Practical Key-recovery Attacks on Round-Reduced Ketje Jr, Xoodoo-AE and Xoodyak

Haibo Zhou ${ }^{1}$, Zheng Li^{1}, Xiaoyang Dong ${ }^{2 \star}$, Keting Jia ${ }^{3 \star}$, and Willi Meier ${ }^{4}$
${ }^{1}$ Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of Mathematics, Shandong University, Jinan 250100, China
\{zhouhaibo, lizhengen\}@mail.sdu.edu.cn
${ }^{2}$ Institute for Advanced Study, Tsinghua University, P. R. China
${ }^{3}$ Department of Computer Science and Technology, Tsinghua University, P. R. China
\{xiaoyangdong, ktjia\}@tsinghua.edu.cn
${ }^{4}$ FHNW, Switzerland
willi.meier@fhnw.ch

Abstract

Conditional cube attack was proposed by Huang et al. at EUROCRYPT 2017 to attack KECCAK keyed mode. Inspired by dynamic cube attack, they reduce the degree by appending key bit conditions on the initial value (IV). Recently, Li et al. proposed new conditional cube attacks on KECCAK keyed mode with extremely small degrees of freedom. In this paper, we find a new property on Li et al.'s method, and modify the new conditional cube attack for lightweight encryption algorithms using a 8-2-2 pattern, and apply it on 5 -round Ketje Jr, 6 -round Xoodoo-AE and Xoodyak, where Ketje Jr is among the 3rd round CAESAR competition candidates and Xoodyak is a Round 1 submission of the ongoing NIST lightweight cryptography project. Then we give the updated conditional cube attack analysis. All our results are of practical time complexity with negligible memory cost and our test codes are given in this paper. Notably, it is the first third-party cryptanalysis result for Xoodyak.

Keywords: Conditional Cube Attack, Keccak, Ketje Jr, Xoodoo, Xoodyak

1 Introduction

Authenticated encryption (AE) can provide confidentiality, integrity and authenticity for messages simultaneously. CAESAR competition Com14, launched in 2014, aimed to find AE schemes with Security, Applicability, and Robustness. Totally, 57 candidates have been submitted to CAESAR in the first round competition. After three rounds of competition, only 6 authenticated encryption algorithms survived in the final portfolio.

[^0]Recenly, NIST has initiated a process to solicit, evaluate, and standardize lightweight authenticated encryption algorithms with associated data (AEAD) and hashing, that are suitable for use in constrained environments where the performance of current NIST cryptographic standards is not acceptable. Till April 18, 2019, NIST has received 57 submissions, out of which 56 were selected as Round 1 Candidates.

Ketje $\left[\mathrm{BDP}^{+} 16\right]$ is one of the third round candidates of CAESAR competition Com14, whose lightweight version is Ketje Jr, which leverages Kec-CAK- p permutation with 200-bit internal state. Using a cube-attack-like method DMP ${ }^{+} 15$, Dong et al. DLWQ17] give the first third party cryptanalysis on KETJE JR with initialization phase reduced to 5 rounds. Then, Bi et al. $\mathrm{BDL}^{+} 18$ and Song et al. [SG18] improved the cube-attack-like cryptanalysis by MILP method, and obtained better attacks [SG18] on 5-round KetJe Jr. Song et al. SG18 also give 6 -round attacks when the recommended 96 -bit key is reduced to 72 bits for Version 1 and 80 bits for Version 2. When targeting the encryption phase of KetJe Jr, Fuhr et al. FNR18 described key recovery attacks on Ketje Jr with a rate extended to 32 or 40 bits (instead of the nominal 16 bits).

Xoodoo is another permutation proposed by Daemen et al. DHAK18 at ToSC 2018. Song et al. SG18 gave the first key-recovery attack on 6-round Xoodoo-AE, which is an artificial AE by using Xoodoo in Ketje style. In addition, the official AEAD scheme Xoodyak DHAK18 based on Xoodoo is included in the Round 1 candidates of NIST lightweight cryptography competition. Besides the nonce-respecting security claim, the authors DHAK18 also clarify the nonce-misuse case that: "Nonce violation and release of unverified decrypted ciphertext have no consequences for integrity and do not put the key in danger for Xoodyak".

Our Contribution. In this paper, we investigate three lightweight AEAD schemes, namely Ketje Jr (v1 and v2), Xoodoo-AE and Xoodyak, with Li et al.'s $\mathrm{LDB}^{+} 19$ new conditional cube attack. Conditional cube attack was first introduced by Huang et al. HWX ${ }^{+} 17$ at EUROCRYPT 2017 to attack KECCAK keyed modes. However, Huang et al.'s attack becomes invalid when applied to targets with very small degrees of freedom even with the help of MILP models LDW17, SGSL18. Ketje Jr (v1 and v2), Xoodoo-AE and Xoodyak are exactly such schemes. In fact, the previous attacks DLWQ17, SG18 on reduced KetJe Jr or Xoodoo-AE are mainly based on Dinur et al.'s cube-attack-like cryptanalysis $\mathrm{DMP}^{+} 15$.

Recently, Li et al. [LDB $\left.{ }^{+} 19\right]$ proposed a new conditional cube attack, which could work even on targets with extremely small degrees of freedom. They introduced the so-called kernel quadratic term to replace the Huang et al.'s conditional cube variables, which makes sure that no cubic term appears in the output of 2 nd round.

In this paper, we study Li et al.'s method and discover some new properties, such as using a 8-2-2 pattern for the lightweight algorithm can control the conditional cube variables' diffusion better; we also can adapt the 8-2-2 pattern
to the 7-2-2 pattern for some algorithms whose state has short columns. Then we apply it and get improved key-recovery attacks on reduced Ketje Jr (v1 and v2), Xoodoo-AE, as well as the first attack on reduced Xoodyak. The advantages of our attacks are summarized in Table 1, and described as follows:

- For 5-round initialization of KetJe Jr v1 with recommended key length, we could recover the 96 -bit key in $2^{26.6}$ time with negligible memory cost, while the best previous attack needs $2^{36.86}$ time and 2^{18} memory.
- For 5-round initialization of KetJe Jr v2 with recommended key length, we could recover the 96 -bit key in $2^{27.5}$ time with negligible memory cost, while the best previous attack needs $2^{34.91}$ time and 2^{15} memory.
- For 6 -round Xoodoo-AE, we could recover the 128 -bit key in $2^{40.5}$ time with negligible memory cost, while the best previous attack needs 2^{89} time and 2^{55} memory.
- For 6-round Xoodyak in nonce-misuse settings, we could recover the 128-bit key in $2^{43.8}$ time with negligible memory cost.

Table 1: Summary of Key-recovery Attacks

Target	b	-K-	DF	Rounds	T	M	Source	Type
Ketje Jr v1	200	96	86	5/13	2^{56}	2^{38}	DLWQ17	T1
					$2^{36.86}$	2^{18}	SG18	T1
					$2^{26.6}$	-	Sect. 5.1	T2
Ketje Jr v2	200	96	86	5/13	$2^{50.32}$	2^{32}	DLWQ17	T1
					$2^{34.91}$	2^{15}	SG18	T1
					$2^{27.5}$	-	Sect. 5.1	T2
Xoodoo-AE	384	128	238	6/-	2^{89}	2^{55}	SG18	T1
					$2^{40.5}$	-	Sect. 5.2	T2
Xoodyak ${ }^{\dagger}$	384	192	192	6/12	$2^{43.8}$	-	Sect. 5.3	T2

${ }^{\dagger}$: The attack on Xoodyak works in nonce-reuse setting.
T1: Cube-attack-like attack
T2: Conditional cube attack
DF: Degrees of freedom

2 Preliminaries

2.1 Notations

Some notations for KECCAK variants are as follows:
$S_{0} \quad$ the initial state of Keccak- p permutation,
$S_{i-1, \theta} \quad$ the internal state after θ in i-th round of KECCAK- $p, i \geq 1$,
$S_{i-1, \pi} \quad$ the internal state after π in i-th round, $i \geq 1$,
$S_{i} \quad$ the output state of the i-th round, $i \geq 1$,
Thus the internal states of i-th round Keccak are as follows:

$$
\begin{equation*}
S_{i-1} \xrightarrow{\theta} S_{i-1, \theta} \xrightarrow{\rho} S_{i-1, \rho} \xrightarrow{\pi} S_{i-1, \pi} \xrightarrow{\chi} S_{i-1, \chi} \rightarrow S_{i} . \tag{1}
\end{equation*}
$$

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
0,2	1,2	2,2	3,2	4,2
0,3	1,3	2,3	3,3	4,3
0,4	1,4	2,4	3,4	4,4

Fig. 1: (a) The Keccak State BDPVA09, (b) State A In 2-dimension

Similarly, the internal states of i-th round Xoodoo are as follows:

$$
\begin{equation*}
S_{i-1} \xrightarrow{\theta} S_{i-1, \theta} \xrightarrow{\rho_{\text {west }}} S_{i-1, \rho_{\text {west }}} \xrightarrow{\iota} S_{i-1, \iota} \xrightarrow{\chi} S_{i-1, \chi} \xrightarrow{\rho_{\text {east }}} S_{i-1, \rho_{\text {east }}} \rightarrow S_{i} . \tag{2}
\end{equation*}
$$

$(*, j, k)$ the index of row,
$(i, *, k)$ the index of column,
$(i, j, *)$ the index of lane,
$(i, j, k) \quad$ the index of bit,
$A[i][j] \quad$ the lane indexed by $(i, j, *)$ of state A,
$A[i][j][k]$ the bit indexed by (i, j, k) of state A.

