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Abstract. In Side Channel Analysis, masking is known to be a reliable and robust
counter-measure. Recently, several papers have focused on the application of the
Deep Learning (DL) theory to improve the efficiency of side channel attacks against
implementations protected with this approach. Even if these seminal works have
demonstrated the practical interest of DL in the side-channel context, they did not
argue on their theoretical soundness nor quantify their efficiency, especially with
respect to the optimality bounds published so far in the literature. This paper aims
at addressing this question of optimality, in particular when masking is applied.
We argue that minimizing the Negative Log Likelihood during the training of Deep
Learning models is actually asymptotically equivalent to maximizing a lower bound
of the mutual information between the observations and the target secret chunk, or
equivalently to minimizing an upper bound on underlying side-channel efficiency. Also,
we argue that training a Deep Neural Networks consists in finding the parameters that
maximize the Perceived Information introduced by Renauld et al. at EUROCRYPT
2011. These theoretical results allowed us to formally study the impact of masking
counter-measures against Deep Learning based Side Channel attacks. In particular,
and as expected, we verified, both on simulations and on experimental traces, that
Boolean masking is sound against such a class of Side Channel attacks.
Keywords: Side Channel Analysis · Profiling Attacks · Machine Learning · Deep
Learning · Masking · Mutual Information · Perceived Information · Negative Log
Likelihood · Cross Entropy

1 Introduction
1.1 Context
Side-channel analysis is a class of cryptanalytic attacks that exploits weaknesses of a
physical implementation of a cryptographic primitive. During its execution, the primitive
processes values, called sensitive variables, that depend on both a piece of public data (e.g.
a plaintext) and on some chunk of a secret value (e.g. a key), and of a plaintext. Knowing
the plaintext and a sensitive value (or at least having some information about it) and the
plaintext enables an attacker to reduce the search space of the key chunk. Implementations
of secure cryptographic algorithms such as the Advanced Encryption Standard (AES)
can then be attacked by recovering each byte of the secret key separately thanks to a
divide-and-conquer strategy, thereby breaking the high complexity usually required to
defeat such an algorithm. This information is usually gathered thanks to physical leakages
such as the power consumption or the electromagnetic emanations measured on the target
device. Actually, conducting an SCA is equivalent as studying the conditional probability
distribution of the sensitive variables given the physical measure. It can be done for
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example through the computation of statistics such as a difference of means [KJJ99] or a
correlation coefficient [BCO04].

For the specific type of SCA called profiling attacks, an attacker will try to estimate
the whole conditional distribution thanks to a profiling phase during which he has access
to an open sample for which he knows the value of the target variable. Such an access
allows him to estimate the conditional distribution. Next, he will try to recover the secret
key thanks to a Maximum Likelihood principle with the help of the estimated distribution.
This Maximum likelihood is done on attack traces, that is to say traces that have been
acquired on the final target device. Historically, Gaussian Template Attacks (GTA) have
first been proposed in the early 2000’s [CRR02].

Recently, the SCA community has benefited the resurgence of Deep Neural Networks
(DNNs) [KSH12] to apply them to profiling attacks, e.g. in [MZ13, LBM14, GHO15,
LBM15, MDM16]. Their main advantage is that they do not always require pre-processing,
and are at least as efficient as the other state-of-the-art profiling attacks. The training of
a DNN model is done through the minimization of a loss function computed on empirical
data (i.e. the profiling traces in our context). The application of DNN models has
been afterwards experimentally shown to be robust to some counter-measures, namely
de-synchronization [CDP17] and masking [MPP16]. The first type of counter-measure
consists in inducing a deformation to the leakage signal by adding for example random
dummy operations or jitter. The second one consists in sharing a sensitive variable in
several parts (each share being prone to noise, recovering the original data will be harder).
While desynchronization transforms the signal without removing information, masking
has been proved to reduce the information leakage by a factor which is exponential in
the number of shares [CJRR99, PR13]. Nevertheless both counter-measures have been
shown to be empirically sound against practical attacks [SVO+10, VMKS12], and their
use in industrial implementations is today common. In view of this popularity, it is today
mandatory to measure, for each new implementations’ context, their effectiveness against
the most powerful class of adversaries, namely adversaries performing profiling attacks
(and especially Deep Learning attacks).
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Figure 1: Principle of Mutual Information Estimation
with Deep Learning.

When it comes to assess the
security of an implementation
against profiling attacks, an eval-
uator follows a Maximum Likeli-
hood approach and tries to find
the best model, i.e. a function
that outputs scores that can be
taken as probabilities, such that
the secret key recovery in the at-
tack phase is successful with a
minimal number of queries N?

a to
the target device [BGH+17]. This
problem is called the Evaluation
Problem (denoted in Figure 1 by
the blue rectangle on the right).

Denoting by Z the attack tar-
get and by X the noisy observa-
tion, an optimal analytical solution is to consider the true conditional probability mass
function (pmf) F ? = Pr[Z|X] illustrated by the green disk on Figure 1. Unfortunately,
such a pmf remains unknown to the evaluator. To deal with this unknown, the proposed
approach in the literature of profiling attacks with Deep Learning consists in solving a
Supervised Classification task (illustrated by the top blue rectangle on Figure 1). This
task aims at finding a model that maximizes the so-called accuracy, namely the probability
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that the best score assigned to a hypothetical value of the sensitive variable corresponds
to the true value of this variable. The reason for solving this problem is that Supervised
Classification shares the same analytical optimal solution as in the Evaluation Problem,
namely the true conditional pmf F ?. However, such an analytical solution is not perfectly
reachable, depending on the bias induced by the choice of a class of Machine Learning
models for approximating the solution.

1.2 Problematic
Though Supervised Classification with Deep Learning has led to good practical profiling
attacks, this approach has been first questioned by Cagli et al. who mentioned in [CDP17]
that the accuracy metric may not be equivalent to the most commonly used Side Channel
metrics, namely the Guessing Entropy (GE) and the Success Rate (SR). This fact has
been empirically verified by Picek et al. in [PHJ+19]. These observations imply that the
principle consisting in approaching an optimal solution to the Supervised Classification
Problem may not be theoretically equivalent as approaching the optimal solution to the
Evaluation Problem. This is illustrated by the top right red arrow on Figure 1.

Yet, the question of the relevance of the accuracy is ill-posed since its maximization
is not directly feasible in practice. Instead, Deep Learning models are typically trained
by using the Maximum Likelihood Estimation principle, which consists in minimizing a
surrogate loss function called Negative Log Likelihood (NLL) as illustrated on Figure 1 on
the left. This trick has been applied in many contexts such as Computer Vision [GBC16],
without being proved to be theoretically sound for maximizing the Accuracy.

We think that the study, in the Side Channel Analysis context, of supervised classifica-
tion approached with a Maximum Likelihood Estimation principle is an important step
towards a good understanding of their efficiency and soundness. Indeed, since though an
attacker only needs to know an efficient practical approach to train a DNN for attacking a
device, a developer needs a theoretically grounded approach to be able to give the best
security bounds on the complexity of mounting a profiling attack, especially when the
implementation is protected by classical counter-measures, such as masking.

1.3 Our contribution
In this paper, we will address the question of the optimality of a Deep Learning based
attack in presence of masking from the Evaluation Problem point of view.

As our first contribution, we claim that in order to assess the Evaluation Problem,
one must not consider the Supervised Classification approach as theoretically grounded.
This is illustrated by the red arrows in Figure 1, and will be explained in details in
Subsection 2.3. In brief, not only the link between the accuracy and the optimal solution
of the Evaluation Problem is questionable (as previously mentioned), but the link between
the actual loss function minimized when training Deep Learning models and accuracy is
also not theoretically grounded. This is illustrated in Figure 1 by the top left red arrow. As
a consequence, it is not proved yet that the current training approach for Deep Learning
is sound with regards to the Evaluation Problem.

On the positive side, and it will be our second contribution, we emphasize that Maximum
Likelihood Estimation and the Evaluation Problem may be indeed connected to each other
through another link illustrated in Figure 1 by the two bottom green arrows. Indeed it
turns out that a series of papers [PR13, DFS15, BHM+19, dCGRP19] has highlighted the
link between the minimal number N?

a of queries to target device needed to succeed the
attack is connected to the Mutual Information (MI) through the following inequality:

f(β)
MI (Z;X) ≤ N

?
a , (1)
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where β is the minimal success rate required by the evaluator, f is a strictly increasing
function, N?

a is the minimal number of attack traces needed to build the optimal model,
and MI (Z;X) is the mutual information between the sensitive target variable Z and the
corresponding leakage X.

Inequality 1 implies that estimating the mutual information enables to lower-bound the
solution of the Evaluation Problem. We will show that actually the Maximum Likelihood
Estimation principle is a sound approach to achieve such an estimation.
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Figure 2: DNNs can optimally extract infor-
mation of masked data (see fourth contribu-
tion).

