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Abstract. Conditional cube attack was proposed by Huang et al. at
EUROCRYPT 2017 to attack Keccak keyed mode. Inspired by dynamic
cube attack, they reduce the degree by appending key bit conditions on
the initial value (IV). Recently, Li et al. proposed new conditional cube
attacks on Keccak keyed mode with extremely small degrees of freedom.
In this paper, we find a new property on Li et al.’s method, and modify
the new conditional cube attack for lightweight encryption algorithm-
s using a 8-2-2 pattern, and apply it on 5-round Ketje Jr, 6-round
Xoodoo-AE and Xoodyak, where Ketje Jr is among the 3rd round
CAESAR competition candidates and Xoodyak is a Round 1 submis-
sion of the ongoing NIST lightweight cryptography project. Then we give
the updated conditional cube attack analysis. All our results are of prac-
tical time complexity with negligible memory cost and our test codes
are given in this paper. Notably, it is the first third-party cryptanalysis
result for Xoodyak.

Keywords: Conditional Cube Attack, Keccak, Ketje Jr, Xoodoo,
Xoodyak

1 Introduction

Authenticated encryption (AE) can provide confidentiality, integrity and authen-
ticity for messages simultaneously. CAESAR competition [Com14], launched in
2014, aimed to find AE schemes with Security, Applicability, and Robustness.
Totally, 57 candidates have been submitted to CAESAR in the first round com-
petition. After three rounds of competition, only 6 authenticated encryption
algorithms survived in the final portfolio.
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Recenly, NIST has initiated a process to solicit, evaluate, and standardize
lightweight authenticated encryption algorithms with associated data (AEAD)
and hashing, that are suitable for use in constrained environments where the
performance of current NIST cryptographic standards is not acceptable. Till
April 18, 2019, NIST has received 57 submissions, out of which 56 were selected
as Round 1 Candidates.

Ketje [BDP+16] is one of the third round candidates of CAESAR compe-
tition [Com14], whose lightweight version is Ketje Jr, which leverages Kec-
cak-p permutation with 200-bit internal state. Using a cube-attack-like method
[DMP+15], Dong et al. [DLWQ17] give the first third party cryptanalysis on
Ketje Jr with initialization phase reduced to 5 rounds. Then, Bi et al. [BDL+18]
and Song et al. [SG18] improved the cube-attack-like cryptanalysis by MILP
method, and obtained better attacks [SG18] on 5-round Ketje Jr. Song et
al. [SG18] also give 6-round attacks when the recommended 96-bit key is re-
duced to 72 bits for Version 1 and 80 bits for Version 2. When targeting the
encryption phase of Ketje Jr, Fuhr et al. [FNR18] described key recovery at-
tacks on Ketje Jr with a rate extended to 32 or 40 bits (instead of the nominal
16 bits).

Xoodoo is another permutation proposed by Daemen et al. [DHAK18] at
ToSC 2018. Song et al. [SG18] gave the first key-recovery attack on 6-round
Xoodoo-AE, which is an artificial AE by using Xoodoo in Ketje style. In
addition, the official AEAD scheme Xoodyak [DHAK18] based on Xoodoo is
included in the Round 1 candidates of NIST lightweight cryptography compe-
tition. Besides the nonce-respecting security claim, the authors [DHAK18] also
clarify the nonce-misuse case that: “Nonce violation and release of unverified
decrypted ciphertext have no consequences for integrity and do not put the key
in danger for Xoodyak”.

Our Contribution. In this paper, we investigate three lightweight AEAD schemes,
namely Ketje Jr (v1 and v2), Xoodoo-AE and Xoodyak, with Li et al.’s
[LDB+19] new conditional cube attack. Conditional cube attack was first intro-
duced by Huang et al. [HWX+17] at EUROCRYPT 2017 to attack Keccak
keyed modes. However, Huang et al.’s attack becomes invalid when applied to
targets with very small degrees of freedom even with the help of MILP model-
s [LDW17, SGSL18]. Ketje Jr (v1 and v2), Xoodoo-AE and Xoodyak are
exactly such schemes. In fact, the previous attacks [DLWQ17,SG18] on reduced
Ketje Jr or Xoodoo-AE are mainly based on Dinur et al.’s cube-attack-like
cryptanalysis [DMP+15].

Recently, Li et al. [LDB+19] proposed a new conditional cube attack, which
could work even on targets with extremely small degrees of freedom. They in-
troduced the so-called kernel quadratic term to replace the Huang et al.’s condi-
tional cube variables, which makes sure that no cubic term appears in the output
of 2nd round.

In this paper, we study Li et al.’s method and discover some new proper-
ties, such as using a 8-2-2 pattern for the lightweight algorithm can control the
conditional cube variables’ diffusion better; we also can adapt the 8-2-2 pattern
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to the 7-2-2 pattern for some algorithms whose state has short columns. Then
we apply it and get improved key-recovery attacks on reduced Ketje Jr (v1
and v2), Xoodoo-AE, as well as the first attack on reduced Xoodyak. The
advantages of our attacks are summarized in Table 1, and described as follows:

– For 5-round initialization of Ketje Jr v1 with recommended key length,
we could recover the 96-bit key in 226.6 time with negligible memory cost,
while the best previous attack needs 236.86 time and 218 memory.

– For 5-round initialization of Ketje Jr v2 with recommended key length,
we could recover the 96-bit key in 227.5 time with negligible memory cost,
while the best previous attack needs 234.91 time and 215 memory.

– For 6-round Xoodoo-AE, we could recover the 128-bit key in 240.5 time
with negligible memory cost, while the best previous attack needs 289 time
and 255 memory.

– For 6-round Xoodyak in nonce-misuse settings, we could recover the 128-bit
key in 243.8 time with negligible memory cost.

Table 1: Summary of Key-recovery Attacks

Target b —K— DF Rounds T M Source Type

Ketje Jr v1 200 96 86 5/13
256 238 [DLWQ17] T1

236.86 218 [SG18] T1
226.6 – Sect. 5.1 T2

Ketje Jr v2 200 96 86 5/13
250.32 232 [DLWQ17] T1
234.91 215 [SG18] T1
227.5 – Sect. 5.1 T2

Xoodoo-AE 384 128 238 6/-
289 255 [SG18] T1

240.5 – Sect. 5.2 T2

Xoodyak† 384 192 192 6/12 243.8 – Sect. 5.3 T2
†: The attack on Xoodyak works in nonce-reuse setting.
T1: Cube-attack-like attack
T2: Conditional cube attack
DF: Degrees of freedom

2 Preliminaries

2.1 Notations

Some notations for Keccak variants are as follows:

S0 the initial state of Keccak-p permutation,
Si−1,θ the internal state after θ in i-th round of Keccak-p, i ≥ 1,
Si−1,π the internal state after π in i-th round, i ≥ 1,
Si the output state of the i-th round, i ≥ 1,
Thus the internal states of i-th round Keccak are as follows:

Si−1
θ−→ Si−1,θ

ρ−→ Si−1,ρ
π−→ Si−1,π

χ−→ Si−1,χ → Si. (1)
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0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

Fig. 1: (a) The Keccak State [BDPVA09], (b) State A In 2-dimension

Similarly, the internal states of i-th round Xoodoo are as follows:

Si−1
θ−→ Si−1,θ

ρwest−−−→ Si−1,ρwest

ι−→ Si−1,ι
χ−→ Si−1,χ

ρeast−−−→ Si−1,ρeast
→ Si. (2)

(∗, j, k) the index of row,
(i, ∗, k) the index of column,
(i, j, ∗) the index of lane,
(i, j, k) the index of bit,
A[i][j] the lane indexed by (i, j, ∗) of state A,
A[i][j][k] the bit indexed by (i, j, k) of state A.

