
A Complete and Optimized Key Mismatch
Attack on NIST Candidate NewHope

Yue Qin1, Chi Cheng1, and Jintai Ding2

1 China University of Geosciences, Wuhan, 430074, China
{qy52hz,chengchi}@cug.edu.cn

2 University of Cincinnati, Cincinnati, 45219, USA
jintai.ding@gmail.com

Abstract. In CT-RSA 2019, Bauer et al. have analyzed the case when
the public key is reused for the NewHope key encapsulation mechanism
(KEM), a second-round candidate in the NIST Post-quantum Standard
process. They proposed an elegant method to recover coefficients rang-
ing from −6 to 4 in the secret key. We repeat their experiments but
there are two fundamental problems. First, even for coefficients in [-6,4]
we cannot recover at least 262 of them in each secret key with 1024
coefficients. Second, for the coefficient outside [-6,4], they suggested an
exhaustive search. But for each secret key on average there are 10 co-
efficients that need to be exhaustively searched, and each of them has
6 possibilities. This makes Bauer et al.’s method highly inefficient. We
propose an improved method, which with 99.22% probability recovers all
the coefficients ranging from −6 to 4 in the secret key. Then, inspired
by Ding et al.’s key mismatch attack, we propose an efficient strategy
which with a probability of 96.88% succeeds in recovering all the coeffi-
cients in the secret key. Experiments show that our proposed method is
very efficient, which completes the attack in about 137.56 ms using the
NewHope parameters.

Keywords: Post-quantum cryptography · Key exchange · Ring learning
with errors · Key mismatch attack.

1 Introduction

Currently, the standardization process of post-quantum cryptography algorithms
run by the NIST has completed the first round and the second round workshop
is scheduled to be held on August, 2019 [1]. As one of the most promising can-
didates for future post-quantum cryptography standard, the ring learning with
errors (Ring-LWE) based approaches have attracted a lot of attention due to the
provable security and high efficiency [13, 15, 17].

To construct DH-like key exchange schemes whose hardness are based on
the Ring-LWE problem, the key breakthrouigh is to use the error reconciliation
mechanism, which means that one party needs to send additional information
to help the other party agree on an exactly same key. The first paper proposing

2 Y. Qin et al.

this idea was attributed to Ding, Xie, and Lin [10]. Then, an authenticated key
exchange variant was proposed by Zhang et al. [19]. Peikert proposed a key
encapsulation mechanism (KEM) using a tweaked error correction mechanism
in [16], which is then reformulated by Bos et al. as a key exchange scheme
and inserted into the Transport Layer Security (TLS) protocol [6]. Later, a
further tweaked Ring-LWE based key exchange scheme, the NewHope-Usenix
[4], also attracts significant attention since Google has tested it in its browser
Chrome to get real-world experiences about the deployment of the post-quantum
cryptography. But the error reconciliation mechanism in the original NewHope-
Usenix was so complex that later Alkim et al. proposed a simplified variant called
the NewHope-simple [3], where the authors use the encryption-based approach to
transfer the keys but the key idea of reconciliation of sending interval information
is again deployed in the name of Encode. In the submission to the competition
of NIST’s post-quantum cryptography, the submitted NewHope [2] was based
on NewHope-simple, and in this paper we only consider the NewHope scheme
with the encryption-based approach.

Note that in the widely used Internet standards, the key reuse mode is com-
monly used. For example, in the recently released TLS 1.3 [18], there exists a
pre-shared key (PSK) mode in which the key can be reused. But the key reuse
in lattice-based key exchange could cause the key reuse attacks. Generally, the
key reuse attacks can be further divided into signal leakage attack and the key
mismatch attack. The main cause of the signal leakage attack is that if the key is
reused, the corresponding signal information used for exact key recovery reveals
information about the secret key. On the other side, the key mismatch attack
tries to recover the secret by querying a number of times whether the shared
keys generated by the two parties match or not.

Recently, a series of key reuse attacks on the reconciliation based approaches
have been proposed. Fluhrer first proposed the idea to exploit the leakage of
secret keys of Ring-LWE based key exchange when one participant’s public key
is reused [11]. Later, Ding et al. has developed a key leakage attack on [10], where
the reused keys leak information about the secret key [7]. In [9], a key mismatch
attack was proposed on the one pass case of [10], without using the information
leaked by the signal function. To thwart the proposed key leakage attack in case
the public key is required to be reused, in [12] a randomized method has been
proposed. Another related work is [14], in which Liu et al. proposed a signal
leakage attack against the reconciliation-based NewHope-Usenix key exchange
protocol [4].

Unlike the DH-like key exchange protocols, the NewHope KEM submitted to
the NIST [3] is based on the encryption rather than the reconciliation mechanism,
and newly designed Encode and Compress functions are used. Therefore, these
attacks proposed by Fluhrer [11], Ding et al. [7–9], or Liu et al. [14] cannot be
directly applied to the encryption-based NewHope key exchange protocol [2].
The main challenge for launching a key mismatch attack is that the Encode and
Decode functions in NewHope deal with four coefficients together, which makes
it hard to recover the secret key using the previous methods.