Indeed, we will explain that minimizing
the NLL loss of a DNN model is consistent
with minimizing the Cross Entropy between
the true conditional pmf F ? = Pr[Z|X] and
the pmf induced by the model, denoted by
F (X)[Z]. This means that when the num-
ber of profiling traces converges towards
infinity, both problems of minimizing the
NLL loss and of minimizing the Cross En-
tropy are equivalent. This consistency is
useful, since it turns out that the Cross
Entropy is always an upper bound of the
conditional entropy of the sensitive variable
when knowing the leakage model, as we ex-
plain in Subsection 3.2. In the specific Side
Channel Analysis context, knowing such a
conditional entropy directly gives the MI.
Hence, minimizing the NLL loss is asymp-
totically equivalent to maximizing a lower bound of the MI, or equivalently minimizing
an upper bound on the left-hand side of Inequality 1. This is actually the approach an
evaluator is looking for in order to assess the worst-case scenario in Side Channel Analysis.
That is why Deep Learning based Side Channel Analysis makes sense in an evaluation
context.

Our third contribution is to identify connections between the preceding result and an
information theoretic notion called Perceived Information (PI), introduced in [RSV+11]
and recently studied by Bronchain et al. in [BHM+19]. In the latter paper, the authors
show that the PI is a lower bound of the MI. Rephrased to our context, namely if θ
denotes the vector containing all the parameters of a DNN model, and PI (Z;X; θ) denotes
the information between a sensitive target variable Z and its leakage X that has been
perceived by a DNN model with parameters θ, their result tells that

∀θ,PI (Z;X; θ) ≤ MI (Z;X) . (Bronchain et al.)

We will show that the information perceived by a DNN and its Cross Entropy are
actually two sides of a same concept. Provided with this link, we can show that training a
DNN actually consists in finding the best parameters such that the PI is maximal. More
precisely, if θ̂ is the parameter vector obtained by minimizing the NLL loss over a profiling
set of Np traces, then:

PI
(
Z;X; θ̂

)
P−→

Np→∞
sup
θ

PI (Z;X; θ) ≤ MI (Z;X) , (This paper)

where P−→
Np→∞

denotes the convergence in probabilities.

Since it is easy to compute the NLL loss on a DNN, the PI is also very straightforward
to compute and can advantageously replace the accuracy as a metric to measure the
quality of a training with regards to the underlying side-channel attack. As a consequence,
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not only the training of a DNN easily gives a lower bound on the MI, but the Maximum
Likelihood Estimation will be proved to be sound to maximize the PI, in order to have the
tightest possible bound for a DNN. Note that there is no reason why the latter inequality
would actually be an equality. However, we will give theoretical reasons why the gap
between the supremum and the MI is negligible for Multi-Layer Perceptrons (MLP), which
constitutes the most simple class of DNNs.

Provided with all these theoretical results, it was now possible to formally study the
impact of counter-measures against practical Deep Learning based Side Channel attacks,
which is our fourth contribution. We verified, both on simulations and on experimental
traces, that the Boolean masking counter-measure is sound against such a class of Side
Channel attacks. We have been able to verify on simulations that the information optimally
perceived by a MLP (denoted by the crosses in Figure 2) fits well the theoretical MI
(denoted by the lines in Figure 2), thereby confirming the soundness of DNN attacks
up to a Boolean masking order of three. The same experiment has been also conducted
on experimental traces acquired on a XMEGA128D thanks to the Chip Whisperer Lite
board [O’F16]. They allowed us to experimentally verify that the Perceived Information
approximately follows the same trend, namely an exponential decrease, as theoretically
predicted for the MI in [PR13, DFS15].

1.4 Related Work
Masking has first been shown to be sound byChari et al. in [CJRR99]. This result has
been extended by the authors of [PR13, DFS15]. It claims that the required number of
attack traces in a worst-case scenario grows exponentially with the number of shares. This
has been empirically verified in [GBPV10, SVO+10, GSM17, LPR+14].

The first Deep Learning based attacks on masked implementations have been conducted
by [GHO15, LBM15, MDM16]. However, they relied either on low-entropy masking schemes
or on the assumption that one has access to the values of each share of the masking. The
very first paper to present a DL based attack defeating masking while relaxing the previous
assumptions has been proposed by [MPP16]. In order to answer the problem of breaking
protected implementations with DL, the authors of [PSB+18] have released the public
database named ASCAD. They also present a CNN model that has been able to defeat the
first order Boolean masking scheme contained in the database. This has also been noticed
in [KPH+18, Tim19]. The author of [Tim19] has even succeeded in targeting a sensitive
variable protected by two masks, in a non-profiled scenario. However, he only needs to
target one bit of the sensitive variable, namely the Most Significant Bit, to distinguish the
right key hypothesis from the wrong ones. Our paper extends this study to masking orders
greater than 2 and builds theoretical foundations to explain the experimental results.

In parallel, the previously mentioned papers have evaluated the efficiency of their attacks
with classical Side Channel metrics that have been introduced in [SMY09]: the Guessing
Entropy (GE) and the Success Rate (SR). Such metrics have sometimes been compared to
the Accuracy classically involved to quantify the quality of a training. Surprisingly, none
of the papers using the NLL loss as the function to minimize reported the obtained values
with this minimization, though the vast majority of the works on Deep Learning for SCA
used this loss to train their models.

Picek et al. studied in [PHJ+19] the relevance of several Machine Learning metrics,
without finding any good candidate strongly related to the Side Channel metrics. Never-
theless, they have not investigated the NLL loss, as the classifiers they considered were not
set to output scores that could have been interpreted as probabilities. Our work will show
that directly monitoring the NLL loss is relevant in the context of Side Channel Analysis,
since it can be related to the MI (as claimed in Subsection 1.3).

So far, the estimation of MI has been conducted with parametric and non-parametric
methods [PR10, BGP+11]. To the best of our knowledge, none of these techniques have
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been shown to be efficient: parametric estimations suffered from the bias induced by the
choice of parametric models, while non-parametric techniques suffer from the fact that
the leakage has a continuous nature, though being discretized. We will explain why our
approach for estimating the MI can give fairly good results.

1.5 Organization of the paper
The paper is organized as follows. In Section 2, we introduce the profiling attack scenario.
We discuss the relevance of the Supervised Classification Problem in a Side Channel context,
and propose another way to tackle the evaluation. Section 3 discusses the soundness of
minimizing the NLL loss since is consists in maximizing the Perceived Information which
is always a lower bound of the MI. A discussion about the tightness of such a lower bound
can be found in Appendix C. This will then be verified by simulations in Section 4, and
also illustrated on an experimental example in Section 5. .

2 Preliminaries

2.1 Notations
Throughout the paper we use calligraphic letters as X to denote sets, the corresponding
upper-case letter X to denote random variables (resp. random vectors X) over X , and the
corresponding lower-case letter x (resp. x) to denote realizations of X (resp. X). The i-th
entry of a vector x is denoted by x[i]. We denote the probability space of a set X by P(X ).
If X is discrete, it corresponds to the set of vectors [0, 1]|X | such that the coordinates
sum to 1. If a random variable X is drawn from a distribution D, then DN denotes
the joint distribution over the sequence of N i.i.d. random variables of same probability
distribution than X. The symbol E denotes the expected value, and might be subscripted
by a random variable EX , or by a probability distribution E

X∼D
to specify under which

probability distribution it is computed. Likewise, V denotes the variance of a random
variable. The output of a cryptographic primitive C is considered as the target sensitive
variable Z = C(P,K), where P denotes some public variable, e.g. a plaintext chunk,
where K denotes the part of secret key the attacker aims to retrieve, and where Z takes
values in Z = {s1, . . . , s|Z|}. Among all the possible values K may take, k? will denote
the right key hypothesis. Side-channel traces will be viewed as discrete realizations of a
random column vector X with values in X = [0, 2ω − 1]D where ω depends on the vertical
resolution of the oscilloscope used for the acquisitions (usually, we have ω ∈ {8, 10, 12}.

Let (An)n be a sequence of random variables and let A be another random variable.
We say that An converges in probabilities towards A, denoted as An

P−→
n→∞

A when the
following property holds:

∀ε > 0,Pr [|An −A| ≥ ε] −→
n→∞

0.

We now define some Information Theoretic quantities that have been taken from [CT06].
Let Z ∈ Z be a discrete random variable. The entropy of Z, denoted by H(Z), describes
the uncertainty to guess the value of a realization of a discrete random variable Z. It is
formally defined by:

H(Z) , −
∑
s∈Z

Pr[Z = s] log2 Pr[Z = s].

Likewise, the conditional entropy of a discrete random variable Z given another random
variable X quantifies the remaining uncertainty on the guess of Z once X is known. It is
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formally defined as:

H(Z|X) , E
X

[
−
∑
s∈Z

Pr[Z = s|X] log2 Pr[Z = s|X]
]
.

If D and D′ are two probability distributions on Z, we define the Kullback - Leibler
divergence (or KL divergence) as:

D(D ‖ D′) ,
∑
s∈Z
D(s) log2

D(s)
D′(s) .

This quantity is typically used to measure the difference between two discrete probability
distributions, since it is always non-negative and equals zero if and only if D = D′. Thanks
to the previous definitions, we can introduce the Mutual Information (MI) between two
variables Z and X as:

MI (Z;X) , H(Z)− H(Z|X) = D(Pr[X, Z] ‖ Pr[X]Pr[Z]).

This characterizes how much information can be obtained about Z by observing X.

2.2 Profiling Attacks and their Evaluation
This section presents the framework we will consider when attacking a device through a
profiling attack. Once presented, we will set the goal of an evaluator.

The considered scenario is made of the following steps:

• Profiling acquisition: a dataset of Np profiling traces is acquired on the pro-
totype device. It will be seen as a realization of the random variable Sp ,
{(x1, z1), . . . , (xNp

, zNp
)} ∼ Pr[X, Z]Np , where all the xi (resp. all the zi) are

i.i.d. realizations of X (resp. Z).