2.2 The Keccak-p permutations

The Keccak-p permutations are derived from the Keccak-f permutations [B-
DPVA09] and have a tunable number of rounds. A Keccak-p permutation is
defined by its width b = 25 × 2l, with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and
its number of rounds nr, denoted as Keccak-p[b, nr]. The round function R con-
sists of five operations, denoted as R = ι ◦ χ ◦ π ◦ ρ ◦ θ, and the details are as
follows:

θ : A[x][y] = A[x][y]⊕
∑4
j=0 (A[x− 1][j]⊕ (A[x+ 1][j] ≫ 1)).

ρ : A[x][y] = A[x][y] ≫ ρ[x, y].
π : A[y][2x+ 3y] = A[x][y].
χ : A[x][y] = A[x][y]⊕ ((¬A[x+ 1][y]) ∧A[x+ 2][y].
ι : A[0][0] = A[0][0]⊕RC.

Keccak-p[b, nr] works on a state A of size b, which can be represented as
5× 5 b

25 -bit lanes, as depicted in Figure 1, A[i][j] with i for the index of column
and j for the index of row. In what follows, indexes i and j are in set {0, 1, 2, 3, 4}
and they are working modulo 5 without other specification.

2.3 Ketje

Ketje [BDP+16] is a submission by the Keccak team. It is a sponge-like
construction. In Ketje v1, two instances are proposed, Ketje Sr and Jr with
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Fig. 2: Ketje, where the finalization is omitted.

400-bit and 200-bit state sizes, respectively. In the latest Ketje v2, another two
instances Ketje Minor and Major are added to the family, with 800-bit and
1600-bit state sizes, respectively. Ketje Sr is the primary recommendation. The
four concrete instances of Ketje v2 are shown in Table 2. In the following, we
give a brief overview about Ketje v2. For a complete description, we refer to
the design document [BDP+16].

The structure of Ketje is an authenticated encryption mode MonkeyWrap,
which is based on MonkeyDuplex [BDPA11]. It consists of four parts: initializa-
tion, processing associated data, processing the plaintext, finalization. Figure 2
illustrates the scheme of Ketje v2, where the finalization is omitted. In Ketje
v2, the twisted permutations, Keccak-p∗[b]=π◦ Keccak-p[b] ◦ π−1, are intro-
duced to effectively re-order the bits in the state. π−1 : A[x + 3y][x] = A[x][y]
is the inverse of π, shown in Figure 3. Specially, f0=Keccak-p∗[b, 12] and
f1=Keccak-p∗[b, 1].

Table 2: Four Instances in Ketje v2
Name f ρ Main use case

Ketje Jr Keccak-p∗[200] 16 lightweight
Ketje Sr Keccak-p∗[400] 32 lightweight
Ketje Minor Keccak-p∗[800] 128 lightweight
Ketje Major Keccak-p∗[1600] 256 high performance

2.4 Xoodoo

At ToSC 2018, Daemen et al. [DHAK18] proposed a 384-bit permutation, called
Xoodoo, whose design is similar to Keccak. The state is presented as a three-
dimension matrix of bits A[4][3][w], where w = 32. The round function of

5



0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0,0 0,2 0,4 0,1 0,3

1,3 1,0 1,2 1,4 1,1

2,1 2,3 2,0 2,2 2,4

3,4 3,1 3,3 3,0 3,2

4,2 4,4 4,1 4,3 4,0

-1

Fig. 3: π−1

Xoodoo has five operations, denoted as R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ, and the
details are as follows:

θ : A[x][y][z] = A[x][y][z]⊕
∑2
j=0 (A[x− 1][j][z − 5]⊕A[x− 1][j][z − 14]).

ρwest : A[x][1][z] = A[x− 1][1][z], A[x][2][z] = A[x][2][z − 11].
ι : A[0][0] = A[0][0]⊕RCi.
χ : A[x][y][z] = A[x][y][z]⊕ ((A[x][y + 1][z]⊕ 1) ∧A[x][y + 2][z]).

ρeast : A[x][1][z] = A[x][1][z − 1], A[x][2][z] = A[x− 2][2][z − 8].

As pointed out in [DBH+], Xoodoo could be used as an AE scheme in
Ketje style.

2.5 Xoodyak

As a Round 1 candidate of NIST lightweight cryptography competition,
Xoodyak [DHAK18] includes an AEAD scheme and a hashing scheme. Both of
them are based on Xoodoo permutation.

Xoodyak-AEAD uses a new mode of operation, called Cyclist. As shown
in Figure 4, f is the 12-round permutation Xoodoo[12]. Xoodyak-AEAD first
absorbs a 128-bit key into the 384 state, then applies Xoodoo[12] to the state;
second, absorbs a 128-bit nonce; then, the 192-bit associated data blocks; then
absorb 192-bit plaintext blocks and output ciphertext blocks; then go to the
finalization phase. Please refer to [DHAK18] for detailed information.

Besides the nonce-respecting security claim, the authors [DHAK18] also clar-
ify the nonce-misuse case that: “Nonce violation and release of unverified de-
crypted ciphertext have no consequences for integrity and do not put the key in
danger for Xoodyak”. In this paper, we assume the nonce is reused and we try
to recover the key of reduced Xoodyak. We apply our conditional cube attack
in phase of absorbing M0, and select cube variables in M0 with 192-bit degrees
of freedom. Our target is to recover the other 192-bit unknown state. Once we
recover it, the full 384-bit state is known and we could compute the key inversely.
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Fig. 4: Framework of Xoodyak-AEAD, where the finalization is omitted.

3 Related Works

3.1 Cube Attack

The cube attack [DS09] was introduced by Dinur and Shamir at EUROCRYPT
2009. It assumes that the output bit of a symmetric cryptographic scheme can
be regarded as a polynomial over GF (2).

Theorem 1. ( [DS09]) Let f(k0, ..., kn−1, v0, ..., vm−1) be a polynomial over GF (2),
where k0, ..., kn−1 are secret variables, and v0, ..., vm−1 are public variables.

