
n
2 1

1 0 0 2
n
2 0

1 0 1 −2
n
2 1

1 1 0 −2
n
2 1

1 1 1 −2
n
2 1

Note that Table 1 only describes a symbolical correspondence from (f̃1(w), f̃2(w), f̃3(w)) to σ̃2(w).

Then by applying Lagrange interpolation formula to Table 1, the function σ̃2 can be represented

by f̃1, f̃2, f̃3 as:

σ̃2 = (f̃1 ⊕ 1)f̃2f̃3 ⊕ f̃1(f̃2 ⊕ 1)f̃3 ⊕ f̃1f̃2(f̃3 ⊕ 1)⊕ f̃1f̃2f̃3

= f̃1f̃2 ⊕ f̃1f̃3 ⊕ f̃2f̃3.
(5)

This completes the proof. �

4. Mesnager and Zhang [13, Th.4] proposed a generalization of Rothaus’ construction of bent functions

in 2017 as follows:

Theorem 4 [13, Th.4] Let n and m be two even positive integers. Let f1, f2 and f3 be n-variable

bent functions. Let g1, g2 and g3 be m-variable bent functions. Denote by ν1 the function f1⊕f2⊕f3

and by ν2 the function g1⊕g2⊕g3. If both ν1 and ν2 are bent functions and if ν̃1 =
∼
f1⊕f̃2⊕f̃3⊕1, then

f(x, y) = (f1 ⊕ f2)(x)(g1 ⊕ g2)(y)⊕ (f2 ⊕ f3)(x)(g2 ⊕ g3)(y)⊕ f1(x)

⊕g1(y)g2(y)⊕ g1(y)g3(y)⊕ g2(y)g3(y)

is an (n+m)-variable bent function. Further, if ν̃2 = g̃1 ⊕ g̃2 ⊕ g̃3 ⊕ π, where π is an m-variable Boolean

function, then

f̃(x, y) = (f̃1 ⊕ f̃2)(x)(g̃1 ⊕ g̃2)(y)⊕ (f̃2 ⊕ f̃3)(x)(g̃2 ⊕ g̃3)(y)⊕ f̃1(x)

⊕g̃3(y)⊕ π(y)
(

(f̃1 ⊕ f̃2)(f̃2 ⊕ f̃3)(x)
)
. (6)

Relation (6) holds under the hypothesis
∼
ν2 = g̃1 ⊕ g̃2 ⊕ g̃3 ⊕ π. We shall show that the hypothesis is

not necessary when one compute the dual of the bent function f(x, y). We have

Theorem 5 Let n and m be two even positive integers. Let f1, f2, f3 be n-variable bent functions, and

g1, g2, g3 be m-variable bent functions. Denote by ν1 the function f1 ⊕ f2 ⊕ f3 and by ν2 the function

g1 ⊕ g2 ⊕ g3. If both ν1 and ν2 are bent functions and if ν̃1 =
∼
f1 ⊕ f̃2 ⊕ f̃3 ⊕ 1, then

f(x, y) = (f1 ⊕ f2)(x)(g1 ⊕ g2)(y)⊕ (f2 ⊕ f3)(x)(g2 ⊕ g3)(y)⊕ f1(x)

⊕g1(y)g2(y)⊕ g1(y)g3(y)⊕ g2(y)g3(y)
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is an (n+m)-variable bent function, and its dual is

f̃(x, y) =(f̃1 ⊕ f̃2)(f̃2 ⊕ f̃3)(x) (g̃1 ⊕ g̃2 ⊕ g̃3 ⊕ ν̃2) (y)⊕ (f̃1 ⊕ f̃2)(x)(g̃1 ⊕ g̃2)(y)

⊕ (f̃2 ⊕ f̃3)(x)(g̃2 ⊕ g̃3)(y)⊕ f̃1(x)⊕ g̃3(y).
(7)