• Profiling phase: based on Sp, a model is built that returns a set of scores for each
hypothetical value of Z, that can be assimilated to a pdf (possibly after normalization).
F : X → P(Z).

• Attack acquisition: a dataset of Na attack traces is acquired on the target device. It
will be seen as a realization of Sa , (k?, {(x1, p1), . . . , (xNa , pNa)}) such that k? ∈ K,
and for all i ∈ J1, NaK, pi ∼ Pr[P ] and xi ∼ Pr[X|Z = C(k?, pi)].

• Predictions: a prediction vector is computed on each attack trace, based on the
previously built model: yi = F (xi), i ∈ J1, NaK. For each trace, it assigns a score to
each key hypothesis, namely, for every j ∈ J1, |Z|K, the value of the j-th coordinate
of yi corresponds to the score assigned by the model to the hypothesis Z = sj when
observing xi.

• Guessing: the scores are combined over all the attack traces to output a likelihood
for each key hypothesis; the candidate with the highest likelihood is predicted to be
the right key. A Maximum Likelihood score can be used for the guessing. For every
key hypothesis k ∈ K, this score is defined as:

dSa
[k] ,

Na∑
i=1

log (yi[zi]) where zi = C(pi, k). (2)
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Based on the scores in Equation 2, the key hypotheses are ranked in a decreasing
order. Finally, the attacker chooses the key that is ranked first. More generally, the
rank gSa

(k?) of the correct key hypothesis k? is defined as:

gSa(k?) ,
∑
k∈K

1dSa [k]>dSa [k?]. (3)

If gSa
(k?) = 1, then the attack is considered as successful.

To assess the difficulty of attacking a target device with profiling attacks (which is assumed
to be the worst-case scenario for the attacked device), it has initially been suggested
to measure or estimate the minimum number of traces required to get a successful
attack [Man04]. Observing that many random factors may be involved during the attack,
the latter measure has been refined to study the average ranking of the correct guess as
a function of the number of attacked traces [SMY09]. This corresponds to the so-called
Guessing Entropy (GE) [SMY09] defined as:

GE(Na) , E
Sa

[gSa(k?)] . (4)

One can equivalently study the quantiles of the rank of the right key. This metric is called
the Success Rate [SMY09]:

SR(Na) , Pr [gSa(k?) = 1] . (5)

Within this framework, it is common to rely the evaluator’s goal in the worst-case scenario
to the following problem [LPB+15, HGM+11, PHJ+19]:

Problem 1 (Evaluation Problem). Given a profiling set Sp, find a model F that minimizes
Na such that SR(Na) ≥ β, where β is a threshold defined by the evaluator.

The advantage of this Problem 1 is that a trivial optimal solution is given by the
conditional pdf of the leakage, as stated in the following proposition.

Proposition 1 ([HRG14]). The model F ? defined by ∀x ∈ X ,∀s ∈ Z, F ?(x) = Pr[Z =
s|X = x] (or F ? = Pr[Z|X]) is the optimal solution of Problem 1. We denote N?

a the
corresponding minimum number of attack traces.

Proposition 1 tells us that the conditional pdf is the best model we can build so far
for a profiling attack. Yet, such a solution is still analytical and remains unknown to the
evaluator, so we need to approximate it. A natural approach consists in finding such an
approximation on a restricted set of models. This restriction will enable us to consider
the found approximation as a solution to a surrogate problem that will be easier to solve.
This is the current approach that is usually done when applying Machine Learning for
profiling attacks. The next section will explain how sound or not this approach can be for
the Evaluation Problem.

2.3 Problems with Supervised Classification
Machine Learning aims at finding, in a set of functions, the element that maximizes a
performance metric for a given task given a set of empirical data. In an evaluation context,
this implies first to precisely define the task we want to learn and the associate performance
metric. We will present in this section the approach commonly used for profiling attacks,
namely supervised classification, and will discuss its soundness.

Before continuing in the reasoning, we need to introduce the notion of parametrized
hypothesis class that is defined as follows.
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Definition 1 (Parametrized hypothesis class). A parametrized hypothesis class is a set H
of parametric pdfs of the form: x 7→ F (x, θ) ∈ P(Z) where θ ∈ Θ ⊆ Rq denotes the vector
gathering all the parameters. Thus, Θ is the parameters space and equivalently defines
H.1

The main interest of this definition is that the optimization problem over a functional
space is now reduced over a subset of Rq.

Based on this reduction, several Machine Learning based models have been proposed to
solve Problem 1, with fairly good practical results as recalled in the introduction. They are
inspired by the most commonly known Machine Learning task: supervised classification.
In this task, the goal is to maximize the accuracy of the model, namely the rate of good
predictions over the distribution of the data. For any function F : X −→ P(Z), this
accuracy is denoted by Acc(F ) and is defined as:

Acc(F ) , Pr
[
argmax
s∈Z

F (X)[s] = Z

]
It turns out that the classical supervised classification and the Evaluation Problem are
linked, thanks to the following proposition:

Proposition 2 (Bayes Error for Supervised Classification [SSBD14]). Let F ? be the
conditional pdf, i.e. F ? = Pr[Z|X]. Then for any function F : X → P(Z) we have

Acc(F ) ≤ Acc(F ?). (6)

In other words, no model can have a better accuracy than the one defined with the
true conditional pdf. As a consequence the approach of finding the best model according
to the accuracy seems sound, as the optimal solution is the same that for Problem 1. Yet,
in practice, such an optimal solution is never reachable, and sub-optimal solutions are
searched with supervised classification. This therefore raises the question of the soundness
of such a sub optimal solution for Problem 1. This question has first been pointed out by
Cagli et al. who mentioned in [CDP17] that the accuracy only corresponds to finding the
model that maximizes SR(1), which is different from the criterion we consider in Problem 1.
Likewise, Picek et al. empirically verified in [PHJ+19] that the accuracy of some Machine
Learning models such as SVM or Random Forest they trained was not always related to
the Guessing Entropy.

Even more problematic, for the most part of Machine Learning models, the accuracy is
not even the metric that is directly optimized. The reason is that this is a non-continuous
function, whose derivatives are zero almost everywhere, which makes the search of an
optimal model NP-hard [SSBD14]. Instead, a surrogate loss is used with the hope that
minimizing this new loss will also maximize the accuracy as a side effect. In most use cases
of Deep Learning applied to SCA, the used surrogate loss is the Negative Log Likelihood,
which is defined as follows:

Definition 2 (Negative Log Likelihood). Given Sp = {(X1, Z1), . . . , (XNp , ZNp) ∼
Pr[X, Z]Np , and a DNN model defined by θ from a hypothesis class H, the Negative
Log Likelihood is defined as:

LSp
(θ) , 1

Np

Np∑
i=1
− log2 F (Xi, θ)[Zi]. (7)

Furthermore, we define the Maximum Likelihood Estimator as the parameter vector from
Θ that minimizes the NLL loss computed over the profiling set Sp: θ̂ , argminθ∈Θ LSp

(θ).

1In the following, both notations H and Θ will be used interchangeably according to the context.



10 A Comprehensive Study of Deep Learning for Side-Channel Analysis

The soundness of the use of a surrogate loss is formulated by a property called calibration.

Definition 3 (Calibration [BJM06]). Let H be an hypothesis class (not necessarily
parametrized), and let L : P(Z)→ R+ be a loss function. We say that the surrogate loss
function L̃ : P(Z)→ R+ is calibrated with L for H if for any sequence (hn)n∈N, hn defined
in H, we have:

L̃(hn) −→
n→∞

min
h∈H
L̃(h) =⇒ L(hn) −→

n→∞
min
h∈H
L(h).

In other words, minimizing the surrogate loss leads to the minimum of the target loss.

For example, a surrogate loss called Hinge Loss is shown to be calibrated with the
accuracy for the set of linear binary classifiers such as SVM [BJM06]. Unfortunately,
finding calibrated surrogate loss functions is hard in general, especially since it depends on
the nature of H. In particular, Guo et al. have empirically verified the following negative
result2:

Proposition 3 ([GPSW17]). The NLL loss is not calibrated with the Accuracy for modern
Deep Neural Networks.

To sum up, in all DL-based Side Channel Attacks reported so far the adversary is
minimizing a surrogate loss function that does not guarantee to minimize the accuracy,
which is itself poorly related to the actual metrics an evaluator wants to assess. This is
illustrated in Figure 1 by the red curves. In other words, the classical Deep Learning
approach used for Supervised Classification cannot explain why practical profiling attacks
made with Deep Learning has been so successfull. We propose such an argumentation in
the next sections.

2.4 Training for Leakage Assessment
Starting from the observation discussed in previous sections, this paper proposes to
substitute Problem 1 with another problem that is presented hereafter. This substitution
comes as a direct consequence of the recent literature on SCA that has stated that N?

a ,
namely the number of required attack traces in order to succeed an attack with the optimal
model of the Evaluation Problem, is linked to the MI between the sensitive attack target
and the leakage by the following inequality [dCGRP19]:

f(β)
MI (Z;X) ≤ N

?
a , (8)

where f is an invertible, strictly increasing function defined in [dCGRP19], and β is the
threshold defined in Problem 1. Cherisey et al. claim that the lower the MI, the tighter the
bound in Equation 8. Therefore, evaluating N?

a by estimating MI (Z;X) is hence relevant
for cases where the MI can be assumed to be low, in particular when counter-measures
are involved. Therefore, from the point of view of conservative security evaluation, it is
interesting to estimate the left-hand side in Equation 8, or equivalently to deal with the
following problem.