For a set I = {i1, i2, ..., i|I|} ⊂ {0, ...,m− 1}, f(k0, ..., kn−1, v0, ..., vm−1) can
be represented uniquely as

f(k0, ..., kn−1, v0, ..., vm−1) = TI · P +Q(k0, ..., kn−1, v0, ..., vm−1), (3)

where TI = vi1 · · · vi|I| . The polynomial P only relates to vs’s (s /∈ I) and the
secret variables, and Q(k0, ..., kn−1, v0, ..., vm−1) misses at least one variable in
TI . TI is called maxterm and P is called superpoly.

Denote by CI the structure, called cube, consisting of all 2|I| different vectors
with vi, i ∈ I being active (traversing all 0-1 combinations) and non-cube indices
vs, s /∈ I being static constants.

Then the sum of f over all values of the cube CI (cube sum) is∑
vi1 ,...,vi|I|∈CI

f(k0, ..., kn−1, v0, ..., vm−1) = P . (4)

The basic idea is to find enough TI ’s P is linear and not a constant. This enables
the key recovery through solving a system of linear equations.

3.2 Conditional Cube Attack

Conditional cube attack [HWX+17] was proposed by Huang et al. at EURO-
CRYPT 2017 to attack Keccak keyed mode. Then it soon was applied on many
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similar cryptography algorithms [LDW17,LBDW17,SG18,BLD+18]. Inspired by
dynamic cube attack [DS09], which reduces the degree of output polynomials of
cube variables by adding some bit conditions on the initial value (IV), they re-
duce the degree by appending key bit conditions. The techniques are similar
to message modification technique [WY05,WYY05] and conditional differential
cryptanalysis [KMN10] which used bit conditions to control differential propa-
gation.

Definition 1. ( [HWX+17]) Cube variables that have propagation controlled
in the first round and are not multiplied with each other after the second round
of Keccak are called conditional cube variables. Cube variables that are
not multiplied with each other after the first round and are not multiplied with
any conditional cube variable after the second round are called ordinary cube
variables.

Theorem 2. ( [HWX+17]) For (n+2)-round Keccak sponge function (n > 0),
if there are p (0 ≤ p < 2n + 1) conditional cube variables v0, ..., vp−1, and q =
2n+1 − 2p+ 1 ordinary cube variables, u0, ..., uq−1 (If q = 0, we set p = 2n + 1),
the term v0v1...vp−1u0...uq−1 will not appear in the output polynomials of (n+2)-
round Keccak sponge function.

Actually, in the previous conditional cube attacks [HWX+17, LBDW17, S-
GSL18], they only use the special case of the above theorem when p = 1. We
describe it as a corollary for clearness.

Corollary 1. For (n + 2 )-round Keccak sponge function (n > 0), if there is
one conditional cube variable v0, and q = 2n+1 − 1 ordinary cube variables,
u0, ..., uq−1, the term v0u0...uq−1 will not appear in the output polynomials of
(n + 2 )-round Keccak sponge function.

3.3 New Conditional Cube Attack

Recently, Li et al. [LDB+19] proposed new conditional cube attacks on Keccak
keyed mode with extremely small degrees of freedom. In Huang et al.’s attack
[HWX+17], all cube variables must not be multiplied together in the first round.
However, Li et al. [LDB+19] relaxed this constraint by introducing the so-called
kernel quadratic term.

Definition 2. ( [LDB+19]) Suppose all the (q+2) cube variables are v0, v1, u0, ...uq−1,
and constraints are as follows:

– After the first round, v0v1 is the only quadratic term;
– In the second round, if the bit conditions are satisfied, v0v1 does not multiply

with any of u0, ...uq−1, i.e. no cubic term occurs.
– In the second round, if the bit conditions are not satisfied, v0v1 multiplies

with some of u0, ...uq−1, i.e. some cubic terms like v0v1ui (i = 0, ..., q − 1)
occur.
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Then v0v1 is called kernel quadratic term. The remaining cube variables ex-
cept v0 and v1, i.e. u0, ...uq−1, are called ordinary cube variables.

Then the following corollary is deduced.

Corollary 2. [LDB+19] For (n+ 2)-round Keccak sponge function (n > 0),
if there is one kernel quadratic term v0v1, and q = 2n+1 − 1 ordinary cube
variables, u0, u1, ..., uq−1, the term v0v1u0u1...uq−1 will not appear in the out-
put polynomials of (n + 2)-round Keccak sponge function under certain bit
conditions.

So the distinguisher is approached as follows:

– under right bit conditions, the degree of output polynomials of n+2 rounds
is no more than 2n+1;

– under the wrong bit conditions, the degree of output polynomials of n+2
rounds is q + 2 = 2n+1 + 1.

According to Definition 2, in Li et al.’s [LDB+19] new conditional cube at-
tack, we only care that the kernel quadratic term (i.e. v0v1) should not be mul-
tiplied with ordinary cube variables in the second round. So they devised the
so-called 6-2-2 pattern to reduce the diffusion of v0v1. Therefore, they could get
more degrees of freedom to find ordinary cube variables.

Concretely, in the initial state S0, Li et al. selected v0 and v1, such that
S0[2][0][0] = S0[2][1][0] = S0[3][0][34] = S0[3][1][34] = v0, are in CP-kernel,
S0[0][1][60] = S0[1][1][1] = v1 are not in CP-kernel. Then, before the first χ, the
distribution of v0 and v1 is shown in Figure 5. Moreover, after χ, kernel quadratic
term v0v1 is also in CP-kernel. Thus, the second θ becomes the identity for v0v1.
Therefore, before the second χ, only two bit positions are related to v0v1. So, it
is called 6-2-2 pattern. Li et al. also gave a method to derive the 6-2-2 pattern.
For more details, please refer to [LDB+19].

3.4 MILP Model of Conditional Cube Attack

At ASIACRYPT 2017, Li et al. [LBDW17] for the first time applied MILP
method to cube attacks on keyed Keccak. Later, the MILP model was improved
by [SGSL18], and also applied to cube-attack-like method by Bi et al. [BDL+18]
and Song et al. [SG18]. In the previous MILP model of conditional cube attack,
no cube variables multiply with each other in the first round, and the conditional
cube variable of degree one is considered not to multiply with any ordinary cube
variables in the second round. To limit the diffusion of conditional cube variables,
conditions are added in the first round. Actually, as described in Corollary 1,
(2n+1−1) ordinary cube variables are needed to perform a (n+2)-round attack.
To obtain enough ordinary cube variables for the attack, the objective of Li et
al.’s MILP model [LBDW17] at ASIACRYPT 2017 was to maximize the number
of ordinary cube variables. To reduce the attack complexity further, Song et
al. [SGSL18] proposed a new MILP model to minimize the number of conditions
at ASIACRYPT 2018.
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Fig. 5: 6-2-2 Pattern: Generation of Kernel Quadratic Terms in the First χ
[LDB+19].
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Fig. 7: 8-2-2 Pattern: Generation of Kernel Quadratic Terms in the First χ.
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4 8-2-2 Pattern

Based on Li et al.’s [LDB+19] new discovery, we introduce the 8-2-2 pattern
instead of the 6-2-2 pattern to attack targets with fewer degrees of freedom,
namely Ketje Jr, Xoodoo-AE and Xoodyak-AEAD.

