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Abstract. The purpose of this paper is to use a Central Limit approach
to develop a statistical framework for analysing ciphertexts in Ring-LWE
homomorphic encryption schemes. This statistical framework gives rise
to Normal approximations for ciphertext random variables, and we show
that this allows probabilities to be determined more accurately and hence
enables better bounds for decryption failure probabilities than the widely
used existing approach based on δ-subgaussian random variables. To
demonstrate the benefit of the Central Limit approach, we apply our
framework and results to a homomorphic Ring-LWE cryptosystem of
Lyubashevsky, Peikert and Regev (Eurocrypt 2013, full version).
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1 Introduction

The Learning with Errors or LWE problem [21, 22] has become a standard hard
problem in cryptology that is at the heart of lattice-based cryptography [16, 20].
The Ring Learning with Errors or Ring-LWE problem [23, 12] is a generalisation
of the LWE problem from the ring of integers to certain other number field rings.
Both the LWE problem and the Ring-LWE problem are related to well-studied
lattice problems that are believed to be hard [3, 12, 13, 18, 21].

A key application of lattice-based cryptography is the ability to achieve (fully,
somewhat or levelled) homomorphic encryption. Using homomorphic encryption
means that one party (the server) can operate meaningfully on encrypted data
belonging to a different party (the client), and the server does not need access to
the secret key in order to do this. Constructing a fully homomorphic encryption
scheme was a longstanding open problem until it was resolved in Gentry’s seminal
work [7]. Gentry’s original scheme specifies a somewhat homomorphic encryption
scheme, which is transformed into a fully homomorphic encryption scheme using
a technique known as bootstrapping.

A large number of somewhat homomorphic cryptosystems have been pro-
posed in the literature, for example [2, 6, 8, 13, 5, 4], many of which [2, 6, 13, 4]
are based on Ring-LWE. To illustrate the ideas of this paper, we consider the
symmetric key homomorphic cryptosystem given by Lyubashevsky, Peikert and
Regev in Section 8.3 of [13] (the full version of [14]), which we term the SymHom

cryptosystem.
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A common feature among all homomorphic encryption schemes is that all
ciphertexts have an inherent noise. This is typically small in a fresh ciphertext,
but the noise grows as homomorphic evaluation operations are performed. If
the noise grows too large, then decryption fails. Thus a good understanding of
the randomness properties of the noise in a ciphertext is essential to be able to
choose appropriate parameters to ensure correctness and efficiency.

1.1 Contributions of the Paper

The first contribution of this paper is to develop a statistical framework, based on
a Central Limit argument, for ciphertexts in homomorphic encryption schemes
that are based on Ring-LWE. To illustrate its utility, our second contribution
is to apply this Central Limit framework to the SymHom cryptosystem. We give
results on the probability of incorrect decryption for freshly encrypted (degree-1)
SymHom ciphertexts in Theorem 1 and for degree-2 SymHom ciphertexts formed
as a result of homomorphic multiplication in Theorem 2.

This Central Limit analysis of the SymHom cryptosystem is essentially based
on approximating the mean vector and the covariance matrix of the noise of
a ciphertext when embedded into the complex space and transformed into an
appropriate decryption basis. We show that the approximate Normality of this
embedded noise when expressed in a decryption basis is fundamentally a Central
Limit phenomenon arising from the weighted sum of many random variables,
where the weights arise from a change of basis matrix to the decryption basis.

The third contribution of this paper is to contrast our Central Limit approach
to evaluating decryption failure probabilities in the SymHom cryptosystem with
the approach used in the original analysis [13]. The analysis in [13] is based on
δ-subgaussian (for δ ≥ 0) random variables [15, 17], which are a generalisation
of subgaussian random variables [10].

Our main conclusion is that the Central Limit approach allows us to de-
termine probabilities more accurately and so gives rise to better bounds for
decryption failure probabilities in Ring-LWE than a δ-subgaussian approach.
Such a Central Limit approach could therefore lead to the design of more effi-
cient Ring-LWE cryptosystems, and should be used in place of a δ-subgaussian
approach.

1.2 Structure of the Paper

We review the algebraic and statistical background for Ring-LWE, and in par-
ticular the SymHom cryptosystem, in Section 2. We outline the Central Limit ap-
proach to evaluating decryption failure probabilities in Ring-LWE in Section 3,
and illustrate this approach by considering the SymHom cryptosystem in Sec-
tion 4. We contrast the Central Limit approach with the δ-subgaussian approach
to evaluating decryption failure probabilities in Ring-LWE in Section 5.
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2 Mathematical Background for Ring-LWE

In this section, we give the necessary algebraic and statistical background. The
algebraic background has its origins in [13] and in part follows [13]. We consider
the ring R = Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial of
degree n, and we let Ra denote R/aR for an integer a. For simplicity, we only
consider the case where m is a large prime, so n = φ(m) = m − 1, and we also
let n′ = 1

2n = 1
2 (m− 1), though our arguments apply more generally.

There are three natural algebraic settings for the discussion of Ring-LWE:
the n-dimensional real vector space Rn, the mth cyclotomic number field K
(Section 2.1) and the complex space H (Section 2.2). We move between these
settings at different places in our discussion of Ring-LWE.

2.1 Cyclotomic Number Fields

Let ζm denote a (primitive) mth root of unity, which has minimal polynomial
Φm(X) = 1 +X + . . .+Xn. The mth cyclotomic number field

K = Q(ζm)

is the field extension of the rational numbers Q obtained by adjoining this mth

root of unity ζm, so K has degree n.

There are n ring embeddings σ1, . . . , σn : K → C that fix every element of
Q. Such a ring embedding σk (for 1 ≤ k ≤ n) is defined by ζm 7→ ζkm, so∑n
j=1 ajζ

j
m 7→

∑n
j=1 ajζ

kj
m , and such ring embeddings occur in conjugate pairs.