Proof Taking G(z) = (z1 ⊕ z2)(z4 ⊕ z5) ⊕ (z2 ⊕ z3)(z5 ⊕ z6) ⊕ z1 ⊕ z4z5 ⊕ z4z6 ⊕ z5z6, then we have

f(x, y) = G(g1, g2, g3, f1, f2, f3). By a straight computation, the nonzero Walsh coefficients of G(z) are

as follows:

WG(0, 0, 1, 0, 0, 1) = 16, WG(0, 0, 1, 0, 1, 0) = −16,WG(0, 0, 1, 1, 0, 0) = 16, WG(0, 0, 1, 1, 1, 1) = 16,

WG(0, 1, 0, 0, 0, 1) = 16, WG(0, 1, 0, 0, 1, 0) = 16,WG(0, 1, 0, 1, 0, 0) = −16, WG(0, 1, 0, 1, 1, 1) = 16,

WG(1, 0, 0, 0, 0, 1) = 16, WG(1, 0, 0, 0, 1, 0) = 16,WG(1, 0, 0, 1, 0, 0) = 16, WG(1, 0, 0, 1, 1, 1) = −16

WG(1, 1, 1, 0, 0, 1) = 16, WG(1, 1, 1, 0, 1, 0) = −16,WG(1, 1, 1, 1, 0, 0) = −16, WG(1, 1, 1, 1, 1, 1) = −16.

According to Relation (2) and together with the bentness of f1, f2, f3, g1, g2, g3, and ν1, ν2, we have

Wf (w, u) =
1

4
Wg1(w) (Wf1(u)−Wf2(u) +Wf3(u) +Wf1⊕f2⊕f3(u))

+
1

4
Wg2(w) (Wf1(u) +Wf2(u)−Wf3(u) +Wf1⊕f2⊕f3(u))

+
1

4
Wg3(w) (Wf1(u) +Wf2(u) +Wf3(u)−Wf1⊕f2⊕f3(u))

−1

4
Wg1⊕g2⊕g3(w) (−Wf1(u) +Wf2(u) +Wf3(u) +Wf1⊕f2⊕f3(u))

= 2
n+m

2 −2χg̃1(w)
(
χ∼
f1

(u)− χf̃2(u) + χf̃3(u) + χν̃1(u)
)

+2
n+m

2 −2χg̃2(w)
(
χ∼
f1

(u) + χf̃2(u)− χf̃3(u) + χν̃1(u)
)

+2
n+m

2 −2χg̃3(w)
(
χ∼
f1

(u) + χf̃2(u) + χf̃3(u)− χν̃1(u)
)

−2
n+m

2 −2χν̃2(w)
(
−χ

f̃1
(u) + χf̃2(u) + χ∼

f3
(u)− χ

ν̃1
(u)
)
.

We will show that Wf (w, u) = ±2
n+m

2 for any (f̃1(u), f̃2(u), f̃3(u)) ∈ GF (2)3 with the condition

ν̃1 = f̃1 ⊕ f̃2 ⊕ f̃3 ⊕ 1. In fact, we have the following table:

Table 2: truth table of Boolean function f̃(x, y)

f̃1(u) f̃2(u) f̃3(u) Wf (w, u) f̃(w, u)

0 0 0 2
n+m

2 χg̃3(w) g̃3(w)

0 0 1 2
n+m

2 χg̃2(w) g̃2(w)

0 1 0 2
n+m

2 χg̃1(w) g̃1(w)

0 1 1 2
n+m

2 χυ̃2(w) υ̃2(w)

1 0 0 −2
n+m

2 χυ̃2(w) υ̃2(w)⊕ 1

1 0 1 −2
n+m

2 χg̃1(w) g̃1(w)⊕ 1

1 1 0 −2
n+m

2 χg̃2(w) g̃2(w)⊕ 1

1 1 1 −2
n+m

2 χg̃3(w) g̃3(w)⊕ 1

From Table 2, we conclude that the Boolean function f(x, y) is bent.
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We now compute the dual of f(x, y) by using Lagrange interpolation formula. Assuming that z1 =

f̃1, z2 = f̃2, z3 = f̃3 and y1 = g̃1, y2 = g̃2, y3 = g̃3, y4 = ν̃2. Applying the Lagrange interpolation formula

to Table 2, we have

H(z1, z2, z3, y1, y2, y3, y4) =y3(z1 ⊕ 1)(z2 ⊕ 1)(z3 ⊕ 1)⊕ (y3 ⊕ 1)z1z2z3

⊕ y2(z1 ⊕ 1)(z2 ⊕ 1)z3 ⊕ (y2 ⊕ 1)z1z2(z3 ⊕ 1)