A Key Mismatch Attack on NewHope 3

In CT-RSA 2019, Bauer et al. have proposed a key mismatch attack on
NewHope [5]. As we know, the coefficients of the secret key in NewHope belong
to [−8, 8] due to the fact that they are selected from the centered binomial
distribution ψn

8 . The key observation of Bauer et al. is that in a secret key
with 1024 coefficients, 99.22% of them lie in [−6, 4]. From this observation, they
have proposed an elegant method, which is claimed to recover all the coefficients
belonging to [−6, 4] in the key.

However, their recovery is first incomplete. Through our experiments, for
each secret key with 1024 coefficients there are at least 262 coefficients in [−6, 4]
but cannot be recovered using their method. Second, for the coefficients outside
[−6, 4], i.e. those selected from {−8,−7, 5, 6, 7, 8}, they suggested an exhaustive
search. But for each secret key on average there are 10 coefficients that need
to be exhaustively searched, and each of them has 6 possibilities. The resulted
610 ≈ 6× 107 possibilities make Bauer et al.’s method highly inefficient.

After analyzing the cause of the incomplete recovery, we propose an improved
method, which with 99.22% probability can recover all the coefficients ranging
from −6 to 4 in the secret key. Then, inspired by Ding et al.’s key mismatch
attack, we propose an efficient strategy which with a probability of 96.88% suc-
ceeds in recovering all the coefficients belonging to [−8, 8] in the secret key.
Recall that in NewHope four coefficients are encoded at a time. Through in-
depth analysis of the properties of the Decode function, we notice that it can
help us find the sum of the 4 coefficients. Since in a targeted quadruplet, there is
a 96.88% probability that only one coefficient belongs to {−8,−7, 5, 6, 7, 8}, and
the other 3 coefficients belong to [−6, 4]. The key idea of our strategy is that we
can first recover the 3 coefficients using our improved method, then recover the
remaining coefficient since the sum of the 4 coefficients is known. Experiments
show that our proposed method is very efficient, which completes the attack in
about 137.56 ms using the NewHope parameters.

2 The Ring-LWE Problem and NewHope KEM

Set Zq the ring with all coefficients are integers modulo q, then Zq[x] represents a
polynomial ring, where all the polynomials in Zq[x] are with coefficients selected
from Zq. Then, we can define the polynomial ring Rq = Zq[x]/(xn +1), in which
for every polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 ∈ Rq, each coefficient
ai ∈ Zq (0 ≤ i ≤ n − 1) and the polynomial additions and multiplications are
operated modulo xn + 1. All polynomials are in bold, and we treat a polynomial
c ∈ Rq the same with its vector form (c[0], · · · , c[n−1]), here c[i] (0 ≤ i ≤ n−1)
represents the ith coefficient of the polynomial c. The operation bxc represents
the maximum integer not exceeding x, and bxe = bx+ 1

2c.
The schemes based on Ring-LWE enjoy certain advantages due to the fact

that there exists a quantum reduction which solves a hard problem in ideal
lattices in the worst-case to solving a Ring-LWE problem in the average-case,
as well as high efficiency even in resource-limited devices. Similar to the DH
problems, there exist two versions of the Ring-LWE problem. The decision Ring-

4 Y. Qin et al.

LWE is to distinguish the pair (a, as + e) from randomly selected pair (x, y),
where a is randomly sampled from Rq and s, e are randomly selected according
to a error distribution. Similarly, the search Ring-LWE is to recover s with the
the above pair (a, as + e).

Since in the submission to the competition of NIST’s post-quantum cryp-
tography, the submitted NewHope KEM was based on NewHope-simple, in the
remaining of this paper we refer to the encryption based approach when we use
NewHope. In NewHope, the polynomial ring Rq = Zq[x]/(xn + 1) is set with
q = 12289 and n = 1024 or n = 512. The selected error distribution in NewHope
is ψn

8 , which is a centered binomial distribution with parameter 8, and can be

easily sampled from computing
8∑

i=1

(bi − b′i). Here bi and b′i is randomly selected

from {0, 1}. The most important functions in the Newhope KEM are defined as
follows.

Definition 1. The Encode function can map each bit in ν′B ∈ {0, 1}256 to four
bits in k, which is for i = 0, 1, . . . , 255,

k[i] = k[i+ 256] = k[i+ 512] = k[i+ 768] =
⌊q

2

⌋
ν′B [i]. (1)

Definition 2. The Decode function is the inverse of the Encode function, which
can recover one bit of ν′A ∈ {0, 1}256 from four bits in k′, i.e., ν′A = Decode(k′)
and

ν′A[i] =

{
1 if m < q,

0 otherwise,
(2)

where m =
3∑

j=0

|k′[i+ 256j]−
⌊
q
2

⌋
| for i = 0, 1, . . . , 255.