2.2 The Keccak- p permutations

The Keccak- p permutations are derived from the Keccak- f permutations BDPVA09 and have a tunable number of rounds. A KECCAK-p permutation is defined by its width $b=25 \times 2^{l}$, with $b \in\{25,50,100,200,400,800,1600\}$, and its number of rounds n_{r}, denoted as KECCAK- $p\left[b, n_{r}\right]$. The round function R consists of five operations, denoted as $\mathrm{R}=\iota \circ \chi \circ \pi \circ \rho \circ \theta$, and the details are as follows:

$$
\begin{aligned}
& \theta: A[x][y]=A[x][y] \oplus \sum_{j=0}^{4}(A[x-1][j] \oplus(A[x+1][j] \ggg 1)) . \\
& \rho: A[x][y]=A[x][y] \ggg \rho[x, y] . \\
& \pi: A[y][2 x+3 y]=A[x][y] . \\
& \chi: A[x][y]=A[x][y] \oplus((\neg A[x+1][y]) \wedge A[x+2][y] . \\
& \iota: A[0][0]=A[0][0] \oplus R C .
\end{aligned}
$$

Keccak-p $\left[b, n_{r}\right]$ works on a state A of size b, which can be represented as $5 \times 5 \frac{b}{25}$-bit lanes, as depicted in Figure $1, A[i][j]$ with i for the index of column and j for the index of row. In what follows, indexes i and j are in set $\{0,1,2,3,4\}$ and they are working modulo 5 without other specification.

2.3 Ketje

Ketue $\mathrm{BDP}^{+} 16$ is a submission by the Keccak team. It is a sponge-like construction. In Ketje v1, two instances are proposed, Ketje Sr and Jr with

Fig. 2: KetJE, where the finalization is omitted.

400-bit and 200-bit state sizes, respectively. In the latest KETJE v2, another two instances Ketje Minor and Major are added to the family, with 800-bit and 1600 -bit state sizes, respectively. KetJe Sr is the primary recommendation. The four concrete instances of KetJe v2 are shown in Table 2. In the following, we give a brief overview about Ketje v2. For a complete description, we refer to the design document $\mathrm{BDP}^{+} 16$.

The structure of KETJE is an authenticated encryption mode MonkeyWrap, which is based on MonkeyDuplex BDPA11. It consists of four parts: initialization, processing associated data, processing the plaintext, finalization. Figure 2 illustrates the scheme of Ketje v2, where the finalization is omitted. In Ketje v 2 , the twisted permutations, KECCAK- $p^{*}[b]=\pi \circ \operatorname{KECCAK}-p[b] \circ \pi^{-1}$, are introduced to effectively re-order the bits in the state. $\pi^{-1}: A[x+3 y][x]=A[x][y]$ is the inverse of π, shown in Figure 3. Specially, $f_{0}=\operatorname{KeccaK}-p^{*}[b, 12]$ and $f_{1}=\operatorname{KeccaK}-p^{*}[b, 1]$.

Table 2: Four Instances in KetJe v2

Name	f	ρ	Main use case
KetJe Jr	KECCAK- $p^{*}[200]$	16	lightweight
KetJe SR	KECCAK- $p^{*}[400]$	32	lightweight
KetJe Minor	Keccak- $p^{*}[800]$	128	lightweight
Ketje Major Keccak- $p^{*}[1600]$	256	high performance	

2.4 Xoodoo

At ToSC 2018, Daemen et al. DHAK18 proposed a 384 -bit permutation, called Xoodoo, whose design is similar to Keccak. The state is presented as a threedimension matrix of bits $A[4][3][w]$, where $w=32$. The round function of

0,0	1,0	2,0	3,0	4,0						
0,1	1,1	2,1	3,1	4,1						
0,2	1,2	2,2	3,2	4,2						
0,3	1,3	2,3	3,3	4,3						
0,4	1,4	2,4	3,4	4,4	$\quad \pi^{-1} \quad$	0,0	0,2	0,4	0,1	0,3
:---	:---	:---	:---	:---						
1,3	1,0	1,2	1,4	1,1						
2,1	2,3	2,0	2,2	2,4						
3,4	3,1	3,3	3,0	3,2						
4,2	4,4	4,1	4,3	4,0						

Fig. 3: π^{-1}

Xoodoo has five operations, denoted as $R=\rho_{\text {east }} \circ \chi \circ \iota \circ \rho_{\text {west }} \circ \theta$, and the details are as follows:

$$
\begin{aligned}
\theta & : A[x][y][z]=A[x][y][z] \oplus \sum_{j=0}^{2}(A[x-1][j][z-5] \oplus A[x-1][j][z-14]) . \\
\rho_{\text {west }} & : A[x][1][z]=A[x-1][1][z], A[x][2][z]=A[x][2][z-11] . \\
\quad & : A[0][0]=A[0][0] \oplus R C_{i} . \\
\chi & : A[x][y][z]=A[x][y][z] \oplus((A[x][y+1][z] \oplus 1) \wedge A[x][y+2][z]) . \\
\rho_{\text {east }} & : A[x][1][z]=A[x][1][z-1], A[x][2][z]=A[x-2][2][z-8] .
\end{aligned}
$$

As pointed out in DBH^{+}, Xoodoo could be used as an AE scheme in Ketue style.

2.5 Xoodyak

As a Round 1 candidate of NIST lightweight cryptography competition, Xoodyak DHAK18 includes an AEAD scheme and a hashing scheme. Both of them are based on Xoodoo permutation.

Xoodyak-AEAD uses a new mode of operation, called Cyclist. As shown in Figure $4, f$ is the 12 -round permutation Xoodoo[12]. Xoodyak-AEAD first absorbs a 128-bit key into the 384 state, then applies Xoodoo[12] to the state; second, absorbs a 128 -bit nonce; then, the 192-bit associated data blocks; then absorb 192-bit plaintext blocks and output ciphertext blocks; then go to the finalization phase. Please refer to DHAK18 for detailed information.

Besides the nonce-respecting security claim, the authors DHAK18] also clarify the nonce-misuse case that: "Nonce violation and release of unverified decrypted ciphertext have no consequences for integrity and do not put the key in danger for Xoodyak". In this paper, we assume the nonce is reused and we try to recover the key of reduced Xoodyak. We apply our conditional cube attack in phase of absorbing M_{0}, and select cube variables in M_{0} with 192-bit degrees of freedom. Our target is to recover the other 192-bit unknown state. Once we recover it, the full 384 -bit state is known and we could compute the key inversely.

Fig. 4: Framework of Xoodyak-AEAD, where the finalization is omitted.

3 Related Works

3.1 Cube Attack

The cube attack DS09 was introduced by Dinur and Shamir at EUROCRYPT 2009. It assumes that the output bit of a symmetric cryptographic scheme can be regarded as a polynomial over $G F(2)$.

Theorem 1. (DS09]) Let $f\left(k_{0}, \ldots, k_{n-1}, v_{0}, \ldots, v_{m-1}\right)$ be a polynomial over $G F(2)$, where k_{0}, \ldots, k_{n-1} are secret variables, and v_{0}, \ldots, v_{m-1} are public variables.