⊕ y1(z1 ⊕ 1)z2(z3 ⊕ 1)⊕ (y1 ⊕ 1)z1(z2 ⊕ 1)z3

⊕ y4(z1 ⊕ 1)z2z3 ⊕ (y4 ⊕ 1)z1(z2 ⊕ 1)(z3 ⊕ 1)

= (y3 ⊕ y4) z1 ⊕ ((y1 ⊕ y2 ⊕ y3 ⊕ y4) z1 ⊕ y1 ⊕ y3) z2

⊕ ((y1 ⊕ y2 ⊕ y3 ⊕ y4) z1 ⊕ (y1 ⊕ y2 ⊕ y3 ⊕ y4) z2 ⊕ y2 ⊕ y3) z3 ⊕ z1 ⊕ y3

=(z1 ⊕ z2)(z1 ⊕ z3) (y1 ⊕ y2 ⊕ y3 ⊕ y4)⊕ (z1 ⊕ z2)(y1 ⊕ y2)

⊕ (z2 ⊕ z3)(y2 ⊕ y3)⊕ z1 ⊕ y3.

(8)

Hence

f̃(x, y) =H(f̃1, f̃2, f̃3, g̃1, g̃2, g̃3,
∼
ν2)

=(f̃1 ⊕ f̃2)(f̃1 ⊕ f̃3) (g̃1 ⊕ g̃2 ⊕ g̃3 ⊕ ν̃2)⊕ (f̃1 ⊕ f̃2)(g̃1 ⊕ g̃2)

⊕ (f̃2 ⊕ f̃3)(g̃2 ⊕ g̃3)⊕ f̃1 ⊕ g̃3.

(9)

This completes the proof. �

Remark 1 The proof of Theorem 5 shows that one can obtain an explicit form of the dual of f(x, y). In

particular, when the dual of ν2 is
∼
ν2 = g̃1⊕ g̃2⊕ g̃3, then f̃(x, y) = (f̃1⊕ f̃2)(g̃1⊕ g̃2)⊕ (f̃2⊕ f̃3)(g̃2⊕ g̃3)⊕

f̃1 ⊕ g̃3. This implies that the composition of Boolean functions has advantage in analyzing secondary

constructions of Boolean functions as a cryptographical tool. Note that the above Boolean functions used

to be composed are plateaued functions. This will simplify the design process of building bent functions

in terms of the initial functions. Therefore, we should investigate the plateaued Boolean functions which

could be used in the secondary constructions of bent functions.

4 New Secondary Constructions of Bent functions

Throughout this paper, we denote by D the subset of GF (2)n satisfying that w · x is either balanced

or constant on D, for all w ∈ GF (2)n. We define the partial Walsh transform of an n-variable Boolean

function f on D(denoted by WfD ) as follows:

WfD (w) =
∑
x∈D

(−1)f(x)⊕w·x for w ∈ GF (2)n. (10)

When the cardinality of D is equal to 2r with even r, we call f locally bent restricted to D if and only

if |WfD (w)| = 2r/2 for all w ∈ GF(2)n. If there is no ambiguity, we say f locally bent function for

simplicity. The following observation on plateaued Boolean functions is intrinsic, but we do not find it

appear in the literature.