Problem 2 (Leakage Assessment). Given a profiling set Sp ∼ Pr[X, Z]Np , find the tightest
(i.e. the highest) lower bound on MI (Z; X).

The following section aims at addressing the Leakage Assessment problem. We will
show that training Deep Learning models is theoretically sound with respect to the latter
which implies that conducting profiled SCA with Deep Learning can be argued to be
relevant within this framework.

2We present in Appendix A a concrete example of miscalibration we have encountered during our
experiments



Loïc Masure, Cécile Dumas and Emmanuel Prouff 11

3 Deep Learning for MI Estimation
This section is devoted to show that a Deep Learning model trained by minimizing the
NLL loss fits with Problem 2. Subsection 3.1 studies the link between the NLL loss and an
information theoretical quantity called Cross Entropy, that we will define hereafter. Then,
Subsection 3.2 recalls the link between the Cross Entropy and the Mutual Information
(MI) between the sensitive variable and the leakage, which implies to emphasize that
minimizing the NLL loss actually may be viewed as maximizing a lower bound of the
MI. Subsection 3.3 will make a link between the Cross Entropy, and another information
theoretical quantity called Perceived Information (PI) introduced in [RSV+11] and recently
studied by Bronchain et al. in [BHM+19]. Finally, Subsection 3.4 discusses the gap between
the MI and a PI estimated by training Deep Learning based models. Eventually, it will be
concluded that the MI can be accurately estimated thanks to this approach.

3.1 The Consistency of the NLL Loss with Cross Entropy
We present in this subsection the property of consistency of the NLL loss minimization
with the minimization of an information theoretic quantity called Cross-Entropy, which
is first defined hereafter. This way, both minimization problems will be asymptotically
equivalent.

Definition 4 (Cross Entropy). Given a joint probability distribution of a target sensitive
variable Z and its leakage X denoted as Pr[X, Z], we define the Cross Entropy as the
expected value of each term in Equation 7:

LPr(X,Z)(θ) , E
X,Z

[− log2 F (X, θ)[Z]] , (9)

The idea behind Maximum Likelihood Estimation is to find the parameter θ̂ that
minimizes the NLL loss defined in Equation 7 with the hope that for Np high enough, θ̂
will be a good candidate for the solution of the minimization of Equation 9. Such a trick
is needed, as the true joint distribution of X and Z is actually unknown, and so is the
Cross Entropy.

According to the law of large numbers, the empirical loss converges in probabilities
towards the Cross Entropy [SSBD14] for any fixed θ. It is not trivial though that LSp(θ̂)
converges in probabilities towards minθ∈Θ LPr(X,Z)(θ), as θ̂ is varying for each value of Np.
Actually, the Cramer-Rao bound (a well known result in Statistics) [Cra99] guarantees
the latter convergence, but relies on assumptions that cannot be taken for granted, in
particular the assumption that there exists θ ∈ Θ such that F (., θ) = Pr[Z|X]. Hopefully,
we can circumvent this problem by using a more general result:

Theorem 1 (Consistency of Maximum Likelihood Estimation). Let Np ∈ N and let Sp be
a profiling set of size Np. Assume that H is a set of Neural Networks (or equivalently Θ is
its parameter space). Then:

LSp(θ̂) P−→
Np→∞

min
θ∈Θ
LPr(X,Z)(θ), (10)

LPr(X,Z)(θ̂)
P−→

Np→∞
min
θ∈Θ
LPr(X,Z)(θ). (11)

In other words, the solution given by Maximum Likelihood Estimation converges
towards the best possible solution for the Cross Entropy, and the NLL loss of θ̂ is a good
approximation of the generalization loss of θ̂. We say that the NLL loss is consistent with
the Cross Entropy for the set of Neural Networks H.
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Thanks to Theorem 1 we are guaranteed that the Maximum Likelihood Estimation is
consistent with the minimization of the Cross Entropy. As a consequence, any property
verified by the Cross Entropy is also asymptotically verified by the NLL loss (i.e. when
the number of profiling traces Np converges towards infinity). Therefore we can substitute
the analysis of the NLL loss with that of the Cross Entropy. It remains now to emphasize
interesting properties of the Cross Entropy in the context of the Leakage Assessment
Problem. A discussion about the consistency in the non-asymptotic case is conducted in
Subsection C.2

3.2 The Link between Cross Entropy and Mutual Information
In this subsection, we state the link between the Cross Entropy loss and the Mutual
Information. Such a link and the reduction argued in the previous section will allow us to
guarantee that minimizing the NLL loss is a consistent approach for solving the Leakage
Assessment Problem.

Let us now consider the Cross Entropy. The latter one can be rewritten in terms of
information theoretic quantities, as stated in the following lemma.

Lemma 1. The generalization loss can be rewritten as the sum of the conditional entropy
of Z|X and the expected value of the KL divergence:

LPr(X,Z)(θ) = H(Z|X) + E
X

[D(Pr[Z|X] ‖ F (X, θ))] . (12)

Lemma 1 gives an interesting decomposition of the Cross Entropy into two terms: the
conditional entropy and one term of KL divergence. The properties of the latter divergence
enable to state the following corollary.

Corollary 1. For every θ ∈ Θ, we have LPr(X,Z)(θ) ≥ H(Z|X). Moreover, there is equality
if and only if there exists θ such that the model F (., θ) identically equals the true conditional
pmf Pr[Z|X].

Corollary 1 explains that no model can have a better Cross Entropy than the conditional
entropy computed with the true pmf. The corresponding result is usually called the Bayes
error and is the error (in the sense of the Cross Entropy) made by the true conditional
pmf. The expected divergence term is the intrinsic error due to the choice of our model.

It turns out that if the target variable Z follows a known distribution over Z, e.g. Z
follows a uniform law, then we are able to make a link between the Cross Entropy and
the MI between the target sensitive variable and the leakage, as proposed in the following
corollary.

Corollary 2. We set the same context as in Corollary 1. If in addition we assume that
Z follows the uniform law over Z = Fn2 for some n ∈ N, then:

n− LPr(X,Z)(θ) ≤ MI (Z; X) , (13)

with equality if and only if there exists θ such that F (., θ) identically equals Pr[Z|X].

In other words, the Cross Entropy of any Deep Learning model enables to get a lower
bound of the MI. This tells nothing about the tightness of such a bound. Hopefully, based
on the previous results stated in this section, we can refine the preceding corollary, which
is our main result: minimizing the NLL loss is consistent with reaching the highest value
that can be obtained from the left-hand side of Equation 13.

Theorem 2 (Main result). Let Np ∈ N and let Sp be a profiling set of size Np. Assume
that H is a set of Neural Networks (or equivalently Θ is its parameter space). Let θ̂ be the
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Maximum Likelihood Estimator, i.e. the parameter from Θ that minimizes the NLL loss
computed over Sp. Then:

n− LSp
(θ̂) P−→

Np→∞
sup
θ∈Θ

{
n− LPr(X,Z)(θ)

}
≤ MI (Z; X) , (14)

n− LPr(X,Z)(θ̂)
P−→

Np→∞
sup
θ∈Θ

{
n− LPr(X,Z)(θ)

}
≤ MI (Z; X) . (15)

Equation 15 tells us that the left-hand side, converges towards the tightest lower bound
that can be obtained by computing the Cross Entropy of a model from H, thereby proving
the soundness of the Maximum Likelihood Estimation approach for addressing the Leakage
Assessment Problem. Even better, Equation 14 tells us that the NLL loss computed over
the profiling set converges towards the same supremum, so the value of the loss function
might give an accurate value of the MI if Np is high enough, and provided that the gap
between the supremum and the MI is negligible. Therefore, it might provide a It is then
of natural interest to discuss the conditions needed to get an accurate estimation of the
MI based on the left-hand side of Equation 14. This will be addressed in Subsection 3.4.
But before that, we would like to make a link between the Cross Entropy and another
information theoretic quantity introduced in Side Channel Analysis. This will be the topic
of the next section.

3.3 The Link between Cross Entropy and Perceived Information
In [BHM+19], the authors emphasize two quantities that bound the MI: the Hypothetical
Information(HI), and the Perceived Information (PI). The second one is the amount of
information that can be extracted from some data thanks to an estimated model, possibly
affected by estimation or assumption error. 3 We will show in this section that the PI
actually equals the Cross Entropy up to constant factors. Before proving this result, let us
recall the definition of the PI.

Definition 5 (Perceived Information [BHM+19]). Let Θ be the parameter space of a
parametrized hypothesis class H. Let θ ∈ Θ. The Perceived Information (PI) by the
model F (., θ) ∈ H between the target sensitive variable Z and the leakage X, denoted as
PI (Z;X; θ) is defined as:

PI (Z;X; θ) , H(Z) +
∑
s∈Z

Pr[Z = s] E
X|Z=s

[log2 F (X, θ)[s]] . (16)

Likewise, an Empirical Perceived Information, denoted as P̂INp
(Z;X; θ) is defined from a

profiling set Sp:

P̂INp
(Z;X; θ) , H(Z) +

∑
s∈Z

Pr[Z = s] 1
Np

∑
(x,z)∈Sp
z=s

log2 F (x, θ)[z] (17)

Informally, the PI is defined the same way as the MI, but by substituting the uncertainty
of the true pmf, namely log2 Pr[Z|X = x] with the uncertainty of the approximating
pmf, namely log2 F (X, θ). This phenomenon is exactly what defines the Cross Entropy.
Therefore, the PI can be recognized in the left-hand side of Equation 13 in Corollary 2.