Definition 3. The Compression function Compress: Zq → Z8 is defined as c̄ =
Compress(c) and for i = 0, 1, . . . , 1023,

c̄[i] = b(c[i] · 8)/qe (mod 8). (3)

Definition 4. The Decompression function Decompress: Z8 → Zq is the inverse
of the Compression function c′ = Decompress(c̄), which is for i = 0, 1, . . . , 1023,

c′[i] = b(c̄[i] · q)/8e. (4)

In Table 1, we describe the details of the NewHope KEM. Since in NewHope,
the number-theoretic transform (NTT) is used to speed up the polynomial multi-
plication, which has nothing to do with security. To simplify the security analysis
of NewHope, in Table 1 we use ordinary multiplication instead of NTT. To share
a same key, the two participants Alice and Bob should share a common a in ad-
vance, which is randomly selected fromRq. The NewHope key exchange protocol
consists of three parts:

(1) Alice selects sA and eA uniformly at random from ψn
8 , and computes a

public key PA = asA + eA. Then Alice will send PA to Bob.

A Key Mismatch Attack on NewHope 5

Table 1. The NewHope KEM

Common parameter: a←− Rq

Alice Bob

sA, eA
$←− ψn

8

PA ←− asA + eA
PA−−−−−−→ sB , eB , e

′
B

$←− ψn
8

PB ←− asB + eB

νB
$←− {0, 1}256

ν′B ← SHA3-256(νB)
k←Encode(ν′B)
c←− PAsB + e′B + k

c′ ← Decompress(c̄)
(PB ,c̄)←−−−−−−− c̄←− Compress(c)

k′ = c′ −PBsA SkB ←− SHA3-256(ν′B)
ν′A ←− Decode(k′)
SkA ← SHA3-256(ν′A)

(2) After receiving PA sent by Alice, Bob will select sB , eB and e′B uni-
formly at random from ψn

8 , and compute a public key PB = asB + eB . Then
Bob will choose νB randomly from {0, 1}256 and compute ν′B ← SHA3-256(νB),
k←Encode(ν′B), c←− PAsB + e′B + k and c̄←− Compress(c). Subsequently, Bob
will send PB and c̄ to Alice, and compute the shared key SkB

←− SHA3-256(ν′B).

(3) When Alice receives the PB and c̄ sent by Bob, she will calculate c′ ←
Decompress(c̄), k′ = c′ − PBsA, ν′A ←− Decode(k′) and her shared key SkA

←
SHA3-256(ν′A).

3 The Proposed Key Mismatch Attack

In this section, we will use the key mismatch method to assess the security of
the NewHope KEM when the public key is reused.

Algorithm 1: Oracle

Input: PB , c̄, SkB

Output: 1 or 0
1 c′ = Decompress(c̄);
2 k′ = c′ −PBsA ;
3 ν′A ←− Decode(k′);
4 SkA ← SHA3-256(ν′A);
5 if SkA = SkB then
6 Return 1;
7 else
8 Return 0;

6 Y. Qin et al.

In a key mismatch attack, the adversary A is an active adversary who plays
the role of Bob, and we build an oracle O that simulates Alice in Table 1.
We assume that Alice’s public key PA is reused and A can query the oracle
a number of times. In Algorithm 1 we describe how the oracle works. To be
specific, A calculates PB , as well as c̄ and SkB

generated by using a selected ν′B .
By receiving the input (PB , c̄, SkB

), the oracle will use PB and c̄ to calculate
c′, k′, ν′A, SkA

and checks whether SKA
= SKB

holds, if yes the oracle O will
output 1 and 0 otherwise. Specifically, if O outputs 1, SkA

and SkB
match and

ν′A = ν′B . If O outputs 0, SkA
and SkB

mismatch and ν′A 6= ν′B . We can see that
the adversary can get useful information from the oracle by knowing whether
the two keys SkA

and SkB
match or not, and further recover sA using these

information.
The main challenge in launching a key mismatch attack against the NewHope

KEM is that, 4 coefficients of sA, for example sA[i], sA[i+ 256], sA[i+ 512], and
sA[i + 768] are encoded and decoded together, which makes it hard to decide
each of them.

3.1 Bauer et al.’s method

In this subsection, we briefly introduce Bauer et al.’s method in [5]. They used
the key mismatch attack to recover Alice’s private key sA if Alice’s public key PA

is reused. Set S1= {−8,−7, . . . ,−1, 0, 1, . . . , 7, 8} and S2= {−6,−5, . . . , 2, 3, 4}.
Their basic idea is to recover all the coefficients in S2. First of all, the adversary
A directly chooses ν′B = (1, 0, · · · , 0). If A wants to recover the quadruplet
(sA[i], sA[i+256], sA[i+512], sA[i+768]), he will set his public key PB = b q8cx

−i

and c̄ =
3∑

j=0

((lj + 4) mod 8)x256j , here each lj ranges from −4 to 3. Then he will

send (PB , c̄, SkB
) to the oracle O. When O receives (PB , c̄, SkB

), he will honestly
calculate c′,k′, ν′A and SkA

. If SkA
= SkB

he will return 1 and 0 otherwise.
Finally, A will calculate the private key according to O’s output. Since each
quadruplet (l0, l1, l2, l3) corresponds to an output of O, the adversary A can
recover the coefficients of the private key if he can find outputs in a form like
1, · · · , 1, 0, · · · , 0, 1, · · · , 1 as (l0, l1, l2, l3) changes. Here this kind of form is
called a favorable case.

