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Abstract. There have been many successes in constructing explicit non-malleable codes for various
classes of tampering functions in recent years, and strong existential results are also known. In this
work we ask the following question:

When can we rule out the existence of a non-malleable code for a tampering class F?
We show that non-malleable codes are impossible to construct for three different tampering classes:
– Functions that change d/2 symbols, where d is the distance of the code;
– Functions where each input symbol affects only a single output symbol;
– Functions where each of the n output symbols is a function of n− logn input symbols.

We additionally rule out constructions of non-malleable codes for certain classes F via reductions to
the assumption that a distributional problem is hard for F , that make black-box use of the tampering
functions in the proof. In particular, this yields concrete obstacles for the construction of efficient codes
for NC, even assuming average-case variants of P 6⊆ NC.

1 Introduction

Since the introduction of non-malleable codes (NMC) by Dziembowski, Pietrzak, and Wichs in 2010, there
has been a long line of work constructing non-malleable codes for various classes [DPW18]. A plethora of
upper bounds, explicit and implicit (to varying degrees), have been shown for a wealth of classes of tampering
functions. However, to our knowledge, relatively little is known about when non-malleability is impossible.
In this work, we initiate the study of the limits to non-malleability.

Non-malleability for a class F is defined via the following “tampering” experiment:

Let f ∈ F denote a tampering function.

1. Encode message m using a (public) randomized encoding algorithm: c← E(m),
2. Tamper the codeword: c̃ = f(c),
3. Decode the tampered codeword (with public decoder): m̃ = D(c̃).

Roughly, the encoding scheme, (E,D), is non-malleable for a class F , if for any f ∈ F the result of the
above experiment, m̃, is either identical to the original message, or completely unrelated. More precisely, the
outcome of a F-tampering experiment should be simulatable without knowledge of the message m (using a
special flag “same” to capture the case of unchanged message).

[DPW18] showed that, remarkably, this definition is achievable for any F such that log log |F| < n− 5 ·
log(n). However the definition is not achievable in general. It is easy to observe that if F is the class of
all functions, there is a trivial tampering attack: decode, maul, and re-encode. This same observation rules
out the possibility of efficient codes against efficient tampering, as this attack only requires that decoding
and outputting constants conditioned on the result is in the tampering class. By a similar argument, the
decoding function of a non-malleable code with respect to the distribution formed by encoding a random
one-bit message can be seen as existence of hard decision problem for the tampering class. (This, in turn,
informs us of where to hope for unconditional constructions.)

In this work, we give a variety of impossibility results for non-malleable codes, in disparate tampering
regimes. We present 3 unconditional impossibility results for various classes. Additionally, we rule out



constructions of NMC for a wide range of complexity classes with security reductions that are simply given
black-box access to the tampering function.

To our knowledge, the only previously-known impossibility results beyond the simple observations above,
are related to other variants of NMC. These include bounds on locality of locally decodable and updatable
NMC, bounds on continuous NMC, and impossibility of “look-ahead” or “block-wise” NMC (which also
follows from a simple observation). There are also several bounds related to the rate of NMC. We discuss
these and other related works in Section 1.3.

In contrast, our results hold regardless of rate. In fact, we consider a stronger setting where only a single
bit need be protected.

1.1 Strictly Impossible

We identify 3 tampering regimes where achieving non-malleability is strictly impossible.

On tampering functions that change d/2 symbols, where d is the distance of the code. It is common to present
non-malleable codes as a strict relaxation of error correcting codes. Non-malleable codes only guarantee
correctness of decoding in the absence of errors, and consequently provide “security” for a wider range
of tampering functions, in particular tampering functions that can modify more symbols of the codeword.
However, note that in all known results, there is a trade-off: Non-malleable codes allow for modifying more (or
all) symbols of the codeword than error correcting codes but require that the computation of the tampering
function is restricted in some way, while error correcting codes can tolerate modification of fewer codeword
symbols, but do not place any other restrictions on the tampering adversary.

In the current work, we ask whether this is in fact necessary. Specifically, can we construct non-malleable
codes that allow for modifying more symbols of the codeword than error correcting codes without placing
any other restrictions on the tampering?

Note that for error correcting codes it is known that if the distance of the code is d, it is not possible
to correct when d/2 symbols are modified, but there are constructions that allow for error correction after
arbitrary modification of at most (d− 1)/2 symbols (e.g., Reed-Solomon error-correcting codes achieve this
bound).

Given the above, we resolve our question negatively, by showing that it is impossible to construct non-
malleable codes with distance d for tampering functions that arbitrarily modify d/2 codeword symbols. This
indicates that in order to obtain improved parameters beyond what is possible with error correcting codes,
imposing some additional restrictions on the tampering function is necessary.

On tampering functions where each input symbol effects at most one output symbol. In their recent work, Ball
et al. [BDKM16] presented unconditional NMC for the class of output-local functions, where each output
symbol depends on a bounded number of input symbols. As an intermediate step, they also considered
the class of functions that are both input and output local. The class of input-local functions is the class
of functions where each input symbol affects a bounded number of output symbol. A natural question is
whether non-malleable codes can be constructed for the class of input-local functions, where for codeword
length n, each input bit affects � n output bits.

In the current work, we answer this question negatively in a very strong sense: We show that even achieving
NMC for 1-input local functions (where each input bit affects at most one output bit) is impossible. In fact,
our proof shows an even stronger result: the impossibility holds even if each input symbol can only affect the
same single output symbol. That is, it is impossible to construct NMC for the tampering class that allows
to change only one codeword symbol in a way that depends on the input (while the other symbols may be
changed into constant values). Stated like this, this result can also be viewed as an extension of our first
result above on the maximum number of symbols that can be modified in a non-malleable code.
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On tampering functions where each output symbol depends on n − log n input symbols. Here we move on
to consider achieving NMC for output-local tampering functions. The prior work of [BDKM16] constructed
efficient NMC for tampering functions with locality nε, for constant ε. The size of the class of all output-
local tampering functions (with locality sufficiently smaller than n) is also bounded in size and therefore
non-malleable codes for this class follow from the existential results of [DPW18]. A natural question is how
large can the output-locality be?

In the current work, we prove the impossibility of non-malleable codes for the class of (n− log n)-output-
local tampering functions. Note that in addition to the above motivation, parity over n bits is average-case
hard for this class.3 Therefore, our impossibility result can be viewed as a “separation” between average-case
hardness and non-malleability, as it exhibits a class for which we have average-case hardness bounds, but
yet cannot construct non-malleable codes for. Furthermore, the class F ′ constructed in our lower bound

proof in fact has size 4n · 22n−log(n)

, which in turn means that log log |F ′| = n − log(n). On the other hand,
the aforementioned result of Dziembowski et al. [DPW18] shows that there exists a 1/n-non-malleable code
for any class F such that log log |F| ≤ n − 5 log(n). Thus, our lower bound result is close to matching the
existential upper bound.

1.2 Impossibility of Black-Box Security Reductions.

In recent work, unconditional constructions of non-malleable codes for progressively larger tampering classes,
such as NC0 [BDKM16, BDG+18, CL17a] and AC0 [CL17a, BDG+18], have been presented. In fact, the
construction of [BDG+18] remains secure for circuit depths as large as Θ(log(n)/ log log(n)). Moreover, due
to the impossibility of efficient NMC for all of P, extending their result to obtain unconditional NMC for
circuits with asymptotically larger depth would require separating P from NC1, a problem that is well out
of reach with current complexity-theoretic techniques. However, rather than ruling out such constructions
entirely, in this regime we ask what are the minimal assumptions necessary for achieving non-malleable codes
for NC1, as well as other classes F that are believed to be strictly contained in P.

The above question was partially addressed by Ball et al. [BDKM18, BDSK+18] in their recent work,
where they presented a general framework for construction of NMC for various classes F in the CRS model
and under cryptographic assumptions. Instantiating their framework for NC1 yields a computational, CRS-
model construction of 1-bit NMC for NC1, assuming there is a distributional problem that is hard for NC1,
but easy for P. Moreover, such distributional problems for NC1 can be based on worst-case assumptions (see
further discussion in Section 4).