Proposition 1 Let S = {Wg(w) : w ∈ GF (2)n} be the Walsh spectrum of a Boolean function g. Then g

is plateaued, if and only if there exists an n-variable Boolean function such that it is locally bent restricted

to the support of S.
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Proof Let D = supp(S) the support of S. Assume that g is an n-variable plateaued Boolean function

with amplitude 2k. Then the Parseval’s relation implies that |D|22k = 22n. We have |D| = 22(n−k). By

the inverse Walsh transform we have

(−1)g(x) =
1

2n

∑
w∈GF (2)n

Wg(w)(−1)w·x

=
1

2n

∑
w∈D

Wg(w)(−1)w·x

=
1

2n−k

∑
w∈D

(−1)f(w)⊕w·x, for any x ∈ GF (2)n,

(11)

where

f(w) =


0, Wg(w) = 2k;

1, Wg(w) = −2k;

0 or 1, others.

From Relation (11), we deduce that the function g(x) is Boolean if and only if the summation
∑
w∈D(−1)f(w)⊕w·x

is constant and equal to ±2n−k. Note that function g(x) is plateaued, and the cardinality of D is 22(n−k).

This implies that f(x) is a locally bent function restricted to D. The sufficiency of Proposition 1 clearly

holds from the above discussion. �

Remark 2 If the subset D of GF (2)n is a flat, then each w · x is obviously either balanced or constant

on D. But the converse is not true. For instance, let α, β ∈ GF (2)n, n ≥ 4 and D = {α, β, α⊕1n, β⊕1n},
where 1n is the all-one vector in GF (2)n. Then each w · x is either balanced or constant on D. But the

set D is not a flat for α 6= β, β ⊕ 1n.

The proof of Proposition 1 implies that the corresponding locally bent function with n variables can not

be uniquely determined when a plateaued Boolean function is given, since its true values at the points

in GF(2)n\D is uncertain. To simplify the design process, we hereafter assume that the subset D of

GF(2)n is a flat and the locally bent function f(a) = 0 for any a ∈ GF(2)n\D. We illustrate the method

of constructing plateaued functions from locally bent functions in the following example.

Example 1 We shall construct a 3-variable plateaued Boolean function with Walsh support

D = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

Denote by a = (0, 0, 1) and E = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Then E is a linear subspace of

GF(2)3, and thus D = a⊕E is a flat of GF(2)3. We choose a basis of E, such as {(0, 1, 1), (1, 0, 1)}, and

construct a matrix as:

H =

(
0 1 1

1 0 1

)
,

where the row vectors of H is the basis of E. Then we obtain a one-to-one mapping from the vector space

GF (2)2 to the flat D defined by

GF(2)2 → D

v 7→ a⊕ vH.

Given any bent function h(x) = x1x2 on GF(2)2, let

f(a⊕ vH) :=

h(v), v ∈ GF(2)2;

0, others.
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Then f(0, 0, 1) = 0, f(0, 1, 0) = 0, f(1, 0, 0) = 0, f(1, 1, 1) = 1. It shows that the Walsh coefficients of g

is Wg(w) = 4(−1)f(w) if w ∈ D, that is Wg(0, 0, 1) = 4,Wg(0, 1, 0) = 4,Wg(1, 0, 0) = 4, f(1, 1, 1) = −4,

and Wg(w) = 0 if w ∈ GF(2)n\D. By the inverse Walsh transform, we have that the truth table of g

is (0, 0, 0, 1, 0, 1, 1, 1). Thus the ANF of g is z1z2 ⊕ z1z3 ⊕ z2z3 which is the function being composed in

Theorem 3.

By refining previous constructions, we can develop two general secondary constructions of bent func-

tions according to Proposition 1. Since the proof of following Theorem 6 and Theorem 7 is the same as

previous, we omit them.

Theorem 6 Let D = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and D2 = D × D be the Cartesian product.

Denote by Ω the concatenation of GF (2)4 and D2, i.e. Ω = GF (2)4 ‖ D2 = {z||(α, β), z ∈ GF (2)4, α, β ∈
D} = {9, 74, 140, 207, 273, 338, 404, 471, 545, 610, 676, 743, 825, 890, 956, 1023} where the positive integer

i ∈ Ω is denoted by the binary expansion of the vector (i9, i8, . . . , i0) GF(2)10 with i =
9∑
j=0

ij2
j for

simplicity. It is easy to check that w · x is either balanced or constant on Ω for all w ∈ GF(2)10.