Specifically, if A wants to recover sA[i] in sA, he can first set each lj (j =
1, 2, 3) be randomly selected from −4 to 3, and then by letting l0 = −4, the
resulted output is a bit b0. Next A can increase l0 to −3, with the same lj (j =
1, 2, 3) the resulted output is another bit b1. Repeating the above processes until
l0 becomes 3, there will be 8 bits bj (j = 0, 1, · · · , 7). The above processes will
be repeated with different lj (j = 1, 2, 3) until A finds a favorable case. Then the
adversary A can recover the coefficients in S2 by recording the positions where
1 changes to 0 and 0 goes to 1 in the favorable case. A will repeat the above
processes until he recovers all the coefficients of sA that belongs to S2.

We have generated 1, 000 secret keys and repeated the experiments using
Bauer et al.’s method. Unfortunately, even for coefficients in [-6,4] we cannot

A Key Mismatch Attack on NewHope 7

recover at least 262 of them in each secret key with 1024 coefficients. What
makes the situation worse is that in some cases the recovered coefficients are
wrong and we cannot detect these cases using Bauer et al.’s method. Another
problem is that, for the coefficients outside [-6,4], they suggested an exhaustive
search. But for each secret key on average there are 10 coefficients that need to
be exhaustively searched, and each of them has 6 possibilities. This makes Bauer
et al.’s method highly inefficient.

Algorithm 2: Find-τ

Input: b
Output: τ

1 set τ = NULL, τ1 = NULL, τ2 = NULL ;
2 if b[0] = 1 then
3 for i := 1 to 6 do
4 if (b[i− 1] = 1) and (b[i] = 0) then
5 τ1 = i− 4;
6 if (b[i] = 0) and (b[i+ 1] = 1) then
7 τ2 = i− 4;

8 end

9 else if b[0] = 0 then
10 for i := 1 to 6 do
11 if (b[i− 1] = 0) and (b[i] = 1) then
12 τ1 = i− 4;
13 if (b[i] = 1) and (b[i+ 1] = 0) then
14 τ2 = i− 4;

15 end

16 τ = τ1 + τ2;
17 if τ > 0 and b[0] = 1 then
18 τ = τ − 8;
19 else if τ <= 0 and b[0] = 1 then
20 τ = τ + 8;
21 if τ is odd and τ1 6= NULL and τ2 6= NULL then
22 odd number = odd number +1;
23 odd τ = τ ;

24 else if τ is even and τ1 6= NULL and τ2 6= NULL then
25 even number = even number +1;
26 even τ = τ ;

27 else
28 τ = NULL;
29 end
30 Return τ ;

8 Y. Qin et al.

Table 2. The relationship between τ and sA[i]∈[-6,4]

odd τ even τ favorable odd τ even τ favorable odd τ even τ favorable
cases cases cases

-6
0 2048 2048

-5
1408 0 1408

-4
0 1952 1952

136 1784 1920 1160 296 1456 152 1792 1944

-3
1408 0 1408

-2
0 2080 2080

-1
2176 0 2176

1312 232 1544 240 1824 2064 1808 320 2128

0
0 2080 2080

1
1472 0 1472

2
0 2048 2048

400 1656 2056 1344 512 1856 504 1328 1832

3
1408 0 1408

4
0 2048 2048

848 808 1656 520 1264 1784

Algorithm 3: Find-s-in-S2

Output: s (the coefficients in S2)
1 for k := 0 to 255 do

2 Set PB = b q
8
cx−k;

3 for j := 0 to 3 do
4 Set odd number = 0, even number = 0, count = 0;
5 while count < 50 do
6 (l0, l1, l2, l3)← [−4, 3]4; b[8]← 0;
7 for i := −4 to 3 do

8 lj = i; c̄ =
∑3

h=0((lh + 4) mod 8)x256∗h;
b[i] = Oracle(PB , c̄, SkB);

9 end
10 t =Find-τ(b);
11 if t 6= NULL then
12 count = count +1

13 end
14 if odd number >= even number then
15 temps= b(odd τ)/2c ∗ 2 + 1;
16 test(temps);

17 else if even number > odd number then
18 temps = even τ ;
19 test(temps);

20 end

21 end

22 end
23 s[k + j ∗ 256] = temps;
24 Return s

A Key Mismatch Attack on NewHope 9

3.2 Our Improved Method

In this subsection, we propose an improved method to recover the coefficients in
S2.

First in Algorithm 2 we propose how to calculate τ1 and τ2, which paly
an important role in our following recovery. We can also determine whether
b = (b0, . . . , b7) is a favorable case or not through the calculated τ1 and τ2.
In Bauer et al.’s method, there is only one kind of favorable case in the form
1, · · · , 1, 0, · · · , 0, 1, · · · , 1. In this case, we use Bauer et al.’s method to calculate
τ1 and τ2, which records the positions where 1 goes to 0 and 0 changes to 1,
respectively. Through experiments, we find that there is another favorable case
in the form 0, 0, · · · , 0, 1, · · · , 1, 0, · · · , 0. In this case, we use τ1 and τ2 to record
the positions where 0 goes to 1 and 1 changes to 0, respectively. The precise
definition of τ1 and τ2 can be found in Algorithm 2. If the output of Algorithm
2 is NULL, there is no favorable case, otherwise we can find a favorable case.