According to the new conditional cube attack given in Sect. 3.3, we only care
that the kernel quadratic term (i.e. v0v1) should not be multiplied with ordinary
cube variables in the second round. Li et al.’s 6-2-2 pattern allows v1 to be not
in the CP-kernel. Thus, it will distribute to 22 bit positions before the first χ
as shown in Figure 5. This reduces the degrees of freedom to select ordinary
cube variables ui, since according to Definition 2, ui has to be prevent from
multiplying with vi in the first round.

Hence, we introduce the so-called 8-2-2 pattern, i.e. both v0 and v1 are set in
CP-kernel in the initial state. For example, in the initial state S0 of Ketje Jr,
v0 occupies 4 bits of S0, i.e. A[4][3][0]=A[4][4][0]=A[2][3][1]=A[2][4][1]=v0, and
v1 also occupies 4 bits, i.e. A[0][4][6]=A[0][3][6]=A[3][4][0]=A[3][3][0]=v1. Before
the first χ operation, v0 only appears in the 4 bits, while v1 also appears in 4
bits. Similar to Li et al.’s work [LDB+19], only 2 S-boxes are related to v0 and
v1 simultaneously and the quadratic term v0v1 is generated in two bit positions
after χ operation, as shown in Figure 7. Moreover, the two bits containing v0v1 in
S1 are also in CP-kernel. Similar to Li et al. [LDB+19], we also give the method
to find the 8-2-2 pattern.

Table 3: Related Indexes of Bits Containing v0, v1 and v0v1

Index v0v1

S1
(x, y0, z)
(x, y1, z)

Index v0 v1

S0,π
(x+ 1, y0, z) (x+ 2, y0, z)
(x+ 1, y1, z) (x+ 2, y1, z)

S0,ρ
(x+ 3y0 + 1, x+ 1, z) (x+ 3y0 + 2, x+ 2, z)
(x+ 3y1 + 1, x+ 1, z) (x+ 3y1 + 2, x+ 2, z)

S0,θ
(x+ 3y0 + 1, x+ 1, z − ρ[x+ 3y0 + 1, x+ 1]) (x+ 3y0 + 2, x+ 2, z − ρ[x+ 3y0 + 2, x+ 2])
(x+ 3y1 + 1, x+ 1, z − ρ[x+ 3y1 + 1, x+ 1]) (x+ 3y1 + 2, x+ 2, z − ρ[x+ 3y1 + 2, x+ 2])

S0

(x+ 3y0 + 1, x+ 1, z − ρ[x+ 3y0 + 1, x+ 1]) (x+ 3y0 + 2, x+ 2, z − ρ[x+ 3y0 + 2, x+ 2])
(x+ 3y0 + 1, x1, z− ρ[x+ 3y0 + 1, x+ 1]) (x+ 3y0 + 2, x3, z− ρ[x+ 3y0 + 2, x+ 2])
(x+ 3y1 + 1, x+ 1, z − ρ[x+ 3y1 + 1, x+ 1]) (x+ 3y1 + 2, x+ 2, z − ρ[x+ 3y1 + 2, x+ 2])

(x+ 3y1 + 1, x2, z− ρ[x+ 3y1 + 1, x+ 1]) (x+ 3y1 + 2, x4, z− ρ[x+ 3y1 + 2, x+ 2])

The method to find 8-2-2 pattern. The most important constraint is
that v0v1 has to be in a CP-kernel in S1. So we start with setting v0v1 in a
CP-kernel. Denote the two bits containing v0v1 as (x, y0, z), (x, y1, z). According
to the expression of χ, v0v1 in S1[x][y0][z] is generated by multiplying v0 in
S0,π[x + 1][y0][z] and v1 in S0,π[x + 2][y0][z], or v0 in S0,π[x + 2][y0][z] and v1
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in S0,π[x + 1][y0][z]. The same happens to v0v1 in S1[x][y1][z]. So there will be
4 cases to determine the bit positions for v0 and v1 in reverse. For example, in
Figure 6, v0v1 appears in S1[1][2][z] by multiplication of v0 in S0,π[2][2][z] and
v1 in S0,π[3][2][z], and similarly v0v1 appears in S1[1][4][z] by multiplication of
v1 in S0,π[2][4][z] and v0 in S0,π[3][4][z].

Under one of the 4 cases, Table 3 describes the bit positions of v0v1, v0 and
v1 inversely from S1 to S0, while the other cases are similar. In Table 3, in order
to reduce the diffusion of v0 and v1, the 4 bit positions containing v0 and v1 in S0

are set in CP-kernel, where x1, x2 6= x+ 1 , x3, x4 6= x+ 2. At last, all the 8 bits
in S0 should be selected in free space for ordinary cube variables. Accordingly,
we can determine 8-2-2 patterns.

5 Applications to Ketje Jr, Xoodoo-AE and
Xoodyak-AEAD

5.1 5-Round Attack against Ketje Jr

For Ketje Jr with 200-bit state, the recommended key size is 96 bits, while the
shortest padding occupies 18 bits. A 5-round attack can be performed with 17
cube variables.

According to the new conditional cube attack illustrated in Sect. 3.3, we
find a 8-2-2 pattern at first, and then search for the minimal number of key bit
conditions and the 15 ordinary cube variables satisfying the corresponding rules
by previous MILP models [LBDW17,SGSL18,LDB+19].

5-round Attack on Ketje Jr v1 In the procedure of attack on 5-round Ketje Jr
v1, we select v0 and v1 following the 8-2-2 pattern. As shown in Figure 8, the 96-
bit key is located at the red parts, while the padding part is shown in blue. v0 is
set in CP-kernel filled with black. i.e.A[4][3][0]=A[4][4][0]=A[2][3][1]=A[2][4][1]=v0,.
And v1 is located at 4 grey bits, i.e.A[0][4][6]=A[0][3][6]=A[3][4][0]=A[3][3][0]=v1.
The white bits represent free space to be selected as ordinary cube variables.

The cube variables and bit conditions to attack 5-round initialization phase
of Ketje Jr v1 are given in Table 4.

Note that the number of the key bits to be guessed and assigned is 6. If the key
guessing is right, it is expected to output zero cube sums. The time complexity
to recover the 6-bit key is 26×217. According to the property of the permutation,
it is totally symmetric in z-axis. Thus we can obtain corresponding parameter
sets with any i-bit rotation (0 ≤ i < 8) in z-axis. Therefore, the related key bits
rotated by i bits can be recovered.

Totally, 12 iterations could recover the 72-bit key. Then guess 96-72=24 bits
to determine the full key. The time complexity is 12× 26 × 217 = 226.58.