For a set $I=\left\{i_{1}, i_{2}, \ldots, i_{|I|}\right\} \subset\{0, \ldots, m-1\}, f\left(k_{0}, \ldots, k_{n-1}, v_{0}, \ldots, v_{m-1}\right)$ can be represented uniquely as

$$
\begin{equation*}
f\left(k_{0}, \ldots, k_{n-1}, v_{0}, \ldots, v_{m-1}\right)=T_{I} \cdot P+Q\left(k_{0}, \ldots, k_{n-1}, v_{0}, \ldots, v_{m-1}\right) \tag{3}
\end{equation*}
$$

where $T_{I}=v_{i_{1}} \cdots v_{i_{I I}}$. The polynomial P only relates to v_{s} 's $(s \notin I)$ and the secret variables, and $Q\left(k_{0}, \ldots, k_{n-1}, v_{0}, \ldots, v_{m-1}\right)$ misses at least one variable in $T_{I} . T_{I}$ is called maxterm and P is called superpoly.

Denote by C_{I} the structure, called cube, consisting of all $2^{|I|}$ different vectors with $v_{i}, i \in I$ being active (traversing all 0-1 combinations) and non-cube indices $v_{s}, s \notin I$ being static constants.

Then the sum of f over all values of the cube C_{I} (cube sum) is

$$
\begin{equation*}
\sum_{v_{i_{1}}, \ldots, v_{i_{|I|}} \in C_{I}} f\left(k_{0}, \ldots, k_{n-1}, v_{0}, \ldots, v_{m-1}\right)=P \tag{4}
\end{equation*}
$$

The basic idea is to find enough T_{I} 's P is linear and not a constant. This enables the key recovery through solving a system of linear equations.

3.2 Conditional Cube Attack

Conditional cube attack $\mathrm{HWX}^{+} 17$ was proposed by Huang et al. at EUROCRYPT 2017 to attack KECcak keyed mode. Then it soon was applied on many
similar cryptography algorithms LDW17 LBDW17,SG18 BLD ${ }^{+}$18. Inspired by dynamic cube attack [DS09], which reduces the degree of output polynomials of cube variables by adding some bit conditions on the initial value (IV), they reduce the degree by appending key bit conditions. The techniques are similar to message modification technique WY05,WYY05 and conditional differential cryptanalysis KMN10 which used bit conditions to control differential propagation.

Definition 1. ($\left.\left[H W X^{+} 17\right]\right)$ Cube variables that have propagation controlled in the first round and are not multiplied with each other after the second round of KECCAK are called conditional cube variables. Cube variables that are not multiplied with each other after the first round and are not multiplied with any conditional cube variable after the second round are called ordinary cube variables.

Theorem 2. ($\left.\left[H W X^{+} 17\right]\right)$ For $(n+2)$-round KEccak sponge function $(n>0)$, if there are $p\left(0 \leq p<2^{n}+1\right)$ conditional cube variables v_{0}, \ldots, v_{p-1}, and $q=$ $2^{n+1}-2 p+1$ ordinary cube variables, u_{0}, \ldots, u_{q-1} (If $q=0$, we set $p=2^{n}+1$), the term $v_{0} v_{1} \ldots v_{p-1} u_{0} \ldots u_{q-1}$ will not appear in the output polynomials of $(n+2)$ round KEccak sponge function.

Actually, in the previous conditional cube attacks HWX ${ }^{+} 17$, LBDW17, SGSL18, they only use the special case of the above theorem when $p=1$. We describe it as a corollary for clearness.

Corollary 1. For $(n+2)$-round KECCAK sponge function $(n>0)$, if there is one conditional cube variable v_{0}, and $q=2^{n+1}-1$ ordinary cube variables, u_{0}, \ldots, u_{q-1}, the term $v_{0} u_{0} \ldots u_{q-1}$ will not appear in the output polynomials of ($n+2$)-round KEccak sponge function.

3.3 New Conditional Cube Attack

Recently, Li et al. [LDB $\left.{ }^{+} 19\right]$ proposed new conditional cube attacks on Keccak keyed mode with extremely small degrees of freedom. In Huang et al.'s attack $\mathrm{HWX}^{+} 17$, all cube variables must not be multiplied together in the first round. However, Li et al. $\mathrm{LDB}^{+} 19$ relaxed this constraint by introducing the so-called kernel quadratic term.

Definition 2. ($\left.\left.L D B^{+} 19\right]\right)$ Suppose all the $(q+2)$ cube variables are $v_{0}, v_{1}, u_{0}, \ldots u_{q-1}$, and constraints are as follows:

- After the first round, $v_{0} v_{1}$ is the only quadratic term;
- In the second round, if the bit conditions are satisfied, $v_{0} v_{1}$ does not multiply with any of $u_{0}, \ldots u_{q-1}$, i.e. no cubic term occurs.
- In the second round, if the bit conditions are not satisfied, $v_{0} v_{1}$ multiplies with some of $u_{0}, \ldots u_{q-1}$, i.e. some cubic terms like $v_{0} v_{1} u_{i}(i=0, \ldots, q-1)$ occur.

Then $v_{0} v_{1}$ is called kernel quadratic term. The remaining cube variables except v_{0} and v_{1}, i.e. $u_{0}, \ldots u_{q-1}$, are called ordinary cube variables.

Then the following corollary is deduced.
Corollary 2. $\left[L D B^{+} 19\right]$ For $(n+2)$-round KEcCAK sponge function $(n>0)$, if there is one kernel quadratic term $v_{0} v_{1}$, and $q=2^{n+1}-1$ ordinary cube variables, $u_{0}, u_{1}, \ldots, u_{q-1}$, the term $v_{0} v_{1} u_{0} u_{1} \ldots u_{q-1}$ will not appear in the output polynomials of $(n+2)$-round KECCAK sponge function under certain bit conditions.

So the distinguisher is approached as follows:

- under right bit conditions, the degree of output polynomials of $n+2$ rounds is no more than 2^{n+1};
- under the wrong bit conditions, the degree of output polynomials of $n+2$ rounds is $q+2=2^{n+1}+1$.

According to Definition 2, in Li et al.'s $\mathrm{LDB}^{+} 19$ new conditional cube attack, we only care that the kernel quadratic term (i.e. $v_{0} v_{1}$) should not be multiplied with ordinary cube variables in the second round. So they devised the so-called 6-2-2 pattern to reduce the diffusion of $v_{0} v_{1}$. Therefore, they could get more degrees of freedom to find ordinary cube variables.

Concretely, in the initial state S_{0}, Li et al. selected v_{0} and v_{1}, such that $S_{0}[2][0][0]=S_{0}[2][1][0]=S_{0}[3][0][34]=S_{0}[3][1][34]=v_{0}$, are in CP-kernel, $S_{0}[0][1][60]=S_{0}[1][1][1]=v_{1}$ are not in CP-kernel. Then, before the first χ, the distribution of v_{0} and v_{1} is shown in Figure 5. Moreover, after χ, kernel quadratic term $v_{0} v_{1}$ is also in CP-kernel. Thus, the second θ becomes the identity for $v_{0} v_{1}$. Therefore, before the second χ, only two bit positions are related to $v_{0} v_{1}$. So, it is called 6-2-2 pattern. Li et al. also gave a method to derive the 6-2-2 pattern. For more details, please refer to $\mathrm{LDB}^{+} 19$.

3.4 MILP Model of Conditional Cube Attack

At ASIACRYPT 2017, Li et al. LBDW17 for the first time applied MILP method to cube attacks on keyed KECCAK. Later, the MILP model was improved by SGSL18, and also applied to cube-attack-like method by Bi et al. $\mathrm{BDL}^{+} 18$ and Song et al. [SG18]. In the previous MILP model of conditional cube attack, no cube variables multiply with each other in the first round, and the conditional cube variable of degree one is considered not to multiply with any ordinary cube variables in the second round. To limit the diffusion of conditional cube variables, conditions are added in the first round. Actually, as described in Corollary 1 , $\left(2^{n+1}-1\right)$ ordinary cube variables are needed to perform a $(n+2)$-round attack. To obtain enough ordinary cube variables for the attack, the objective of Li et al.'s MILP model LBDW17] at ASIACRYPT 2017 was to maximize the number of ordinary cube variables. To reduce the attack complexity further, Song et al. SGSL18 proposed a new MILP model to minimize the number of conditions at ASIACRYPT 2018.

Fig. 5: 6-2-2 Pattern: Generation of Kernel Quadratic Terms in the First χ $\mathrm{LDB}^{+} 19$.

Fig. 6: Slice $(*, *, z)$: from $S_{0, \pi}$ to S_{1}

Fig. 7: 8-2-2 Pattern: Generation of Kernel Quadratic Terms in the First χ.