In Table 2, we show the relationship between τ = τ1 + τ2 and sA[i] in S2. In
Bauer et al.’s method, they assume that the value of τ is either even or odd. But
our experiments show that there exist both even and odd τs, and this is also the
reason why Bauer et al.’s method cannot recover the coefficients completely.

Then, in Algorithm 3 we propose how to recover all the coefficients in S2. The
main idea is that we repeat the processes in Algorithm 2 until we find enough
favorable cases. Of course if we can find more favorable cases, then the recovery
of coefficients can be more exact, but this needs more time and more queries. To
take a balance, in Algorithm 3, we try to get 50 favorable cases. Next, we can
use the data collected in these 50 favorable cases to recover the coefficients in
S2.

We use odd-number and even-number to record the times the odd and even
τ occurs, and the corresponding values of τ are stored in odd τ and even τ ,
respectively. We can see from Table 2 that if the coefficient sA[i] is odd, then odd-
number is larger than the even-number, and vice versa. Therefore, if even-number
is larger than the odd-number, the corresponding coefficient sA[i] is calculated
as sA[i] = even τ . Otherwise, we calculate it as sA[i] = b(odd τ)/2c ∗ 2 + 1.

Table 3. sA[i] and the possible τs

sA[i] 4 3 2 1 0 −1 −2 −3 −4 −5 −6

τ 3 4 2 3 1 2 0 1 0 1 −2 −1 −3 −2 −4 −3 −5 −4 −6 −5 −7 −6

Since we only get 50 favorable cases, there may exist the case one coefficient
is recovered to be another coefficient. For example when sA[i] = 3, the corre-
sponding odd-number and even-number are close. So if the recovered coefficient
is 3, we need to eliminate the case that we recover 4 to be 3. In order to solve
this problem, we generate 1000 secret keys, and record the possible values of τ
for each coefficient between −6 and 4. As shown in Table 3, the corresponding τs

10 Y. Qin et al.

can help us decide which one is correct. For example, when sA[i] = 4, the possible
values of τ are 3 and 4, but if sA[i] = 3, the corresponding values of τ are 2 and 3.
Since 3 is odd, the recovered 3 must be calculated by b(odd τ)/2c∗2+1. We can
know that odd τ = 3, and odd-number must be bigger than the even-number.
We can see that in the two cases the odd τs are the same, but the even τs are
different, so we can distinguish them according to the value of even τ . Specif-
ically, if even τ = 2 we can determine that the recovered coefficient is correct.
But if even τ = 4, we make sure that the recovered coefficient is wrong, which
should be 4. Similarly we can correct most of the errors using this method, and
finally with a high probability we can recover all the coefficients in S2.

3.3 The Complete Attack

Table 4. The distribution of the coefficients in a quadruplet

S1= {−8,−7, . . . ,−1, 0, 1, . . . , 7, 8}
S2= {−6,−5, . . . , 2, 3, 4} S1-S2= {−8,−7, 5, 6, 7, 8}

4 coefficients in S1

100%

4 coefficients in S2 Others

95.84%

4.16%

3 coefficients in S2 2 coefficients in S2

1 coefficient in S1-S2 2 or more coefficients in S1-S2

98.50% 1.50%

After recovering all the coefficients that belongs to S2, the remaining problem
is how to recover the coefficients in S1−S2? In table 4, we have analyzed and listed
the distribution of the coefficients in a quadruplet through our experiments. We
have generated 106 keys following the centered binomial distribution, and then
taken an average. We can see that all the coefficients are in set S1, and the
probability that all the coefficients of the quadruplet are in S2 is 95.84%. In
the remaining 4.16% quadruplets, there is at least 1 coefficient that belongs to
S1−S2. Our key observation is that, with 98.50% probability there is only 1
coefficient that belongs to S1−S2, while the other 3 coefficients are in S2 in the
remaining quadruplets.

Without loss of generality, we assume that sA[i+ 256], sA[i+ 512] and sA[i+
768] are in S2 and sA[i] is in S1−S2. Using our improved method in Algorithms 2
and 3, we can recover sA[i+ 256], sA[i+ 512] and sA[i+ 768]. Then, our strategy
is that if we can compute the sum of these four coefficients, we can recover sA[i]
by eliminating sA[i + 256], sA[i + 512] and sA[i + 768] from the sum. In the
following, we describe the complete attack.

To launch the attack, the adversary A will deliberately select the parameters
sB and eB to calculate the public key PB , as well as the parameter ν′B to

A Key Mismatch Attack on NewHope 11

calculate c̄. For each integer i in 0, 1, · · · , 255, if A wants to recover sA[i], sA[i+
256], sA[i+ 512], sA[i+ 768], he will choose sB and e′B to be 0 in Rq, and an eB

of which coefficients are all zero, except that eB [512] = h1. Here h1 increases
from 0 to q− 1. Instead of randomly selecting νB to calculate ν′B , the adversary
A will directly set all coefficients of ν′B as 0 except that ν′B [i] = 1.