To support our theory, we have run more than 1000 experiments and obtained
correct key recovery of 5-round Ketje Jr v1 with 100 percent success rate. For
saving space,we give an example here for intuition, in which the key is generated
randomly and all the controllable nonce bits are set to zero. The program is run
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Fig. 8: The Initial State of Ketje Jr v1

Table 4: Parameters set for attack on 5-round Ketje JR v1
kernel quadratic term

A[4][3][0]=A[4][4][0]=A[2][3][1]=A[2][4][1]=v0,
A[0][4][6]=A[0][3][6]=A[3][4][0]=A[3][3][0]=v1
Bit Conditions

A[3][3][6] = k7 + k22 + k47 + k62 + k87 + n71 + n78

A[0][3][2] = k9 + k34 + k49 + k74 + k89 + n18 + n50 + 1
A[3][4][4] = k12 + k27 + k52 + k67 + k92
A[1][3][1] = k1 + k26 + k41 + k66 + k81 + n50 + n57

A[1][3][3] = k3 + k28 + k43 + k68 + k83 + n52 + n59

A[4][2][5] = k14 + k29 + k54 + k62 + k69 + k94 + n30 + n45 + n70 + n85 + 1

Ordinary Cube Variables

A[4][2][4]=u0,A[4][3][4]=u1,A[4][4][4]=u0 + u1,A[1][3][0]=u2,
A[1][4][0]=u2,A[1][3][6]=u3,A[1][4][6]=u3,A[1][3][7]=u4,A[1][4][7]=u4,
A[2][3][2]=u5,A[2][4][2]=u5,A[2][3][3]=u6,A[2][4][3]=u6,A[2][3][4]=u7,
A[2][4][4]=u7,A[2][3][5]=u8,A[2][4][5]=u8,A[4][2][1]=u9,A[4][3][1]=u9,
A[4][2][2]=u10,A[4][3][2]=u11,A[4][4][2]=u10 + u11,A[4][2][3]=u12,
A[4][3][3]=u13,A[4][4][3]=u12 + u13,A[4][2][6]=u14,A[4][3][6]=u14

13



in Visual Studio 2012 with x64 platform Release. The time is less than 8 seconds
for recovery of 6 key bits using one CPU core (Intel i7 3.6GHz), and parallelism
can reduce time. Using the test code that we provided, one can verify it easily.

We calculate the cube sum at lanes (0, 0), (1, 0). As the probability, for which
the cube sum on these two lanes is zero, is 2−16 for a random function. Therefore,
if the 17-dimension cube sums of 5-round output is zero, we declare that the key
guess is correct with high probability. Actually, we also calculate other lanes’
cube sum, and all of them turn out to zero. The test code is given in https:

//github.com/alicebobb/aabb/tree/alicebobb-patch-1.

96-bit key K:

101000001101011001110100110111000111001000011101

110111001011011011111100100111010010110001010101

The correct value for the guessed key bits in Table 4 is 001110.

......

guessed value: 010110, cube sums: 0x88, 0x52

guessed value: 110110, cube sums: 0xd5, 0x44

guessed value: 001110, cube sums: 0x0, 0x0

guessed value: 101110, cube sums: 0xef, 0xa5

guessed value: 011110, cube sums: 0x1b, 0x49

......

To see the full key guess results, we put them in Appendix A.

5-round Attack on Ketje Jr v2 As Figure 9 shows us, after π−1 transformation,
the 96-bit key is located at the red parts, while the padding part is shown in blue.
And v0 is set in CP-kernel as A[4][2][0]=A[4][0][0]=A[0][1][3]=A[0][4][3]=v0 in
black, and v1 is located at 4 grey bits, i.e.A[3][1][0]=A[3][4][0]=A[1][2][5]=A[1][4][5]=v1.
The white bits represent free space to be selected as ordinary cube variables.

Key

Padding

Free space

Fig. 9: The Initial State of Ketje Jr v2
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Table 5: Parameters set for attack on 5-round Ketje JR v2
kernel quadratic term

A[4][2][0]=A[4][0][0]=A[0][1][3]=A[0][4][3]=v0,
A[3][1][0]=A[3][4][0]=A[1][2][5]=A[1][4][5]=v1
Bit Conditions

A[1][2][4] = k11 + k52 + k67 + k83 + n35 + n51 + 1
A[1][2][6] = k13 + k54 + k69 + k85 + n37 + n53 + n78

A[2][3][2] = k10 + k51 + k66 + k82 + n50 + n75 + n83

A[0][4][5] = k22 + k38 + k53 + k94 + n14 + n46 + n62 + 1
A[4][2][7] = k23 + k39 + k54 + k95 + n78 + 1
A[4][0][4] = k13 + k28 + k44 + k69 + k85 + n37 + n45 + n53 + n68

A[1][2][0] = k0 + k23 + k39 + k56 + k72 + k95 + n32 + n80 + 1

Ordinary Cube Variables

A[3][1][4]=u0,A[3][4][4]=u0,A[3][1][7]=u1,A[3][4][7]=u1,A[0][1][0]=u2,
A[0][4][0]=u2,A[0][1][1]=u3,A[0][3][1]=u4,A[0][4][1]=u3 + u4,A[0][1][2]=u5,
A[0][3][2]=u6,A[0][4][2]=u5 + u6,A[0][1][4]=u7,A[0][3][4]=u8,
A[0][4][4]=u7 + u8,A[0][1][5]=u9,A[0][3][5]=u9,A[0][1][6]=u10,
A[0][4][6]=u10,A[2][0][4]=u11,A[2][3][4]=u11,A[2][0][6]=u12,A[2][3][6]=u12,
A[2][0][7]=u13,A[2][3][7]=u13,A[3][1][2]=u14,A[3][4][2]=u14

The cube variables and conditions to attack 5-round initialization phase of
Ketje Jr v2 are given in Table 5.

The number of bit conditions related to key is 7, hence, we have to guess a
7-bit key to assign conditions. The time complexity to recover the 7-bit key is
27×217. According to the property of the permutation, it is totally symmetric in
z-axis. Thus we can obtain corresponding parameter sets with any i-bit rotation
(0 ≤ i < 8) in z-axis. Therefore, the guessed key bits rotated by i bits can
be recovered. 11 iterations of the above process could recover a 77-bit key and
the remaining 19 key bits are recovered by exhaustive search. The total time
complexity is 11× 27 × 217 = 227.46.

Similarly, we have run more than 1000 experiments and obtained correct key
recovery of 5-round Ketje Jr v2 with 100 percent success rate. We also give
an example here for intuition, in which the key is generated randomly and all
the controllable nonce bits are set to zero. The program is run in Visual Studio
2012 with x64 platform Release. The time is less than 16 seconds for recovery
of 7 key bits using one CPU core (Intel i7 3.6GHz), and parallelism can reduce
time. Using the test code that we provided, one can verify it easily.