The canonical embedding σ : K → Cn is a 7→ (σ1(a), . . . , σn(a))T .

We can define an induced geometry on K which has an `2-norm given by

‖a‖2 = ‖σ(a)‖2 =
∑n
j=1 |σj(a)|2 = 2

∑n′

j=1 |σj(a)|2 and an `∞-norm ‖ · ‖∞ given
by ‖a‖∞ = ‖σ(a)‖∞ = max{|σ1(a)|, . . . , |σn(a)|}.

The ring of integers OK of a number field is the ring of all elements of the
number field which are roots of some monic polynomial with coefficients in Z.
The ring of integers of the mth cyclotomic number field K is

R = Z [ζm] ∼= Z [x] /(Φm).

The canonical embedding σ embeds R as a lattice σ(R). The conjugate dual
of this lattice corresponds to the embedding of the dual fractional ideal

R∨ = {a ∈ K | Tr(aR) ⊂ Z}.

If we define t such that t−1 = m−1(1 − ζm), then [13, Lemma 2.16] shows that
R∨ = 〈t−1〉. We let (R∨)k denote the space of products of k elements of R∨,
that is to say

(R∨)
k

= {s1 . . . sk | s1, . . . , sk ∈ R∨} =
{
t−kr1 . . . rk | r1, . . . , rk ∈ R

}
.
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2.2 The Complex Space H

As we noted in Section 2.1, the ring embeddings σ1, . . . , σn occur in complex
conjugate pairs with σk = σm−k. Accordingly, much of the analysis of Ring-LWE
takes place in a space of conjugate pairs of complex numbers. We now specify
the appropriate complex space for analysing Ring-LWE, which following [13] we
denote by H. In order to do so, we first define the conjugate pairs matrix T . We

use † to denote the complex conjugate transpose of a matrix, so T † = T
T

and
so on.

Definition 1. The conjugate pair matrix is the complex unitary n × n matrix
T , so T−1 = T †, given by

T = 2−
1
2



1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i


. ut

Definition 2. The complex conjugate pair space H = T (Rn), where T is the
conjugate pairs matrix. ut

Definition 3. The I-basis for H is given by the columns of the n× n identity
matrix I, that is to say by standard basis vectors. ut

Definition 4. The T-basis for H is given by the columns of the conjugate pair
matrix T . ut

The I-basis and T -basis forH give two different ways of expressing an element
of H as a vector:

H-vectors in the I-basis
{

(z1, . . . , zn′ , zn′ , . . . , z1)
T
∣∣∣ z1, . . . , zn′ ∈ C

}
,

H-vectors in the T -basis
{

(w1, . . . , wn′ , wn′+1, . . . , wn)
T
∣∣∣w1, . . . , wn ∈ R

}
.

An element of H is expressed as a vector in the I-basis as a vector of n′ conjugate
pairs. Such an element of H can also be expressed (by construction) in the
T -basis as a real-valued vector. We also note that the vector representing an
element in the T -basis for H has the same norm as an element representing
the same element in the I-basis for H, as |Tv|2 = |v|2 because T is a unitary
matrix. Expressing elements of H as vectors in the T -basis therefore gives the
isomorphism between H and Rn as an inner product space. Thus the T -basis for
H is a very natural basis to use for the analysis of Ring-LWE.

We also specify the pΓ -basis for H in Definition 5 in which elements of H are
also expressed as real-valued vectors, where the pΓ -basis arises as the embedding

4



H with T -basis
p−1∆ = (pΓ )−1T

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
p∆−1 = T−1(pΓ )

H with pΓ -basis

Fig. 1. Change of Basis Matrices for the T -basis and pΓ -basis for H in which elements
of H are expressed as real-valued vectors.

of a basis of conjugate pairs for R∨. This pΓ -basis for H is a more convenient
basis in the case when m is prime, and is a suitable basis for decryption. The
change of basis transformations between the T -basis and the pΓ -basis are sum-
marised in Figure 1, and the relevant properties of the matrix ∆ = ΓT−1 are
given in Lemma 1.

Definition 5. The pΓ -basis for H is given by the columns of the matrix pΓ
(for p prime), where

Γ =
1

m


1− ζ1·1m 1− ζ1·2m 1− ζ1·3m . . . 1− ζ1·nm
1− ζ2·1m 1− ζ2·2m 1− ζ2·3m . . . 1− ζ2·nm

...
...

...
. . .

...
1− ζn·1m 1− ζn·2m 1− ζn·3m . . . 1− ζn·nm

 ,

and is the embedding of the basis
{
p
m (1− ζ1m), pm (1− ζ2m), . . . , pm (1− ζnm)

}
of

conjugate pairs for R∨ in H. ut

Lemma 1. The change of basis matrix from the T -basis to the pΓ -basis of H is
the real invertible matrix p−1∆, where ∆ = Γ−1T satisfies ∆∆T = mI − J . ut

Proof. It is clear that ∆ = Γ−1T is invertible as both Γ−1 and T are invertible.
The matrix ∆−1 = T−1Γ = T †Γ has matrix entries ∆−1kl satisfying

m∆−1kl =

{
2−

1
2

((
1− ζklm

)
+
(
1− ζ−klm

))
= 2

1
2

(
1− Re

(
ζkl
))

[1 ≤ k ≤ n′]
2−

1
2

(
−i
(
1− ζ−klm

)
+ i
(
1− ζklm

))
= 2

1
2 Im

(
ζkl
)

[n′ < k ≤ n],

so ∆−1 and hence ∆ are real matrices. Thus we have

∆∆T = ∆∆† = (Γ−1T )(Γ−1T )† = Γ−1TT †(Γ−1)† =
(
Γ †Γ

)−1
.