As A sets sB = 0, correspondingly now the public key is PB = asB + eB =
eB . According to the definition of the Encode function, we have

k = Encode(ν′B) =
⌊q

2

⌋
xi +

⌊q
2

⌋
xi+256 +

⌊q
2

⌋
xi+512 +

⌊q
2

⌋
xi+768,

and the resulted c = PAsB + e′B + k = k.
Then, since c̄[i] = b(c[i] · q)/8e mod 8, if c[i] =

⌊
q
2

⌋
, then c̄[i] = 4, according

to the above analysis and the definition of the Compress function

c̄ = Compress(c) = Compress(k) = 4xi + 4xi+256 + 4xi+512 + 4xi+768.

After that A will send (PB , c̄, SkB
) to O, who will then calculate

c′ =Decompress(c̄) =
⌊q

2

⌉
xi +

⌊q
2

⌉
xi+256 +

⌊q
2

⌉
xi+512 +

⌊q
2

⌉
xi+768, (5)

as well as
k′ = c′ −PBsA = c′ − eBsA. (6)

Finally SkA
= SHA3− 256(Decode(k′)).

In the following, we propose our method to recover the exact value of sA[i]
in an efficient way.

Algorithm 4: Find-m1

Input: i
Output: m1

1 for h1 := 0 to q − 1 do
2 eB = 0, set eB [512] = h1; PB = eB ;
3 ν′B = 0, set ν′B [i] = 1 ;
4 k←Encode(ν′B); c̄ = Compress(k);
5 SkB ←− SHA3-256(ν′B); v = Oracle(PB , c̄;SkB) ;
6 if v = 1 then
7 m1 = b(q + 2)/h1e;
8 break;

9 else
10 continue;

11 end
12 Return m1

The adversary A chooses the parameters as described above, and the com-
plete attack consists of four steps.

12 Y. Qin et al.

Algorithm 5: Full-recovery

Output: s′ (All the coefficients in S1)
1 s′ ← Find-s-in-S2();
2 for i := 0 to 255 do
3 for j := 0 to 3 do
4 if s′[i+ 256 ∗ j] < −6 or s′[i+ 256 ∗ j] > 4 then
5 break;

6 end
7 m1 = Find-m1(i);
8 for k := 0 to 3 do
9 if k 6= j then

10 m1 = m1 - |s′[i+ 256 ∗ k]|;
11 end
12 if s′[i+ 256 ∗ j] < 0 then
13 s′[i+ 256 ∗ j] = −m1;
14 else
15 s′[i+ 256 ∗ j] = m1;

16 end
17 Return s′

Step 1: In this step, the adversary A uses our improved method in algorithm 2
to recover all the coefficients belonging to S2.
Step 2: In this step, the adversary A wants to decide m1 = |sA[i]| + |sA[i +
256]| + |sA[i + 512]| + |sA[i + 768]|. First, A sets all the coefficients of eB as 0,
except eB [512] = h1. From equations 5, 6 and b q2e = 6145, we have

k′ = c′ − eBsA

= [6145− (−sA[i+ 512]eB [512])]xi + [6145− (−sA[i+ 768]eB [512])]xi+256

+ (6145− sA[i]eB [512])xi+512 + (6145− sA[i+ 256]eB [512])xi+768

= [6145− (−sA[i+ 512]h1)]xi + [6145− (−sA[i+ 768]h1)]xi+256

+ (6145− sA[i]h1)xi+512 + (6145− sA[i+ 256]h1)xi+768.

The last equation holds since x1024 = −1 in Rq. So, for i = 0, 1, . . . , 255, accord-
ing to the Decode function we have

m =

3∑
j=0

|k′[i+ 256j]− 6145|

= |1 + sA[i+ 512]h1|+ |1 + sA[i+ 768]h1|+ |1− sA[i]h1|+ |1− sA[i+ 256]h1|
= 1 + sA[i+ 512]h1 + 1 + sA[i+ 768]h1 + sA[i]h1 − 1 + sA[i+ 256]h1 − 1

= (sA[i] + sA[i+ 256] + sA[i+ 512] + sA[i+ 768])h1.

Then the adversary let h1 change from 1 to q, at the beginning m < q,
Decode(k′[i]) = 1 and the oracle O will output 1. As h1 increases, correspond-
ingly m also increases until it reach the point that m ≥ q. Now the output of O

A Key Mismatch Attack on NewHope 13

becomes 0. By recording the value of h1 when the output of O changes, we can
know that here m roughly equals q, and A can calculate m1 = b q

h1
e by setting

m = m1h1 = q.

It should be noted that with m1 = |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|,
if A can determine that sA[i] = 0, then A will skip Step 3.

The main processes of Step 2 is shown in Algorithm 4.

Step 3: In this step, the adversary A tries to determine the sign of sA[i]. In Step
1, if sA[i] is outside [−6, 4], then sA[i] will be recovered to an incorrect value,
but its sign is correct. So, we can directly determine the sign of sA[i] according
to this. There are only two special cases when sA[i] = 8 or sA[i] = −8 then the
correct sign of sA[i] is opposite to that recovered in Step 1.