We calculate the output tag’s cube sum at lane (0, 0), (1, 1). The probability,
for which the cube sum on these two lanes the cube sum is zero, is 2−16 for a ran-
dom function. Therefore, if the 17-dimension cube sums of 5-round output is zero,
we declare that the key guess is correct with high probability. Actually, we also
calculate other lanes’ cube sum, and all of them turn out to zero. The test code
is given in https://github.com/alicebobb/aabb/tree/alicebobb-patch-1.
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96-bit key K:
100101100000100110001010010101101010111011011001

110010011101101000111111101011011010011101111001

The correct value for the guessed key bits in Table 5 is 0000110.
......
guessed value: 0111010, cube sums: 0xc, 0xca

guessed value: 1111010, cube sums: 0xa4, 0xe5

guessed value: 0000110, cube sums: 0x0, 0x0
guessed value: 1000110, cube sums: 0x2e, 0xea

guessed value: 0100110, cube sums: 0xc8, 0x7f

......
To see the full key guess results, we put them in Appendix A.

5.2 6-Round Attack against Xoodoo-AE

As pointed out in [DBH+], Xoodoo [DHAK18] could be used as an AE scheme
in Ketje style. We assume that the Xoodoo-AE has a 128-bit key and follows
the Ketje’s packing. As shown in Figure 10, the 128-bit key K is located at the
5 red lanes, and the padding parts are blue. The white part represents nonce
bits. The operations θ and χ of Xoodoo are very similar to those of Keccak-p
and ρwest just reorders the state bits which is similar to ρ and π. So it is easy
to modify the attack strategy of Keccak-p to Xoodoo.

However, Xoodoo’s state is 3×4, not Keccak-p’s 5×5 state, which means
columns in Xoodoo are shorter than those in Keccak-p. Another different
feature is the S-box, which is applied to every 3-bit column. Moreover, the first
row and part of the second row are occupied by the key and padding bits in
Xoodoo, which means, there are fewer free bits for us to search ordinary cube
variables. All those features will affect our decisions for choosing conditional
cube variables and ordinary cube variables. Consequently, we modify the
8-2-2 pattern into a 7-2-2 pattern, which means that v0 appears in 4 bits and v1
appears in 3 bits in the initial state.

Assume that v0v1 is the kernel quadratic term. As shown in Figure 10, v0 is
set in CP-kernel as S0[0][1][16] = S0[0][2][16] = S0[1][1][4] = S0[1][2][4] = v0 in
black, and v1 is located at 3 grey bits, i.e. S0[1][1][5] = S0[1][2][5] = S0[0][2][1] =
v1. After operation θ and ρwest,
S0,ρwest

[1][1][16] = S0,ρwest
[1][2][15] = v0

as well as S0,ρwest [0][2][27] = S0,ρwest [2][1][4] = v0, and
S0,ρwest [1][2][16] = S0,ρwest [1][0][15] = v1
as well as S0,ρwest

[0][2][12] = S0,ρwest
[1][2][17] = S0,ρwest

[1][0][6] = S0,ρwest
[2][1][6]

= S0,ρwest
[1][2][26] = S0,ρwest

[1][0][15] = S0,ρwest
[2][1][5] = v1.

The cube variables and bit conditions are shown in Table 6. With 31 ordinary
cube variables, there is only one bit condition related to key. We guess the
key bit k66 + k75 + k112 to assign the condition. The time complexity of one
recovery is 21 × 233. According to the property of the permutation, it is totally
symmetric in z-axis. Thus we can obtain corresponding parameter sets with any
i-bit rotation (0 ≤ i < 32) in z-axis. Therefore, the guessed key bits rotated
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Fig. 10: The Initial State of Xoodoo-AE

Table 6: Parameters set for attack on 6-round Xoodoo-AE
kernel quadratic term

A[0][1][16]=A[0][2][16]=A[1][2][4]=A[1][1][4]=v0, A[1][2][5]=A[1][1][5]=A[0][2][1]=v1
Bit Condition

A[2][1][10]=k66 + k75 + k112 + n67 + n186 + n195 + 1

Ordinary Cube Variables

A[3][1][25]=u0,A[3][2][25]=u0,A[3][1][28]=u1,A[3][2][28]=u1,A[0][1][25]=u2,
A[0][2][25]=u2,A[0][1][27]=u3,A[0][2][27]=u3,A[0][1][28]=u4,A[0][2][28]=u4,
A[1][1][1]=u5,A[1][2][1]=u5,A[1][1][2]=u6,A[1][2][2]=u6,A[1][1][6]=u7,
A[1][2][6]=u7,A[1][1][7]=u8,A[1][1][8]=u9,A[1][2][8]=u9,A[1][1][9]=u10,
A[1][2][9]=u10,A[1][1][10]=u11,A[1][2][10]=u11,A[1][1][13]=u12,
A[1][2][13]=u12,A[1][1][18]=u13,A[1][2][18]=u13,A[1][1][26]=u14,A[1][2][26]=u14,
A[1][1][28]=u15,A[1][2][28]=u15,A[1][1][30]=u16,A[1][2][30]=u16,A[2][1][0]=u17,
A[2][2][0]=u17,A[2][2][3]=u18,A[2][1][6]=u19,A[2][2][6]=u19,A[2][1][12]=u20,
A[2][2][12]=u20,A[2][1][18]=u21,A[2][2][18]=u21,A[2][1][21]=u22,A[2][2][21]=u22,
A[2][1][24]=u23,A[2][2][24]=u23,A[3][1][2]=u24,A[3][2][2]=u24,A[3][1][3]=u25,
A[3][2][3]=u25,A[3][1][8]=u26,A[3][2][8]=u26,A[3][1][9]=u27,A[3][2][9]=u27,
A[3][1][11]=u28,A[3][2][11]=u28,A[3][1][17]=u29,A[3][2][17]=u29,A[3][1][19]=u30,
A[3][2][19]=u30
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by i bits can be recovered. 90 iterations could recover a 90-bit key and the
remaining key bits could be recovered by exhaustive search. Totally, it consumes
90× 21 × 233 + 238 = 240.5.

Similarly, we have run more than 1000 experiments and obtained correct key
recovery of 6-round Xoodoo-AE with 100 percent success rate. we also give an
example here for intuition, in which the key is generated randomly and all the
controllable nonce bits are set to zero. The program is run in Visual Studio 2012
with x64 platform Release. The time is about 2 hours for recovery of one key bit
using one CPU core (Intel i7 3.6GHz), and parallelism can reduce time. Using
the test code that we provided, one can verify it easily.

We just list the output tag’s cube sum at lane (0, 0), (1, 0), and the probability
that the cube sum for these two lanes cube sum is zero is 2−64 for a random
function. Therefore, if the 33-dimension cube sums of 5-round output is zero,
we declare that the key guess is correct with high probability. Actually, we also
calculate other lanes’ cube sum, and all of them turn out to be zero. The test code
is given in https://github.com/alicebobb/aabb/tree/alicebobb-patch-1.

