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An Efficient Key Mismatch Attack on NewHope
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Abstract—The ring learning with errors based key exchange
schemes like NewHope have attracted significant attention since
they provide good alternatives for the widely used Diffie-Hellman
key exchange in the quantum age. In CT-RSA 2019, Bauer et al.
have analysed the case when the public key is reused in NewHope,
and proposed a simple and elegant method, which is claimed to
recover elements of the secret key ranges from -6 to 4. However,
their recovery is incomplete in two aspects. First,through our
experiments a significant part of secret elements ranges from -6
to 4 cannot be recovered. Second, for the elements not ranging
from -6 to 4, they suggested that we can brute-force them. But
for each secret key there are 10 elements cannot be recovered,
and each of them has 6 possibilities, which means searching them
in this way is not efficient. In this paper, we first improve Bauer
et al.’s method to recover 99.2% of the elements ranging from
−6 to 4. Then, inspired by Ding et al. ’s key mismatch attack,we
propose an efficient method which succeeds in recovering all the
secret key elements ranging from -8 to 8 with a probability of
96.88%. To show the correctness and efficiency of our proposed
method, we have also implemented our proposed key mismatch
attack.

Index Terms—Ring-LWE, quantum-safe, key reuse attacks,
security analysis;

I. INTRODUCTION

To solve the challenges quantum computers may bring to the
current cryptosystem, the security community have proposed
the so called post-quantum cryptography, which is a fast-
growing research area and being in the standardization pro-
cess by many standard bodies. Currently, the standardization
process of post-quantum cryptography algorithms run by the
NIST has completed the first round and the second round is
scheduled to be held on August, 2019 [1]. As one of the
most promising candidates for future post-quantum cryptog-
raphy standard, the lattice-based cryptography, especially the
ring learning with errors (Ring-LWE) based approaches, have
attracted a lot of attention due to the provable security and
high efficiency [2–4]. Among them, the Ring-LWE based key
exchange schemes play a vital role due to the fact that they
provide good alternatives for the Diffie-Hellman (DH) key
exchange in the quantum age [5, 6].

To construct DH-like key exchange schemes whose hardness
are based on the Ring-LWE problem, generally there are two
methods. One is to use the error reconciliation mechanism,
which means that one of the party needs to send additional
information to help the other party to agree on an exactly
same key. So far as we know the first paper proposing this
idea was attributed to Ding, Xie, and Lin [7], and then an
authenticated key exchange variant was proposed by Zhang
et al. [8]. Peikert proposed a key encapsulation mechanism
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(KEM) using a similar error correction mechanism in [9],
which is then reformulated by Bos et al. as a key exchange
scheme and inserted into the Transport Layer Security (TLS)
protocol [10].

Another Ring-LWE based key exchange scheme, the
NewHope-Usenix [11], also attracts significant attention since
Google has tested it in its browser Chrome to get real-
world experiences about the deployment of the post-quantum
cryptography. But the error reconciliation mechanism in the
original NewHope-Usenix was so complex that later Alkim et
al. proposed a simplified variant called the NewHope-simple
[12], where the authors use the encryption-based approach
to transfer the keys. In the submission to the competition of
NIST’s post-quantum cryptography, the submitted NewHope
[13] was based on NewHope-simple, therefore in this paper we
only consider the NewHope scheme with the encryption-based
approach.

Note that in the widely used Internet standards, the key
reuse mode is commonly used. For example, in the recently
released standard TLS 1.3 [14], there exists a pre-shared key
(PSK) mode in which the key can be reused. But the key
reuse in lattice-based key exchange could cause much trouble.
Generally, the key reuse attacks can be further divided into
signal leakage attack and the key mismatch attack. The main
cause of the signal leakage attack is that if the key is reused,
the corresponding signal information used for exact key re-
covery reveals information about the secret key. On the other
side, the key mismatch attack tries to recover the secret by
querying a number of times whether the secret keys generated
by the two parties are match or not. Recently, a series of
key reuse attacks on the reconciliation based approaches have
been proposed. Fluhrer first proposed the idea to exploit the
leakage of secret keys of Ring-LWE based key exchange when
one participant’s public key is reused [15]. Later, Ding et al.
has developed a key leakage attack on [7], where the reused
keys leak information about the secret key [16]. In [17], a key
mismatch attack was proposed on the one pass case of [7],
without using the information leaked by the signal function.
In [17], the attacker can determine the value and the sign
of the private key by observing whether the final shared key
between two parties matches. Specifically, the characteristics
of the Mod2 function in Ding et al.’s key exchange protocol
can help judge the sign of the private key in a simple way.
To thwart the proposed key leakage attack in case the public
key is required to be reuse, in [18], a randomized method has
been proposed. Another related work is [19], in which Liu et
al. proposed a signal leakage attack against the reconciliation-
based NewHope-Usenix key exchange protocol [11].