We note that Γ †jk = m−1(1 − ζ−jkm ) and that
∑n
l=1 ζ

l = −1 and so on. Thus∑n
l=1 ζ

l(j−k) = n if k = j and −1 if k 6= j (for 1 ≤ k, j ≤ n), which yields

(
Γ †Γ

)
jk

=

n∑
l=1

Γ †jlΓlk =
1

m2

n∑
l=1

(1− ζ−jl)(1− ζlk)

=
1

m2

n∑
l=1

1− 1

m2

n∑
l=1

ζlk − 1

m2

n∑
l=1

ζ−jl +
1

m2

n∑
l=1

ζl(k−j)

=

{
2m−2(n+ 1) = 2m−1 [k = j]
m−2(n+ 1) = m−1 [k 6= j],

so Γ †Γ = m−1(I + J). Thus ∆∆T = (Γ †Γ )−1 = mI − J . ut
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Basis for H I-Basis T -Basis pΓ -Basis

Vector or
Random Variable

Z Z‡ Z∗

Transformation from
the I-Basis

I T † p−1Γ−1

Fig. 2. Notation for the expression of an element of H as a vector in the various
different vector space bases for H. Note that p is a scaling factor.

At various times in our discussion of Ring-LWE, we consider the expression
of an element of H as a real-valued vector with respect to the T -basis and the
pΓ -basis for H. We therefore introduce the notation of Figure 2 for the purposes
of clarity when dealing with an element of H expressed with respect to the
various different bases for H. Thus if Z is a vector expressing an element of H
as a vector of conjugate pairs in the I-basis (or standard basis) for H, then we
have real-valued vectors Z‡ = T †Z and Z∗ = (pΓ )−1Z expressing this element
as a vector in the T -basis and the pΓ -basis for H respectively.

2.3 Products of Elements of H

We have seen that the expression of an element of H in the I-basis gives a vector
of complex conjugate pairs. It is sometimes convenient to consider such a single
conjugate pair in isolation, so giving rise to the space H2 = T (R2). The conjugate
pair mappings σ̃i on K for 1 ≤ i ≤ n′ are given by

σ̃i(a) = (σi(a), σm−i(a))T ,

where σi are the ring embeddings defined in Section 2.1. The conjugate pair
mappings are each (by definition) an embedding σ̃i : K → H2. The canonical
embedding σ can therefore be regarded as essentially the concatenation of the n′

conjugate pair embeddings σ̃1, . . . , σ̃n′ , In particular, the canonical embedding
actually embeds K into H2×. . .×H2

∼= H ⊂ Cn, and such an embedded element
is expressed as a vector (with appropriate component re-ordering) with respect
to the I-basis for H.

The canonical embedding under σ of a sum in the cyclotomic number field
gives a componentwise addition in H of the vectors expressing the embedded
elements for any basis for H. Similarly, the canonical embedding under σ of a
product in the cyclotomic number field gives rise to a componentwise �-product
in H when the vectors expressing the embedded elements are in the I-basis for
H, when we have σ(aa′) = σ(a)� σ(a′).

The canonical embedding of a product under σ gives other forms of “product”
for the corresponding vectors expressing elements of H when other bases are
used. The appropriate notion of a product of two elements of the complex space
H when these elements are expressed as real vectors in the T -basis for H is given
by Definition 6, which specifies the ⊗-product of two real vectors.
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Definition 6. The ⊗-product of two real vectors u = (u11, u12, . . . , un′1, un′2)T

and v = (v11, v12, . . . , vn′1, vn′2)T of length n = 2n′ is

u⊗ v =


u11
u12

...
un′1
un′2

⊗

v11
v12
...

vn′1
vn′2

 = T † (Tu� Tv) = 2−
1
2


u11v11 − u12v12
u11v12 + u12v11

...
un′1vn′1 − un′2vn′2
un′1vn′2 + un′2vn′1

 .

The ⊗-product of two vectors in H expressed in the T -basis is the expression in
the T -basis of the componentwise �-product of those two vectors when expressed
in the I-basis. ut

2.4 The ⊗-product of Normal Random Variables

In Ring-LWE cryptosystems such as the SymHom cryptosystem, random variables
relating to the ciphertexts can be closely approximated by gaussian random vari-
ables. Thus Definition 6 shows that the distribution of the ⊗-product of Normal
random variables is of fundamental interest when considering the product of
such random variables expressed in an appropriate basis as a real-valued vector.
Lemma 2 considers the bivariate (conjugate pair) case, and shows that the re-
sulting ⊗-product distribution is a Laplace distribution [11]. The image of this
distribution under T then gives the corresponding distribution of the �-product.
The generalisation to the general case with many n′ conjugate pairs is clear and
straightforward.

Lemma 2. Suppose that W =

(
W1

W2

)
= U ⊗ V =

(
U1

U2

)
⊗
(
V1
V2

)
is the ⊗-

product of the independent random variables U, V ∼ N(0, I2) with a standard
bivariate Normal distribution.
(i) The random variable W has a bivariate Laplace distribution with density

function fW (w) = π−1K0(2
1
2 |w|) for w ∈ R2, where K0 is the modified Bessel

function of the second kind given by K0(x) =

∫ ∞
0

exp(−x cosh t) dt.

(ii) A component Wj of W has a univariate Laplace distribution with density

function fWj (wj) = 2−
1
2 exp(−2

1
2 |wj |), and so has mean E(Wj) = 0, variance

Var(Wj) = 1, and tail probability P(|Wj | > θ) = exp(−2
1
2 θ). Furthermore,

these orthogonal components W1 and W2 of W are not independent but are
uncorrelated with covariance Cov(W1,W2) = 0. ut

Proof. Parts (i) and (ii) follow from the Preamble to Part II and from Sec-
tion 5.1.1 of [11]. Furthermore, it is discussed at the end of Section 1 of [11] how
a univariate Laplace distribution arises directly from the components of such an

⊗-product

(
U1

U2

)
⊗
(
V1
V2

)
= 2−

1
2

(
U1V1 − U2V2
U1V2 + U2V1

)
. ut
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Fig. 3. The density function of a standard bivariate Laplace distribution.