3The HI is the amount of information that would be revealed by (hypothetical) data following the model
distribution. In our context, we only aim at estimating the conditional pmf Pr[Z|X], or in other words, at
estimating a discriminative model. The computation of the HI requires to have access to a generative
model that approximates Pr[X|Z], which we do not assume in our context.
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Lemma 2. The Cross Entropy and the NLL loss are respectively linked to the Perceived
Information and its empirical estimation as follows: 4

n− LPr[X,Z](θ) = PI (Z; X; θ) , (18)

n− LSp(θ) = P̂INp (Z; X; θ) . (19)

Therefore Lemma 2 tells us that the Cross Entropy and the Perceived Information are
exactly the same concept. As a direct consequence of Corollary 2, and as already pointed
out in [BHM+19, Theorem 6], we have for all θ ∈ Θ: 5

PI (Z;X; θ) ≤ MI (Z;X) . (20)

More interestingly, Theorem 2 can also be rewritten in terms of Perceived Information,
giving the following corollary.

Corollary 3 (Main result, with PI). Let θ̂ denote the Maximum Likelihood Estimator,
namely such that θ̂ , argminθ∈Θ LSp

(θ). Then: (1) θ̂ maximizes the empirical PI and (2)
the information perceived by θ̂ converges in probabilities towards the supremum of Perceived
Information over H.

P̂INp

(
Z; X; θ̂

)
P−→

Np→∞
sup
θ∈Θ

PI (Z; X; θ) ≤ MI (Z; X) (21)

PI
(
Z; X; θ̂

)
P−→

Np→∞
sup
θ∈Θ

PI (Z; X; θ) ≤ MI (Z; X) (22)

Hence, Corollary 3 tells us that the sequence PI
(
Z;X; θ̂

)
maximizes the Perceived

Information that can be extracted from the leakage thanks to our hypothesis class H. This
result is a bit stronger than the one given in [BHM+19, Theorem 5], though ours relies on
the assumption that the model is the Maximum Likelihood Estimator, whereas Bronchain
et al. did not assume anything about the nature of the model.

3.4 To what Extent the Obtained Bound is Tight?
So far we have argued that minimizing the NLL loss is a sound approach to tackle
Problem 2: it is indeed consistent with minimizing the Cross Entropy (cf Equation 12),
thereby consistent with maximizing the PI (cf Equation 16). In the particular case where
the hypothesis class H is a set of Neural Nets, it becomes now of natural interest to study
the gap between the MI and the NLL loss we are minimizing to assess the quality of the
built solution.

Such a minimization is typically done with a Stochastic Gradient Descent (SGD) algo-
rithm. For convex functions, SGD is shown to converges towards the minimum [SSBD14].
Unfortunately this assumption does not hold for the NLL loss applied to DNNs [GBC16].
Hopefully, the nature of the loss landscape implies that SGD still remains a good heuristic
to approach the minimum [LBH15]. We denote by θSGD the solution found by applying
SGD, and it becomes of natural interest to measure the suboptimality of the latter solution

4Actually, Equation 19 only holds if Sp is balanced, i.e. if the number of traces is the same for each
class in Sp. This can be assumed without loss of generality, since Z is drawn uniformly.

5 Comparing with the proof of Equation 20 given in Bronchain et al., the underlying idea is the same:
substituting F (., θ) with the true pmf by introducing a KL divergence term that is non-negative, which
implies the inequality. The only difference is that Bronchain et al. compute the expectation over X|Z
first, then over Z, whereas we compute first over Z|X and then over X. This prevents from introducing
the generative counterpart of our model, which we do not assume to have.
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compared to the solution of Maximum Likelihood Estimation. To this end, one can
decompose the gap between the solution found with SGD and the MI into three parts:

P̂INp
(Z;X; θSGD)−MI (Z;X) =

(
P̂INp

(Z;X; θSGD)− P̂INp

(
Z;X; θ̂

))
(23)

+
(

P̂INp

(
Z;X; θ̂

)
− sup
θ∈Θ

PI (Z;X; θ)
)

(24)

+
(

sup
θ∈Θ

PI (Z;X; θ)−MI (Z;X)
)
. (25)

Equation 25 corresponds to the approximation error : this error is due to the choice of a
restricted hypotheses class H from which we select our model. This error is of particular
interest as it gives a computational security bound. Corollary 3 shows that no model from
H can give a tighter lower bound on the MI. Equation 24 corresponds to the estimation
error. It is the error due to the fact that we do not maximize the PI (as the true pmf is
unknown) but rather its empirical estimation, since we only have a finite set of profiling
traces. Equation 23 corresponds to the optimization error. As mentioned in the beginning
of this section, this is the error made by the SGD algorithm, since it is not proved to
converge towards the solution of the Maximum Likelihood Estimation.

We remark that each error term refers to a restriction in the capacity of an evaluator
(finite hypothesis class, finite profiling set, heuristic for MLE instead of an exact solution).
That is why it is interesting to study in details those error terms separately. Some theoretical
discussions are proposed in Appendix C for each error term, and the experiments conducted
in Sections 4 and 5 assess each error term.

3.5 Partial Conclusions
The results we have stated so far are threefold:

First, the approach inspired by supervised classification with Deep Learning, namely
the search for the model with the best accuracy by minimizing the NLL loss, cannot
explain the good performances of the practical Deep Learning based Side Channel Attacks.

Second, the loss function we are usually minimizing can be interpreted as a Perceived
Information that aims at being maximized through the Maximum Likelihood Estimation.
This approach is sound with the Leakage Assessment Problem which is related to the
Evaluation Problem thanks to Equation 8. That is why in Section 4 and Section 5, we will
plot the PI, as computed with Equation 19, since it will enable to replace the accuracy in
order to compare and evaluate the efficiency of a trained model.

Third, to discuss the tightness of the Inequality 22, we can decompose the gap into
three terms, namely the approximation error, the estimation error and the optimization
error. A discussion about each error term can be found in Appendix C, but the experiments
conducted in Sections 4 and 5 study the practical impact of each term.

Eventually, the whole discussion conducted in this section, aiming at emphasizing the
links between Machine Learning concepts and metrics and the ones used in SCA, can be
synthesized in Table 1.

Table 1: Machine Learning metrics and their meaning in Side Channel Analysis
ML description ML metric SCA metric SCA description

Bayes error H(Z|X) = n−MI (Z; X) Informational security
bound on Z|X

+ Approximation error inf
θ∈Θ
LPr(X,Z)(θ) ⇐⇒ sup

θ∈Θ
PI(X;Z; θ) Computational bound

Cross Entropy LPr(X,Z)(θ) = n− PI (Z; X; θ) Perceived Information
NLL loss LSp (θ) = n− P̂INp (Z; X; θ) Estimated PI
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4 Study on simulated data
This section confronts the different propositions made so far with simulated experiments.
The aim of these experiments are: (1) to show experimentally that the PI, as defined
by Equation 19, is indeed a lower bound of the MI; (2) to show, in a case where we can
compute the exact MI between a sensitive target variable and a leakage, that the latter
lower bound is tight, so that the PI gives an accurate estimation of the MI; (3) to see to
what extent the masking order has a practical impact on the training of DNNs.6 To this
end, we first present the settings of our simulation in Subsection 4.1, and we afterwards
analyze them in Subsection 4.2.

4.1 Settings of the experiments
To verify the tightness of the bounds, we simulate simple D-dimensional leakages from an
n-bit sensitive variable Z. The traces are defined such that for every t ∈ J1, DK:

xi[t] =
{
Ui +Bi, if t /∈ {t1, . . . , td+1}
hw(zt,i) +Bi otherwise

, (26)

where (Ui)i, (Bi)i and all (zt,i)i are independent, Ui ∼ B(n, 0.5) (i.e. Ui is drawn from a
binomial law of parameters n and 0.5), Bi ∼ N (0, σ2), where hw denotes the Hamming
weight function and where (z1,i, . . . , zd+1,i) is a (d + 1)-sharing of zi for the bit-wise
addition law.7 This example corresponds to a situation where the leakages of the shares
are hidden among values that have no relation with the target, but have the same marginal
pmf. Since the zt,i are drawn uniformly, hw(zt,i) follows a binomial marginal pmf so they
are indistinguishable without prior knowledge. Hence the choice of Ui. Every possible
combination of the (d + 1)-sharing has been generated and replicated a given number
of times (denoted by q) before adding the noise, in order to have an exhaustive dataset.
Therefore, it contains q × 2(d+1)n simulated traces. Once the data were generated, we
trained a MLP with one hidden layer made of r = 1000 neurons. The training loss is
naturally the NLL loss.8 The training lasts 200 epochs, with a Stochastic Gradient Descent
and a learning rate of 10−3.