Unlike Ding’s [7], Peikert’s [9], and the NewHope-Usenix
key exchange protocols, the NewHope key exchange submitted
to the NIST [12] is based on the RLWE encryption rather than
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the reconciliation mechanism, and newly designed Encode
and Compress functions are used. Therefore, these attacks
proposed by Fluhrer [15], Ding et al. [16, 17], or Liu et al. [19]
cannot be directly applied to the encryption-based NewHope
key exchange protocol [13]. So a natural question arises, can
we still use the key reuse attacks against the encryption-based
approaches?

In this case, the main challenge for launching a key
mismatch attack is that the Encode and Decode functions
used in NewHope encodes fours positions together, which
makes it much harder to recover the secret key as we can-
not determine the value and the sign of the private key as
that in [17]. Just recently, Bauer et al. have proposed a
key mismatch attack on NewHope [20]. As we know, the
coefficient of a secret key in NewHope belongs to the interval
{−8,−7, . . . ,−1, 0, 1, . . . , 7, 8} due to the fact that they are
selected from the centered binomial distribution ψn8 . The key
observation of [20] is that in a 1024-bit long secret key,
nearly 99% of the elements are in {−6,−5, . . . , 2, 3, 4}. From
this observation, they have proposed a simple and elegant
method, which is claimed to recover all the elements in
{−6,−5, . . . , 2, 3, 4}.

However, their recovery is incomplete in two aspects. One
is that through our experiments a significant part of secret
elements in {−6,−5, . . . , 2, 3, 4} cannot be recovered. The
other is for the remaining 1% elements not belonging to
{−6,−5, . . . , 2, 3, 4}, i.e. nearly 10 elements that are selected
from {−8,−7, 5, 6, 7, 8}, they suggested brute-forcing them.
As we can see, there are nearly 610 ≈ 6 × 107 possibilities
in this case, which is far from optimal. To solve these prob-
lems,first we improve Bauer et al.’s method to recover 99.2%
of the elements in {−6,−5, . . . , 2, 3, 4}. Then, we proposed
an efficient key mismatch attack against the NewHope key
exchange protocol when the public key is reused, which can
recover the elements that are selected from {−8,−7, 5, 6, 7, 8}
in an efficient way. Through in-depth analysis of the properties
of the Decode function, we can notice that it can help us get
some relationship between the four positions of the private key.
Since in a targeted quadruplet, with a high probability there
is only one element belongs to {−8,−7, 5, 6, 7, 8}, and the
other 3 elements belong to {−6,−5, . . . , 2, 3, 4}. Therefore,
we can first recover the three elements using the method in
[20], then get the value of the remaining element. Finally, we
have implemented the proposed attack against the NewHope
key exchange, and the results show that other proposed method
is rather efficient.

II. THE RING-LWE PROBLEM AND NEWHOPE KEY
EXCHANGE

Set Zq the ring with all elements are integers modulo q, then
Zq[x] represents a polynomial ring, where all the polynomials
in Zq[x] are with coefficients selected from Zq . Then, we can
define the polynomial ring Rq = Zq[x]/(xn+1), in which for
every polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 ∈ Rq ,
each coefficient ai ∈ Zq (0 ≤ i ≤ n− 1) and the polynomial
additions and multiplications are operated modulo xn+ 1. All
polynomials are in bold, and we treat a polynomial c ∈ Rq

the same with its vector form (c[0], · · · , c[n − 1]), here c[i]
(0 ≤ i ≤ n−1) represents the ith coefficient of the polynomial
c. The operation bxc represents the maximum integer not
exceeding x, and bxe = bx+ 1

2c.
The schemes based on Ring-LWE enjoy certain advantages

due to the fact that there exists a quantum reduction which
solves a hard problem in ideal lattices in the worst-case to
solving a Ring-LWE problem in the average-case, as well as
high efficiency even in resource-limited devices. Similar to
the DH problems, there exist two versions of the Ring-LWE
problem. The decision Ring-LWE is to distinguish the pair (a,
as+e) from randomly selected pair (x, y), where a is randomly
sampled fromRq and s, e are randomly selected according to a
error distribution. Similarly, the search Ring-LWE is to recover
s with the the above pair (a, as + e).

Since in the submission to the competition of NIST’s post-
quantum cryptography, the submitted NewHope KEM was
based on NewHope-simple, in the remaining of this paper we
refer to the encryption based approach when we use NewHope.
In NewHope, the polynomial ring Rq = Zq[x]/(xn+1) is set
with q = 12289 and n = 1024 or n = 512. The selected error
distribution in NewHope is ψn8 , which is a centered binomial
distribution with parameter 8, and can be easily sampled from

computing
8∑
i=1

(bi − b′i). Here bi and b′i is randomly selected

from {0, 1}. The most important functions in the Newhope
key exchange protocol are defined as follows.