In this work, we ask whether 1-bit non-malleable codes for NC1 in the standard (no-CRS) model can
be constructed from the assumption that there are distributional problems that are hard for NC1 but easy
for P. Note that, as observed above, this assumption is minimal, since the decoding function of a 1-bit non-
malleable code for NC1 with respect to the distribution formed by encoding a random 1 bit message yields
a distributional problem with the above properties.

In the current work, We provide a negative answer, proving that, under black-box reductions (restricting
use of the tampering function in the security proof to be black-box), this is impossible.

Specifically, we define a notion of black-box reductions for the setting of 1-bit non-malleable codes (E,D)
for a complexity class F to a distributional problem (D,L) that is hard for F . This type of reduction is
required to use the “adversary”—i.e. the tampering function in our setting—in a black-box manner, but is
not restricted in its use of the underlying assumptions. Thus, the reduction R is provided black-box access
to the tampering function f and must use it to contradict the assumption on the distributional problem
(D,L). At a high level (skipping some technical details), we require two properties of a black-box reduction
R from (E,D) to (D,L):

3 Note that, even arbitrary decision trees of depth n− 1 have no advantage in computing the parity of n bits with
respect to the uniform distribution. [BdW02]
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– First, whenever the tampering function f succeeds in breaking the non-malleable code, the reduction
should succeed, regardless of whether f ∈ F . This represents the fact that R uses f in a black-box
manner.

– Second, for any f ∈ F , Rf must also be in F , and in particular, R itself must be in F . This represents
the fact that the black-box reduction R should allow one to obtain a contradiction to the assumption
that (D,L) is hard for F , in the case that (E,D) is malleable by F .

Note that for arbitrary classes F (unlike the usual polynomial-time adversaries typically used in cryptog-
raphy), the fact that R ∈ F and f ∈ F does not necessarily imply that Rf ∈ F . This introduces some
additional complexity in our definitions and also requires us to restrict our end results to classes F that
behave appropriately under composition.

Indeed, we present general impossibility results for constructing 1-bit non-malleable codes for a class
F from a distributional problem that is hard for F but easy for P. We present three types of results:
Results ruling out security parameter preserving reductions for tampering class F that behave nicely under
composition, results ruling out “approximate” security parameter preserving reductions for tampering class
F with slightly stronger compositional properties and results ruling out non-security parameter preserving
reductions for tampering class F that are fully closed under composition. See Definitions 16, 17 and
Lemmas 2, 3, 4 for the formal statements.

Briefly, security parameter preserving reductions have the property that the reduction only queries the
adversary (in our case the tampering function) on the same security parameter that it receives as input.
The notion of “approximate” security parameter preserving reductions is new to this work. Such reductions
are parameterized by polynomial functions `(·), u(·) and on input security parameter n, the reduction may
query the adversary on any security parameter in the range `(n) to u(n). Finally, in a non-security parameter
preserving reduction, the reduction receives security parameter n as input and may query the adversary on
arbitrary security parameter n′. Note that n′(n) must be in O(nc) for some constant c, since the reduction
must be polynomial time.

We can instantiate the tampering class F from our generic lemma statements with various classes of
interest. In particular, our results on security parameter preserving and approximate security parameter
preserving reductions apply to the class NC1 as a special case. Our result ruling out non-security parameter
preserving reductions applies to the class (non-uniform) NC as a special case. See Corollaries 1, 2, 3 for the
formal statements.

1.3 Related Work

Non-Malleable Codes. Non-malleable codes (NMC) were introduced in the seminal work of Dziembowski,
Pietrzak and Wichs [DPW18]. In the same paper they pointed out the simple impossibility result for
constructing NMC secure for all polynomial tampering functions. Since then NMC have been studied in the
information-theoretic as well as computational settings. Liu and Lysyanskaya [LL12] introduced the split-
state classes of tampering functions and constructed computationally secure NMC for split-state tampering.
This subsequently received a lot of attention in both computational [AAG+16] as well as information
theoretic setting with a series of advances; achieving reduced number of states, improved rate, or adding
desirable features to the scheme [DKO13, ADL14, CZ14, ADKO15a, AGM+15b, AAG+16, KOS17, Li18].
Recently efficient NMC have been constructed for tampering function classes other than split-state
tampering [BDKM16, AGM+15a, CL17a, FHMV17, BDKM18, BDG+18, BDSK+18]. Those results include
both computational as well as information-theoretically secure constructions. Additionally, [DPW18, CG14a,
FMVW14] also present various inefficient, existential or randomized constructions for more general classes
of tampering functions. These results are sometimes presented as efficient constructions in a random-oracle
or CRS model. Other works on non-malleable codes include [FMNV14, CG14b, CKO14, ADKO15b, JW15,
DLSZ15, FMNV15, ADKO15a, CKR16, CGM+16, KLT16, DKS17, DNO17, ADN+17, DKS18, KOS18,
OPVV18, KLT18, FNSV18, CKOS18, CL18, RS18, CFV19].
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Bounds on Non-Malleable Codes. Surprisingly, understanding the limitations and bounds on NMC has
received relatively less attention. While there have been a few previous works exploring the lower and
upper bounds on NMC and its variants [DPW18, CG14a, CGM+16, DKS17, DK19], most of the effort has
been focused on understanding and/or improving the bounds on the rates of NMC [AAG+16, AGM+15a,
AGM+15b, KOS17, Li18, CFV19]

Perhaps the closest to this work are the results of [CG14a, DKS17, DK19]. Cheragachi and Gu-
ruswami [CG14a] studied the “capacity” of non-malleable codes in order to understand the optimal bounds
on the efficiency of non-malleable codes. They showed that information theoretically secure efficient NMC
exist for tampering families F of size |F| if loglog|F| ≤ αn for 0 ≤ α < 1, moreover these NMC have optimal
rate of 1− α with error ε ∈ O(1/poly(n)).

Dachman-Soled, Kulkarni, and Shahverdi [DKS17] studied the bounds on the locality of locally decodable
and updatable NMC. They showed that for any locally decodable and updatable NMC which allows rewind
attacks, the locality parameter of the scheme must be ω(1), and gave an improved version of [DLSZ15]
construction to match the lower bound in computational setting.

Recently, Dachman-Soled and Kulkarni [DK19] studied the bounds on continuous non-malleable codes
(CNMC), and showed that 2-split-state CNMC cannot be constructed from any falsifiable assumption without
CRS. They also gave a construction of 2-split-state CNMC from injective one-way functions in CRS model.
Faust et.al [FMNV14] showed the impossibility of constructing information-theoretically secure 2-split-state
CNMC.

Black-Box Separations. Impagliazzo and Rudich [IR89] showed the impossibility of black-box reductions
from key agreement to one-way function. Their oracle separation technique subsequently led to sequence of
works, ruling out black-box reductions between different primitives. Notable examples are [Sim98] separating
collision resistant hash functions from one way functions, and [GKM+00] ruling out oblivious transfer from
public key encryption. The meta-reduction technique (cf. [Cor02, PV05, GBL08, FS10, Pas11, GW11,
AGO11, Seu12, BM09, FKPR14]) has been used for ruling out larger classes of reductions—where the
construction is arbitrary (non-black-box), but the reduction uses the adversary in a black-box manner. The
meta-reduction technique is often used to provide evidence that construction of some cryptographic primitive
is impossible under “standard assumptions” (e.g. falsifiable assumptions or non-interactive assumptions).