Let G be a 10-variable plateaued Boolean function with amplitude 28 and Walsh support set Ω. Let f1, f2

and f3 be n-variable bent functions, g1, g2 and g3 be m-variable bent functions. Denote by ν1 the function

f1⊕ f2⊕ f3 and by ν2 the function g1⊕ g2⊕ g3. If both ν1 and ν2 are bent functions then the composition

of Boolean functions G(z1, z2, z3, z4, f1(x), f2(x), f3(x), g1(y), g2(y), g3(y)) is bent.

Proof With the notations in Theorem 6, we assume that f1(x), f2(x), f3(x), and g1(y), g2(y), g3(y) are

all bent functions with n and m variables, respectively. By Proposition 1, we can construct a 10-variable

plateaued Boolean function with amplitude 28 and denote it by G. We construct the composition of

Boolean functions

f(z1, z2, z3, z4, x, y) = G(z1, z2, z3, z4, f1(x), f2(x), f3(x), g1(y), g2(y), g3(y)).

Let F = (z1, z2, z3, z4, f1(x), f2(x), f3(x), g1(y), g2(y), g3(y)), z∗ = (z1, z2, z3, z4), φ = (f1(x), f2(x), f3(x)),

ψ = (g1(y), g2(y), g3(y)). For any w ∈ GF (2)4, u ∈ GF (2)n, v ∈ GF (2)m,

Wf (w, u, v) =
1

210

∑
γ∈Ω

WG(z)(γ)Wγ·F (w, u, v)

=
1

210

∑
λ||α||β∈Ω

WG(z)(λ, α, β)Wλ·z∗(w)Wα·φ(u)Wβ·ψ(v),
(12)

where γ = λ||α||β. Because of the equation Wλ·z∗(w) = 24 if λ = w, and 0 others, we have Wf (w, u, v) =

±2(n+m+4)/2. It shows that f is bent. �

Construction 1 According to Proposition 1 and Example 1, we obtain a 10-variable plateaued Boolean

function with amplitude 28 whose ANF is as follows:

G(z) =(z2 ⊕ z4)z1 ⊕ (z1 ⊕ z2)z3 ⊕ (z2 ⊕ z3 ⊕ z4)z5 ⊕ (z1z3 ⊕ z5)z6

⊕ (z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6)z7 ⊕ (z1 ⊕ z2 ⊕ z5 ⊕ z6)z8 ⊕ (z1 ⊕ z5 ⊕ z7)z9

⊕ (z2 ⊕ z6 ⊕ z7 ⊕ 1)z10

(13)

By a direct confirmation, we obtain its Walsh support

supp(WG) = {9, 74, 140, 207, 273, 338, 404, 471, 545, 610, 676, 743, 825, 890, 956, 1023},

which is equal to Ω. Then the composition of Boolean functions

f(z1, z2, z3, z4, x, y) = G(z1, z2, z3, z4, f1(x), f2(x), f3(x), g1(y), g2(y), g3(y)) (14)

is a bent function.
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Because of the extensiveness of the bent functions in the class M, we need to show that the above

construction may generate bent functions outside the class M. Recall that the first derivative of an n-

variable Boolean function f in the direction of a ∈ GF (2)n is defined as Daf(x) = f(x)⊕ f(x⊕ a). As

stated in [7], a bent function f is in the class M if and only if, f(x, y) : GF (2)m × GF (2)m → GF (2),

the second order derivative of f(x, y) defined as:

D(a,0m)D(b,0m)f(x, y) = f(x⊕ a⊕ b, y)⊕ f(x⊕ a, y)⊕ f(x⊕ b, y)⊕ f(x, y) = 0,

for all a, b ∈ GF (2)m\{0m}. We consider the special case of m = 8 in the following example.