128-bit key K:
1010000011010110011101001101110001110010000111011101110010110110

1111110010011101001011000101010100010111101000111100101100000101

The correct value for the guessed key bit in Table 6 is 1.
right key: 1
guessed value: 0, cube sums: 0x9dff359, 0xc614c263

guessed value: 1, cube sums: 0x0, 0x0

5.3 6-Round Attack against Xoodyak

We attack reduced Xoodyak-AEAD in nonce-reuse setting. The targeted part
of the Xoodyak-AEAD is the absorbing plaintext phase. As shown in Figure
4, we select cube variables from the 192-bit M0, and we are going to recover
the other 192-bit unknown state, which we denote as 192-bit equivalent key. We
reduced the Xoodoo to 6 rounds, i.e., M0 is processed by 6-round Xoodoo,
then the corresponding ciphertexts outputs are used to compute the cube sums.
As shown in Table 11, the 192-bit key K is located at the 6 red lanes. The white
part are tweakable bits and could be selected as cube variables.

Similarly, assume that v0v1 is the kernel quadratic term. v0 is set in CP-
kernel as S0[2][1][0] = S0[2][2][0] = S0[3][1][20] = S0[3][2][20] = v0 in black, and
v1 is located at 3 grey bits, i.e. S0[3][1][21] = S0[3][2][21] = S0[2][1][17] = v1.
After operation θ and ρwest, S0,ρwest [3][1][0] = S0,ρwest [3][2][31] = v0 as well as
S0,ρwest [2][2][11] = S0,ρwest [0][1][20] = v0, S0,ρwest [3][2][0] = S0,ρwest [3][0][31] =
v1 as well as S0,ρwest

[3][1][17] = S0,ρwest
[0][1][22] = S0,ρwest

[3][2][1] =
S0,ρwest

[3][0][22] = S0,ρwest
[0][1][31] = S0,ρwest

[3][2][10] = S0,ρwest
[0][1][21] = v1.

The white bits represent free space to be selected as ordinary cube variables.
To prevent ordinary cube variables to multiply with other cube variables at

the first round, we try to select the ordinary cube variables in CP-kernel. With
31 ordinary cube variables, the number of bit conditions related to key is 6. Then
a 6-round attack on Xoodyak can be performed. Both the cube variables and
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Fig. 11: The Initial State of Xoodyak

Table 7: Parameters set for attack on 6-round Xoodyak

kernel quadratic term

A[2][1][0]=A[2][2][0]=A[3][2][20]=A[3][1][20]=v0, A[3][2][21]=A[3][1][21]=A[2][1][17]=v1
Bit Conditions

A[1][2][1] = k33 + k42 + k79 + k161 + k170 + n106

A[1][2][24] = k42 + k56 + k70 + k79 + k170 + k184 + n106

A[3][1][3] = k8 + k31 + k99 + k113 + n163

A[2][1][2] = k66 + k89 + n25 + n130 + n153 + n167

A[3][2][16] = k75 + k89 + n25 + n153 + n167

A[1][2][26] = k49 + k58 + k95 + k177 + k186 + n113

Ordinary Cube Variables

A[3][1][26]=u0,A[3][2][26]=u0,A[3][1][29]=u1,A[3][2][29]=u1,A[0][2][7]=u2,
A[0][2][16]=u3,A[0][2][30]=u4,A[1][2][4]=u5,A[1][2][9]=u6,A[1][2][13]=u7,
A[1][2][22]=u7,A[3][1][24]=u8,A[3][2][24]=u8,A[2][1][4]=u9,A[2][2][4]=u9,
A[2][1][6]=u10,A[2][2][6]=u10,A[2][1][15]=u10,A[2][2][15]=u10,A[2][2][8]=u11,
A[2][1][9]=u12,A[2][2][9]=u12,A[2][1][11]=u13,A[2][2][11]=u13,A[2][1][14]=u14,
A[2][2][14]=u14,A[3][1][23]=u15,A[3][2][23]=u15,A[2][1][18]=u16,A[2][2][18]=u16,
A[2][1][20]=u17,A[2][2][20]=u17,A[2][1][23]=u18,A[2][2][23]=u18,A[2][1][27]=u19,
A[2][2][27]=u19,A[2][1][29]=u20,A[2][2][29]=u20,A[3][1][1]=u21,A[3][2][1]=u21,
A[3][1][2]=u22,A[3][1][8]=u23,A[3][2][8]=u23,A[3][1][31]=u23,A[3][2][31]=u23,
A[3][1][10]=u24,A[3][2][10]=u24,A[3][1][11]=u25,A[3][1][13]=u26,A[3][2][13]=u26,
A[3][1][14]=u27,A[3][2][14]=u27,A[3][1][17]=u28,A[3][2][17]=u28,A[3][1][19]=u29,
A[3][2][19]=u29,A[3][1][22]=u30,A[3][2][22]=u30
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conditions are listed in Table 7. The 6 equivalent key bits to be guessed are as
follows: k66+k89, k75+k89, k8+k31+k99+k113, k33+k42+k79+k161+k170, k49+
k58+k95+k177+k186 and k42+k56+k70+k79+k170+k184. The time complexity
to recover the 6-bit key is 26 × 233. Similar to the attack on Xoodoo-AE, it is
totally symmetric in z-axis. Thus we can obtain corresponding parameter sets
with any i-bit rotation (0 ≤ i < 32) in z-axis. We need 27 iterations of the above
procedures to recover 27 × 6 = 162 bits key, and leave the other 30 bits key to
exhaustive search. The total time complexity is 27× 26 × 233 + 230 = 243.8.

Similarly, we also have run some experiments and obtained correct key re-
covery of 6-round Xoodyak with 100 percent success rate. In our verification
experiments the key is generated randomly and all the controllable nonce bits
are set to zero. The program is run in Visual Studio 2012 with x64 platform
Release. Recovery one key need about 60 hours using one CPU core (Intel i7
3.6GHz), and parallelism can reduce time. Using the test code that we provided,
one can verify it easily.

We calculate the cube sum at lane (0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), and
the probability, for which the cube sum on these six lanes is zero, is 2−192

for a random function. Therefore, if the 33-dimension cube sums of 6-round
output is zero, we declare that the key guess is correct with high probability.
Actually, we also calculate other lanes’ cube sum, and all of them turn out to be
zero. The test code is given in https://github.com/alicebobb/aabb/tree/

alicebobb-patch-1.
192-bit key K:
1010000011010110011101001101110001110010000111011101110010110110

1111110010011101001011000101010100010111101000111100101100000101

1110101001000010000111010101001100111000110100110101010001001010

The correct value for the guessed key bit in Table 6 is 001000.
right key: 001000
guessed value: 001000,
cube sums: 0x0, 0x0, 0x0, 0x0, 0x0, 0x0

guessed value:000100,
cube sums: 0xd2c47032, 0x456c766f, 0xd74569ed, 0x4a96a204,

0xd6f503b8,0x6f6e9541

guessed value:010000,
cube sums: 0xa6dd98e3, 0xdf935915, 0xafbc25d9, 0x939c401d,

0x95e04808,0x3caecd13

6 Conclusion

In this paper, we give several practical key-recovery attacks on 5-round initializa-
tion of Ketje Jr v1 and v2, 6-round Xoodoo-AE in nonce-respecting setting
and 6-round Xoodyak in nonce-reuse setting, whose time complexities are 226.6,
227.5, 240.5 and 243.8 with negligible memory cost. All the attacks are practically
implemented.
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A Experimental results on Ketje Jr v1, Ketje Jr v2