2 Preliminaries

2.1 Notation

Firstly, we present some standard notations that will be used in what follows. For any positive integer n,
[n] := {1, . . . , n}. For a vector x ∈ χ of length n, we denote its hamming weight by ‖ x ‖0:= |{xi : xi 6=
0 for i ∈ [n]}|, where |S| is the cardinality of set S, and xi denotes the i-th element of x. For x, y ∈ {0, 1}n
define their distance to be d(x, y) := ‖ x− y ‖0. (I.e. x and y are ε-far if d(x, y) ≥ ε.) We denote the statistical
distance between two random variables, X and Y , over a domain S to be ∆(X,Y ) := 1/2

∑
s∈S |Pr [X = s]−

Pr [Y = s]|, where | · | denotes the absolute value. We say X and Y are ε-close, denoted by X≈εY , if
∆(X,Y ) ≤ ε.

2.2 Non-Malleable Codes

We next present some standard definitions related to non-malleable codes. We denote the length of the input
message by k while n is the length of the codeword.

Definition 1 (Coding Scheme [DPW18]). A Coding scheme, (E,D), consists of a (possibly randomized)
encoding function E : {0, 1}k → {0, 1}n and a deterministic decoding function D : {0, 1}n → {0, 1}k ∪ {⊥}
such that ∀m ∈ {0, 1}k,Pr [D(E(m)) = m] = 1 (over randomness of E).
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Definition 2 (ε-Non-malleability [DPW18]). Let F be some family of functions. For each function
f ∈ F , and m ∈ {0, 1}k, define the tampering experiment:

Tamperfm
def
=

{
c← E(m), c̃ := f(c), m̃ := D(c̃).

Output : m̃.

}
,

where the randomness of the experiment comes from E. We say a coding scheme (E,D) is ε-non-malleable
with respect to F if for each f ∈ F , there exists a distribution Df over {0, 1}k ∪ {same∗,⊥} such that for
every message m ∈ {0, 1}k, we have

Tamperfm≈ε

 m̃← Df .
Output : m if m̃ = same∗;

otherwise m̃.


Here the indistinguishability can be either statistical or computational.

Lemma 1 (Lemma 2 [DKO13]). Let (E,D) be a coding scheme with E : {0, 1} → X and D : X → {0, 1}.
Let F be a set of functions f : X → X . Then (E,D) is ε-non-malleable with respect to F if and only if for
every f ∈ F ,

Pr
b←{0,1}

[D(f(E(b))) = 1− b] ≤ 1

2
+ ε,

where the probability is over the uniform choice of b and the randomness of E.

We next present the converse of non-malleability property as,

Definition 3 (ε-Malleable Code).

Let (E,D) be a coding scheme with E : {0, 1} → X and D : X → {0, 1}. Let F be a set of functions
f : X → X . Then (E,D) is ε-malleable with respect to F , if ∃f ∈ F such that,

Pr
b←{0,1}

[D(f(E(b))) = 1− b] > 1

2
+ ε,

where the probability is over the uniform choice of b and the randomness of E.

2.3 Input Local Functions

We next define a class of local functions, where the number of input bits that can affect any output bit
(input locality) is restricted. Loosely speaking, an input bit xi affects the output bit yj if for any boolean
circuit computing f , there is a path in the underlying DAG from xi to yj . The formal definitions are below,
and our notation follows that of [App14]

Definition 4 ( [BDKM16]). We say that a bit xi affects the boolean function f ,
if ∃ {x1, x2, · · ·xi−1, xi+1, · · ·xn} ∈ {0, 1}n−1 such that,
f(x1, x2, · · ·xi−1, 0, xi+1, · · ·xn) 6= f(x1, x2, · · ·xi−1, 1, xi+1, · · ·xn).

Given a function f = (f1, . . . , fn) (where each fj is a boolean function), we say that input bit xi affects
output bit yj, or that output bit yj depends on input bit xi, if xi affects fj.

Definition 5 (Input Locality [BDKM16]). A function f : {0, 1}n → {0, 1}n is said to have input
locality ` if every input bit fi is affects at most ` output bits.

Definition 6 (Output Locality [BDKM16]). A function f : {0, 1}n → {0, 1}n is said to have output
locality m if every output bit fi is dependent on at most m input bits.

Definition 7 (Input Local Functions [App14]). A function f : {0, 1}n → {0, 1}n is said to be `-input
local, f ∈ Local`, if it has input locality `.
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Definition 8 (Output Local Functions [App14]). A function f : {0, 1}n → {0, 1}n is said to be m-
output local, f ∈ Localm, if it has output locality m.

Recall that NC1 is the class of functions where each output bit can be computed by a efficiently and
uniformly generated poly(n) size boolean circuit with O(log n) depth and constant fan-in, where n is the
input size. NC is the class of functions where each output is computed by a uniformly and efficiently generated
poly log(n) depth poly(n) size circuit. nu− NC is the class of functions computed by a poly log(n) depth
poly(n) size circuit.

Definition 9 (Pseudorandom Generator [DVV16]). Let n, n′ ∈ N such that n′ > n, and let PRG =
{prgn : {0, 1}n → {0, 1}n′} be a family of deterministic functions which can be computed in computational
class C1. We say PRG is a C1-pseudorandom generator for C2 if for any D := {Dn : {0, 1}n′ → {0, 1}} ∈ C2:

|Pr [Dn(prgn(x)) = 1]− Pr [Dn(r) = 1]| ≤ negl(n)

, where, x← {0, 1}n and r ← {0, 1}n′ are sampled uniform randomly.

For class C, if C1 = C2 = C then we simply call it C-pseudorandom generator.

2.4 Black-Box Reductions

We now present definitions related to black-box reductions.

Definition 10 (Distributional Problem). A distributional problem is a decision problem along with
ensembles (Ψ = {Ψn}∞n=1, L = {Ln}∞n=1) for n ∈ N, where Ψn is probability distribution over {0, 1}n. The
decision problem is to decide whether s ∈ Ln where, s← Ψn.

Note that length of s need not be n.

We say distributional problem (Ψ = {Ψn}∞n=1, L = {Ln}∞n=1) is in P if L ∈ P. We say it is efficiently
samplable if there is a randomized poly-time algorithm that on input 1n samples Ψn.

We next present definitions related to hardness of distributional problems.

Definition 11 (ε(n)-Hard Distributional Problem). Let (Ψ = {Ψn}∞n=1, L = {Ln}∞n=1) be a distribu-
tional problem, we say that (Ψ,L) is ε(n)-hard for family of boolean circuits C = {Cn}∞n=1, if and only if for
every circuit Cn ∈ C,

Pr
x←Ψn

[Cn(x) = Ln(x)] ≤ 1

2
+ ε(n)

We also present the definition of ε-easy distributional problem below,

Definition 12 (ε(n)-Easy Distributional Problem). Let (Ψ = {Ψn}∞n=1, L = {Ln}∞n=1) be a distribu-
tional problem, we say that (Ψ,L) is ε(n)-easy for family of boolean circuits C = {Cn}∞n=1, if there exists
some circuit Cn ∈ C,

Pr
x←Ψn

[Cn(x) = Ln(x)] >
1

2
+ ε(n)

2.5 Hardness of Boolean Functions

In this section we present some standard definitions related to boolean functions and their hardness.
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Definition 13 (δ-hardness of boolean function). Let f : {0, 1}n → {0, 1} be a boolean function, and
Un be uniform distribution over {0, 1}n. Also let 0 < δ < 1

2 , and n ≤ s ≤ 2n

n . We say f is δ-hard for size s
if for any boolean circuits C of size at most s

Pr
x←Un

[C(x) = f(x)] ≤ 1− δ

.

We also present the following theorem from [Imp95].

Theorem 1 (Theorem 1 [Imp95]). Let f : {0, 1}n → {0, 1} be boolean function that δ-hard for size s.
Also, let ε > 0. Then ∃ set S ⊆ {0, 1}n and constant c, such that |S| ≥ δ · 2n and f is ε-hard-core on S for
circuits of size s′ ≤ c · ε2 · δ2 · s.

We now present definitions of functionaities Unroll and Replace which will then allow us to define the
appropriate notions of composition and closure for function classes.