Example 2 Let f(x) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 be a bent function in M with 6 variables. Assume

that f1(x) = f(x)⊕x1, f2(x) = f(x)⊕x2, f3(x) = f(x)⊕x3, g1(y) = f(y)⊕ y1, g2(y) = f(y)⊕ y2, g3(y) =

f(y)⊕ y3. By Construction 1, we have

G(z1,z2, z3, z4, f1(x), f2(x), f3(x), g1(y), g2(y), g3(y))

=z1z2 ⊕ z1z3 ⊕ z1z4 ⊕ z1x2 ⊕ z1x3

⊕ z1y1 ⊕ z1y2 ⊕ z2z3 ⊕ z2x1 ⊕ z2x3 ⊕ z2y1 ⊕ z2y3

⊕ z3x1 ⊕ z3x2 ⊕ z4x1 ⊕ z4x3 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1x3

⊕ x1x4 ⊕ x1y1 ⊕ x1y2 ⊕ x2x3 ⊕ x2x5 ⊕ x2y1 ⊕ x2y3

⊕ x3x6 ⊕ x3y2 ⊕ x3y3 ⊕ y1y2y3 ⊕ y1y4 ⊕ y2y5 ⊕ y3y6 ⊕ y3

(15)

It can be written as

h : GF(2)8 ×GF(2)8 → GF(2)

(z1, z2, x, z3, z4, y) 7→ GF(2).
(16)

Using the programming SageMath, we confirm that the second order derivativesD(a,08)D(b,08)h(z1, z2, x, z3, z4, y)

do not vanish for many a, b ∈ GF(2)8\{08}. This implies that this function is outside the class M. Fur-

thermore, the function is of degree 3, and therefore it does not belong to the class PS. The source codes

of SageMath involved in these results are presented in the Section Appendix.

Remark 3 The Construction 1 is clearly inequivalent to the constructions in Theorem 2,3,4, because it

does not depend on the products of input bent functions. But it is uncertain what kind of input functions

might be used to possibly generate bent functions outside the known primary classes. We leave it as an

open question.

We can also obtain another generalization of Rothaus’ construction when we choose a new set D.

Theorem 7 Let D = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, then Ω = D ‖ GF(2)2. Choose a plateaued

Boolean function G of 5 variables with amplitude 24, whose Walsh support is Ω. Let f1, f2 and f3 be

n-variable Boolean functions. If the functions f1, f1 ⊕ f2, f1 ⊕ f3, and f1 ⊕ f2 ⊕ f3 are all bent, then the

composition function G(f1, f2, f3, z3, z4) is bent.

Construction 2 Let G(z1, z2, z3, z4, z5)=(z1 ⊕ z4) (z2 ⊕ z5)⊕ z3 be a plateaued function with amplitude

24, then the Walsh support of G is Ω = {4, 13, 22, 31}. Choose any n-variable bent function f(x) and two

affine Boolean functions l2(x), l3(x), let f1 = f, f2 =l2(x), f3 =l3(x), then f1⊕f2, f1⊕f3, and f1⊕f2⊕f3

are all bent. We construct the composition of G(z) and f1, f2, f3, as

G(f1, f2, f3, z4, z5) = (z4 ⊕ l2(x))(z5 ⊕ l3(x))⊕ f(x).

Then G(f1, f2, f3, z4, z5) is bent by Theorem 7.
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Remark 4 We note that G(f1, f2, f3, z4, z5) can be viewed as a concatenation of functions f(x) ⊕
l2(x)l3(x), f(x)⊕ l2(x)l3(x)⊕ l2(x), f(x)⊕ l2(x)l3(x)⊕ l3(x), and f(x)⊕ l2(x)l3(x)⊕ l2(x)⊕ l3(x) by fixing

(z4, z5) ∈ GF (2)2. These four Boolean functions are not necessarily bent functions when f is bent. From

this observation, we deduce that Construction 2 is not equivalent to the previous ones. However, the func-

tion G(f1, f2, f3, z4, z5) is of class M only if f(x) is a bent function in M, since (z4 ⊕ l2(x))(z5 ⊕ l3(x))

is quadratic.