Our simulations comprise two main campaigns:

• Experiment 1 (without fool components): in this experiment, we set D = d + 1
in order to avoid to consider irrelevant input features. The simulations are done
over n = 4 bits, m ∈ {1, 2, 3, 4} and σ ∈ {0.01, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2}. We also
generate enough data so that the training set is "exhaustive", i.e. the number of
replicas is q = 2000. Therefore, we expect to make the estimation error negligible
in Equation 24.9 The gap between the MI and the PI should therefore only be
composed of the optimization error (23) and the approximation error (25).

• Experiment 2 (with fool components): in a second experiment, we have D = 40;
the fool components are taken into account and their position is randomly shuffled
among the relevant ones. Since all components share the same margin law, we recall
that they cannot be distinguished without knowing Z. Compared to Experiment 1,
we might expect the optimization error to be more important because of the potential
difficulty induced by the fool components. The estimation error might also increase,
but since we still have an exhaustive dataset, we expect it to remain negligible. The

6The two first aim at confirming previous analyses (e.g. done in [BHM+19]).
7A masking scheme of order d consists in a d+ 1-sharing of the sensitive target variable.
8Beware that in Pytorch and Tensorflow, the NLL loss is computed with natural logarithms, whereas

one must consider the logarithm in base 2.
9One can assess it by computing the ratio h

Np
defined in Equation 29.
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Figure 3: Information perceived by the MLP in Experiments 1 (left) and 2 (right).

goal is also to validate the results of Proposition 4, namely that non informative
components have no impact on the approximation error.

From those experiments, the Perceived Information PI (Z;X; θSGD) is estimated thanks to
a hold-out dataset of 1/5-th of the size of the training set size. For the sake of comparison,
we estimate the MI between the target sensitive 4-bit variable and its simulated leakage
model with a Monte Carlo sampling.

4.2 Analysis of the Results
In this section we analyze the results obtained by running the Experiments 1 and 2.

Experiment 1. The results of Experiment 1 are given in Figure 3 (left). The plain lines
correspond to the estimated MI and the crosses correspond to the information perceived
by the trained MLP, as computed from the Cross Entropy with Equation 19. We can see
that the crosses are always below the lines while staying very close. This experimentally
validates (1) that we actually have a lower bound of the MI as a performance metric, and
(2) that the gap between PI and MI is very small. Since we argued that the gap could only
be made of the approximation and optimization error, it implies that both are negligible,
relatively to the MI, in the particular case of a Hamming weight model with Gaussian
noise, no matter the order of masking (at least for d ≤ 4). This also empirically confirms
that the Universal Approximation Theorem might also hold when considering the KL
divergence instead of the Euclidean norm as an error metric. In other words, this shows on
a simple case that the loss optimized by a Neural Net can give a very accurate estimation
of the Mutual Information, thereby efficiently solving the Leakage Assessment Problem
(i.e. Problem 2). Note that for this experiment, we have never assumed to have any prior
knowledge on the leakage model during the profiling phase.10

Experiment 2. Likewise, the results of Experiment 2 are given in Figure 3 (right). The
lines correspond to the estimated MI and the crosses correspond to the information
perceived by the trained MLP. The case for m = 4 shares is missing because the training
would have taken too much time and memory: the exhaustive dataset would have weighed
20 GB, and one epoch, i.e. the time made by the SGD algorithm to process all the data at
least once, would have taken approximately one day. Figure 3 (right) looks almost exactly

10 A careful reader may remark that some points are missing for d ∈ {3, 4} and σ = 3.2: the trainings
were not successful. Either the validation loss was still equal to 4 bits, or marginally below 4 bits. In the
latter case, a confidence interval computed with Equation 31 in Appendix D was too wide to conclude
that the PI was strictly more than zero. This must tell that below a given MI threshold, the learning
might not be possible, or at least much harder even with an exhaustive dataset.
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the same as Figure 3 (left), except for some points, such as for 3 shares and σ = 1.6. The
latter point denotes a PI that is lower than the one obtained in Experiment 1. This is a clue
indicating that the optimization might have been harder than without fool components.
Besides this slight difference, the curves look the same. This provides clues to the veracity
of Proposition 4 given in Appendix, namely that the Approximation error is exponentially
increasing when the input dimensionality of the trace increases.

4.3 Discussions
Through the simulations, we have empirically verified that for a theoretical multivariate
Hamming weight leakage with a Gaussian noise, a simple MLP can not only approximate
well the true conditional pmf Pr[Z|X]. Indeed, we recall that the gap between the Cross
Entropy and the conditional Entropy, or equivalently the gap between the information
perceived by the model and the MI, can be written as a KL divergence between the true
pmf and the underlying pmf of the model. Since we have argued that this gap is negligible,
it follows that so is the KL divergence. This proves that our model is a good estimation of
the true pmf in the sense of the KL divergence.

Minimizing the NLL loss also gives accurate bounds on the mutual information between
the sensitive target variable and the leakage. This result is even stronger since it has been
obtained without giving any prior knowledge on the leakage model to the MLP. More
precisely, the simulations show that in practice, the approximation error might not be
limiting in a context of Side Channel traces. The capacity of a DNN to correctly estimate
the MI still needs to be verified on experimental conditions, and especially in cases where
one cannot assume to have an exhaustive profiling dataset. Therefore more information
will be learned about the estimation error.

5 Application on Experimental Data
So far, we have seen that Deep Neural Nets could reach the informational security bounds
of a leakage in simulated experiments, thereby giving useful estimations for the developer.
This success did not rely on any prior knowledge on the leakage, but was achieved thanks
to a simple MLP with one hidden layer. To confirm these observations, we propose to
complete the investigations by considering experimental leakage traces. Subsection 5.1
presents the acquisition of the dataset used for the experiments, Subsection 5.2 presents
the methodology of our experiments, Subsection F.1 details the MLP architecture that
has been used for the experiments, and Subsection 5.3 discusses their results.

5.1 Presentation of the Dataset
The leakage traces represent the power consumption of a XMEGA128D4 chip supported
on a Chip Whisperer Lite board [O’F16]. The program ran on the Chip aims at simulating
the leakage of several shares that may be processed by a protected implementation of a
cryptographic primitive. The firmware is directly written in assembly code and consists
in loading each byte of an input plaintext array to a register, setting it to zero and then
storing it back to the input array. Some details of the code are given in Appendix E.
500, 000 traces of 2500 time samples each have been acquired, along with the corresponding
bytes array denoted by plain[i], i ∈ J0, 15K. The complete acquisition has been done
within 15 hours.

To reproduce conditions similar to the simulations, we only target the n = 4 most
significant bits of the target variable. In other words, |Z| = 2n = 16. The generated target
values are Z =

⊕
i∈J0,dK plain[i] for d ∈ {0, 1, 2}, where ⊕ denotes the xor operation

between two bytes. This way, it can simulate leakages of order d.
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Provided with these target values, we selected Points of Interest (PoIs) based on the
magnitude of the Signal-to-Noise Ratio [MOP07]: between 4 and 6 PoIs are selected in
decreasing order of magnitude of SNR from each of the three first bytes of the plaintext
array. The time coordinates 13 to 16, 25 to 30 and 37 to 41 respectively correspond
to the PoIs of the latter bytes manipulation. This gives an input dimension of D = 15.
This way, we hoped to reduce the quantity of irrelevant components, which would have
made the optimization with SGD harder, and therefore hoped to get a good estimate that
corresponds the best to the approximation error (25).

Eventually, we verified that the traces did not contain unexpected leakages that
might help targeting masked variables (see Figure 6 and the corresponding discussion in
Appendix F).

5.2 Methodology
Details of the trained MLP can be found in Subsection F.1 The training has been done
with a variant of the SGD algorithm called Adam [KB15] through a number of epochs
denoted by T , i.e. each trace has been processed T times by the Adam algorithm. Over
the 500, 000 profiling traces, a portion k is used for the training, and the remaining is used
as a hold-out set for computing an unbiased estimate of the Perceived Information. In
other words, the profiling set is made of Np = k × 500, 000 traces while the hold-out set is
made of Nv = (1− k)× 500, 000 traces. We fix the limit k ≤ 4/5 so that the quality of the
estimation over the hold-out set remains satisfying: the error margin will be at most 10−2

with a confidence at least 90% in the worst case, according to Equation 31.
Two experiments have been done:

• Experiment 3: we set k = 1/2, T = 100. The aim of this experiment is to illustrate
the result of a simple training on real traces, and discuss how to interpret them in a
SCA context, in order to validate whether the MI may exponentially decrease with
the masking order.

• Experiment 4: we set T = 200 and let k vary so that Np ∈ J1, 000; 400, 000K.
This way, we will be able to plot the so-called learning curve, namely plotting the
values of PI (Z;X; θSGD) and P̂INp

(Z;X; θSGD) depending on Np. This is a classical
representation in Machine Learning to verify the consistency property claimed in
Corollary 3, evaluate the underlying convergence rate [SSBD14] and thereby the
non-asymptotic estimation error (24). It is expected that the empirical estimation of
the PI decreases with Np while the true PI increases, and both converge towards the
supremum of the PI.

5.3 Results and Discussions
Figure 4 presents the trainings done when targeting every combination of 1, 2 or 3 shares
among the considered ones. The plot illustrates the information perceived by the MLP
through the training epochs. It is reminded that since the PI is a lower bound of the MI,
one must read the curves as the information at least contained in the leakage.

It may be observed that the amount of information leaking on the sensitive un-split
variable seems to decrease at an exponential rate in the number of shares, as expected
from both theory [PR13, DFS15] and our simulations (see Section 4).