Definition 14 (Unroll functionality.). Let F := {fn}∞n=1 ∈ F , where fn : {0, 1}n → {0, 1} and G =
{gm}∞m=1 ∈ G, where gm : {0, 1}m → {0, 1}m, be function families. Also let t, p be polynomials. Let m ∈
poly(n). Let FG denote families functions fn : {0, 1}n → {0, 1} ∈ F which contains at most t(n) oracle
gates computing gm : {0, 1}m → {0, 1}m ∈ G and get string of length p(n) as non-uniform advice. On an
n-bit input, consider the DAG whose left side consists of the circuit of fn and whose right side consists of
circuits gn1

, . . . , gnt(n)
. The values of wires going from the left to the right correspond to the oracle queries

x1, . . . , xt(n) of lengths n1, . . . , nt(n), made in each of the t(n) queries. For i ∈ [t(n)], circuit gni
takes as

input xi and returns yi. The values of wires going from the right to the left correspond to the responses
y1, . . . , yt(n). We say that this DAG, denoted Unroll(FG), is an unrolling of FG(x).

Definition 15 (Replace Functionality.). Consider replacing each gni , i ∈ [t(n)], in Unroll(FG) with a cir-
cuit g′ni

that takes input (x1, . . . , xi) and produces output yi. This is denoted by Replace(Unroll(FG), g′n1
, . . . , g′nt(n)

).

Definition 16 ((G, t, `, u)-closure of F). Let F := {fn}∞n=1 ∈ F , where fn : {0, 1}n → {0, 1} and G =
{gm}∞m=1 ∈ G, where gm : {0, 1}m → {0, 1}m, be function families. Also let t, `, u be polynomials, and
`(n) ≤ m ≤ u(n). Let fn

gm denote function fn : {0, 1}n → {0, 1} which has access to the output of gm :
{0, 1}m → {0, 1}m on at most t(n) inputs of its choice.

We say that F is (G, t, `, u)-closed under compositions if for every F ∈ F such that for all G ∈ G,
Unroll(FG) ∈ F , we have that for all G′ ∈ G and all g′n1

, . . . , g′nt(n)
∈ G′, Replace(Unroll(FG), g′n1

, . . . , g′nt(n)
) ∈

F .

Definition 17 ((G, t)-closure of F under Strong Composition). Let F := {fn}∞n=1 ∈ F , where fn :
{0, 1}n → {0, 1} and G = {gm}∞m=1 ∈ G, where gm : {0, 1}m → {0, 1}m, be function families. Also let t, p be
polynomials. Let m ∈ poly(n). Let FG denote families functions fn : {0, 1}n → {0, 1} ∈ F which contains at
most t(n) oracle gates computing gm : {0, 1}m → {0, 1}m ∈ G

We say that F is (G, t)-closed under compositions if for every F ∈ F we have that for all G,G′ ∈ G and
all g′1, . . . , g

′
t(n) ∈ G

′, Replace(Unroll(FG), g′1, . . . , g
′
t(n)) ∈ F .

Definition 18 (Hard Core Set (HCS) Amenable). We say that F = {Fn}∞n=1 is HCS-Amenable if for
any polynomial p(·), it holds that if C1, . . . , Cp(n) ∈ Fn then MAJ(C1, . . . , Cp(n)) ∈ Fn.

We now present definition of black-box reduction.

Definition 19 (Black-Box-Reduction). We say R is an (F, ε, δ)-black-box reduction from a (single bit)
non-malleable code, (E,D) = {(En,Dn)}∞n=1, to a distributional problem, (Ψ,L) = {(Ψn, Ln)}∞n=1, if the
following hold:
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1. For every set of circuits {fn}∞n=1 parameterized by input length n such that fn achieves ε(n)-malleability,
for non-negligible ε, i.e.

Pr
b

u←{0,1}
[Dn(fn(En))] >

1

2
+ ε(n),

then Rf solves {(Ψn, Ln)}∞n=1 with advantage δ(n), where δ is non-negligible. I.e.

Pr
x←Ψn

[Ln(x) = R{fk}
∞
k=1(x)] >

1

2
+ δ(n).

2. If {fn}∞n=1 ∈ F then R{fk}
∞
k=1(x) ∈ F .

We say a reduction R is length-preserving if R, on input of length n is only allowed to make queries to
oracles with security parameter n. Namely,

Pr
x←Ψn

[Ln(x) = Rfn(x)] >
1

2
+ δ(n).

We say a reduction R is approximately length-preserving if there are polynomials p(·), q(·) such that R,
on input of length n is only allowed to make queries to oracles with security parameter k ∈ [p(n), q(n)].
Namely,

Pr
x←Ψn

[Ln(x) = R
{fk}q(n)

k=p(n)(x)] >
1

2
+ δ(n).

We say an reduction is in NC1 if it can be written as a family of circuits with O(log n) depth and poly(n)
size.

3 Unconditional Negative Results

In this section we demonstrate that non-malleable codes are impossible to construct for 3 different classes,
even if one only needs to protect a single bit. This is, in some concrete sense, the minimally non-trivial
setting.

3.1 Expanded Adversarial Error-Correcting Code Channels

In this section we explore the difference between error-correcting codes (ECC) and non-malleable codes
(NMC). Specifically, we ask the following question: Assume that we only desire the non-malleability but
do not insist on the error-correction, then is it possible to obtain improved parameters (e.g. tampering
with a larger fraction of codeword symbols), beyond what is possible in the ECC setting, without imposing
computational assumptions on the tampering function. We answer this question negatively, thereby showing
that in order to obtain improved parameters beyond ECC, imposing computational assumptions on the
tampering function is necessary.

Let (E,D) be a coding scheme with distance d. Define the class of functions Fd/2−1 = {f : f changes
< d/2 codeword symbols }. We know that ECC exist, and thus NMC also exist, for Fd/2−1 (e.g. Reed
Solomon Codes achieve this bound).

We now define the slightly larger class Fd/2 = {f : f changes ≤ d/2 symbols}. In theorem 2 we show
that even inefficient NMC do not exist for Fd/2.

Theorem 2 (Lower Bound for changing half the symbols). Let (E,D) be a coding scheme with alphabet
Σ and distance d. Then (E,D) is not a 1

2 -NMC for Fd/2 when the message space has cardinality greater than
2.
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Proof. We begin with some notation Given α, β ∈ Σn, we denote by ‖α−β‖0 the number of positions i ∈ [n]
such that αi 6= βi.

Let (E : U → V,D : V → U) be a randomized encoding scheme, where U ⊆ Σk, V ⊆ Σn and |U | > 1.

Claim. ∃x ∈ U such that ∀cx ∈ E(x) there is a z ∈ V :

1. ‖cx − z‖0 ≤ d
2

2. Pr[D(z) 6= x] ≥ 1
2 .

Assuming the claim, consider the following tampering function f ∈ Fd/2. Let zc be the z for each c ∈ E(x∗)
guaranteed to exist some x∗ ∈ U by the above claim.

f(c) :=

{
zc if c ∈ E(x∗)
c otherwise

So, Pr[D(f(E(x∗))) 6= x∗] ≥ 1
2 , but for all y 6= x∗ ∈ U,Pr[D(f(E(y))) = y] = 1. Therefore, any distribution

Df can only agree with D(f(E(·))) for both x∗ and y 6= x∗ less than 1
2of the time.

Next we prove the claim 3.1.

Proof (Proof of Claim). Suppose for the sake of contradiction that ∀x ∈ U,∃cx ∈ E(x) such that ∀z ∈ V
with ‖cx − z‖0 ≤ d

2 it is the case that Pr[D(z) 6= x] < 1
2 . Take x 6= y ∈ U and corresponding cx, cy from

above. Then, ∃z ∈ V such that ‖z− cx‖0 ≤ d/2 and ‖z− cy‖0 ≤ d/2. But then by assumption it follows that
Pr[D(z) = x] > 1

2 and Pr[D(z) = y] > 1
2 , which is a contradiction because x 6= y.