Definition 1: The Encode function can map each bit in
ν′B ∈ {0, 1}256 to four bits in k, which is for i = 0, 1, . . . , 255,

k[i] = k[i+ 256] = k[i+ 512] = k[i+ 768] = bq
2
cν′B [i]. (1)

Definition 2: The Decode function is the inverse of the
Encode function, which can recover one bit of ν′A ∈ {0, 1}256
from four bits in k′, i.e., ν′A = Decode(k′) and

ν′A[i] =

{
1 if m < q,

0 otherwise,
(2)

where m =
3∑
j=0

|k′[i+ 256j]− b q2c| for i = 0, 1, . . . , 255.

Definition 3: The Compression function Compress: Zq →
Z8 is defined as c̄ = Compress(c) and for i = 0, 1, . . . , 1023,

c̄[i] = b(c[i] · 8)/qe (mod 8). (3)

Definition 4: The Decompression function Decompress:
Z8 → Zq is the inverse of the Compression function c′ =
Decompress(c̄), which is for i = 0, 1, . . . , 1023,

c′[i] = b(c̄[i] · q)/8e. (4)

In Table I, we describe the details of the NewHope key
exchange. Since in NewHope, the number-theoretic transform
(NTT) is used to speedup the polynomial multiplication, which
has nothing to do with security. To simplify the security anal-
ysis of NewHope, in Table I we use ordinary multiplication
instead of NTT. To share a same key, the two participants
Alice and Bob should share a common a in advance, which
is randomly selected from Rq . The NewHope key exchange
protocol consists of three parts:
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TABLE I
THE NEWHOPE KEY EXCHANGE

Common parameter: a←− Rq

Alice Bob

sA, eA
$←− ψn

8

PA ←− asA + eA
PA−−−−−−−→ sB , eB , e′B

$←− ψn
8

PB ←− asB + eB
νB

$←− {0, 1}256

ν′B ← SHA3-256(νB)
k←Encode(ν′B)
c←− PAsB + e′B + k

c′ ← Decompress(c̄)
(PB ,̄c)←−−−−−−− c̄←− Compress(c)

k′ = c′ − PBsA SkB
←− SHA3-256(ν′B)

ν′A ←− Decode(k′)
SkA

← SHA3-256(ν′A)

(1) Alice selects sA and eA uniformly at random from ψn8 ,
and computes a public key PA = asA + eA. Then Alice will
send PA to Bob.

(2) After receiving PA sent by Alice, Bob will select sB ,
eB and e′B uniformly at random from ψn8 , and compute a
public key PB = asB + eB . Then Bob will choose νB
randomly from {0, 1}256 and compute ν′B ← SHA3-256(νB),
k←Encode(ν′B), c←− PAsB + e′B +k and c̄←− Compress(c).
Subsequently, Bob will send PB and c̄ to Alice, and compute
the shared key SkB ←− SHA3-256(ν′B).

(3) When Alice receives the PB and c̄ sent by Bob, she
will calculate c′ ← Decompress(c̄), k′ = c′ − PBsA, ν′A ←−
Decode(k′) and her shared key SkA ← SHA3-256(ν′A).

III. THE PROPOSED KEY MISMATCH ATTACK

In this section, we will use the key mismatch method to
assess the security of the NewHope key exchange protocol
when the public key is reused.

Algorithm 1: Oracle
Input: PB , c̄, SkB
Output: 1 or 0

1 c′ = Decompress(c̄);
2 k′ = c′ − PBsA ;
3 ν′A ←− Decode(k′);
4 SkA ← SHA3-256(ν′A);
5 if SkA = SkB then
6 Return 1;
7 else
8 Return 0;
9 end

In a key mismatch attack, the adversary A is an active
adversary who plays the role of Bob, and we build an oracle O
that simulates Alice in Table I. We assume that Alice’s public
key PA is reused and A can query the oracle a number of
times. In Algorithm 1 we describe how the oracle works. To
be specific, A calculates PB , as well as c̄ and SkB generated
by using a selected ν′B . By receiving the input (PB , c̄, SkB ),
the oracle will use PB and c̄ to calculate c′, k′, ν′A, SkA and
checks whether SKA

= SKB
holds, if yes the oracle O will

output 1 and 0 otherwise. Specifically, if O outputs 1, SkA
and SkB match and ν′A = ν′B . If O outputs 0, SkA and SkB
mismatch and ν′A 6= ν′B . We can see that the adversary can
get useful information from the oracle by knowing whether
the two keys SkA and SkB match or not, and further recover
sA using these information.

The main challenge in launching a key mismatch attack
against the NewHope key exchange is that, 4 elements of sA,
for example sA[i], sA[i + 256], sA[i + 512], and sA[i + 768]
are mixed, which makes it harder to decide each of them.