5 Conclusion

In this paper, we have shown that some well-known secondary constructions of bent functions can be

described by the composition of a plateaued Boolean function and the bent functions. Their duals can

be calculated by Lagrange interpolation formula. By following this observation, we proposed two new

secondary constructions of bent functions. Since the theory of the constructions we present in this paper

is genetic and unified, it is interesting to apply our method to construct Boolean functions with other

cryptographical properties. That the problem of choosing the initial functions to produce bent functions

outside the known primary classes remains open.
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7 Appendix

#Source Codes of SageMath about Example 2

#We first validate the bentness of the composition function in Example 2.

sage: B.<z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,x0,x1,x2,x3,x4,x5,

y0 ,y1 ,y2 ,y3 ,y4 ,y5 > = BooleanPolynomialRing (22)

#pla_subs is the plateaued Boolean function in Example 2

sage: pla_subs = z0*z1 + z0*z2 + z0*z3 + z0*z5 + z0*z6 + z0*z7 + z0*z8

sage:+ z1*z2 + z1*z4 + z1*z6 + z1*z7 + z1*z9 + z2*z4 + z2*z5

sage:+ z3*z4 + z3*z6 + z4*z5 + z4*z6 + z4*z7 + z4*z8 + z5*z6 +

sage: z5*z7 + z5*z9 + z6*z8 + z6*z9 + z9

sage:show(plateau_subs.expand_trig (). trig_simplify ())

(x1+x3)x0+(x0+x1)x2+(x1+x2+x3)x4+(x0+x2+x4)x5+(x0+x1+x3+x4+x5)x6

+(x0+x1+x4+x5)x7+(x0+x4+x6)x8+(x1+x5+x6+1)x9

sage: pla_bent_composition = pla_subs.substitute ({z4:x0*x1*x2+x0*x3+x1*x4+x2*x5+x0,

sage:z5:x0*x1*x2+x0*x3+x1*x4 +x2*x5+x1,

sage:z6:x0*x1*x2+x0*x3+x1*x4 +x2*x5+x2,

sage:z7:y0*y1*y2+y0*y3+y1*y4 +y2*y5+y0,

sage:z8:y0*y1*y2+y0*y3+y1*y4 +y2*y5+y1,

sage:z9:y0*y1*y2+y0*y3+y1*y4 +y2*y5+y2});

sage: pla_bent_composition

sage: print("*****************************************")

sage: print("The composition of bent functions with plateaued function pla_subs")

sage: print pla_bent_composition;
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sage: print("*****************************************")

*****************************************

The composition of bent functions with plateaued function pla_subs

z0*z1 + z0*z2 + z0*z3 + z0*x1 + z0*x2 + z0*y0 + z0*y1

+ z1*z2 + z1*x0 + z1*x2 + z1*y0 + z1*y2 + z2*x0 + z2*x1

+ z3*x0 + z3*x2 + x0*x1*x2 + x0*x1 + x0*x2 + x0*x3

+ x0*y0 + x0*y1 + x1*x2 + x1*x4 + x1*y0 + x1*y2

+ x2*x5 + x2*y1 + x2*y2 + y0*y1*y2 + y0*y3 + y1*y4

+ y2*y5 + y2

******************************************

sage: from sage.crypto.boolean_function import BooleanFunction

sage: P.<z0,z1,z2,z3,x0,x1,x2,x3,x4,x5,y0,y1,y2,y3,y4,y5> = BooleanPolynomialRing (16)

sage: pla_bent_composition =z0*z1 + z0*z2 + z0*z3 + z0*x1 + z0*x2 + z0*y0 + z0*y1

sage: + z1*z2 + z1*x0 + z1*x2 + z1*y0 + z1*y2 + z2*x0 + z2*x1 + z3*x0 + z3*x2

sage: + x0*x1*x2 + x0*x1 + x0*x2 + x0*x3 + x0*y0 + x0*y1

sage: + x1*x2 + x1*x4 + x1*y0 + x1*y2 + x2*x5 + x2*y1 + x2*y2

sage: + y0*y1*y2 + y0*y3 + y1*y4 + y2*y5 + y2

sage: pla_bent_composition=BooleanFunction(pla_bent_composition)

sage: pla_bent_composition.is_bent( )