3.2 Input-Local Functions

In this section, we rule out non-malleable codes for input-local functions. These are functions which are
restricted in that each input symbol may only affect ` output symbols, where ` is some locality parameter.
We show that even for ` = 1, non-malleability is impossible to achieve. Contrast this with the case of
output-locality (where each output depends on at most ` inputs) where we have explicit constructions for
` < n/ log n.4 [BDKM16]

Opening up our proof, we can alternately view this as building on the previous impossibility result.
Specifically, if one allows fixing codeword symbols to constants, then one cannot achieve non-malleability
against functions with just a single symbol whose value depends on the input.

Theorem 3. There is no 1/2-NMC for Local1.

Proof. Let U ⊆ {0, 1}k, V ⊆ {0, 1}n where |U | > 1. Let (E : U → V,D : V → U) be non-malleable code.
Take x 6= y ∈ U . Consider cx = E(x), cy = E(y) for some fixed randomness. By correctness cx 6= cy and
moreover, D(cx) 6= D(cy) with probability 1. Also let d := d(cx, cy) be the distance between cx and cy, note
that 0 < d ≤ n. Consider d + 1 codewords starting with, c0 = cx, c1, . . . , cd = cy where ∀i ∈ {0, . . . , d − 1},
d(ci, ci+1) = 1. Notice that

D(c0) 6= D(cd) =⇒ ∃j ∈ {0, . . . , d− 1} : D(cj) 6= D(cj+1).

Now, consider the following f ∈ Local1,

f(c) =

{
cj if c ∈ E(x)

cj+1 otherwise

(Note that all symbols except a single one are constant.)

Because they have disjoint support, either D(f(E(x))) or D(f(E(y))) will be at least 1/2-far from any
distribution Df .

Thus, even inefficient NMC do not exist for Local1.

4 These constructions however use a randomized decoding algorithm. For the case of deterministic decoding,
constructions are only known for locality up to n1/2−ε for small ε. [CL17b]
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3.3 Functions with Output Locality n − log n

In this section we consider the class of (n−log n)-output-local tampering functions F . Recall that (n−log(n))-
output-local functions are functions f : {0, 1}n → {0, 1}n for which each output bit depends on at most
n− log(n) input bits. The reason this class is of interest is two-fold: First, parity over n bits is average-case
hard for the class F . This can be seen since F can also be viewed as the class where each output bit is
represented by a decision tree of depth at most n − log(n), while decision trees of depth less than n have
0 correlation with parity over n bits. Therefore, our impossibility result can be viewed as a “separation”
between average-case hardness and non-malleability, as it exhibits a class for which we have average-case
hardness bounds, but yet cannot construct non-malleable codes for. Second, we note that the particular class
F ′ that we use in our lower bound proof is actually a subclass of all (n− log n)-local tampering functions F .
In particular, each f ∈ F ′ has the following properties: First, f1, . . . , fn−log(n) (the functions that output the
first n− log(n) bits) are the same, except for two different bits from {0, 1} can potentially be hardcoded in
each. Second, fn−log(n)+1=, . . . , fn are also the same, except for a different value from {0, 1} can potentially
be hardcoded in each. Finally, the set of input bits upon which f1, . . . , fn−log(n) depend is fixed and the
set of input bits upon which fn−log(n)+1=, . . . , fn depend is fixed. Taken together, this means that the total

number of functions f in F is at most 4n · 22n−log(n)

, which in turn means that log log |F ′| = n− log(n). On
the other hand, a result of Dziembowski et al. [DPW18] shows that there exists a 1/n-non-malleable code
for any class F such that log log |F | ≤ n − 5 log(n). Thus, our lower bound result is nearly tight matching
the existential upper bound.

We prove the following theorem:

Theorem 4. Let (E,D) be a coding scheme with E : {0, 1} → {0, 1}n and D : {0, 1}n → {0, 1}. Let F be the
class of (n− log n)-output- local functions. Then (E,D) is not 1/8n-non-malleable with respect to F .

Proof. Fix an arbitrary (E,D) with E : {0, 1} → {0, 1}n and D : {0, 1}n → {0, 1}. Our analysis considers two
cases and shows that for each case, there exists f ∈ F such that

Pr
b←{0,1}

[D(f(E(b))) = 1− b] > 1

2
+ 1/8n.

By Lemma 1, this is sufficient to prove Theorem 4.

We begin with some notation and the proceed to the case analysis. For codeword c = c1, . . . , cn,
let ctop (resp. cbot) denote the first n − log n bits (resp. last log n bits) of c. I.e. ctop := c1, . . . , cn−logn
(cbot := cn−logn+1, . . . , cn). For t ∈ N, let St denote the set of all t-bit strings and let Ut denote the uniform
distribution over t bits. Let ε = 1/6n. Assume n ≥ 2.

Case 1:

Pr
b←{0,1}

[D(ctop||r) = b | c← E(b), r ← Ulogn}] ≥ 1/2 + ε.

Let c∗,0 = c∗,01 , . . . , c∗,0n (resp. c∗,1 = c∗,11 , . . . , c∗,1n ) be the lexicographically first string that decodes to 0
(resp. 1) under D (i.e. D(c∗,0) = 0 and D(c∗,1) = 1.

In this case we consider the following distribution over tampering circuits f = f1, . . . , fn, where fi outputs
the i-th bit of f :

Sample r ← Ulogn, construct circuits fi for each i ∈ [n], which take input ctop and output c′i. Each fi
does the following:

– Compute d := D(ctop||r).
– Output c′i = c∗,1−di .

We now analyze Prb←{0,1}[D(f(E(b))) = 1− b].
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Pr
b←{0,1}

[D(f(E(b))) = 1− b] = Pr
b←{0,1}

[f(E(b)) outputs c∗,1−b]

= Pr
b←{0,1}

[D(ctop||r) = b | c← E(b), r ← Ulogn}]

≥ 1/2 + ε

> 1/2 + 1/8n,

where the two equalities follow from the definition of the tampering function f , the first inequality follows
since we are in Case 1 and the last inequality follows from the definition of ε. This contradicts the 1/8n-non-
malleability of (E,D).

Case 2:
Pr

b←{0,1}
[D(ctop||r) = 1− b | c← E(b), r ← Ulogn}] ≥ 1/2− ε.

In this case we consider the following distribution over tampering circuits f = f1, . . . , fn, where fi outputs
the i-th bit of f :
The first n− log n circuits (f1, . . . , fn−logn) simply compute the identity function: I.e. fi for i ∈ [n− log n]
takes ci as input and produces ci as output.

We next describe the distribution over circuits fi for i ∈ {n − log n + 1, . . . , n}. Sample r′ ← [n − 1].
Construct circuits fi for each i ∈ {n− log n+ 1, . . . , n} that take input cbot and produce output c′i. Each fi
does the following:

– Let r := rn−logn+1, . . . , rn be the r′-th lexicographic string in the set Slogn \ {cbot}.
– Output c′i = ri.

We now analyze Prb←{0,1}[D(f(E(b))) = 1− b].
Since we are in Case 2 we have that:

1/2− ε ≤ Pr
b←{0,1}

[D(ctop||r) = 1− b | c← E(b), r ← Ulogn]

= Pr
b←{0,1}

[
cbot = r |

c← E(b), r ← Ulogn

]
· Pr
b←{0,1}

[
D(ctop||r) = 1− b |

cbot = r ∧ c← E(b), r ← Ulogn

]

+ Pr
b←{0,1}

[
cbot 6= r |

c← E(b), r ← Ulogn

]
· Pr
b←{0,1}

[
D(ctop||r) = 1− b |

cbot 6= r ∧ c← E(b), r ← Ulogn

]

= Pr
b←{0,1}

[
cbot = r |

c← E(b), r ← Ulogn

]
· 0

+ Pr
b←{0,1}

[
cbot 6= r |

c← E(b), r ← Ulogn

]
· Pr
b←{0,1}

[
D(ctop||r) = 1− b |

cbot 6= r ∧ c← E(b), r ← Ulogn

]

= Pr
b←{0,1}

[
cbot 6= r |

c← E(b), r ← Ulogn

]
· Pr
b←{0,1}

[
D(ctop||r) = 1− b |

cbot 6= r ∧ c← E(b), r ← Ulogn

]

= (1− 1/n) · Pr
b←{0,1}

[
D(ctop||r) = 1− b |

cbot 6= r ∧ c← E(b), r ← Ulogn

]
.