A. Bauer et al.’s method

In this subsection, we briefly introduce the Bauer et al.’s
method in [20]. They used the key mismatch attack to
recover Alice’s private key sA if Alice’s public key PA
is reused. But they can only recover the private key in
S2 = {−6,−5, . . . , 2, 3, 4}. First of all, the adversary A
directly chooses ν′B = (1, 0, · · · , 0). If A wants to recover the
quadruplet (sA[k], sA[k + 256], sA[k + 512], sA[k + 768]), he

will set his public key PB = b q8cx
−k and c̄ =

3∑
i=0

((li+4) mod

8)x256i, here each li increases from −4 to 3. Then he will send
(PB , c̄, SkB ) to the oracle O. When O receives (PB , c̄, SkB ),
he will honestly calculate c′,k′, ν′A and SkA . If SkA = SkB
he will return 1 and 0 otherwise. Finally, A will calculate the
private key according to O’s output. Since each quadruplet
(l0, l1, l2, l3) corresponds to an output of O, the adversary A
can recover the elements of the private key if he can find
outputs in a form like 1, 1, · · · , 1, 0, · · · , 0, 1, · · · , 1
as (l0, l1, l2, l3) changes. Here this kind of form is called a
favourable case.

Specifically, if A wants to recover sA[k+256i] in sA, he can
first set each li (i = 1, 2, 3) be randomly selected from −4 to
3, and then by letting l0 = −4, the resulted output is a bit b0.
Next A can increase l0 to −3, with the same li (i = 1, 2, 3) the
resulted output is another bit b1. Repeating the above processes
until l0 becomes 3, there will be 8 bits bi (i = 0, 1, · · · , 7). The
above processes will be repeated with different li (i = 1, 2, 3)
until A can assure that (b0, b1, . . . , b7) is a favorable case.
Then the adversary A can recover the elements in S1. First,
he will find two special positions τ1 and τ2, when i increases
from 1 to 6, if bi−1 = 1 and bi = 0, then A sets τ1 = i−4, else
if bi = 0 and bi+1 = 1 , then A sets τ2 = i−4. Subsequently,
A will calculate τ = τ1 + τ2, if τ is even, we can determine
that sA[k + 256i] = τ , or sA[k + 256i] = 2b τ2 c + 1. A will
repeat above processes until he recovers all the elements of
sA that in a specific interval.

B. Problems with Bauer et al.’s method

Then we implement Bauer et al.’s method to recover the
coefficients belonging to S2 = {−6,−5, . . . , 2, 3, 4}. To
make our experiment more convincing, we use the code the
designers of NewHope submitting to the NIST [13] to generate
1000 secret keys. Unfortunately, using Bauer et al.’s method
we cannot even recover all the coefficients belonging to S2 in
every secret key. In other ways, in every 1024-bit long key,
there are at least 78 coefficients in S2 cannot be recovered.
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In the proof of Proposition 1 of [20], by letting q = 8s+ 1
and fj = (lj + 4) mod 8 (j = 0, 1, 2, 3) they have

Decompress(c̄)[256j] =

⌈
fj × q

8

⌋
=

⌈
fj × s+

1

8

⌋
=fj × s.

(5)

However, the second equation is inaccurate, instead,

Decompress(c̄)[256j] =

⌈
fj × q

8

⌋
=

⌈
fj × (8s+ 1)

8

⌋
=

⌈
fj × s+

fj
8

⌋
.

(6)

Since fj = (lj + 4) mod 8 (j = 0, 1, 2, 3) and lj ranges
from −4 to 3, equation 5 only holds when lj ranges from −4
to −1. When lj increases from 0 to 3, we can see that in Table
II
⌈
fj×q
8

⌋
is not equal to

⌈
fj × s+ 1

8

⌋
nor fj × s. We can

also observe from Table II that when lj ranges from 0 to 3,⌈
fj × s+

fj
8

⌋
is equal to

⌈
fj×q
8

⌋
. This means that equation

6 is consistent with the outputs of the Decompress function.

TABLE II
DECOMPRESS FUNCTION’S DERIVATION RESULTS

lj
⌈
fj×q

8

⌋ ⌈
fj × s+ 1

8

⌋
fj × s

⌈
fj × s+

fj
8

⌋
0 d6144.5c d6144.125c 6144 d6144.5c

1 d7608.625c d7608.125c 7608 d7608.625c

2 d9216.75c d9216.125c 9216 d9216.75c

3 d10752.875c d10752.125c 10752 d10752.875c

In the Bauer et al.’s implementation they directly use the
results of fj× s as the output of Decompress function instead
of using the actual output of Decompress function, i.e., fj×q8 .
Specifically, when lj increases form −4 to 3, the outputs of
fj × s are 0, 1536, 3072, 4608, 6144, 7608, 9216 and 10752.
But the actual outputs of fj×q

8 should be 0, 1536, 3072, 4608,
6145, 7609, 9217 and 10753. Although the gap between them
is tiny, the resulted impact is huge, i.e., the calculation of
(b0, b1, . . . , b7) is inaccurate in [20]. In the following, we
will use an example to further analyze it.