Step 4: The adversary A verifies whether the private key he recovered is correct
by calculating the distribution of PA−asA. Since a and PA are public, if A gets
the correct private key, then the distribution is the same as that of eA, which
should follow the centered binomial distribution.

4 Experiments

In this section, we show the efficiency of our proposed attack. All our imple-
mentations are done on a MacBook Air, which is equipped with a Intel Core i7
processor at 2.7 GHz and an 8 GB RAM.

First of all, we want to show the advantage of our proposed algorithm 2 in
recovering coefficients belonging to S2 = {−6,−5, . . . , 2, 3, 4}. To make our ex-
periment more convincing, we use the code the designers of NewHope submitting
to the NIST [2] to generate 1000 secret keys. Then we implement Bauer et al.’s
method to recover the coefficients belonging to S2. Unfortunately, using Bauer
et al.’s method we cannot even recover all the coefficients belonging to S2 in
every secret key. In other words, in every secret key with 1024 coefficients, there
are at least 262 coefficients in S2 that cannot be recovered.

On the other side, when we use our method as shown in algorithm 2, in 992
keys we can recover all the coefficients belonging to S2, and in the remaining 8
keys there are at most 2 coefficients that cannot be recovered. Then, by using
algorithms 2 and 4 together we can recover all the coefficients belong to S1 =
{−8,−7, . . . , 6, 7, 8}. In our experiment, we also generate 1, 000 secret keys. The
result is, in 969 keys we recover all the coefficients in S1. Thus the probability
of successfully recovering the whole secret key is 96.9%.

In our proposed method, first we implement our proposed algorithms 2 and
3 to recover the coefficients belonging to S2. Then we will use algorithm 4 to
calculate m1 = |sA[i]|+ |sA[i+ 256]|+ |sA[i+ 512]|+ |sA[i+ 768]|, and get the
absolute value of the coefficient that belonging to S1-S2. For example, if we do
not know sA[i], we can have |sA[i]| = m1−|sA[i+256]|−|sA[i+512]|−|sA[i+768]|.
Finally, we will follow the Steps 3 to decide the sign of sA[i] and verify whether
the recovered is correct using the method in Step 4.

14 Y. Qin et al.

Fig. 1. Comparison of queries between different T

From the above experiments, we also find that in each secret key with 1024
coefficients, the most possible number of coefficients that belongs S1-S2 is be-
tween 7 and 15. In the following, we set T the number of coefficients in S1-S2.

Table 5. Queries needed in recovering coefficients in S2 and S1-S2

T 7 8 9 10 11 12 13 14 15

Queries S2 879,246 879,458 879,829 879,396 881,418 879,181 878,118 883,281 882,896

Queries S1-S2 1,764 1,795 2,269 2,094 2,319 3,167 2,583 2,988 3,346

Total 881,010 881,254 882,098 881,490 883,738 882,348 880,701 886,269 886,242

In Figure 1, we report the average number of queries for recovering coefficients
in S2 and S1-S2 when T ranges from 7 to 15. The specific queries is given in
Table 5. We can see that the number of queries used in recovering coefficients
in S2 is almost 365 times more than the number of queries required to recover
the coefficients in S1-S2. The reason is when recovering a coefficient in S2, we
need to find 50 favorable cases, which need a large number of queries. We can
also observe that as T increases from 7 to 15, the average number of queries
for recovering coefficients in S2 is between 878, 118 and 883, 281. It does not
increase a lot as T increases. This is because when we recover coefficients in S2,
we need to randomly generate (l0, l1, l2, l3) to get the favorable cases. Since the
number of favorable cases is fixed at 50, the number of queries is almost the
same. On average the number of needed queries is 879, 725. On the other side,
as T increases, the number of queries for recovering coefficients in S1-S2 will
increase. When we recover a coefficient in S1-S2, we need to use the Algorithm

A Key Mismatch Attack on NewHope 15

Fig. 2. The average time (ms) between different T

4. Larger T means that there are more coefficients that cannot be recovered by
Algorithm 2, and more queries are needed.

Table 6. Average Time (ms) needed in recovering coefficients in S2 and S1-S2

T 7 8 9 10 11 12 13 14 15

Time S2 137.08 137.27 137.25 137.09 137.45 137.29 137.08 137.99 137.04

Time S1-S2 0.16 0.16 0.20 0.19 0.20 0.28 0.23 0.22 0.28

Time 137.24 137.43 137.45 137.29 137.66 137.58 137.31 138.21 137.33

When T increases from 7 to 15, the average time for recovering coefficients
in S2 and S1-S2 is shown in Figure 2, and the specific data is given in Table 6.
We can see that the time required to recover coefficients in S2 occupies 99% of
the total time, since a lot of time is spent on looking for the 50 favorable cases
when we recover the coefficient in S2. We can also observe that as T increases,
the average time for recovering coefficients in S2 is between 136 ms and 138 ms,
which is almost the same due our above analysis.

Compared with using an exhaustive research to find coefficients in S1-S2, our
proposed method is much more efficient. In the exhaustive search experiment the
best strategy is to search each element in the order {5, 6, 7,−7, 8,−8}. Then, we
can verify whether the recovered private key is correct by calculating the distri-
bution of e′A = PA−asA. If we get a correct private key, then the distribution of
e′A is the same as that of eA, which follows the centered binomial distribution.
As an example, when T = 12, if we use an exhaustive search the required time
is about 1.91 hours. From this perspective, our proposed attack is very efficient.