Figure 4 (right) presents the learning curves. As expected, the PI converges towards its
highest possible value obtained from the hypothesis class H, while the estimated PI from
the profiling set Sp decreases and also converges towards the same value. Note that there
is no theoretical reason that the true value of the MI is bounded by both curves. However,
since we have shown that the approximation error may be negligible in our context, there
are still strong chances that the MI can be bounded by both curves.
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Figure 4: Left: result of Experiment 3 for each considered target variable (7 in total).
Right: learning curve of Experiment 4 for three different target variables, where d = 0, 1, 2.

Another interesting observation is that the blue plain curve corresponding to the PI
obtained when targeting a second order Boolean masking does not directly increases before
Np = 250, 000. This tells that the profiling phase completely failed, since no information
at all could be extracted. Moreover, when the profiling phase did not fail, it took much
more traces for the PI of the trained model to converge towards its optimal value. So not
only masking highly drops the amount of information hidden in the Side Channel Traces,
but it also harden the extraction of information for Deep Learning models.

6 Conclusion
In this paper, we have given some theoretical and experimental reasons why the Deep
Learning paradigm is suitable for evaluating implementations protected by a masking
scheme through a Profiling Attacks scenario.

Contrary to what is commonly believed, the supervised classification approach is not
theoretically grounded. Yet, Deep Learning based attacks still worked. The reason is
that the underlying surrogate task DNNs are trained to is much more interesting, since it
is consistent with minimizing an information theoretical quantity named Cross Entropy
which is closely linked to the Mutual Information (MI) between the sensitive target variable
and the leakage.

We have made some parallels with another information theoretical quantity introduced
for Side Channel Analysis and recently studied: the Perceived Information (PI). It turns
out that the PI studied in SCA, and the Cross Entropy studied in Deep Learning are two
sides of the same coin. Therefore, we could state our main result, namely that the Deep
Learning approach actually consists in maximizing the information perceived by a Deep
Neural Network. Since the PI has the interesting property to be a lower bound of the MI,
the latter approach is nothing but refining the most possible such a lower bound.

The tightness of this lower bound has been studied, and both theoretical results and
empirical verifications have been provided through this paper. This study showed that the
PI estimated from a one hidden layer Neural Net can approach with a negligible error,
thereby providing a new way to accurately evaluate the MI.

This leads to the takeaway message of this paper: the Deep Learning paradigm is a
sound approach for defeating a masking scheme of higher order, even maybe the optimal
one. But it cannot outperform what is theoretically guaranteed by the security bounds
given for masking given by the Mutual Information.

This work being a theoretical study, it can be extended in many ways: a first one
could be the study of other masking schemes. Though it is not related in this paper,
similar results of Experiment 1 in Section 4 have been obtained for an arithmetical masking
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scheme. A second way to extend this work would be to not restrict the input traces to a
few PoIs, but also to study the case of high dimensionality. This would raise a challenge
for controlling the optimization error since the PoIs would be flooded into lots of irrelevant
features.
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A Example of non Calibrated Training
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Figure 5

We present an example of training showing how the NLL loss can be miscalibrated
with the Accuracy. A DNN has been trained to minimize the NLL loss of a 4 bits target
sensitive variable protected by two masks. The NLL loss is in red: the dotted line denotes
the loss computing over the profiling phase, i.e. what is minimized during the training,
whereas the plain line denotes the Cross Entropy over a hold-out set, i.e. some traces that
have not been used for minimizing the loss. Here, learning the sensitive target variable has
been so hard that while the training loss is indeed minimized, it poorly generalizes on the
hold-out set, since the NLL loss over this set slightly increases and is even greater than the
number of bits. The problem is that by looking at the Accuracy on the hold-out set, we
would conclude that the model performances generalize well: the final Accuracy is greater
than what could have been obtained with a random prediction. Therefore depending on
the choice of the performance metric, the conclusion radically change.

B Proofs of Lemmas and Theorems
Proof of Theorem 1. This is a direct consequence of the Fundamental Theorem of Statisti-
cal Learning which states that the result holds if and only if the VC-dimension of H is
finite [Vap99], which is a property verified by the set of Neural Networks [SSBD14], as it
can be bounded by a function of the number of neurons.

Proof of Lemma 1.

LPr(X,Z)(θ) , E
X,Z

[− log2 F (X, θ)[Z]]

= E
X,Z

[− log2 Pr[Z|X]] + E
X,Z

[− log2 F (X, θ)[Z]]− E
X,Z

[− log2 Pr[Z|X]]

= H(Z|X) + E
X,Z

[
log2

(
Pr[Z|X]
F (X, θ)[Z]

)]
= H(Z|X) + E

X

[
E
Z|X

[
log2

(
Pr[Z|X]
F (X, θ)[Z]

)]]
= H(Z|X) + E

X
[D(Pr[Z|X] ‖ F (X, θ))]
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Proof of Corollary 1. Let x ∈ X be fixed. The KL divergence is always non-negative and
equals zero if and only if both discrete distributions Pr[Z|X = x] and F (x, θ) are identically
equal [CT06]. This holds for all x ∈ X so the expected value of the KL divergence is also
non-negative and equals zero if and only if the latter equals zero almost everywhere on
X , which is true since X is assumed to be a discrete random variable. Hence the equality
between F (., θ) and Pr[Z|X].

Proof of Corollary 2. Straightforward from Corollary 1 by substituting H(Z|X) with
MI (Z;X)− H(Z) = MI (Z;X)− n.

Proof of Theorem 2. Straightforward, by combining Theorem 1 and Corollary 2.

Proof of Lemma 2. Starting from the definition of the PI, and by using the formula of
total probabilities for the expected value we have:

PI (Z;X; θ) , H(Z) +
∑
s∈Z

Pr[Z = s] E
X|Z=s

[log2 F (X)[s]] ,

= n+ E
Z

[
E

X|Z
[log2 F (X, θ)[Z]]

]
,

= n+ E
X,Z

[log2 F (X, θ)[Z]] ,

= n− E
X,Z

[− log2 F (X, θ)[Z]] ,

= n− LPr[X,Z](θ).

The proof for the empirical PI follows exactly the same reasoning with averages instead of
sums.

Proof of Corollary 3. Straightforward, by combining Equation 19, Equation 14 and Equa-
tion 15.

C Discussions about the Error Terms
C.1 The Approximation Error
It turns out that the approximation error for Deep Neural Networks is well documented. The
Universal Approximation theorem [Pin99] ensures that the set of Multi-Layer Perceptrons
(MLP) with one hidden layer is dense in the set of continuous conditional pmf over Z,
provided that the activation function is not a polynomial. Actually, there is not a single
formulation of the Theorem of Universal Approximation, but rather many similar ones
for different topologies or different sets of approximated functions. To the best of our
knowledge, there is no version of the theorem in the topology of the KL divergence but
the version proposed here-after may give satisfaction in our context. Before introducing it,
let us first start by setting some necessary definitions in order to introduce the theorem.
Definition 6. Let BD denote the unit ball in RD for the Euclidean norm. Let Wm

2 be
the Sobolev space over BD, namely the completion of Cm(BD) the space of functions m
times differentiable over BD and whose derivatives at order |k| ≤ m are continuous. The
Sobolev space is equipped with the following norm:

‖f‖m =

 ∑
0≤|k|≤m

‖Dkf‖22

1/2

.

Finally, we set Bm2 = {f ∈ Wm
2 : ‖f‖m ≤ 1}.
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We can now introduce the theorem:

Theorem 3 (Universal Approximation Theorem [Pet98]). Let D ∈ N∗ denote the dimen-
sion of the input traces, and let Bm2 be defined as in Definition 6. Let Mr be the set of
one hidden layer MLP with r hidden neurons activated by the ReLU activation function.
Then for all m ∈

[
1, 2 + D−1

2
]
we have:

sup
f∈Bm

2

inf
g∈Mr

‖f − g‖2 ≤ αr−m/D, (27)

where α is a constant independent of r.

Remark 1. All the Universal Approximation theorems only study the case where the
output dimensionality is one. The result can be extended without loss of generality to
multi-dimensional (|Z| in our case) outputs [HSW89, Corollary 2.6].

Theorem 3 says that when the input dimension increases, the number of neurons in
the hidden layer must exponentially increase at the same time to keep the approximation
error stable. On the opposite, the smoother the approximated function, the larger the
value of m such that the approximated function belongs to Bm2 ; and the smaller such
an exponential rate. This raises the problem of the curse of dimensionality when using
Neural Networks. But this worst-case scenario implies that each component of the input
is independent from the others, which is rarely the case when considering time series. In
our particular case, we may even assume the following statement made in several previous
studies [MBvLM12, CDP16, MDP19].

Assumption 1 (Sparsity). There only exists a small set of coordinates IZ , {t1, . . . , tC |C �
D} such that F ? , Pr[Z|X] = Pr [Z|X [t1] , . . . ,X [tC ]]. Moreover, |IZ | = O(d+ 1) where
d is the order of the masking scheme used in the implementation.

In other words, the true pmf is effectively defined on a restricted set of time coordinates
which is much smaller than the input trace length. Therefore, the previous theorem can
be rewritten as follows:

Proposition 4. Given Assumption 1, the approximation error depends on the number C
of input coordinates that co-jointly depend on the attack target variable:

sup
f∈Bm

2

inf
g∈Mr

‖f − g‖2 ≤ αr−m/C , (28)

Proposition 4 tells us that the input dimension of the leakage no longer contributes
to the approximation error, thereby breaking the curse of dimensionality. In particular,
the size C of IZ typically grows with the number of shares, provided the considered
implementation is protected by a masking scheme. However, in real cases, the order of
masking remains low (e.g. below 10), which prevents the approximation error to explode.