4 8-2-2 Pattern

Based on Li et al.'s $\mathrm{LDB}^{+} 19$ new discovery, we introduce the 8-2-2 pattern instead of the 6-2-2 pattern to attack targets with fewer degrees of freedom, namely Ketje Jr, Xoodoo-AE and Xoodyak-AEAD.

According to the new conditional cube attack given in Sect. 3.3, we only care that the kernel quadratic term (i.e. $v_{0} v_{1}$) should not be multiplied with ordinary cube variables in the second round. Li et al.'s 6-2-2 pattern allows v_{1} to be not in the CP-kernel. Thus, it will distribute to 22 bit positions before the first χ as shown in Figure 5 . This reduces the degrees of freedom to select ordinary cube variables u_{i}, since according to Definition 2, u_{i} has to be prevent from multiplying with v_{i} in the first round.

Hence, we introduce the so-called 8-2-2 pattern, i.e. both v_{0} and v_{1} are set in CP-kernel in the initial state. For example, in the initial state S_{0} of Ketje Jr, v_{0} occupies 4 bits of S_{0}, i.e. $A[4][3][0]=A[4][4][0]=A[2][3][1]=A[2][4][1]=v_{0}$, and v_{1} also occupies 4 bits, i.e. $A[0][4][6]=A[0][3][6]=A[3][4][0]=A[3][3][0]=v_{1}$. Before the first χ operation, v_{0} only appears in the 4 bits, while v_{1} also appears in 4 bits. Similar to Li et al.'s work LDB ${ }^{+} 19$, only 2 S-boxes are related to v_{0} and v_{1} simultaneously and the quadratic term $v_{0} v_{1}$ is generated in two bit positions after χ operation, as shown in Figure 7. Moreover, the two bits containing $v_{0} v_{1}$ in S_{1} are also in CP-kernel. Similar to Li et al. $\mathrm{LDB}^{+} 19$, we also give the method to find the 8-2-2 pattern.

Table 3: Related Indexes of Bits Containing v_{0}, v_{1} and $v_{0} v_{1}$

Index	$v_{0} v_{1}$	
S_{1}	$\begin{aligned} & \left(x, y_{0}, z\right) \\ & \left(x, y_{1}, z\right) \\ & \hline \end{aligned}$	
Index	v_{0}	v_{1}
$S_{0, \pi}$	$\begin{aligned} & \left(x+1, y_{0}, z\right) \\ & \left(x+1, y_{1}, z\right) \end{aligned}$	$\begin{aligned} & \left(x+2, y_{0}, z\right) \\ & \left(x+2, y_{1}, z\right) \end{aligned}$
$S_{0, \rho}$	$\begin{aligned} & \left(x+3 y_{0}+1, x+1, z\right) \\ & \left(x+3 y_{1}+1, x+1, z\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \left(x+3 y_{0}+2, x+2, z\right) \\ & \left(x+3 y_{1}+2, x+2, z\right) \\ & \hline \end{aligned}$
$S_{0, \theta}$	$\begin{aligned} & \left(x+3 y_{0}+1, x+1, z-\rho\left[x+3 y_{0}+1, x+1\right]\right) \\ & \left(x+3 y_{1}+1, x+1, z-\rho\left[x+3 y_{1}+1, x+1\right]\right) \end{aligned}$	$\begin{aligned} & \left(x+3 y_{0}+2, x+2, z-\rho\left[x+3 y_{0}+2, x+2\right]\right) \\ & \left(x+3 y_{1}+2, x+2, z-\rho\left[x+3 y_{1}+2, x+2\right]\right) \end{aligned}$
S_{0}	$\left\|\begin{array}{c} \left(x+3 y_{0}+1, x+1, z-\rho\left[x+3 y_{0}+1, x+1\right]\right) \\ \left(\boldsymbol{x}+\mathbf{3} \boldsymbol{y}_{0}+\mathbf{1}, \boldsymbol{x}_{1}, \boldsymbol{z}-\boldsymbol{\rho}\left[\boldsymbol{x}+\mathbf{3} y_{0}+\mathbf{1}, \boldsymbol{x}+\mathbf{1}\right]\right) \\ \left(x+3 y_{1}+1, x+1, z-\rho\left[x+3 y_{1}+1, x+1\right]\right) \\ \left(\boldsymbol{x}+\mathbf{3} \boldsymbol{y}_{1}+\mathbf{1}, \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{z}-\boldsymbol{\rho}\left[\boldsymbol{x}+\mathbf{3} \boldsymbol{y}_{1}+\mathbf{1}, \boldsymbol{x}+\mathbf{1}\right]\right) \end{array}\right\|$	$\left\|\begin{array}{c} \left(x+3 y_{0}+2, x+2, z-\rho\left[x+3 y_{0}+2, x+2\right]\right) \\ \left(\boldsymbol{x}+\mathbf{3} \boldsymbol{y}_{0}+\mathbf{2}, \boldsymbol{x}_{\mathbf{3}}, \boldsymbol{z}-\boldsymbol{\rho}\left[\boldsymbol{x}+\mathbf{3} y_{0}+\mathbf{2}, \boldsymbol{x}+\mathbf{2}\right]\right) \\ \left(x+3 y_{1}+2, x+2, z-\rho\left[x+3 y_{1}+2, x+2\right]\right) \\ \left(\boldsymbol{x}+\mathbf{3} \boldsymbol{y}_{\mathbf{1}}+\mathbf{2}, \boldsymbol{x}_{\mathbf{4}}, \boldsymbol{z}-\boldsymbol{\rho}\left[\boldsymbol{x}+\mathbf{3} \boldsymbol{y}_{\mathbf{1}}+\mathbf{2}, \boldsymbol{x}+\mathbf{2}\right]\right) \end{array}\right\|$

The method to find 8-2-2 pattern. The most important constraint is that $v_{0} v_{1}$ has to be in a CP-kernel in S_{1}. So we start with setting $v_{0} v_{1}$ in a CP-kernel. Denote the two bits containing $v_{0} v_{1}$ as $\left(x, y_{0}, z\right),\left(x, y_{1}, z\right)$. According to the expression of $\chi, v_{0} v_{1}$ in $S_{1}[x]\left[y_{0}\right][z]$ is generated by multiplying v_{0} in $S_{0, \pi}[x+1]\left[y_{0}\right][z]$ and v_{1} in $S_{0, \pi}[x+2]\left[y_{0}\right][z]$, or v_{0} in $S_{0, \pi}[x+2]\left[y_{0}\right][z]$ and v_{1}
in $S_{0, \pi}[x+1]\left[y_{0}\right][z]$. The same happens to $v_{0} v_{1}$ in $S_{1}[x]\left[y_{1}\right][z]$. So there will be 4 cases to determine the bit positions for v_{0} and v_{1} in reverse. For example, in Figure 6. $v_{0} v_{1}$ appears in $S_{1}[1][2][z]$ by multiplication of v_{0} in $S_{0, \pi}[2][2][z]$ and v_{1} in $S_{0, \pi}[3][2][z]$, and similarly $v_{0} v_{1}$ appears in $S_{1}[1][4][z]$ by multiplication of v_{1} in $S_{0, \pi}[2][4][z]$ and v_{0} in $S_{0, \pi}[3][4][z]$.

Under one of the 4 cases, Table 3 describes the bit positions of $v_{0} v_{1}, v_{0}$ and v_{1} inversely from S_{1} to S_{0}, while the other cases are similar. In Table 3, in order to reduce the diffusion of v_{0} and v_{1}, the 4 bit positions containing v_{0} and v_{1} in S_{0} are set in CP-kernel, where $x_{1}, x_{2} \neq x+1, x_{3}, x_{4} \neq x+2$. At last, all the 8 bits in S_{0} should be selected in free space for ordinary cube variables. Accordingly, we can determine 8-2-2 patterns.

5 Applications to Ketje Jr, Xoodoo-AE and Xoodyak-AEAD

5.1 5-Round Attack against Ketje Jr

For Ketje Jr with 200-bit state, the recommended key size is 96 bits, while the shortest padding occupies 18 bits. A 5 -round attack can be performed with 17 cube variables.

According to the new conditional cube attack illustrated in Sect. 3.3, we find a 8-2-2 pattern at first, and then search for the minimal number of key bit conditions and the 15 ordinary cube variables satisfying the corresponding rules by previous MILP models LBDW17, SGSL18, LDB ${ }^{+} 19$.