16 Y. Qin et al.

5 Conclusion

In this paper, we have analyzed the security of NewHope when the public key
is reused. We developed Bauer et al.’s method and proposed a complete and
efficient key mismatch attack on NewHope. Since these kinds of lattice-based
key exchange schemes are widely believed to replace the DH key exchange in
the quantum age, their resistance to misuse situations are of high importance.
It is worth noting that the NewHope KEM submitted to NIST is CPA secure,
which is then transformed into CCA-secure using Fujisaki-Okamoto transforma-
tion. Therefore, the proposed key mismatch attack does not harm the NewHope
designers’ security goals. But our results show that when designers who base
their approaches on the lattice-based key exchange should be careful to avoid
the public key reuse, which is common in the design with DH key exchange
approaches.

Acknowledgments

The work presented in this paper was supported in part by the National Natural
Science Foundation of China under Grant no. 61672029.

Bibliography

[1] Alagic, G., Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang,
Q., Liu, Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status Report
on the First Round of the NIST Post-Quantum Cryptography Standardiza-
tion Process. US Department of Commerce, National Institute of Standards
and Technology (2019), https://nvlpubs.nist.gov/nistpubs/ir/2019/
NIST.IR.8240.pdf. Last accessed 26 February 2019

[2] Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D.: Newhope: Algorithm specification and supporting
documentation. submission to the nist post-quantum cryptography stan-
dardization project, 2017, https://newhopecrypto.org/data/NewHope_

2018_12_02.pdf. Last accessed 27 February 2019

[3] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without rec-
onciliation. IACR Cryptology ePrint Archive 2016, 1157 (2016), https:
//www.cryptojedi.org/papers/newhopesimple-20161217.pdf. Last ac-
cessed 17 February 2019

[4] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key ex-
changea new hope. In: 25th USENIX Security Symposium (USENIX Secu-
rity 16). pp. 327–343 (2016)

[5] Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of newhope. In: Cryptographers Track at the RSA Conference.
pp. 272–292. Springer (2019)

[6] Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key ex-
change for the tls protocol from the ring learning with errors problem. In:
2015 IEEE Symposium on Security and Privacy. pp. 553–570. IEEE (2015)

[7] Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal
function with reused keys in rlwe key exchange. In: 2017 IEEE International
Conference on Communications (ICC). pp. 1–6. IEEE (2017)

[8] Ding, J., Cheng, C., Qin, Y.: A simple key reuse attack on lwe and ring
lwe encryption schemes as key encapsulation mechanisms (kems). Cryptol-
ogy ePrint Archive, Report 2019/271 (2019), https://eprint.iacr.org/
2019/271. Last accessed 21 April 2019

[9] Ding, J., Fluhrer, S., Rv, S.: Complete attack on rlwe key exchange with
reused keys, without signal leakage. In: Australasian Conference on Infor-
mation Security and Privacy. pp. 467–486. Springer (2018)

[10] Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme
based on the learning with errors problem. IACR Cryptology EPrint Archive
2012, 688 (2012), https://eprint.iacr.org/2012/688.pdf. Last ac-
cessed 26 February 2019

[11] Fluhrer, S.R.: Cryptanalysis of ring-lwe based key exchange with key share
reuse. IACR Cryptology ePrint Archive 2016, 85 (2016), http://eprint.
iacr.org/2016/085. Last accessed 18 February 2019

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://newhopecrypto.org/data/NewHope_2018_12_02.pdf
https://newhopecrypto.org/data/NewHope_2018_12_02.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://eprint.iacr.org/2019/271
https://eprint.iacr.org/2019/271
https://eprint.iacr.org/2012/688.pdf
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085

18 Y. Qin et al.

[12] Gao, X., Ding, J., Li, L., Liu, J.: Practical randomized rlwe-based key
exchange against signal leakage attack. IEEE Transactions on Computers
67(11), 1584–1593 (2018)

[13] Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based en-
cryption. In: Cryptographers Track at the RSA Conference. pp. 319–339.
Springer (2011)

[14] Liu, C., Zheng, Z., Zou, G.: Key reuse attack on newhope key exchange pro-
tocol. In: International Conference on Information Security and Cryptology.
pp. 163–176. Springer (2018)

[15] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Cryptology - EUROCRYPT. pp. 1–23 (2010)

[16] Peikert, C.: Lattice cryptography for the internet. In: International work-
shop on post-quantum cryptography. pp. 197–219 (2014)

[17] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM) 56(6), 34:1–40 (2009)

[18] Rescorla, E.: The transport layer security (tls) protocol version 1.3. Tech.
rep. (2018), http://www.rfc-editor.org/info/rfc8446. Last accessed 26
February 2019

[19] Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated
key exchange from ideal lattices. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 719–751.
Springer (2015)

http://www.rfc-editor.org/info/rfc8446

	A Complete and Optimized Key Mismatch Attack on NIST Candidate NewHope