Note that

Pr
b←{0,1}

[
D(ctop||r) = 1− b |

cbot 6= r ∧ c← E(b), r ← Ulogn}

]
= Pr
b←{0,1}

[D(f(E(b))) = 1− b].
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Thus, we have that
1/2− ε ≤ (1− 1/n) Pr

b←{0,1}
[D(f(E(b))) = 1− b].

Since for all n ∈ N, 1
1−1/n ≥ (1 + 1/n), we have that

Pr
b←{0,1}

[D(f(E(b))) = 1− b] ≥ (1/2− ε)(1 + 1/n)

= 1/2 + 1/2n− ε− ε/n
> 1/2 + 1/8n,

where the last inequality follows since ε = 1/6n and n ≥ 2.

This contradicts the 1/8n-non-malleability of (E,D). 5

4 On NMC from Average-Case Hardness via BB Reductions

We demonstrate a barrier to explicitly constructing NMC for NC, even assuming the existence of a language
in P that is hard on-average for NC. In particular, we will rule out NMC for NC, even for encoding a single
bit, with reductions in NC that make black box usage of the adversary in the security proof. Recall that
efficient non-malleable codes for NC imply (efficiently samplable) distribution problems in P that are hard
for NC. So, we are, in effect, ruling out such codes with black-box reductions to minimal assumptions.

In fact, our results do not hold just with respect to NC, but for any circuit class that contains majority
and closed under certain kinds of composition.

For the case of non-malleable codes where the security proof makes black-box usage of the adversary but
is restricted making queries on inputs of the same (or closely related) security parameter as the reduction’s
input, we can rule out classes closed which only support weaker composition restraints, including NC1.

Black-box reductions for non-malleable codes. For the formal definition of a (F, ε, δ)-black-box reduction from a
(single bit) non-malleable code, (E,D) = {(En,Dn)}∞n=1, to a distributional problem, (Ψ,L) = {(Ψn, Ln)}∞n=1,
see Definition 19 in Section 2.4.

Barrier for security parameter-preserving reductions. We now prove the central lemma of the section: ruling
out security parameter-preserving reductions using the meta-reduction technique.

Definition 20 (Look-Up Circuit.). A look-up circuit with p(n)-bit keys and values and `(n) inputs has
values y1, . . . , y`(n) hardwired and gets as input x1, . . . , x`(n), where each xi and yi is p(n) bits. The circuit
finds the first i ∈ [`(n)] such that x`(n) is equal to xi. The circuit then outputs hardcoded value yi.

Proposition 1. For p(n), `(n) = O(nc) for some fixed constant c, there exist polynomial size look-up circuits
of depth O(log n).

Proof (Sketch). The inputs, x1, . . . , x`−1, can be put in sorted order via a circuit of size O(nc log n) and
depth O(log n) [AKS83]. Then each sorted xi can determine if it is the first of that value (if x1, . . . , x`−1 are
in sorted order then xj is determining that there does not exist xi = xj such that i < j), by comparing only
to one neighboring value. This can be done in parallel. Finally, compare x` to all xi that pass this test in
parallel. If there is such an xi such that xi = x`, the circuit will output yi. Otherwise, the circuit will output
y`.

5 The same proof for 1
8
√
n

-NMC gives a tighter upper bound of log log |F | ≤ n − 2 log(n). by changing ε = 1
6n

to

ε = 1
6
√
n

while keeping the lower bound same (log log |F | ≤ n− log(n).).
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Lemma 2. Assume that F is (F , t, p(n), p(n))-closed under composition, and contains look-up circuits with
p(n)-bit keys and values and t(n) inputs, for polynomials t(·), p(·).6 If there is an (F , 1/2, δ(n))-black-box-
reduction making t(n) security parameter-preserving queries from a (single bit) non-malleable code for F ,
(E,D) = {(En,Dn)}∞n=1, to a distributional problem, (Ψ,L) = {(= Ψn, Ln)}∞n=1, then one of the following
must hold:

1. (E,D) is δ(n)
2t(n) -malleable by F .

2. (Ψ,L) is (δ(n)/2)-easy for F .

Moreover, if (E,D) is efficient, then for the conclusion to hold it suffices that F contains such look-up
circuits generated that are generated uniform polynomial time.

Proof. Let R be such a security parameter-preserving (F , 1/2, δ(n)-reduction, for a non-malleable code (E,D)
and distributional problem (Ψ,L). Moreover, for security parameter n, let p(n) be the length of the codeword
generated by E, where p(·) is a polynomial.

Consider the following tampering functions {fp(n)}p(n) whose behavior on a given codeword c is defined

as follows (where H is a random function H : {0, 1}p(n) → {0, 1}∗):

fp(n)(c) :=

{
En(1;H(c)) if Dn(c) = 0
En(0;H(c)) if Dn(c) = 1

Since, NMC are perfectly correct, we have (for any choice of H)

Pr
b

u←{0,1}
[Dn(fp(n)(E(b))) = 1− b] = 1.

Therefore, by our assumption on R we have that for all n,

Pr
x←Ψn

[Ln(x) = Rfp(n)(x)] >
1

2
+ δ(n).

Now, for the j-th oracle query, we define f
′,j
p(n), a stateful simulation of the output of the tampering function

fp(n) on the j-th query. Each f
′,j
p(n) is a lookup circuit with p(n)-bit keys and values and j inputs that

hardcodes a random codeword (sampled from E(b) where b is uniform) as the yj value.

By our assumption on F (and R), we have that Replace(Unroll(Rfp(n)), f
′,1
p(n), . . . , f

′,t(n)
p(n) ) ∈ F . We will

abuse notation and denote the resulting circuit by Rf
′
p(n) . So, it suffices to show that the behavior of Rf

′
p(n)(x)

is close that of Rf
H
p(n)(x), for any x, which will imply that Rf

′
p(n)(x) ∈ F breaks the distributional problem

w.h.p., since Rf
H
p(n)(x) does. More accurately, if (E,D) is δ(n)

2t(n) -non-malleable by F , then we will show that

∀n ∈ N,∀x ∈ {0, 1}n, ∆(Rf
′
n(x);Rfn(x)) ≤ δ(n)/2,

. By the above, this then implies that (Ψ,L) is (δ(n)/2)-easy for F .

To show that the outputs of Rf
′
p(n)(x) and Rf

H
p(n)(x) are close, we will use a hybrid argument, reducing

to the δ(n)
2t(n) -non-malleablity of (E,D) at every step.

In the i-th hybrid, the function f
(i),j
p(n) responding to the j-th query is a look-up circuit with with p(n)-bit

keys and values and j inputs that hardcodes values yi1, . . . , y
i
j . For k ∈ [t = t(n)], the yik values are sampled as

follows: For k ∈ [t− i], yik is sampled as by fHp(n). For k > t− i, yik is a random encoding of a random bit. The

concatenation of the t circuits for each query is denoted by f
(i)
p(n). Clearly, f

(0)
p(n) ≡ fp(n) and f

(t)
p(n) ≡ f

′
p(n).

6 Note that polynomial p(n) corresponds to the length of the codeword outputted by En.
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We will show that for all x ∈ {0, 1}n (and any fixing of random coins r for R) ∆(R
f
(i)

p(n)(x);R
f
(i−1)

p(n) (x)) ≤
ε(n)) (for i ∈ [t(n)]), which proves the claim above.(R

f
(0)

p(n)(x) has advantage δ(n) and in each of the
subsequent t(n) hybrids we lose at most an ε(n) factor.)