5-round Attack on KetJe Jr v1 In the procedure of attack on 5-round Ketje Jr v1, we select v_{0} and v_{1} following the 8-2-2 pattern. As shown in Figure 8, the 96bit key is located at the red parts, while the padding part is shown in blue. v_{0} is set in CP-kernel filled with black. i.e. $A[4][3][0]=A[4][4][0]=A[2][3][1]=A[2][4][1]=v_{0}$, And v_{1} is located at 4 grey bits, i.e. $A[0][4][6]=A[0][3][6]=A[3][4][0]=A[3][3][0]=v_{1}$. The white bits represent free space to be selected as ordinary cube variables.

The cube variables and bit conditions to attack 5 -round initialization phase of Ketje Jr v1 are given in Table 4

Note that the number of the key bits to be guessed and assigned is 6 . If the key guessing is right, it is expected to output zero cube sums. The time complexity to recover the 6 -bit key is $2^{6} \times 2^{17}$. According to the property of the permutation, it is totally symmetric in z-axis. Thus we can obtain corresponding parameter sets with any i-bit rotation $(0 \leq i<8)$ in z-axis. Therefore, the related key bits rotated by i bits can be recovered.

Totally, 12 iterations could recover the 72 -bit key. Then guess $96-72=24$ bits to determine the full key. The time complexity is $12 \times 2^{6} \times 2^{17}=2^{26.58}$.

To support our theory, we have run more than 1000 experiments and obtained correct key recovery of 5-round KetJe Jr v1 with 100 percent success rate. For saving space,we give an example here for intuition, in which the key is generated randomly and all the controllable nonce bits are set to zero. The program is run

Fig. 8: The Initial State of Ketje Jr v1

Table 4: Parameters set for attack on 5-round KetJe JR v1

$\overline{\text { kernel quadratic term }}$
$A[4][3][0]=A[4][4][0]=A[2][3][1]=A[2][4][1]=v_{0}$,
$A[0][4][6]=A[0][3][6]=A[3][4][0]=A[3][3][0]=v_{1}$
Bit Conditions
$A[3][3][6]=k_{7}+k_{22}+k_{47}+k_{62}+k_{87}+n_{71}+n_{78}$
$A[0][3][2]=k_{9}+k_{34}+k_{49}+k_{74}+k_{89}+n_{18}+n_{50}+1$
$A[3][4][4]=k_{12}+k_{27}+k_{52}+k_{67}+k_{92}$
$A[1][3][1]=k_{1}+k_{26}+k_{41}+k_{66}+k_{81}+n_{50}+n_{57}$
$A[1][3][3]=k_{3}+k_{28}+k_{43}+k_{68}+k_{83}+n_{52}+n_{59}$
$A[4][2][5]=k_{14}+k_{29}+k_{54}+k_{62}+k_{69}+k_{94}+n_{30}+n_{45}+n_{70}+n_{85}+1$
Ordinary Cube Variables
$A[4][2][4]=u_{0}, A[4][3][4]=u_{1}, A[4][4][4]=u_{0}+u_{1}, A[1][3][0]=u_{2}$,
$A[1]\left[44[0]=u_{2}, A[1][3][6]=u_{3}, A[1]\left[[4][6]=u_{3}, A[1][3][7]=u_{4}, A[1][4][7]=u_{4}\right.\right.$,
$A\left[2[3][2][2]=u_{5}, A[2][4][2]=u_{5}, A[2][3][3]=u_{6}, A\left[2[4][4][3]=u_{6}, A[2][3][4]=u_{7}\right.\right.$,
$A\left[2[4][4]=u_{7}, A[2][3][5]=u_{8}, A[2][4][5]=u_{8}, A[4][2][1]=u_{9}, A[4][3][1]=u_{9}\right.$,
$A[4][2][2]=u_{10}, A[4][3][2]=u_{11}, A[4][4][2]=u_{10}+u_{11}, A[4][2][3]=u_{12}$,
$A[4][3][3]=u_{13}, A[4][4][3]=u_{12}+u_{13}, A[4][2][6]=u_{14}, A[4][3][6]=u_{14}$

in Visual Studio 2012 with x 64 platform Release. The time is less than 8 seconds for recovery of 6 key bits using one CPU core (Intel i7 3.6 GHz), and parallelism can reduce time. Using the test code that we provided, one can verify it easily.

We calculate the cube sum at lanes $(0,0),(1,0)$. As the probability, for which the cube sum on these two lanes is zero, is 2^{-16} for a random function. Therefore, if the 17 -dimension cube sums of 5 -round output is zero, we declare that the key guess is correct with high probability. Actually, we also calculate other lanes' cube sum, and all of them turn out to zero. The test code is given in https: //github.com/alicebobb/aabb/tree/alicebobb-patch-1

96-bit key K :
101000001101011001110100110111000111001000011101
110111001011011011111100100111010010110001010101
The correct value for the guessed key bits in Table 4 is 001110.
guessed value: 010110 , cube sums: $0 \times 88,0 \times 52$
guessed value: 110110, cube sums: $0 x d 5,0 \times 44$
guessed value: 001110, cube sums: $\mathbf{0 x 0} \mathbf{0}, \mathbf{0 x 0}$
guessed value: 101110, cube sums: Oxef, 0xa5
guessed value: 011110 , cube sums: $0 \times 1 b, 0 \times 49$
To see the full key guess results, we put them in Appendix A.

5-round Attack on Ketje Jr v2 As Figure 9 shows us, after π^{-1} transformation, the 96 -bit key is located at the red parts, while the padding part is shown in blue. And v_{0} is set in CP-kernel as $A[4][2][0]=A[4][0][0]=A[0][1][3]=A[0][4][3]=v_{0}$ in black, and v_{1} is located at 4 grey bits, i.e. $A[3][1][0]=A[3][4][0]=A[1][2][5]=A[1][4][5]=v_{1}$. The white bits represent free space to be selected as ordinary cube variables.

Fig. 9: The Initial State of KetJe Jr v2

Table 5: Parameters set for attack on 5-round KetJe JR v2

kernel quadratic term
$A[4][2][0]=A[4][0][0]=A[0][1][3]=A[0][4][3]=v_{0}$,
$A[3][1][0]=A[3][4][0]=A[1][2][5]=A[1][4][5]=v_{1}$
Bit Conditions
$A[1][2][4]=k_{11}+k_{52}+k_{67}+k_{83}+n_{35}+n_{51}+1$
$A[1][2][6]=k_{13}+k_{54}+k_{69}+k_{85}+n_{37}+n_{53}+n_{78}$
$A[2][3][2]=k_{10}+k_{51}+k_{66}+k_{82}+n_{50}+n_{75}+n_{83}$
$A[0][4][5]=k_{22}+k_{38}+k_{53}+k_{94}+n_{14}+n_{46}+n_{62}+1$
$A[4][2][7]=k_{23}+k_{39}+k_{54}+k_{95}+n_{78}+1$
$A[4][0][4]=k_{13}+k_{28}+k_{44}+k_{69}+k_{85}+n_{37}+n_{45}+n_{53}+n_{68}$
$A[1][2][0]=k_{0}+k_{23}+k_{39}+k_{56}+k_{72}+k_{95}+n_{32}+n_{80}+1$
Ordinary Cube Variables
$A[3][1][4]=u_{0}, A[3][4][4]=u_{0}, A[3][1][7]=u_{1}, A[3][4][7]=u_{1}, A[0][1][0]=u_{2}$,
$A[0][4][0]=u_{2}, A[0][1][1]=u_{3}, A[0][3][1]=u_{4}, A[0][4][1]=u_{3}+u_{4}, A[0][1][2]=u_{5}$,
$A[0][3][2]=u_{6}, A[0][4][2]=u_{5}+u_{6}, A[0][1][4]=u_{7}, A[0][3][4]=u_{8}$,
$A[0][4][4]=u_{7}+u_{8}, A[0][1][5]=u_{9}, A[0][3][5]=u_{9}, A[0][1][6]=u_{10}$,
$A[0][4][6]=u_{10}, A[2][0][4]=u_{11}, A[2][3][4]=u_{11}, A[2][0][6]=u_{12}, A[2][3][6]=u_{12}$,
$A[2][0][7]=u_{13}, A[2][3][7]=u_{13}, A[3][1][2]=u_{14}, A[3][4][2]=u_{14}$

The cube variables and conditions to attack 5-round initialization phase of Ketje Jr v2 are given in Table 5.