The density function of a standard bivariate Laplace random variable arising
as the ⊗-product of standard bivariate Normal random variables is illustrated
in Figure 3. The density function of the standard univariate Laplace random
variable, essentially two “back-to-back” exponential random variables, arising
as a component of such an ⊗-product is illustrated in Figure 4. For comparison,
the density function of a standard Normal N(0, 1) random variable having the
same mean 0 and variance 1 is also shown Figure 4. It can be seen that this
univariate Laplace distribution arising from an ⊗-product has a far heavier tail
than the corresponding Normal distribution.

3 A Central Limit Approach to Ring-LWE Decryption

In a Ring-LWE decryption process such as that used in the SymHom cryptosystem,
we have to consider the ciphertext as a real-valued vector in an appropriate
basis for H to allow for decryption, such as the pΓ -basis. If C(pΓ ) is a vector
expressing such a ciphertext in the pΓ -basis, the we require all components of
C(pΓ ) to be bounded by an appropriate threshold for a successful decryption. In
order to evaluate or bound a decryption failure probability, we therefore have to
determine or approximate the distribution of C(pΓ ). In this Section, we consider
a Central Limit approach to such a determination.

3.1 Motivation for the Central Limit Approach in Ring-LWE

In the SymHom cryptosystem, the vector C(pΓ ) expressing the ciphertext in the
pΓ -basis appropriate for decryption is a linear transformation C(pΓ ) = p∆C(T )
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Fig. 4. The density function 2−
1
2 exp(−2

1
2 |z|) of a standard univariate Laplace random

variable (solid line) and the density function (2π)−
1
2 exp(− 1

2
z2) of a standard Normal

N(0, 1) random variable with the same mean 0 and variance 1 (dashed line).

of the vector C(T ) expressing the ciphertext in the T -basis, where ∆ = Γ−1T
is the real change of basis matrix of Lemma 1 and Figure 1. In particular, this

means that we can express a component C
(pΓ )
j of C(pΓ ) as

C
(pΓ )
j = p

n∑
k=1

∆jkC
(T )
k .

However, the components C
(T )
1 , . . . , C

(T )
n of C(T ) are identically distributed ran-

dom variables that are uncorrelated and in general independent having mean

E
(
C

(T )
j

)
= 0 and some finite variance Var

(
C

(T )
j

)
= ρ2. Thus a component

C
(pΓ )
j of a ciphertext vector in the pΓ -basis for decryption is a weighted sum

of uncorrelated and in general independent identically distributed random vari-
ables. As Lemma 1 shows that ∆∆T = mI − J , so

∑n
k=1∆

2
jk = m− 1 = n, we

obtain

E
(
C

(pΓ )
j

)
= 0 and Var

(
C

(pΓ )
j

)
= np2ρ2.

The weightings ∆j1, . . . ,∆jn in the sum C
(pΓ )
j = p

∑n
k=1∆jkC

(T )
k are of

comparable size, as they are proportional to various sums and differences of mth

roots of unity with absolute size about 1 as any row of the n× n matrix ∆ has
squared length

∑n
k=1∆

2
jk = n. This suggests that a Central Limit argument

(detailed below) gives a Normal approximation for a component C
(pΓ )
j of C(pΓ ).

Such a Central Limit argument yields the Normal approximation

C
(pΓ )
j ∼.. N

(
0, np2ρ2

)
for moderate or large n,
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where ∼.. denotes “is approximately distributed as”. In particular, we note such a

Central Limit argument makes no distributional assumption for C
(T )
1 , . . . , C

(T )
n

(beyond finite variance), so is potentially applicable to heavy-tailed distributions.
The closeness of such a Central Limit Normal approximation for a sum such as

C
(pΓ )
j = p

∑n
k=1∆jkC

(T )
k is illustrated by Example 1.

Example 1. We consider a situation where m = 101 and n = 100 and we let
Y = (Y1, . . . , Yn)T be a vector of independent and identically distributed (heavy-
tailed) Laplace random variables Y1, . . . , Yn with mean E(Yj) = 0 and variance
ρ2 = Var(Yj) = 1, as arises when considering the ⊗-product of Normal random
variables. We consider the distribution of W = ∆Y (taking p = 1 without loss
of generality), where ∆ = Γ−1T is the change of basis matrix from the T -basis
to the Γ -basis of H given in Lemma 1.

We consider the first component W1 =
∑n
j=1∆1kYk of W = ∆Y , where the

first row (∆11, . . . ,∆1n) of ∆ is given by

−1.41, −1.40, −1.39, −1.37, −1.35, −1.32, −1.28, −1.24, −1.20, −1.15,
−1.10, −1.04, −0.98, −0.91, −0.84, −0.77, −0.69, −0.62, −0.54, −0.45,
−0.37, −0.28, −0.20, −0.11, −0.02, 0.07, 0.15, 0.24, 0.33, 0.41,

0.50, 0.58, 0.66, 0.73, 0.81, 0.88, 0.94, 1.01, 1.07, 1.12,
1.17, 1.22, 1.26, 1.30, 1.33, 1.36, 1.38, 1.40, 1.41, 1.41,
−0.04, −0.13, −0.22, −0.31, −0.39, −0.47, −0.56, −0.64, −0.71, −0.79,
−0.86, −0.93, −0.99, −1.05, −1.11, −1.16, −1.21, −1.25, −1.29, −1.32,
−1.35, −1.38, −1.39, −1.41, −1.41, −1.41, −1.41, −1.40, −1.39, −1.37,
−1.34, −1.31, −1.27, −1.23, −1.19, −1.14, −1.08, −1.02, −0.96, −0.89,
−0.82, −0.75, −0.68, −0.60, −0.52, −0.43, −0.35, −0.26, −0.18, −0.09


.