True

#Validate the function constructed in Theorem 6 is not in the class M

#D_\alpha D_\beta : \alpha=(e0 ,e1 ,a0 ,a1 ,a2 ,a3 ,a4 ,a5 ,0_9)\ belta=(f0 ,f1 ,c0 ,c1 ,c2 ,c3 ,c4 ,c5 ,0_9)

sage: B.<z0,z1,z2,z3,x0,x1,x2,x3,x4,x5,y0,y1,y2,y3,y4,y5,e0,e1,f0,f1,

a0 ,a1 ,a2 ,a3 ,a4 ,a5 ,c0 ,c1 ,c2 ,c3 ,c4 ,c5 ,d0 ,d1 ,d2 ,d3 ,d4 ,d5 > = BooleanPolynomialRing (44)

sage: B.<z0,z1,z2,z3,x0,x1,x2,x3,x4,x5,y0,y1,y2,y3,y4,y5,

sage: e0,e1,f0,f1,a0,a1,a2,a3,a4,a5,c0,c1,c2,c3,c4,c5> = BooleanPolynomialRing (32)

sage: pla_bent_composition =z0*z1 + z0*z2 + z0*z3 + z0*x1 + z0*x2 + z0*y0 + z0*y1

+ z1*z2 + z1*x0 + z1*x2 + z1*y0 + z1*y2 + z2*x0 + z2*x1 + z3*x0 + z3*x2

+ x0*x1*x2 + x0*x1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x1*x2 + x1*x4 + x1*y0 + x1*y2

+ x2*x5 + x2*y1 + x2*y2 + y0*y1*y2 + y0*y3 + y1*y4 + y2*y5 + y2

sage: print("The 2-derivation of composition of bent functions")

sage: g1 = pla_bent_composition.substitute ({z0:z0+e0+f0,z1:z1+e1+f1,

x0:x0+a0+c0,

sage: x1:x1+a1+c1,x2:x2+a2+c2, x3:x3+a3+c3, x4:x4+a4+c4, x5:x5+a5+c5})

sage: g2 = pla_bent_composition.substitute ({z0:z0+e0,z1:z1+e1,x0:x0+a0,

x1:x1+a1,x2:x2+a2,x3:x3+a3, x4:x4+a4,x5:x5+a5})

sage: g3 = pla_bent_composition.substitute ({z0:z0+f0,z1:z1+f1,x0:x0+c0,

x1:x1+c1,x2:x2+c2,x3:x3+c3, x4:x4+c4,x5:x5+c5})

sage: D_aD_bg = g1+g2+g3 +pla_bent_composition

sage: print D_\alpha D_{\beta}g

sage: show(g1+g2+g3 +pla_bent_composition)

sage: The 2-derivative of composition of bent functions

sage: x0*a1*c2 + x0*a2*c1 + x1*a0*c2 + x1*a2*c0 + x2*a0*c1 + x2*a1*c0

+ e0*f1 + e0*c1 + e0*c2 + e1*f0 + e1*c0 + e1*c2

+ f0*a1 + f0*a2 + f1*a0 + f1*a2 + a0*a1*c2 + a0*a2*c1 + a0*c1*c2 + a0*c1 + a0*c2 + a0*c3
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+ a1*a2*c0 + a1*c0*c2 + a1*c0 + a1*c2 + a1*c4 + a2*c0*c1 + a2*c0 + a2*c1 + a2*c5 + a3*c0

+ a4*c1 + a5*c2

#This shows that the function we constructed is bent function outside the class M.
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