The number of bit conditions related to key is 7 , hence, we have to guess a 7 -bit key to assign conditions. The time complexity to recover the 7 -bit key is $2^{7} \times 2^{17}$. According to the property of the permutation, it is totally symmetric in z-axis. Thus we can obtain corresponding parameter sets with any i-bit rotation $(0 \leq i<8)$ in z-axis. Therefore, the guessed key bits rotated by i bits can be recovered. 11 iterations of the above process could recover a 77 -bit key and the remaining 19 key bits are recovered by exhaustive search. The total time complexity is $11 \times 2^{7} \times 2^{17}=2^{27.46}$.

Similarly, we have run more than 1000 experiments and obtained correct key recovery of 5 -round KetJe Jr v2 with 100 percent success rate. We also give an example here for intuition, in which the key is generated randomly and all the controllable nonce bits are set to zero. The program is run in Visual Studio 2012 with x64 platform Release. The time is less than 16 seconds for recovery of 7 key bits using one CPU core (Intel i7 3.6 GHz), and parallelism can reduce time. Using the test code that we provided, one can verify it easily.

We calculate the output tag's cube sum at lane $(0,0),(1,1)$. The probability, for which the cube sum on these two lanes the cube sum is zero, is 2^{-16} for a random function. Therefore, if the 17 -dimension cube sums of 5 -round output is zero, we declare that the key guess is correct with high probability. Actually, we also calculate other lanes' cube sum, and all of them turn out to zero. The test code is given in https://github.com/alicebobb/aabb/tree/alicebobb-patch-1.

96-bit key K :
100101100000100110001010010101101010111011011001
110010011101101000111111101011011010011101111001
The correct value for the guessed key bits in Table 5 is 0000110.
guessed value: 0111010,
guessed value: 1111010, guessed value: 0000110, guessed value: 1000110, guessed value: 0100110,
cube sums: $0 x \mathrm{c}, 0 \mathrm{xca}$
cube sums: 0xa4, 0xe5
cube sums: $\mathbf{0 x 0}, \mathbf{0 x 0}$
cube sums: $0 x 2 e, 0 x e a$
cube sums: $0 x c 8,0 x 7 f$

To see the full key guess results, we put them in Appendix A.

5.2 6-Round Attack against Xoodoo-AE

As pointed out in DBH^{+}, Xoodoo DHAK18 could be used as an AE scheme in Ketje style. We assume that the Xoodoo-AE has a 128-bit key and follows the Ketje's packing. As shown in Figure 10, the 128 -bit key K is located at the 5 red lanes, and the padding parts are blue. The white part represents nonce bits. The operations θ and χ of Xoodoo are very similar to those of Keccak-p and $\rho_{\text {west }}$ just reorders the state bits which is similar to ρ and π. So it is easy to modify the attack strategy of Keccak- p to Xoodoo.

However, Xoodoo's state is 3×4, not Keccak- p 's 5×5 state, which means columns in Xoodoo are shorter than those in Keccak-p. Another different feature is the S-box, which is applied to every 3-bit column. Moreover, the first row and part of the second row are occupied by the key and padding bits in Xoodoo, which means, there are fewer free bits for us to search ordinary cube variables. All those features will affect our decisions for choosing conditional cube variables and ordinary cube variables. Consequently, we modify the 8-2-2 pattern into a 7-2-2 pattern, which means that v_{0} appears in 4 bits and v_{1} appears in 3 bits in the initial state.

Assume that $v_{0} v_{1}$ is the kernel quadratic term. As shown in Figure 10, v_{0} is set in CP-kernel as $S_{0}[0][1][16]=S_{0}[0][2][16]=S_{0}[1][1][4]=S_{0}[1][2][4]=v_{0}$ in black, and v_{1} is located at 3 grey bits, i.e. $S_{0}[1][1][5]=S_{0}[1][2][5]=S_{0}[0][2][1]=$ v_{1}. After operation θ and $\rho_{\text {west }}$,
$S_{0, \rho_{\text {west }}}[1][1][16]=S_{0, \rho_{\text {west }}}[1][2][15]=v_{0}$
as well as $S_{0, \rho_{\text {west }}}[0][2][27]=S_{0, \rho_{\text {west }}}[2][1][4]=v_{0}$, and
$S_{0, \rho_{\text {west }}}[1][2][16]=S_{0, \rho_{\text {west }}}[1][0][15]=v_{1}$
as well as $S_{0, \rho_{\text {west }}}[0][2][12]=S_{0, \rho_{\text {west }}}[1][2][17]=S_{0, \rho_{\text {west }}}[1][0][6]=S_{0, \rho_{\text {west }}}[2][1][6]$ $=S_{0, \rho_{\text {west }}}[1][2][26]=S_{0, \rho_{\text {west }}}[1][0][15]=S_{0, \rho_{\text {west }}}[2][1][5]=v_{1}$.

The cube variables and bit conditions are shown in Table 6. With 31 ordinary cube variables, there is only one bit condition related to key. We guess the key bit $k_{66}+k_{75}+k_{112}$ to assign the condition. The time complexity of one recovery is $2^{1} \times 2^{33}$. According to the property of the permutation, it is totally symmetric in z-axis. Thus we can obtain corresponding parameter sets with any i-bit rotation $(0 \leq i<32)$ in z-axis. Therefore, the guessed key bits rotated

Fig. 10: The Initial State of Xoodoo-AE

Table 6: Parameters set for attack on 6-round Xoodoo-AE

kernel quadratic term
$A[0][1][16]=A[0][2][16]=A[1][2][4]=A[1][1][4]=v_{0}, A[1][2][5]=A[1][1][5]=A[0][2][1]=v_{1}$
Bit Condition
$A[2][1][10]=k_{66}+k_{75}+k_{112}+n_{67}+n_{186}+n_{195}+1$
Ordinary Cube Variables
$A[3][1][25]=u_{0}, A[3][2][25]=u_{0}, A[3][1][28]=u_{1}, A[3][2][28]=u_{1}, A[0][1][25]=u_{2}$,
$A[0][2][25]=u_{2}, A[0][1][27]=u_{3}, A[0][2][27]=u_{3}, A[0][1][28]=u_{4}, A[0][2][28]=u_{4}$,
$A[1][1][1]=u_{5}, A[1][2][1]=u_{5}, A[1][1][2]=u_{6}, A[1][2][2]=u_{6}, A[1][1][6]=u_{7}$,
$A[1][2][6]=u_{7}, A[1][1][7]=u_{8}, A[1][1][8]=u_{9}, A[1][2][8]=u_{9}, A[1][1][9]=u_{10}$,
$A[1][2][9]=u_{10}, A[1][1][10]=u_{11}, A[1][2][10]=u_{11}, A[1][1][13]=u_{12}$,
$A[1][2][13]=u_{12}, A[1][1][18]=u_{13}, A[1][2][18]=u_{13}, A[1][1][26]=u_{14}, A[1][2][26]=u_{14}$,
$A[1][1][28]=u_{15}, A[1][2][28]=u_{15}, A[1][1][30]=u_{16}, A[1][2][30]=u_{16}, A[2][1][0]=u_{17}$,
$A[2][2][0]=u_{17}, A[2][2][3]=u_{18}, A[2][1][6]=u_{19}, A[2][2][6]=u_{19}, A[2][1][12]=u_{20}$,
$A[2][2][12]=u_{20}, A[2][1][18]=u_{21}, A[2][2][18]=u_{21}, A[2][1][21]=u_{22}, A[2]\left[22[21]=u_{22}\right.$,
$A[2][1][24]=u_{23}, A[2][2][24]=u_{23}, A[3][1][2]=u_{24}, A[3][2][2]=u_{24}, A[3][1][3]=u_{25}$,
$A[3][2][3]=u_{25}, A[3][1][8]=u_{26}, A[3][2][8]=u_{26}, A[3][1][9]=u_{27}, A[3][2][9]=u_{27}$,
$A[3][1][11]=u_{28}, A[3][2][11]=u_{28}, A[3][1][17]=u_{29}, A[3][2][17]=u_{29}, A[3][1][19]=u_{30}$,
$A[3][2][19]=u_{30}$

by i bits can be recovered. 90 iterations could recover a 90 -bit key and the remaining key bits could be recovered by exhaustive search. Totally, it consumes $90 \times 2^{1} \times 2^{33}+2^{38}=2^{40.5}$.