The closeness of the Central Limit approximation of a Normal N(0, 102) of vari-
ance n = 102 for W1 =

∑n
j=1∆1kYk to of variance n = 102 is illustrated in

Figure 5. ut

3.2 Details of the Central Limit Approach to Ring-LWE

We now outline further details justifying the potential use of a Central Limit
approach in Ring-LWE. We begin with Proposition 1 concerning a Central Limit
approximation to a weighted sum of the form

∑n
j=1 ajXj for independent and

identically distributed random variables X1, . . . , Xn. This proposition states that
a good Normal approximation exists if enough of the largest weights |aj | are of
comparable size and is a summary of the Lindeberg condition for a Central Limit
Theorem in this case (see Appendix A). In this situation, Proposition 1 is es-
sentially a perturbation of the basic Central Limit Theorem. A comparison with
this basic Central Limit Theorem would therefore suggest that Proposition 1 is
usually engaged to give a good approximation when as few as about 20 of the
largest weights are comparable. We can then extend Proposition 1 in the obvious
way to give the multivariate case of Proposition 2.
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Fig. 5. An empirical density function based on 104 realisations of W1 =
∑100
j=1∆1kYk

where Y1, . . . , Y100 are independent and identically distributed Laplace random vari-
ables with variance 1 (solid line) and the density function of the corresponding approx-
imating Normal N(0, 102) distribution (dashed line).

Proposition 1. Suppose that X = (X1, . . . , Xn) has components X1, . . . , Xn

that are independent and identically distributed random variables with mean
E(Xj) = 0 and finite variance Var(Xj) = ρ2. For weights a = (a1, . . . , an), the
weighted sum aTX =

∑n
j=1 ajXj ∼.. N(0, |a|2ρ2) has an approximate Normal

distribution for moderate or large n, provided that the weights a1, . . . , an are
not dominated by just a few of these weights. ut

Proposition 2. Suppose that X = (X1, . . . , Xn) has components X1, . . . , Xn

that are independent and identically distributed random variables with mean
E(Xj) = 0 and finite variance Var(Xj) = ρ2, so X has covariance matrix ρ2In.
If A is a n×nmatrix whose entries Ajk satisfy the Proposition 1 weights criterion,
then the transformed random variable AX ∼.. N(0, ρ2AAT ) can be approximated
as a multivariate Normal distribution for moderate or large n. ut

Proposition 3 now gives a good Normal approximation for the distribution
of a vector expressing the ciphertext in an appropriate basis for decryption in
a SymHom cryptosystem in most cases of practical interest. We note the proof of
Proposition 3 is complicated by the fact that a pair of random variables in the
T -basis arising as the image of a conjugate pair in the I-basis are uncorrelated
but not independent (see for example Lemma 1).

Proposition 3. Suppose that C(T ) is a vector expressing a ciphertext in the

SymHom cryptosystem in the T -basis for H, so a component C
(T )
j of C(T ) has

11



mean E
(
C

(T )
j

)
= 0 and finite variance Var

(
C

(T )
j

)
= ρ2. Suppose further that

the S-basis given by the columns of the n× n matrix S is an appropriate basis
of H for decryption, and that Ψ = ST−1 is the change of basis matrix from the
T -basis to the S-basis for H. If the entries Ψjk of Ψ satisfy the Proposition 1
weights criterion, then the distribution of C(S) this ciphertext in the (decryption)
S-basis for H can be approximated as

C(S) ∼.. N(0; ρ2ΨΨT ) for moderate or large n.

In particular, the pΓ -basis for H yields C(pΓ ) ∼.. N(0; p2ρ2(mI − J)). ut

Proof. We can split Ψ = (Ψ ′|Ψ ′′) into two n × n′ submatrices and we similarly

split C(T ) =
(
C(T )′

∣∣∣C(T )′′
)T

into the first n′ components C(T )′ and the final n′

components C(T )′′ . Furthermore, their conjugate pairs origin means that C(T )′

and C(T )′′ are uncorrelated (see for example Lemma 2(ii)). It is also the the

components C
(T )′

1 , . . . , C
(T )′

n′ of C(T )′ are independent and identically distributed

with mean 0 and variance ρ2, so Proposition 2 gives Ψ ′C(T )′ ∼.. N(0; ρ2Ψ ′Ψ ′T ),
and we similarly have Ψ ′′C(T )′′ ∼.. N(0; ρ2Ψ ′′Ψ ′′T ). Thus

C(S) = ΨC(T ) = Ψ ′C(T )′ + Ψ ′′C(T )′′ ∼.. N(0; ρ2ΨΨT )

as C(S) is the sum of two uncorrelated approximate multivariate Normal random
variables, so has an approximate Normal distribution with covariance matrix
ρ2Ψ ′Ψ ′T + ρ2Ψ ′′Ψ ′′T = ρ2ΨΨT . ut

3.3 Evaluating or Bounding the Decryption Failure Probability

For a Ring-LWE cryptosystem such as the SymHom cryptosystem, the decryption
failure probability is directly given by the probability that a vector expressing
the ciphertext in an appropriate basis for decryption lies outside a particular
box, so motivating Definition 7. For example, the decryption failure probability
for a ciphertext vector C(pΓ ) expressed in the pΓ -basis for H is the box-out
probability function BC(pΓ )(θ) for an appropriate choice of θ.

Definition 7. The box B(θ) =
{

(v1, . . . , vl)
T ∈ Rl

∣∣ |v1|, . . . , |vl| ≤ θ} is a subset
of Rl defined for θ ≥ 0. The box-in probability function BV (θ) and the box-
out probability function BV (θ) for a real-valued multivariate random variable
V = (V1, . . . , Vl)

T on Rl are given for θ ≥ 0 by

BV (θ) = P(V ∈ B(θ)) = P (max(|V1|, . . . , |Vl|) ≤ θ)
and BV (θ) = P(V /∈ B(θ)) = P (max(|V1|, . . . , |Vl|) > θ) = 1−BV (θ). ut

The box-in probability function and the box-out probability function for an
l-dimensional random variable V = (V1, . . . , Vl)

T are both simple functions of
the distribution function FV of V , which is given by

FV (v1, . . . , vl) = F(V1,...,Vl)(v1, . . . , vl) = P(V1 ≤ v1, . . . , Vl ≤ vl).