We randomly choose a secret key sA, among which a
quadruplet is (0, 4, 3, 3), and 0 is the coefficient of the private
key to be recovered. When we have a favorable case, (l1, l2, l3)
is set as (−4, 0,−1).
• In Bauer et al.’s implementation and Equation 5,
Decompress(c̄)[256j] = fj×s and c̄ =

∑3
j=0 fj ·x256j ,

then

Decompress(c̄) =f0 × s+ 0× s · x256 + 4× s · x512

+ 3× s · x768

=f0 × s+ 6144 · x512 + 4608 · x768.

Since PB = sx−k, c′ ← Decompress(c̄), k′ = c′−PBsA,
for i = 0, 1, . . . , 255, we have

m =

3∑
j=0

|k′[i+ 256j]− bq
2
c|

=

3∑
j=0

|(c′ − PBsA)[i+ 256j]− bq
2
c|

=

3∑
j=0

|(Decompress(c̄)− PBsA)[i+ 256j]− bq
2
c|

=

3∑
j=0

|(Decompress(c̄)− sAsx−k)[i+ 256j]− bq
2
c|.

So, when l0 increases from -4 to 3, the value of m and
b are shown in Table III.

• In our analysis and Equation 6, since
Decompress(c̄)[256j] =

⌈
fj × s+

fj
8

⌋
, we have

Decompress(c̄) =

⌈
f0 × s+

f0
8

⌋
+ 0 · x256 +

⌈
4× s+

4

8

⌋
· x512

+

⌈
3× s+

3

8

⌋
· x768

=

⌈
f0 × s+

f0
8

⌋
+ 0 + d6144 + 0.5c · x512

+ d4608 + 0.375c · x768

=

⌈
f0 × s+

f0
8

⌋
+ 6145 · x512 + 4608 · x768.

In this case, when l0 increases from -4 to 3, we set m
in Decode function to m′ and set b to b′ . m′ and b′ are
shown in Table III.

TABLE III

l0 -4 -3 -2 -1 0 1 2 3
m 15360 13825 12289 10753 9217 10753 12289 13825
b 0 0 0 1 1 1 0 0
m′ 15360 13824 12288 10752 9217 10753 12289 13825
b′ 0 0 1 1 1 1 0 0

When l0 = −2, the value of m in Table III is 12289 and
the value of b is 0. τ1 = −1, τ2 = 1, τ = 0, so we can
recover s as 0. But in Table III, m′ is 12288 and b′ is 1.
τ1 = −2, τ2 = 1, τ = −1, the value of s we can recover is
−1. In this case, we recover an incorrect s. The main reason
for the error is that the value of Decompress(c̄) is different.

According to the paper [13], we should set
Decompress(c̄)[256j] =

⌈
fj × s+

fj
8

⌋
instead of fj × s.

2) In Bauer et al.s method, there is only one kind of
favorable case like 1, 1, · · · , 1, 0, · · · , 0, 1, · · · , 1.
But we find there is another favorable case like
0, 0, · · · , 0, 1, · · · , 1, 0, · · · , 0.

3) In Bauer et al.s method, they try to directly recover s
according to τ is odd or even. For example, if we want to
recover 0, τ should be even, but in Table III we can see that τ
is odd. So, we can not rely on τ is odd or even to determine
s. We ran an experiment in which we generated 1000 private
keys s and used Bauer et al.’s method to recover the elements
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of each s in S2. But for each recovered private key s, all
elements in S2 cannot be fully recovered, and at least 262
elements in S2 cannot be recovered.

C. Our Improved Method

Algorithm 2: Find-τ
Input: b
Output: τ

1 set τ1 = NULL, τ2 = NULL, s = NULL ;
2 if b[0] = 1 then
3 for i := 1 to 6 do
4 if (b[i− 1] = 1) and (b[i] = 0) then
5 τ1 = i− 4;
6 end
7 if (b[i] = 0) and (b[i+ 1] = 1) then
8 τ2 = i− 4;
9 end

10 end
11 else if b[0] = 0 then
12 for i := 1 to 6 do
13 if (b[i− 1] = 0) and (b[i] = 1) then
14 τ1 = i− 4;
15 end
16 if (b[i] = 1) and (b[i+ 1] = 0) then
17 τ2 = i− 4;
18 end
19 end
20 τ = τ1 + τ2;
21 if τ is odd then
22 odd++;
23 odd τ = τ ;
24 count ++;
25 else if τ is even then
26 even++;
27 even τ = τ ;
28 count ++;
29 else
30 countinue;
31 end
32 Return τ

For the two kinds of favourable cases, we just need to
improve the method of calculate τ1 and τ2. If the favorable
case in a form like 1, 1, · · · , 1, 0, · · · , 0, 1, · · · , 1, we will
use Bauer et al.s method to to calculate τ1 and τ2. But if the fa-
vorable case in a form like 0, 0, · · · , 0, 1, · · · , 1, 0, · · · , 0.
When i increase from 1 to 6, if bi−1 = 0 and bi = 1, then
we set τ1 = i − 4, else if bi = 1 and bi+1 = 0 , then we set
τ2 = i − 4. The specific process of calculating τ1 and τ2 are
shown in lines 2 to 19 of Algorithm 2.