Table 8: Guess key and cube sum for 5-round Ketje Jr v1

Guess
key

Cube
sum

Guess
key

Cube
sum

Guess
key

Cube
sum

Guess
key

Cube
sum

000000 0x91,0xe5 000010 0xc4,0xfe 000001 0xe9,0x49 000011 0xf4,0xfa
100000 0x9d,0x9b 100010 0xa6,0xfd 100001 0x22,0x71 100011 0xc7,0x19
010000 0xa9,0xa5 010010 0xf8,0x19 010001 0x9c,0x54 010011 0xdc,0x4d
110000 0x9c,0x69 110010 0xe2,0x43 110001 0x8c,0x38 110011 0x27,0x53
001000 0xf8,0xf1 001010 0x85,0x3c 001001 0xfc,0x95 001011 0xee,0x33
101000 0x1,0xa7 101010 0x2e,0x1c 101001 0x5b,0x2d 101011 0x21,0x81
011000 0x15,0xbb 011010 0x8d,0x7b 011001 0x31,0x46 011011 0xd7,0xae
111000 0x48,0x4e 111010 0xb2,0x96 111001 0xfb,0x2b 111011 0xed,0xaf
000100 0xa7,0xd6 000110 0xcb,0xb9 000101 0x81,0xfe 000111 0x3b,0x4e
100100 0x45,0x60 100110 0xf0,0x81 100101 0xe,0xd 100111 0x37,0xa3
010100 0x15,0x38 010110 0x88,0x52 010101 0x9f,0xd9 010111 0xcf,0x11
110100 0x3,0x9c 110110 0xd5,0x44 110101 0x40,0x1a 110111 0x43,0xba
001100 0x38,0x1e 001110 0x0,0x0 001101 0x45,0x67 001111 0x4b,0x31
101100 0x37,0xc9 101110 0xef,0xa5 101101 0x4a,0x18 101111 0x4,0x2f
011100 0xde,0xa7 011110 0x1b,0x49 011101 0xd9,0x21 011111 0x23,0x58
111100 0x0,0xce 111110 0xba,0x49 111101 0x8b,0x75 111111 0x44,0x8
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Table 9: Guess key and cube sum for 5-round Ketje Jr v2
Guess
key

Cube
sum

Guess
key

Cube
sum

Guess
key

Cube
sum

Guess
key

Cube
sum

0000000 0x55,0xfd 0000010 0x7b,0xa5 0000001 0xcd,0x85 0000011 0x6b,0x9b
1000000 0x19,0x48 1000010 0xef,0x4b 1000001 0xab,0xfb 1000011 0x2d,0x5f
0100000 0x58,0x52 0100010 0x2a,0x4 0100001 0x87,0x19 0100011 0x43,0xed
1100000 0x86,0x20 1100010 0xb5,0x32 1100001 0x40,0x60 1100011 0x19,0x33
0010000 0x8c,0xaf 0010010 0x48,0xca 0010001 0x61,0x8a 0010011 0xce,0x61
1010000 0x8d,0x62 1010010 0xb0,0x8b 1010001 0x1a,0x23 1010011 0xf,0x2d
0110000 0x78,0x17 0110010 0x8f,0xf2 0110001 0x8b,0x89 0110011 0xc,0x6c
1110000 0x1c,0xec 1110010 0xcb,0x33 1110001 0x5e,0xa0 1110011 0xd4,0x73
0001000 0xa9,0x73 0001010 0xe4,0x82 0001001 0x0,0x83 0001011 0x59,0x92
1001000 0x25,0x39 1001010 0x38,0xb2 1001001 0xd5,0x29 1001011 0x57,0xff
0101000 0x43,0xc8 0101010 0xff,0x88 0101001 0xa7,0xb3 0101011 0x52,0xb4
1101000 0x55,0xa3 1101010 0x60,0x15 1101001 0x64,0x62 1101011 0x51,0x6d
0011000 0x29,0x1d 0011010 0x7d,0x3e 0011001 0x85,0xf 0011011 0xcb,0xc6
1011000 0xc7,0xbc 1011010 0xae,0x52 1011001 0xc2,0x27 1011011 0x64,0xd5
0111000 0xec,0xad 0111010 0xc,0xca 0111001 0xe3,0x71 0111011 0x7c,0xa6
1111000 0xe7,0x48 1111010 0xa4,0xe5 1111001 0x22,0x29 1111011 0xd1,0x77
0000100 0xc2,0xb9 0000110 0x0,0x0 0000101 0xf7,0x23 0000111 0x1a,0x37
1000100 0x23,0xdb 1000110 0x2e,0xea 1000101 0x2d,0xb9 1000111 0xe4,0x8b
0100100 0x65,0x33 0100110 0xc8,0x7f 0100101 0xc3,0x37 0100111 0x32,0xcc
1100100 0x90,0x87 1100110 0xcc,0xe7 1100101 0x4d,0xb2 1100111 0xa9,0xca
0010100 0x5d,0x0 0010110 0xed,0xad 0010101 0x3f,0xf1 0010111 0x97,0xd2
1010100 0x60,0xac 1010110 0xb6,0xe4 1010101 0xcf,0x9e 1010111 0xf7,0x25
0110100 0x54,0xd7 0110110 0x47,0x11 0110101 0xca,0x59 0110111 0x1c,0x4c
1110100 0x8e,0x6b 1110110 0xc6,0x50 1110101 0xed,0xb7 1110111 0x1d,0x6f
0001100 0x51,0x72 0001110 0x44,0xed 0001101 0x5,0x41 0001111 0xd2,0xfb
1001100 0xef,0x2a 1001110 0x2d,0xe 1001101 0x2a,0xf4 1001111 0x11,0x3a
0101100 0x28,0x68 0101110 0x15,0x41 0101101 0xe2,0xcc 0101111 0xa,0xe8
1101100 0xa2,0x1c 1101110 0x11,0x56 1101101 0x43,0xce 1101111 0x9a,0x79
0011100 0xe7,0xb9 0011110 0x42,0xc9 0011101 0x8f,0x26 0011111 0x88,0x4
1011100 0xef,0x89 1011110 0x66,0x67 1011101 0x6,0x9b 1011111 0xa2,0x9c
0111100 0x56,0xcd 0111110 0xea,0x43 0111101 0x6d,0x3f 0111111 0xac,0x85
1111100 0xc6,0x4b 1111110 0xc2,0x21 1111101 0x8b,0xff 1111111 0x20,0xec
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