12



For example, the box-in probability function is BV (θ) = FV (θ) − FV (−θ) for
a univariate (l = 1) random variable V , and for a bivariate (l = 2) random
variable V we have

BV (θ) = B(V1,V2)(θ) = FV (θ, θ)− FV (θ,−θ)− FV (−θ, θ) + FV (−θ,−θ).

More generally, the box-in probability function BY (θ) is an appropriate sum or
difference (on an inclusion/exclusion basis) of distribution function evaluations
of the form FV (±θ, . . . ,±θ), and the box-out probability function BV (θ) can
also be similarly expressed in terms of distribution function evaluations.

A Central Limit approach to approximate the asymptotic forms of the box-
in and box-out probability functions, is a natural and direct approach for the
following reasons. In its most basic form the Central Limit Theorem [9] states
that if X1, X2, . . . are independent and identically distributed random variables
with mean E(Uj) = 0 and variance Var(Uj) = 1, then Ql = l−1

∑l
j=1 Uj tends

in distribution to a standard Normal N(0, 1) distribution. Such “convergence in
distribution” is formally a statement about convergence of distribution functions,
that is to say that FQl → Φ, where Φ is the distribution function of a standard
Normal N(0, 1) random variable. Thus, for example, we can obtain the limiting
function for the box-in probability function of Ql as BQl(θ) → Φ(θ) − Φ(−θ)
as l → ∞. More generally, a multivariate Central Limit approach shows that
of a box-in or box-out probability function can in principle be expressed to
high degree of accuracy in terms of sums and differences of the evaluations
of the distribution function of a multivariate Normal random variable. This
potentially allows us to evaluate a decryption failure probability for the SymHom

cryptosystem in practical cases directly (for example by numerical integration)
or to obtain good bounds for a a decryption failure probability.

4 The SymHom Cryptosystem

We analyse the SymHom cryptosystem of Section 8.3 of [13], which is described
in Figure 6. In this section, we denote by JrKq = r − q[q−1r] for r ∈ Z the coset
representative of (r mod q) nearest to 0, and we use the same notation for a coset
of Zq. We can also extend this idea componentwise to vectors, and we write J·KBq
to indicate such an extension with respect to the basis B. Our analysis enables
us to obtain good bounds for the probabilities of the incorrect decryption of a
degree-1 ciphertext (Theorem 1) and a degree-2 ciphertext (Theorem 2) in the
SymHom cryptosystem.

4.1 Encryption and Homomorphic Multiplication

We first give a description of the relevant parts of the encryption process of the
SymHom cryptosystem. The secret key is an element s ∈ R. The plaintext space
is Rp, and a plaintext µ ∈ Rp is encrypted to give a linear polynomial over
R∨q . The encryption process for a plaintext µ requires us to generate a Noise
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The SymHom cryptosystem. Let ψ be a continuous LWE error distribution over KR,
and let b·e denote any valid discretisation to cosets of some scaling of R∨ (e.g. using

the decoding basis
−→
d of R∨). The cryptosystem is defined formally as follows.

– Gen: choose s′ ← bψeR∨ , and output s = t · s′ ∈ R as the secret key.
– Encs(µ ∈ Rp): choose e← bpψet−1µ+pR∨ . Let c0 = −c1 · s+ e ∈ R∨q for uniformly

random c1 ← R∨q , and output the ciphertext c(S) = c0 + c1S. The “noise” in c(S)
is defined to be e.

– Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨)kq , and decode it to e = Jc(s)K ∈
(R∨)k. Output µ = tk · e mod pR.

For ciphertexts c, c′ of arbitrary degrees k, k′, their homomorphic product is the degree-
(k + k′) ciphertext c(S) � c′(S) = c(S) · c′(S), that is to say standard polynomial
multiplication. The noise in the result is defined to be the product of the noise terms
of c, c′. Similarly, for ciphertexts c, c′ of equal degree k, their homomorphic sum is
c(S) � c′(S) = c(S) + c′(S), and the noise in the resulting ciphertext is the sum of
those of c, c′.

Fig. 6. The SymHom Cryptosystem as stated in Section 8.3 of [13]

random variable that is the result of a discretisation process involving µ and
some random input. We summarise notation and terminology relating to the
Noise in Figure 7.

The first step of the encryption process is to generate a random input for
the discretisation process involving the plaintext µ. Accordingly, we let Y be a
random variable on H such that TY ∼ N(0; p2ρ2In) is a spherically symmetric
n-dimensional Normal random variable with component variance p2ρ2 for an
appropriately chosen ρ2. We term Y the Underlying Noise, and Y is a complex-
valued random vector expressed in the I-basis for H.

In order to encrypt µ ∈ Rp, we have to discretise Y to the coset σ(pR∨) +
σ(t−1µ) of the lattice σ(pR∨) obtained by the canonical embedding of the scaled
dual fractional ideal pR∨. We consider the coordinate-wise randomised rounding
or CRR-discretisation [13, 17] with respect to the pΓ -basis for H. We denote the

discretisation of Y by Y ′(µ) = b Y epΓσ(pR∨)+σ(t−1µ).

The Noise random variable Y ′′(µ) in the encryption of the plaintext µ is
then defined in [13] to be Y ′′(µ) = σ−1(Y ′(µ)), and is an element of a coset of
pR∨ + t−1µ containing information about µ. For obvious reasons, we refer to
Y ′(µ) = σ(Y ′′(µ)) as the Embedded Noise, and we note that Y ′(µ) expresses the
Embedded Noise in the I-basis of H.