According to Table III, we can find that if the private key
s is 0, there are not only odd τ , but also even τ . So, we need
to find another relationship between s and τ .

We made a statistical experiment using a s containing all the
elements in [-6, 4]. In this experiment, (l0, l1, l2, l3) are full

Algorithm 3: Recover
Output: s (the elements in S2)

1 for k := 0 to 255 do
2 Set PB = b q8cx

−k;
3 for j := 0 to 3 do
4 Set odd = 0, even = 0, count = 0;
5 while count < 50 do
6 (l0, l1, l2, l3)← [−4, 3]4;
7 set b[8] = 0;
8 for i := −4 to 3 do
9 lj = i;

10 c̄ =
∑3
h=0((lh + 4) mod 8)x256∗h;

11 b[i] = Oracle(PB , c̄, SkB );
12 end
13 t =Find-τ(b);
14 end
15 if odd >= even then
16 temps= b(odd τ − 8)/2c ∗ 2 + 1;
17 test(temps);
18 else if even > odd then
19 temps = even τ - 8;
20 test(temps);
21

22 end
23 end
24 s[k + j ∗ 256] = temps;
25 Return s

permutation from -4 to 3, then we count how many favorable
cases have occurred for each element in s, and how many of
the odd and even τ are respectively. The statistical results are
shown in Table IV. We can observe that if s is odd, there are
two cases, one case is that all τ are odd, and in another case
there are both odd τ and even τ , moreover the number of odd τ
must be more than the number of even τ . The same rule exists
when s is even. So, we can recover s based on how many times
odd τ and even τ appear in all favorable cases. This means
that, we need to record the number of times the favorable
cases, and the number of times the odd τ and even τ appear.
The specific process of count the favorable cases, odd τ and
even τ are shown in lines 21 to 31 of Algorithm 2. In order to
improve efficiency, we will not full permutation (l0, l1, l2, l3),
instead we only need 50 favorable cases for statistics. If the
number of odd τ is more than the number of even τ , we will
use odd τ to recover s, otherwise use even τ to recover s.
The specific process of recover s are shown in Algorithm 3.

When we recover a s, we must check this value. Because
we only counted 50 favorable cases, it is possible that the
statistical results are wrong. Especially when s = 3, its odd
τ and even τ appear very close, so it is particularly prone to
statistical errors. For example, we could recover 3 to 2. Next,
we will give an example to introduce how to judge whether the
recovered value is correct, and how to correct it if the recover
value is wrong. If we recover 3 to 2, the number of even τ
must be more than odd τ , temps in line 19 of Algorithm 3
is equal 2. And its even τ = 2, odd τ = 3 and b[0] = 0.
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TABLE IV
THE DISTRIBUTION OF THE ELEMENTS IN A QUADRUPLET

s odd τ even τ favorable s odd τ even τ favorable
cases cases

0
0 2080 2080

1
1472 0 1472

400 1656 2056 1344 512 1856

2
0 2048 2048

-1
2176 0 2176

504 1328 1832 1808 320 2128

-2
0 2080 2080

3
1408 0 1408

240 1824 2064 848 808 1656

4
0 2048 2048

-3
1408 0 1408

520 1264 1784 1312 232 1544

-4
0 1952 1952

-5
1408 0 1408

152 1792 1944 1160 296 1456

-6
0 2048 2048

136 1784 1920

But if we recover 3 correctly, the number of odd τ must be
more than even τ , temps = 3, even τ = -8, odd τ = -5 and
b[0] = 1. If we recover 2 correctly, the number of even τ
must be more than odd τ , temps = 2, even τ = 2, odd τ =
-8 and b[0] = 0. So, when we recover a temps = 2, we will
check if even τ = 2 and odd τ = -8, then the recovered value
is correct. Otherwise, if even τ = 2 and odd τ = 3, then the
recovered value is wrong, we directly let temps = 3.