Suppose not, then there exists an x (and random coins r, if R is randomized) such that R’s behavior

differs with respect to f
(i)
p(n) and f

(i−1)
p(n) : |Pr[R

f
(i)

p(n)(x) = 1]− Pr[R
f
(i−1)

p(n) (x) = 1]| > δ(n)
2t(n) .

Note that for fixed random function H (that generates the random coins used to sample the yj values)

f
(i)
p(n) and f

(i−1)
p(n) differ solely on the response to (t− i)-th query. So, fix x, H and all but the (t− i)-th value

yit−i and “hardcode” all other yk values in both cases. The reason that we can hardcode the yj values except
for the (t − i)-th response is the following: Clearly, up to the (t − i)-th query, the responses can be fully
hardcoded since x is fixed and so all the queries and responses can also be fixed. The yj values hardcoded

in the (t− i+ 1)-st lookup circuit and on can also be fixed, since in both f
(i)
n and f (i−1), the (t− i+ 1)-st

value of yj and on is a random codeword, that does not depend on the value encoded in the query submitted
by the reduction. Let sH,x denote the value encoded in the (t− i)-th query in this hardcoded variant of the
hybrid. Note that the value of sH,x is also fixed.

1. In Rf
(i−1)

(x) all values up to the (t− i)-th response are hardcoded. The (t− i)-th response, which will
be a random encoding of bit 1− sH,x, is not hardcoded. All the other responses are computed by lookup
circuits with hardwired yj values.

2. In Rf
(i)

(x), all values up to the (t− i)-th response are hardcoded. The (t− i)-th response, which will be
a random encoding of a random bit, is not hardcoded. All the other responses are computed by lookup
circuits with hardwired yj values.

Thus, we will treat the above as a new function R′H,x(·) that takes as input just the response to the

(t− i)-th query and returns some value. Note that R′H,x(·) is in F , since it can be viewed as the circuit Rf
(i),

with queries/responses to f (i),j , j ∈ [t− i− 1] hardcoded, the (t− i)-th query hardcoded, the (t− i)-th value
yit−i as the input to the circuit, and for j > t − i, the f (i),j functions as lookup circuits contained in F .
Moreover, by the above, R′H,x(·) distinguishes random codewords that encode the bit 1− sH,x from random
codewords that encode a random bit with advantage ε(n). Specifically,

Pr[R′H,x(c) = 1 | c← En(1− sH,x)]− Pr[R′H,x(c) = 1 | c← En(b), b← {0, 1}] > δ(n)

2t(n)
.

By standard manipulation, the above is equivalent to:

1

2
· Pr[R′H,x(c) = 1 | c← En(1− sH,x)] +

1

2
· Pr[R′H,x(c) = 0 | c← En(sH,x)] >

1

2
+

δ(n)

2t(n)
.

This implies that we can use R′H,x to construct a distribution over tampering functions in F that
successfully break (E,D). Details follows.

Let csH,x
be a codeword encoding bit sH,x and let c1−sH,x

be a codeword encoding bit 1 − sH,x. Define

f̂H,x as follows: on input (codeword) c,

– If R′H,x(c) = 1, output csH,x
;

– Otherwise, output c1−sH,x
.

We now analyze
Pr

b←{0,1}
[Dn(f̂H,x(En(b))) = 1− b].
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Pr
b←{0,1}

[D(f̂H,x(E(b))) = 1− b] = Pr[b = 1− sH,x] · Pr[R′H,x(c) = 1 | c← En(1− sH,x)]

+ Pr[b = sH,x] · Pr[R′H,x(c) = 0 | c← En(sH,x)]

=
1

2
· Pr[R′H,x(c) = 1 | c← En(1− sH,x)]

+
1

2
· Pr[R′H,x(c) = 0 | c← En(sH,x)]

>
1

2
+

δ(n)

2t(n)
.

But, the above implies that (E,D) is δ(n)
2t(n) -malleable for F .

Therefore, we conclude that either (E,D) is δ(n)
2t(n) -malleable for F or the distributional problem, (Ψ,L) =

{(Ψn, Ln)}∞n=1 is (δ(n)/2)-easy for F .

The following corollary holds since NC1 is (NC1, t, p(n), p(n))-closed under composition (for all polyno-
mials p(·)), and NC1 contains lookup circuits with p(n)-bit keys and values, for any polynomial p(·).

Corollary 1. If there is an (NC1, 1/2, δ(n))-black-box-reduction making t(n) security parameter preserving
queries from a (single bit) non-malleable code for NC1, (E,D) = {(En,Dn)}∞n=1, to a distributional problem,
(Ψ,L) = {(Ψn, Ln)}∞n=1, then one of the following must hold:

1. (E,D) is δ(n)
2t(n) -malleable by NC1.

2. (Ψ,L) is (δ(n)/2)-easy for NC1.

Note 1. The proof of Lemma 2 (as well as the other proofs in this section), does not extend to cases in which
the reduction R is outside in the class of tampering functions F . Specifically, in the hybrid arguments, we
require that R′H,x(·) is in F . In particular, our proof approach does not extend to proving impossibility of
constructing a (single bit) non-malleable code for F , from a distributional problem, (Ψ,L) that is hard for
some larger class F . E.g. our techniques do not allow us to rule out constructions of non-malleable codes for
NC1 from a distributional problem that is hard for NC2. Our techniques also do not rule out constructions
of non-malleable codes for F from an “incompressibility”-type assumption, such as those used in the recent
work of [BDSK+18]. Briefly, if a function ψ is incompressible by circuit class F , it means that for t� n, for
any computationally unbounded Boolean function D : {0, 1}t → {0, 1} and any F : {0, 1}n → {0, 1}t ∈ F ,
the output of D ◦ F (x1, . . . , xn) is uncorrelated with ψ(x1, . . . , xn) (over uniform choice of x1, . . . , xn). In
our case, this would mean that the reduction R is allowed oracle access to a computationally unbounded
Boolean function D, since the hardness assumption would still be broken by the reduction as long as R ∈ F
and the query made to D has length t� n. Since R composed with D is clearly outside the tampering class
F , our proof approach does not apply in the incompressibility setting.

Note 2. We can extend Lemma 2 to rule out (u(n), `(n))-approximately security parameter preserving
reductions by allowing our reduction access to a greater range of inefficient/simulated tampering functions

(defined in the same manner as above): {fk}u(n)k=`(n) and {f ′k}
u(n)
k=`(n). In this case, we can, WLOG, conflate the

security parameter queried to the oracle with the length of the query made to the oracle. However, we now
require for our proof that F is (F , t, `, u)-closed under composition and contains look-up circuits with `(n)
to u(n)-bit keys and values and t(n) inputs, for polynomials t(·), `(·), u(·).

Lemma 3. Assume F is (F , t, `, u)-closed under composition and contains look-up circuits with p(n)-bit
keys and values and t(n) inputs, for polynomials t(·), p(·). If there is an (F , 1/2, δ(n))-black-box-reduction
making t(n) length-preserving queries from a (single bit) non-malleable code for F , (E,D) = {(En,Dn)}∞n=1,
to a distributional problem, (Ψ,L) = {(Ψn, Ln)}∞n=1, then one of the following must hold:
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1. (E,D) is δ(n)
2t(n) -malleable by F .

2. (Ψ,L) is (δ(n)/2)-easy for F .

Moreover, if (E,D) is efficient, then for the conclusion to hold it suffices that F contains such look-up circuits
generated that are generated uniform polynomial time.

The following corollary holds since NC1 is (NC1, t, `, u)-closed under composition, where `(n) = nγ , for
any constant γ ≤ 1, u(n) = nc, for any constant c ≥ 1 and NC1 contains look-up circuits with `(n) to
u(n)-bit keys and values and t(n) inputs, for polynomials t(·), `(·), u(·).

Corollary 2. Fix constants γ ≤ 1, c ≥ 1. If there is an (NC1, 1/2, δ(n))-black-box-reduction making t(n)
(nγ , nc)-approximately length preserving queries from a (single bit) non-malleable code for NC1, (E,D) =
{(En,Dn)}∞n=1, to a distributional problem, (Ψ,L) = {(Ψn, Ln)}∞n=1, then one of the following must hold:

1. (E,D) is δ(n)
2t(n) -malleable by NC1.