We then form the ciphertext as a linear polynomial over R∨q from the Noise
Y ′′(µ) that depends on the secret key s in the following way. We choose A uni-
formly in R∨q , and we let A′(µ) = −As+Y ′′(µ) ∈ R∨q . The ciphertext polynomial
C(θ;µ) is then defined as C(θ;µ) = A′(µ) + Aθ. We note that this polynomial
can be expressed directly in terms of the Noise Y ′′(µ) and the secret key s
as C(θ;µ) = A(θ − s) + Y ′′(µ). A fresh ciphertext is defined to be a degree-1
ciphertext, since the polynomial C(θ;µ) is linear.
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Description Random Variable Range of Random Variable

Underlying Noise Y Complex Space H

Embedded Noise Y ′(µ) Lattice Coset σ(pR∨) + σ(t−1µ)

Noise Y ′′(µ) Number Field Coset pR∨ + t−1µ

Fig. 7. Notation for the Noise-related quantities used in the SymHom encryption of the
plaintext µ.

The ciphertext given by the homomorphic product of two degree-1 ciphertext
polynomials is obtained simply by multiplying these polynomials together. Thus
we can obtain the degree-2 ciphertext polynomial over R∨q corresponding to the
product µ1µ2 of plaintexts µ1 and µ2 as C(θ;µ1, µ2) = C(θ;µ1)�C(θ;µ2), where
C(θ;µ1) = A′1(µ1) +A1θ and C(θ;µ2) = A′2(µ2) +A2θ. This degree-2 ciphertext
polynomial is C(θ;µ1, µ2) = A′1(µ1)A′2(µ2)+(A2A

′
1(µ1)+A1A

′
2(µ2)) θ+A1A2θ

2,
which is given in terms of the secret key s and its constituent Noises Y ′′1 (µ) and
Y ′′2 (µ) by

C(θ;µ1, µ2) = A1A2(θ− s)2 + (A2Y
′′
1 (µ1) +A1Y

′′
2 (µ2)) (θ− s) + Y ′′1 (µ1)Y ′′2 (µ2).

The Noise in this degree-2 ciphertext polynomial C(θ;µ1, µ2) is defined to be
the product Y ′′1 (µ1)Y ′′2 (µ2) of the Noises Y ′′1 (µ1) and Y ′′2 (µ2) of the constituent
degree-1 ciphertexts, that is to say the constant term in the above formulation
of C(θ;µ1, µ2). This process extends in the obvious way to give ciphertexts of
higher degree.

4.2 Decryption

We specify a decryption process for the SymHom cryptosystem using the pΓ -basis
of H (though any appropriate basis can be used), which is essentially that given
in Figure 6. We recall (see Figure 2) that we write Z‡ and Z∗ to express an
element of H as a vector in the T -basis and the pΓ -basis respectively.

Decryption of a degree-1 ciphertext polynomial C(θ;µ) begins by evaluating
this polynomial at the secret s. We obtain information about the Noise since
C(s;µ) = Y ′′(µ) mod R∨q . If we embed C(s;µ) in H under σ and perform a
reduction modulo q with respect to to the pΓ -basis, then we obtain an integer
vector Jσ(C(s;µ))KpΓq with entries in [− 1

2q,
1
2q).

The Embedded Noise Y ′(µ) is expressed in the I-basis for H, so Y ′(µ) is
expressed with respect to the T -basis of H as the real vector Y ′(µ)‡ = T †Y (µ).
However, the change of basis from this T -basis to the pΓ -basis of H is given by
p−1∆ = p−1Γ−1T , so there is a real transformation Y ′(µ)∗ = p−1∆Y (µ)‡ that
gives a real vector Y ′(µ)∗ specifying the Embedded Noise expressed in the pΓ -
basis for H. This allows us to write Y ′(µ)∗ = Jσ(C(s, µ))KpΓq if the Embedded
Noise is small enough. In this case, we can recover the real vector Y ′(µ)∗ and
hence the real Embedded Noise vector Y ′(µ)‡ with respect to the T -Basis. This
allows us to determine the coset representative σ(t−1µ) for the coset of the lattice
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σ(pR∨) corresponding to the plaintext µ ∈ Rp. Thus if the Embedded Noise is
small enough with high probability, then we can recover the plaintext µ with
high probability.

This decryption process generalises to degree-2 and higher degree ciphertexts
in a natural way. For example, if C(θ;µ1) and C(θ;µ2) are two degree-1 cipher-
texts with respective Embedded Noise Y ′1(µ1) and Y ′2(µ2), then the degree-2
ciphertext C(s;µ1, µ2) = Y ′′(µ1)Y ′′(µ2) = C(s;µ1)C(s;µ2) mod (R∨)2q, and

so we obtain (Y ′1(µ1)� Y ′2(µ2))
∗

= Jσ(C(s;µ1, µ2))Km
−1pΓ

q for small Embedded
Noise. Thus if this Embedded Noise is small enough with high probability, we
can recover the plaintext product µ1µ2 ∈ Rp with high probability.

4.3 Decryption Failure Probabilities in the SymHom cryptosystem

We illustrate the Central Limit approach to evaluating decryption failure prob-
abilities by giving bounds for the incorrect decryption of degree-1 and degree-2
ciphertexts for the SymHom cryptosystem. The results follow from the fact that the
SymHom decryption process using the pΓ -basis for H (for example) fundamen-
tally involves a change of basis transformation between bases for H ultimately
to the pΓ -basis.

Theorem 1. If η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q is moderate or large, then the probabil-

ity of the incorrect decryption of a SymHom degree-1 ciphertext in the pΓ -basis
for H is bounded by

P

(
Incorrect decryption of SymHom
degree-1 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

. ut

Proof. The vector expressing the Embedded Noise in the pΓ -basis for H is of the

form
(
bZepΓΛc

)∗
, where Z = TZ‡ and p−1Z‡ = (p−1T †)Z ∼ N(0, ρ2In). However,(

bZepΓΛc
)∗

= (pΓ )−1bZepΓΛ+c ≈ ∆(p−1T †)Z, so Lemma 1 shows that(
bZepΓΛc

)∗
∼.. N(0; ρ2∆∆T ) = N(0; ρ2(mI − J)).