TABLE V
THE DISTRIBUTION OF THE ELEMENTS IN A QUADRUPLET

S1= {−8,−7, . . . ,−1, 0, 1, . . . , 7, 8}
S2= {−6,−5, . . . , 2, 3, 4} S1-S2= {−8,−7, 5, 6, 7, 8}

4 elements in S1

100%

4 elements in S2 Others

96.8%

3.2%

3 elements in S2 2 elements in S2

1 element in S1-S2 2 elements in S1-S2

99% 1%

D. Our Observation

We set S1= {−8,−7, . . . ,−1, 0, 1, . . . , 7, 8} and S2=
{−6,−5, . . . , 2, 3, 4}. In table V, we have analysed and list-
ed the distribution of the elements in a quadruplet through
our experiments. We have generated 106 keys following the
centered binomial distribution, and then taken an average. We
can see that all the elements are in set S1, and the probability
that all the elements of the quadruplet are in S2 is 96.8%.
From our observation, with high probability there is only one
element in a quadruplet that belongs to S1−S2, while the other
3 elements are in S2. Specifically, as shown in Table V, in
the remaining 3.2% of the quadruplets, the probability that
only one element not belonging to S2 is 99%. Without loss of
generality, we assume that sA[i], sA[i+256] and sA[i+512] are
in S2 and sA[i+768] is in S1−S2. Using our improved method
in Algorithms 2 and 3, we can recover sA[i], sA[i+ 256] and
sA[i+512]. Then, our remaining task is to determine the exact
value of sA[i+ 768].

E. The Complete Attack
To launch the attack, the adversary A will deliberately select

the parameters sB and eB to calculate the public key PB , as
well as the parameter ν′B to calculate c̄. For each integer i in
0, 1, · · · , 255, if A wants to recover sA[i], sA[i+ 256], sA[i+
512], sA[i + 768], he will choose sB and e′B to be 0 in Rq ,
and an eB with the coefficient vector that consists of all zeros,
except that eB [256] = h1, here h1 increases from 0 to q − 1.
Instead of randomly selecting νB , the adversaryA will directly
set all elements of ν′B as 0 except that ν′B [i] = 1.

As A sets sB = 0, correspondingly the public key is

PB = asB + eB = eB .

Next, A sets ν′B = 0 except that ν′B [i] = 1, according to
the definition of the Encode function,

k =Encode(ν′B)

=bq
2
cxi + bq

2
cxi+256 + bq

2
cxi+512 + bq

2
cxi+768,

and the resulted c = PAsB + e′B + k = k.
Then, since c̄[i] = b(c̄[i] ·q)/8e = 4, according to the above

analysis and the definition of the Compress function

c̄ = Compress(c)

= Compress(k)

= 4xi + 4xi+256 + 4xi+512 + 4xi+768.

After that A will send (PB , c̄, SkB ) to O, who will then
calculate

c′ =Decompress(c̄)

=bq
2
exi + bq

2
exi+256 + bq

2
exi+512 + bq

2
exi+768,

(7)

as well as
k′ = c′ − PBsA = c′ − eBsA (8)

and SkA = SHA3− 256(Decode(k′)).
In the following, we propose our method to recover the

exact value of sA[i] in an efficient way.
The adversary A chooses the parameters as described above,

and the attack includes four steps. In step 1, the adversary A
will use algorithm 2 to recover all the elements belong to S2.
In step 2, A will calculate m1 = |sA[i]|+|sA[i+256]|+|sA[i+
512]|+ |sA[i+768]|. In step 3, A can get the absolute value of
sA[i] with m1 , since A has recovered sA[i+256], sA[i+512]
and sA[i + 768] using the improved method in Algorithms 2
and 3. Next A tries to decide the sign of sA[i+768]. In step 4,
A will verify whether the private key he recovered is correct
or not.

Next, we will briefly introduce Step 2, Step 3 and Step 4.
Step 2: In this step, adversary A wants to decide m1 =
|sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|. First, A
sets all the elements of eB as 0, except eB [256] = h1. From
equations 7, 8 and b q2e = 6145, we have

k′ = c′ − eBsA
= [6145− (−sA[i+ 768]eB [256])]xi

+ (6145− sA[i]eB [256])xi+256

+ (6145− sA[i+ 256]eB [256])xi+512

+ [6145− (−sA[i+ 512]eB [256])]xi+768.
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Algorithm 4: Find m1

Input: i
Output: m1

1 for h1 := 0 to q − 1 do
2 eB = 0, set eB [256] = h1;
3 PB = eB ;
4 ν′B = 0, set ν′B [i] = 1 ;
5 k←Encode(ν′B) ;
6 c̄ = Compress(k);
7 SkB ←− SHA3-256(ν′B);
8 v = Oracle(PB , c̄, SkB ) ;
9 if v = 1 then

10 m1 = b(q + 2)/h1e;
11 break;
12 else
13 continue;
14 end
15 end
16 Return m1

The last equation holds since x1024 = −1 in Rq . So, for i =
0, 1, . . . , 255, according to the Decode function we have

m =

3∑
j=0

|k′[i+ 256j]− 6145|

= |1− (−sA[i+ 768]h1)|+ |1− sA[i]h1|
+ |1− sA[i+ 256]h1|+ |1− (−sA[i+ 512]h1)|

= sA[i+ 768]h1 + 1 + sA[i]h1 − 1

+ sA[i+ 256]h1 − 1 + sA[i+ 512]h1 + 1

= (sA[i] + sA[i+ 256] + sA[i+ 512]

+ sA[i+ 768])h1.