Similarly, we have run more than 1000 experiments and obtained correct key recovery of 6 -round Xoodoo-AE with 100 percent success rate. we also give an example here for intuition, in which the key is generated randomly and all the controllable nonce bits are set to zero. The program is run in Visual Studio 2012 with x64 platform Release. The time is about 2 hours for recovery of one key bit using one CPU core (Intel i7 3.6 GHz), and parallelism can reduce time. Using the test code that we provided, one can verify it easily.

We just list the output tag's cube sum at lane $(0,0),(1,0)$, and the probability that the cube sum for these two lanes cube sum is zero is 2^{-64} for a random function. Therefore, if the 33 -dimension cube sums of 5 -round output is zero, we declare that the key guess is correct with high probability. Actually, we also calculate other lanes' cube sum, and all of them turn out to be zero. The test code is given in https://github.com/alicebobb/aabb/tree/alicebobb-patch-1.

128-bit key K :
1010000011010110011101001101110001110010000111011101110010110110
1111110010011101001011000101010100010111101000111100101100000101
The correct value for the guessed key bit in Table 6 is 1.
right key: 1
guessed value: 0 , cube sums: $0 x 9 \mathrm{dff} 359$, $0 \times \mathrm{xc} 614 \mathrm{c} 263$
guessed value: $1, \quad$ cube sums: $0 x 0,0 x 0$

5.3 6-Round Attack against Xoodyak

We attack reduced Xoodyak-AEAD in nonce-reuse setting. The targeted part of the Xoodyak-AEAD is the absorbing plaintext phase. As shown in Figure 4. we select cube variables from the 192 -bit M_{0}, and we are going to recover the other 192-bit unknown state, which we denote as 192 -bit equivalent key. We reduced the Xoodoo to 6 rounds, i.e., M_{0} is processed by 6 -round Xoodoo, then the corresponding ciphertexts outputs are used to compute the cube sums. As shown in Table 11 the 192-bit key K is located at the 6 red lanes. The white part are tweakable bits and could be selected as cube variables.

Similarly, assume that $v_{0} v_{1}$ is the kernel quadratic term. v_{0} is set in CPkernel as $S_{0}[2][1][0]=S_{0}[2][2][0]=S_{0}[3][1][20]=S_{0}[3][2][20]=v_{0}$ in black, and v_{1} is located at 3 grey bits, i.e. $S_{0}[3][1][21]=S_{0}[3][2][21]=S_{0}[2][1][17]=v_{1}$. After operation θ and $\rho_{\text {west }}, S_{0, \rho_{\text {west }}}[3][1][0]=S_{0, \rho_{\text {west }}}[3][2][31]=v_{0}$ as well as $S_{0, \rho_{\text {west }}}[2][2][11]=S_{0, \rho_{\text {west }}}[0][1][20]=v_{0}, S_{0, \rho_{\text {west }}}[3][2][0]=S_{0, \rho_{\text {west }}}[3][0][31]=$ v_{1} as well as $S_{0, \rho_{\text {west }}}[3][1][17]=S_{0, \rho_{\text {west }}}[0][1][22]=S_{0, \rho_{\text {west }}}[3][2][1]=$ $S_{0, \rho_{\text {west }}}[3][0][22] \stackrel{ }{=} S_{0, \rho_{\text {west }}}[0][1][31] \stackrel{ }{=} S_{0, \rho_{\text {west }}}[3][2][10] \stackrel{ }{=} S_{0, \rho_{\text {west }}}[0][1][21]=v_{1}$. The white bits represent free space to be selected as ordinary cube variables.

To prevent ordinary cube variables to multiply with other cube variables at the first round, we try to select the ordinary cube variables in CP-kernel. With 31 ordinary cube variables, the number of bit conditions related to key is 6 . Then a 6 -round attack on Xoodyak can be performed. Both the cube variables and

Fig. 11: The Initial State of Xoodyak

Table 7: Parameters set for attack on 6 -round Xoodyak

conditions are listed in Table 7. The 6 equivalent key bits to be guessed are as follows: $k_{66}+k_{89}, k_{75}+k_{89}, k_{8}+k_{31}+k_{99}+k_{113}, k_{33}+k_{42}+k_{79}+k_{161}+k_{170}, k_{49}+$ $k_{58}+k_{95}+k_{177}+k_{186}$ and $k_{42}+k_{56}+k_{70}+k_{79}+k_{170}+k_{184}$. The time complexity to recover the 6 -bit key is $2^{6} \times 2^{33}$. Similar to the attack on Xoodoo-AE, it is totally symmetric in z-axis. Thus we can obtain corresponding parameter sets with any i-bit rotation $(0 \leq i<32)$ in z-axis. We need 27 iterations of the above procedures to recover $27 \times 6=162$ bits key, and leave the other 30 bits key to exhaustive search. The total time complexity is $27 \times 2^{6} \times 2^{33}+2^{30}=2^{43.8}$.

Similarly, we also have run some experiments and obtained correct key recovery of 6 -round Xoodyak with 100 percent success rate. In our verification experiments the key is generated randomly and all the controllable nonce bits are set to zero. The program is run in Visual Studio 2012 with x64 platform Release. Recovery one key need about 60 hours using one CPU core (Intel i7 3.6 GHz), and parallelism can reduce time. Using the test code that we provided, one can verify it easily.

We calculate the cube sum at lane $(0,0),(1,0),(2,0),(3,0),(0,1),(1,1)$, and the probability, for which the cube sum on these six lanes is zero, is 2^{-192} for a random function. Therefore, if the 33 -dimension cube sums of 6 -round output is zero, we declare that the key guess is correct with high probability. Actually, we also calculate other lanes' cube sum, and all of them turn out to be zero. The test code is given in https://github.com/alicebobb/aabb/tree/ alicebobb-patch-1.

192-bit key K :
1010000011010110011101001101110001110010000111011101110010110110
1111110010011101001011000101010100010111101000111100101100000101
1110101001000010000111010101001100111000110100110101010001001010
The correct value for the guessed key bit in Table 6 is 001000.
right key: 001000
guessed value: 001000,
cube sums: $0 x 0,0 x 0,0 x 0,0 x 0,0 x 0,0 x 0$
guessed value:000100,
cube sums: $0 x d 2 c 47032$, $0 x 456 c 766 f, 0 x d 74569 e d, 0 x 4 a 96 a 204$, 0xd6f503b8,0x6f6e9541
guessed value:010000,
cube sums: 0xa6dd98e3, 0xdf935915, 0xafbc25d9, 0x939c401d, 0x95e04808,0x3caecd13

6 Conclusion

In this paper, we give several practical key-recovery attacks on 5-round initialization of Ketje Jr v1 and v2, 6-round Xoodoo-AE in nonce-respecting setting and 6 -round XoODYak in nonce-reuse setting, whose time complexities are $2^{26.6}$, $2^{27.5}, 2^{40.5}$ and $2^{43.8}$ with negligible memory cost. All the attacks are practically implemented.

References

BDL^{+}18. Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang. MILP-aided Cube-Attack-Like Cryptanalysis on Keccak Keyed Modes. Designs, Codes and Cryptography, pages 1-26, 2018.
BDP^{+}16. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. Ketje v2. Submission to the CAESAR Competition, 2016.

BDPA11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge: Single-pass authenticated encryption and other applications. In Selected Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, pages 320-337, 2011.
BDPVA09. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak Sponge Function Family Main Document. Submission to NIST (Round 2), 3(30), 2009.
BLD^{+}18. Wenquan Bi, Zheng Li, Xiaoyang Dong, Lu Li, and Xiaoyun Wang. Conditional cube attack on round-reduced river keyak. Des. Codes Cryptography, 86(6):1295-1310, 2018.
Com14. The CAESAR Committee. CAESAR: Competition for authenticated encryption: Security, applicability, and robustness, 2014. http:// competitions.cr.yp.to/caesar.html.
DBH^{+}. Joan Daemen, Guido Bertoni, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. Innovations in permutation-based crypto. 21st Workshop on Elliptic Curve Cryptography, 2017. https://ecc2017. cs.ru.nl/slides/ecc2017-daemen.pdf
DHAK18. Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The design of xoodoo and xoofff. IACR Trans. Symmetric Cryptol., 2018(4):138, 2018.
DLWQ17. Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. Cube-like Attack on Round-Reduced Initialization of Ketje Sr. IACR Trans. Symmetric Cryptol., 2017(1):259-280, 2017.
DMP^{+}15. Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the RoundReduced Keccak Sponge Function. In Advances in Cryptology - EUROCRYPT 2015-34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 2630, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 733-761, 2015.
DS09. Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. In Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 278-299, 2009.
FNR18. Thomas Fuhr, María Naya-Plasencia, and Yann Rotella. State-recovery attacks on modified ketje jr. IACR Trans. Symmetric Cryptol., 2018(1):2956, 2018.
$H W X^{+}$17. Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Function. In Advances in Cryptology-EUROCRYPT 2017-36th

Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30-May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science, pages 259288, 2017.