2. (Ψ,L) is (δ(n)/2)-easy for NC1.

We extend to non-security parameter preserving reductions, but require a stronger compositional property
for the tampering class F . As for approximate security parameter preserving reductions, WLOG we may
conflate the security parameter queried to the oracle with the length of the query made to the oracle.

Lemma 4. Assume F is (F , t)-closed under strong composition and is HCS-amenable. If for every non-
negligible ε = ε(·), there is an (F , ε, δ)-black-box-reduction, for some non-negligible δ = δ(·), making t(n)
queries from a (single bit) non-malleable code for F , (E,D) = {(En,Dn)}∞n=1, to a distributional problem,
(Ψ,L) = {(Ψn, Ln)}∞n=1, then (Ψ,L) is (δ′(n))-easy for F , for some non-negligible δ′ = δ′(·).

Proof. Let S := {1, 21, 221 , 222
1

, . . .}. Let ε(n) be the following non-negligible function:

ε(n) :=

{
1
4 if n ∈ S
0 if n /∈ S

Assume there is some reduction R that succeeds with non-negligible probability δ for this ε. Since δ is
non-negligible, there must be an infinite set S ′ such that δ(n) ≥ 1/nc for some constant c and for all n ∈ S ′.

WLOG, we may assume that the reduction R, on input of length n, queries at most a single input length
`(n) ∈ ω(log(n)), whereas all other queries are of input length O(log(n)) (since we may assume the oracle
simply returns strings of all 0’s on any input of length k /∈ S). Additionally, we may assume that (1) `(n) is
polynomial in n (since otherwise the reduction does not have time to even write down the query) and (2) for
any k ∈ N, the size of the set `−1(k)∩S ′ is finite (otherwise we can hardcode all possible query/responses for
a particular input length k into the reduction–which is constant size since k is constant–and obtain a circuit
that breaks the underlying hard problem on an infinite number of input lengths). Moreover, we assume
WLOG that `(n) < n, since otherwise our previous proof holds.

Since by assumption F is HCS-amenable, it means that Impagliazzo’s hardcore set holds for adversaries
in F . Specifically, for random codewords c ← E`(n)(b), b ← {0, 1} of length ` = `(n) s.t. `(n) < n, there are
two possible cases:

1. For infinitely many n ∈ S ′ (this set of values is denoted by S ′′ ⊆ S ′), there is some adversary in Fn that
outputs D`(n)(c) with probability at least 3/47.

2. For infinitely many n ∈ S ′ (this set of values is denoted by S ′′ ⊆ S ′), there is some hardcore set H of
size ε′(n) · 2`, where ε′(n) ≤ 1

2·nc·t(n) such that every adversary in Fn outputs D`(n)(c) with probability

at most 1/2 + ε′(n), when c is chosen at random from H8.

7 Note that D`(n)(c) takes inputs of length `(n), whereas Fn takes inputs of length n. We can easily resolve this
discrepancy by padding inputs of length `(n) up to n.

8 Again, the input c to D`(n) has length `(n) while Fn takes inputs of length n. As above, we resolve the discrepancy
by padding inputs of length `(n) up to n.
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In Case 1, we set the tampering function {fk}k to use the circuit described above to decode a random
codeword with prob 3/4 and then chooses a random encoding of 0 or 1 appropriately. Additionally, fk only
responds if k ∈ S. Clearly, fk succeeds with non-negligible probability ε. Since the ε function remains the
same, we know that δ and `, S, S ′ remain the same.

In this case, as in the previous proof, we can switch to a simulated tampering function Sim, which responds
with f`(n) on query input length `(n) and hardcodes all responses for all possible queries R makes to fk with
input lengths k = k(n) ∈ O(log(n)).

Note that since we are in Case 1, for infinitely many input lengths–input lengths n ∈ S ′′–to R, RSim, is
a circuit in Fn, since Fn strongly composes. Additionally, the behavior of RSim is identical to the behavior
of R{fk}k . Moreover, since fk succeeds with non-negligible ε, by assumption on R, it means that for all
n ∈ S ′, Rf`(n) agrees with (Ψ,L) with probability 1/2+1/nc. But then we must have that for infinitely many
n ∈ S ′–input lengths n ∈ S ′′–RSim agrees with (Ψ,L) with probability 1/2 + 1/nc and RSim ∈ Fn. So (Ψ,L)
is (δ′(n))-easy for F , where

δ′(n) :=

{
1
nc if n ∈ S ′′
0 if n /∈ S ′′

In Case 2, we set the tampering function {fk}k to decode the query submitted by the reduction R and
respond with a random encoding from the hardcore set described above (if it exists), which decodes to 0
or 1 as appropriate. Specifically, the hardcore set H is defined as follows: fk sets n∗ to be equal to the
lexicographically first element in the (finite) set `−1(k) ∩ S ′′9, and chooses the lexicographically first set H
of size ε′(n∗) · 2`(n∗) = ε′(n∗) · 2k for which every adversary in Fn outputs D`(n∗)(c) with probability at most
1/2 + ε′(n∗), when c is chosen at random from H. If `−1(k)∩S ′ = ∅ or there is no such hardcore set H, then
fk applies the trivial breaking strategy described above (decoding the input and responding with a random
encoding of 0 or 1 as appropriate). Moreover, fk responds only if k ∈ S. Since the ε function remains the
same in this case as well, the δ function also remains the same. Thus, for n ∈ S ′, Rf`(n) must still agree
with (Ψ,L) with probability 1/2 + 1/nc.

In this case, as in the previous proof, we can switch to a simulated tampering function Sim that does not
decode but rather chooses a random codeword from the hardcode setH (which again we can hardcode in using
lookup circuits as before). Moreover, for queries R makes to Sim with input lengths k = k(n) ∈ O(log(n)),
all responses for all possible queries c are hardcoded into Sim. Now, for infinitely many n ∈ S ′–input lengths
n ∈ S ′′–R’s behavior should be t(n) · ε′(n)-close when interacting with {fk}k versus Sim, since otherwise
in each hybrid step we can construct a distinguishing circuit in Fn (as in the previous proof) contradicting
the guaranteed hardness of the hardcore set. Finally, we must argue that for infinitely many n ∈ S ′–input
lengths n ∈ S ′′–R composed with Sim is in the class F . But due to the fact that F is (F , t)-closed under
strong composition, this occurs whenever the reduction is instantiated with security parameter n ∈ S ′′,
where n = n∗ is the lexicographically first element in the set `−1(`(n)) ∩ S ′′. Since n is always contained in
`−1(`(n)), since the size of `−1(`(n)) ∩ S ′ is finite and since the size of S ′′ is infinite, there will be infinitely

many n ∈ S ′′ for which this event occurs. Thus, for infinitely many n ∈ S ′′ (denote this set of values by S̃,
R{fk}k agrees with (Ψ,L) with probability 1/2 + 1/nc and RSim is t(n) · ε′(n) ≤ 1/2nc-close to R{fk}k . So we
conclude that (Ψ,L) is (δ′(n))-easy for F , where

δ′(n) :=

{
1

2nc if n ∈ S̃
0 if n /∈ S̃

The following corollary holds since NC is (NC, t)-closed under strong composition and Impagliazzo’s HCS
holds for NC.

Corollary 3. If for every non-negligible ε = ε(·), there is an (nu− NC, ε, δ)-black-box-reduction, for some
non-negligible δ = δ(·), making t(n) queries from a (single bit) non-malleable code for nu− NC, (E,D) =
{(En,Dn)}∞n=1, to a distributional problem, (Ψ,L) = {(Ψn, Ln)}∞n=1, then (Ψ,L) is (δ′(n))-easy for NC, for
some non-negligible δ′ = δ′(·).
9 Note that it is finite since `−1(k) ∩ S ′ is finite and S ′′ ⊆ S ′.
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