Then the adversary let h1 change from 1 to q, at the
beginning m < q, Decode(k′[i]) = 1 and the oracle O will
output 1. When h1 becomes larger, m also becomes larger,
and when m > q, the output of O becomes 0. By recording
the value of h1 when the output of O changes, we can know
that here m roughly equals q, and A can calculate m1 = b qh1

e
by setting m = m1h1 = q.

It should be noted that with m1 = |sA[i + 256]| + |sA[i +
512]|+ |sA[i+ 768]|, if A can determine that sA[i] = 0, then
A will skip Step 3.

The main processes of Step 2 is shown in Algorithm 4.
Step 3: In this step, the adversary A will determine the sign

of sA[i]. When A completes Step 1, if the value of sA[i] is not
in [−6, 4], then sA[i] will be recovered to an incorrect value,
but its sign is still correct. So, we can directly determine the
sign of sA[i] according this. However, there are two special
cases where the correct sign of sA[i] is opposite to the value
recovered in Step 1 when sA[i] = 8 or sA[i] = −8.

Step 4: The adversary A verifies whether the private key he
recovered is correct by calculating the distribution of PA−asA.
Since a and PA are public, if A gets the correct private key,
then the distribution is the same as that of eA, which follows
the centered binomial distribution.

TABLE VI
ONE INSTANCE OF THE KEY MISMATCH ATTACK

Common parameter: a $←− Rq

Oracle Adversary

sA, eA
$←− ψn

8
Reused public key:

PA ←− asA + eA
PA−−−−−−−→ sB = 0, e′B = 0

eB = 0, set
eB [0] = h1, eB [512] = h2

PB ←− eB
ν′B = 0, set ν′B [i] = 1
k←Encode(ν′B)
c←− PAsB + e′B + k

c′ ← Decompress(c̄)
(PB ,̄c,SkB

)
←−−−−−−−− c̄←− Compress(c)

k′ = c′ − PBsA SkB
←− SHA3-256(ν′B)

ν′A ←− Decode(k′)

SkA
← SHA3-256(ν′A)

0 or 1−−−−−−−−→

IV. EXPERIMENTS

In this section, we report the performance our implementa-
tions. All our implementations are done on a MacBook Air,
which has a Intel Core i7 processor at 2.7 GHz and an 8 GB
RAM. All experiments are in C, and all multiplications are
not optimized.

First of all, we want to show the advantage of our pro-
posed algorithm 2 in recovering coefficients belonging to
S2 = {−6,−5, . . . , 2, 3, 4}. To make our experiment more
convincing, we use the code the designers of NewHope sub-
mitting to the NIST [13] to generate 10, 000 secret keys. When
we use our method as shown in algorithm 2, in 9688 keys
we can recover all the coefficients, and in the remaining 312
keys that cannot be recovered. The probability of successfully
recovering s is 96.88%. At the same time, we also found that
the number of coefficients belonging to S1-S2 is between 2
and 19.

In our proposed method, first we implement our proposed
algorithms 2 and 3 to recover the coefficients belonging to
S2. Then we will use algorithm 4 to calculate m1 = |sA[i]|+
|sA[i + 256]| + |sA[i + 512]| + |sA[i + 768]|, then we can
known the absolute value of the element that belonging to
S1-S2. For example, if we do not know sA[i + 768], we can
determine the absolute value |sA[i + 768]| = s1 − |sA[i]| −
|sA[i+ 256]|− |sA[i+ 512]|. Subsequently, we will follow the
Steps 3 aforementioned to decide the sign of sA[i+ 768].

In Table VII, we report the average time consuming and
average queries

V. CONCLUSION

In this paper, we have analyzed the security of NewHope
when the public key is reused. We developed Bauer et al.’s
method and proposed a complete key mismatch attack on
NewHope. Since these kinds of lattice-based key exchange
schemes are widely believed to replace the DH key exchange
in the quantum age, their resistance to misuse situations are
of high importance. It is worth noting that the NewHope
KEM submitted to NIST is CPA secure, which is then trans-
formed into CCA-secure using Fujisaki-Okamoto transforma-
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TABLE VII

0 1 2 3 4 5 6 7 8 9

Queries 0 0 884624 884324 877610 880447 881960 880485 880701 881555

Time(ms) 0 0 137.77 137.37 135.65 136.42 137.19 136.231 136.41 136.45

10 11 12 13 14 15 16 17 18 19

Queries 880801 883106 881461 879977 885730 881568 884556 883677 883706 878808

Time(ms) 136.12 136.52 136.35 136.26 136.97 136.53 137.01 136.67 136.59 136.12

Fig. 1.

tion. Therefore, the proposed key mismatch attack does not
harm the NewHope designers’ security goals. But our results
show that when designers who base their approaches on the
lattice-based key exchange should be careful to avoid the
public key reuse, which is common in the design with DH
key exchange approaches.
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