As a conclusion of this study of the approximation error we have shown that in the
context of Multi-Layer Perceptron, which is a simple type of Neural Nets, this error can
be easily controlled with the number of hidden neurons. Moreover, this error does not
depend on the input size of the traces, which prevents a curse of dimensionality regularly
met in SCA [CDP16, LPB+15]. 11

11It remains an open question whether this discussion actually holds when considering the topology
induced by the KL divergence and instead of the norm used in Theorem 3. Empirical verifications of this
claim have been provided in Section 4 and Section 5.
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C.2 The Estimation Error
The estimation error, as previously introduced in Subsection 3.4, is the error made by
optimizing the empirical PI instead of the actual PI. This gap often implies a common flaw
in Machine Learning called overfitting, namely when the model starts by learning by heart
the mapping of the finite profiling set Sp. The study of this error is also well documented
(see e.g. [Vap99, SSBD14]). The literature in Statistical Learning has proposed some
bounds on the quality of the result that do not depend on the nature of the true pmf:

Theorem 4 ([Vap99]). With probability at least 1 − δ the following holds true for all
θ ∈ Θ:

LPr(X,Z)(θ) ≤
LSp

(θ)
(1− γ

√
ε)+

,where (29)

ε = 4
h
(

log 2Np

h + 1
)
− log δ

Np
(30)

where h denotes the VC-dimension of H, where Np denotes the number of traces used to
compute the NLL loss, and where γ is a constant.

Informally, the VC-dimension h(Θ) of an hypotheses class quantifies its capacity to
contain a model F (., θ) that perfectly fits a mapping of at most h(Θ) points in X to the set
{0, 1}. It often (but not always) approximately equals the size #θ of the parameter vector.
In particular, we have a specific result for a class of Neural Nets, as proposed hereafter.

Proposition 5 ([SSBD14]). The VC-dimension of a MLP with one hidden layer made
of r neurons and one output neuron (i.e. |Z| = 2) is O(#θ log #θ), where #θ is the size
of the parameter vector, namely #θ = r(D + |Z|+ 1) + |Z|, with D being the size of the
input trace and |Z| being the number of hypothetical values.

Equation 4 is very strong, since it does not depend on the true conditional pmf Pr[Z|X]
nor on the value of θ. Indeed, we are only interested in this result for the specific case
where θ is the solution of Maximum Likelihood Estimation θ̂.

Unfortunately, the strength of Equation 4 comes with a major drawback: the bound
given in Equation 4 is very conservative. Indeed, the denominator in Equation 29 converges
towards one with a very slow rate, which cannot give strong guarantees in practise against
overfitting. Actually, some regularization techniques make one able to better control such a
convergence rate [Vap99], but this is not enough. The so-called mystery of Deep Learning
states that based on the practical successes of such models, there should be other bounds
less conservative [Har].

Hopefully, the estimation error can still be experimentally evaluated thanks to a hold-out
set of profiling traces. Concretely, we also compute the empirical PI on a hold-out set (or
validation set) Sv made of Nv profiling traces that have not been used to minimize the NLL
loss. Therefore, the estimation of PI from Sv will be unbiased. This is a classical technique
used in Machine Learning. But in our context, we might also need some confidence interval
for this estimation. To this end, we can use the Chebycehv’s inequality (see Appendix D)
to have an interval with a conservative confidence. This will be useful especially when
the MI (which we recall to be an upper bound of the PI) will be very low, in order to get
an hypothesis test for the question "Is PI

(
Z;X; θ̂

)
> 0?", or equivalently "Did my model

extract some information from my traces?".
Provided with this accurate tool for estimating the true PI, the estimation error will

naturally appear as the gap between P̂ISp

(
Z;X; θ̂

)
and P̂ISv

(
Z;X; θ̂

)
.

The takeaway message of this discussion is that when applying the Maximum Likelihood
Estimation with MLPs, one cannot get useful theoretical guarantees on the convergence
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rate of the consistency property given by Theorem 1. Hopefully, this is not a fatality, since
in practise, the convergence rate is much faster, and can be accurately estimated thanks
to the hold-out set.

C.3 The Optimization Error

It is recalled that the optimization error quantifies the fact that the solution to the
Maximum Likelihood Estimation cannot be directly found. Instead, the use of Stochastic
Gradient Descent (SGD) is empirically found to give a sound approximation of such a
solution. Actually, SGD is shown to converge to the exact solution when the loss function
is convex [SSBD14]. This cannot be assumed for Neural Nets [CHM+15]. Therefore, this
could lead to sub-optimal models. We will show in Section 5 a case where we can emphasize
problems due to optimization.

D Confidence Interval with a Hold-Out Set
As described in Subsection C.2, the bounds on the estimation error might be too high in
practical uses with Deep Neural Nets. This is why usually, the estimation of the Cross
Entropy is done otherwise. In cases where the evaluator has lots of data, he can take a
so-called hold-out that will be distinct from the profiling set Sp for the minimization of
the NLL loss. Therefore, these fresh data will give a more correct estimation of the Cross
Entropy.

Lemma 3 (Chebychev’s inequality [SSBD14]). Let H be a parametrized hypothesis class
and Θ its corresponding parameter space. Let Sv , {(x1, z1), . . . , (xNv

, zNv
) be a hold-out

set of Nv i.i.d. leakages and the corresponding values of the sensitive target variable.
Assume that V (− log2 F (X, θ)[Z]) ≤ 1. Then for all θ ∈ Θ, it holds with probability at
least 1− δ that:

|LPr(X,Z)(θ̂)− LSv
(θ̂)| ≤

√
1
δNv

(31)

Equation 31 will be used in Section 4 and Section 5 to estimate provide a conservative
confidence interval of the Cross Entropy and thereby the information between a sensitive
target variable and a leakage perceived by a Neural Net (PI).

E Source Code for the Acquisitions

Algorithm 1 loadData
1: LD r0, X . Loads the first byte in r0
2: CLR r0 . Clears the register
3: ST X, r0 . Stores 0 in the plaintext array
4: LD r0, X . Do it again to clear the bus
5: CLR r0
6: ST X, r0
7: LD r0, X . One more time to be sure
8: CLR r0
9: ST X+, r0
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F The Experimental Traces
To verify that there is no leakage implying a combination of different bytes, we have also
computed a SNR of order 2. That is to say that for each combination of 2 among the 16
bytes, the xor has been computed and used as a target variable in order to compute the
SNR. The absence of peaks confirms that there is no undesirable leakage. An example of
a trace and the SNRs of order 1 and 2 can be found in Figure 6.
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Figure 6: Top: an example of trace. Bottom: the SNRs of order 1 and 2 (in logarithm
scale).

F.1 The hypothesis class H
The hypothesis class H that will be used for the experiment has been defined as the set of
MLP with one hidden layer and r = 500 hidden neurons. In other words, there are two
linear layers: the hidden one, denoted by λθ1 , and the output one denoted by λθ2 . Symbols
θ1 and θ2 denote the associated real parameters of the hidden layer and the output layer
respectively. Between these linear layers, an activation layer called ReLU and denoted
by σ is added. This is a non-linear real valued function that is responsible of the high
capacity of MLP to approximate any pmf [GBC16].
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In addition, two batch normalization layers [IS15] have been applied at the input of
each linear layer. Batch Normalization (BN) layers simply normalize the input features
to a mean and a deviation that are automatically set by the SGD algorithm. BN has
been shown to make the loss function smoother, making the optimization easier and
faster [STIM18]. Finally, a dropout layer [SHK+14, GBC16] has been added on the input
of the softmax classifier. Dropout is known to prevent DNNs from overfitting (i.e. to
prevent the estimation error to explode), which is useful when one lacks data. The dropout
parameter has been set to p = 0.1 i.e. each neuron of the hidden layer is randomly set to
0 with probability p each time an output F (x, θ) is computed during the optimization.

All together, we can sum up the architecture of our MLP as follows:

F (x, θ) = s ◦ λθ2 ◦ µ ◦ δp ◦ σ ◦ λθ1 ◦ µ(x) (32)


	Introduction
	Context
	Problematic
	Our contribution
	Related Work
	Organization of the paper

	Preliminaries
	Notations
	Profiling Attacks and their Evaluation
	Problems with Supervised Classification
	Training for Leakage Assessment

	Deep Learning for MI Estimation
	The Consistency of the NLL Loss with Cross Entropy
	The Link between Cross Entropy and Mutual Information
	The Link between Cross Entropy and Perceived Information
	To what Extent the Obtained Bound is Tight?
	Partial Conclusions

	Study on simulated data
	Settings of the experiments
	Analysis of the Results
	Discussions

	Application on Experimental Data
	Presentation of the Dataset
	Methodology
	Results and Discussions

	Conclusion
	Example of non Calibrated Training
	Proofs of Lemmas and Theorems
	Discussions about the Error Terms
	The Approximation Error
	The Estimation Error
	The Optimization Error

	Confidence Interval with a Hold-Out Set
	Source Code for the Acquisitions
	The Experimental Traces
	The hypothesis class H