KMN10. Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differential Cryptanalysis of NLFSR-Based Cryptosystems. In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 130-145, 2010.

LBDW17. Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved Conditional Cube Attacks on Keccak Keyed Modes with MILP Method. In Advances in Cryptology - ASIACRYPT 2017-23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pages 99-127, 2017.
LDB^{+}19. Zheng Li, Xiaoyang Dong, Wenquan Bi, Keting Jia, Xiaoyun Wang, and Willi Meier. New conditional cube attack on keccak keyed modes. Cryptology ePrint Archive, Report 2019/392, 2019. https://eprint.iacr.org/ 2019/392.

LDW17. Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced ASCON. IACR Trans. Symmetric Cryptol., 2017(1):175202, 2017.

SG18. Ling Song and Jian Guo. Cube-Attack-Like Cryptanalysis of RoundReduced KECcak Using MILP. IACR Trans. Symmetric Cryptol., 2018(3):182-214, 2018.

SGSL18. Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP Modeling: Improved Conditional Cube Attacks on Keccak-Based Constructions. In Advances in Cryptology - ASIACRYPT 2018-24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science, pages 65-95, 2018.

WY05. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 19-35. Springer, 2005.

WYY05. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks on SHA-0. In Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages 1-16, 2005.

A Experimental results on Ketje Jr v1, Ketje Jr v2

Table 8: Guess key and cube sum for 5-round KetJe Jr v1

Guess key	Cube sum	Guess key	Cube sum	Guess key	Cube sum	Guess key	Cube sum
	0x91,0xe5	000010	0xc4,0xfe				
100	0x9d,0x9b	100010	0xa6,0xfd	100001	22,0x71	1000	cc7,0x19
010000	0xa9,0xa5	010010	0xf8,0x19	010001	x9c,0x54	0100	xdc,0x4d
110000	0x9c,0x69	110010	0xe2,0x43	110001	x8c,0x38	1100	27,0x53
001000	0xf8,0xf1	001010	0x85,0x3c	001001	0xfc,0x95	001011	0xee,0x33
101000	0x1,0xa7	101010	0x2e, $0 \times 1 \mathrm{c}$	101001	0x5b,0x2d	10101	x21,0x81
011000	$0 \mathrm{x} 15,0 \mathrm{xbb}$	011010	0x8d, $0 \times 7 \mathrm{~b}$	011001	0x31,0x46	01101	0xd7,0xae
111000	$0 \mathrm{x} 48,0 \times 4 \mathrm{e}$	111010	0xb2,0x96	111001	0xfb,0x2b	1110	xed,0xaf
000100	0xa7,0xd6	000110	0xcb,0xb9	000101	x81,0xfe	00011	x $3 \mathrm{~b}, 0 \times 4 \mathrm{e}$
100100	0x45,0x60	100110	0xf0,0x81	100101	0xe,0xd	10011	0x37,0xa3
010100	0x15,0x38	010110	0x88,0x52	010101	0x9f,0xd9	01011	xcf,0x11
110100	0x3,0x9c	110110	0xd5,0x44	1101010	0x40,0x1a	110111	0x43,0xba
001100	0x38,0x1e	001110	0x0,0x0	001101	x45,0x67	00111	x4b,0x31
101100	0x37,0xc9	101110	0xef,0xa5	1011010	0x4a,0x18	101111	0x4,0x2f
011100	0xde,0xa7	011110	0x1b,0x49	011101	0xd9,0x21	011111	x23,0x58
111100	0x0,0xce	111110	0xba,0x49	111101	0x8b,0x75	111111	0x44,0x8

Table 9: Guess key and cube sum for 5-round Ketje Jr v2

Guess	Cube	Guess	Cube	Guess	Cube	Guess	Cube
key	sum	key	sum	key	sum	key	sum

| 0000000 | $0 x 55,0 x f d$ | 0000010 | 0x7b,0xa5 0000001 0xcd,0x85 0000011 0x6b,0x9b |
| :---: | :---: | :---: | :---: | 1000000 0x19,0x48 1000010 0xef,0x4b 1000001 0xab,0xfb 1000011 0x2d,0x5f 0100000 0x58,0x52 0100010 0x2a,0x4 0100001 0x87,0x19 0100011 0x43,0xed 1100000 0x86,0x20 1100010 0xb5,0x32 1100001 0x40,0x60 1100011 0x19,0x33 0010000 0x8c,0xaf 0010010 0x48,0xca 0010001 0x61,0x8a 0010011 0xce,0x61 1010000 0x8d,0x62 1010010 0xb0,0x8b 1010001 0x1a,0x23 1010011 0xf,0x2d 0110000 0x78,0x17 0110010 0x8f,0xf2 0110001 0x8b,0x89 0110011 0xc,0x6c 1110000 0x1c,0xec 1110010 0xcb,0x33 1110001 0x5e,0xa0 1110011 0xd4,0x73 0001000 0xa9,0x73 0001010 0xe4,0x82 0001001 0x0,0x83 0001011 0x59,0x92 1001000 0x25,0x39 1001010 0x38,0xb2 1001001 0xd5,0x29 1001011 0x57,0xff 0101000 0x43,0xc8 0101010 0xff,0x88 0101001 0xa7,0xb3 0101011 0x52,0xb4 1101000 0x55,0xa3 1101010 0x60,0x15 1101001 0x64,0x62 1101011 0x51,0x6d 0011000 0x29,0x1d 0011010 0x7d,0x3e 0011001 0x85,0xf 0011011 0xcb,0xc6 1011000 0xc7,0xbc 1011010 0xae,0x52 1011001 0xc2,0x27 1011011 0x64,0xd5 0111000 0xec,0xad 0111010 0xc,0xca 0111001 0xe3,0x71 0111011 0x7c,0xa6 1111000 0xe7,0x48 1111010 0xa4,0xe5 1111001 0x22,0x29 1111011 0xd1,0x77 0000100 0xc2,0xb9 0000110 0x0,0x0 0000101 0xf7,0x23 0000111 0x1a,0x37 1000100 0x23,0xdb 1000110 0x2e,0xea 1000101 0x2d,0xb9 1000111 0xe4,0x8b 0100100 0x65,0x33 0100110 0xc8,0x7f 0100101 0xc3,0x37 0100111 0x32,0xcc 1100100 0x90,0x87 1100110 0xcc,0xe7 1100101 0x4d,0xb2 1100111 0xa9,0xca 0010100 0x5d,0x0 0010110 0xed,0xad 0010101 0x3f,0xf1 0010111 0x97,0xd2 1010100 0x60,0xac 1010110 0xb6,0xe4 1010101 0xcf,0x9e 1010111 0xf7,0x25 0110100 0x54,0xd7 0110110 0x47,0x11 0110101 0xca,0x59 $01101110 x 1 \mathrm{c}, 0 \mathrm{x} 4 \mathrm{c}$ 1110100 0x8e,0x6b 1110110 0xc6,0x50 1110101 0xed,0xb7 1110111 0x1d,0x6f 0001100 0x51,0x72 0001110 0x44,0xed 0001101 0x5,0x41 0001111 0xd2,0xfb 1001100 0xef,0x2a 1001110 0x2d,0xe 1001101 0x2a,0xf4 1001111 0x11,0x3a 0101100 0x28,0x68 0101110 0x15,0x41 0101101 0xe2,0xcc 0101111 0xa,0xe8 1101100 0xa2,0x1c 1101110 0x11,0x56 1101101 0x43,0xce 1101111 0x9a,0x79 0011100 0xe7,0xb9 0011110 0x42,0xc9 $00111010 x 8 f, 0 x 260011111$ 0x88,0x4 1011100 0xef,0x89 1011110 0x66,0x67 1011101 0x6,0x9b 1011111 0xa2,0x9c 0111100 0x56,0xcd 0111110 0xea,0x43 0111101 0x6d,0x3f 01111110 0xac,0x85 1111100 0xc6,0x4b 1111110 0xc2,0x21 1111101 0x8b,0xff 1111111 0x20,0xec

[^0]: * Corresponding authors