Thus
(
bZepΓΛc

)∗
is well-approximated by a multivariate Normal random vari-

able U ∼ N(0; ρ2(mI − J)), with components U1, . . . , Un ∼ N(0, nρ2). These
components therefore have an upper tail probability function given for α > 0 by

P(Uj > α) = P
(

(n
1
2 ρ)−1Uj > (n

1
2 ρ)−1α

)
= Q

(
(n

1
2 ρ)−1α

)
,

where Q is the “Q-function” giving the upper tail probability for a standard
Normal N(0, 1) distribution. This tail probability Q(x) is bounded by its asymp-

totic expansion as Q(x) ≤ (2πx2)−
1
2 exp(− 1

2x
2), and we note that this bound is

extremely tight even for moderate values of x > 0. We can now obtain a bound
for the tail probability for the maximum of |U1|, . . . , |Un| for moderate (n

1
2 ρ)−1α
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by using the union bound [9] (also used in a similar way in Lemma 6.5 of [13])
to obtain

P (max{|U1|, . . . , |Un|} > α) = 2 P (max{U1, . . . , Un} > α) ≤ 2nP(Uj > α)

≤ 2nQ
(

(n
1
2 ρ)−1α

)
≤ 2n

3
2 ρ

(2π)
1
2α

exp

(
− α2

2nρ2

)
.

We can now give a bound for the probability of decryption failure for a degree-
1 ciphertext using the Γ -basis. In this case, decryption fails if the absolute size
of any component of exceeds 1

2q, so taking α = 1
2q for moderate and large

η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q gives

P

(
Incorrect decryption of SymHom
degree-1 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

. ut

Theorem 2. If η2 = 1
2 (n

1
2mpρ1ρ2)−1q is moderate or large, then the probability

of the incorrect decryption of a SymHom degree-2 ciphertext in the pΓ -basis for
H is bounded by

P

(
Incorrect decryption of SymHom
degree-2 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
2)

(2π)
1
2 η2

. ut

Proof. The decryption of a SymHom degree-2 ciphertext C(θ;µ1, µ2) involves pro-

cessing this ciphertext as Jσ(C(s;µ1, µ2))Km
−1pΓ

q , that is to say by regarding this
Embedded Noise expressed as a vector with respect to the rescaled decoding con-
jugate pair m−1pΓ -basis. The processing of a degree-2 ciphertext fundamentally
therefore simply involves change of basis transformations for bases for H ulti-
mately to the m−1pΓ -basis. Thus we can adapt the argument of the proof of
Theorem 1 simply by using the appropriate moments, and so we can replace ρ
in η1 with mpρ1ρ2 in to give η2 = η1(n, q,mpρ1ρ2) = 1

2 (n
1
2mpρ1ρ2)−1q. ut

5 A δ-subgaussian Approach to Ring-LWE Decryption

A δ-subgaussian random variable [15] is a relaxation of a subgaussian random
variable [10], which is a random variable with mean 0 that is bounded in a partic-
ular technical sense by a Normal random variable. Statistical arguments based on
δ-subgaussian random variables have been used in Ring-LWE cryptography for
example in [13, 15, 19], and further properties of δ-subgaussian random variables
are given in [17]. For completeness, we note that the class of δ-subgaussian ran-
dom variables includes Normal random variables. By contrast, a Laplace random
variable (see Lemma 2), which arises for example when considering a degree-2
SymHom ciphertext, is not a δ-subgaussian random variable and has a far heavier
tail than that given by a δ-subgaussian tail bound.

The δ-subgaussian approach used to obtain a decryption failure probability
bound for SymHom cryptosystem given in [13] is described in Figure 8 in terms of
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Let V be a real-valued multivariate random variable. The following process is a sug-
gested approach for bounding the box-out probability function BV (θ) = P(V /∈ B(θ)).
• Find a δ-subgaussian random variable V ′ such that V is “well-approximated” by V ′.
• Find a bounding function for the box-out probability function BV ′(θ) = P(V ′ /∈ B(θ))
for V ′ by using the δ-subgaussian properties of V ′.
• Use the bounding function for the box-out probability function BV ′(θ) for V ′ as a
bounding function for the box-out probability function BV (θ) for V .

Fig. 8. Approach for obtaining a bounding function for a box-out probability function
BV for a random variable V by approximation with a δ-subgaussian random variable.

the equivalent box-out probability function. The idea is to show that a vector ex-
pressing a SymHom ciphertext random variable in a suitable basis for decryption
is close to some δ-subgaussian random variable and then to use a δ-subgaussian
tail bound to obtain a bound for the decryption failure probability. We discuss
possible issues with this δ-subgaussian approach in Section 5.1 and contrast such
a δ-subgaussian approach with a Central Limit approach in Section 5.2.

5.1 Proximity to a δ-subgaussian Random Variable

The δ-subgaussian approach outlined in Figure 8 to evaluating a box-out proba-
bility function BY (θ) for a random variable Y , which is used to find a decryption
failure probability, is based on finding a δ-subgaussian random variable close to
Y . However, Example 2 shows that proximity to a δ-subgaussian random variable
is an extremely wide ranging property encompassing many random variables.

Example 2. Suppose Y1, . . . , Y22l′ are independent and identically distributed
random variables with mean E(Yj) = 0 and finite variance Var(Yj) = ρ2. We

consider the orthogonal transformation given by a scaled 22l
′ × 22l

′
Hadamard

matrix S with entries ±2−l
′
, so SST = I22l′ and S is an orthogonal transforma-

tion. The real-valued multivariate random variable W = SY is an orthogonal
transformation of Y , with a generic component Wj of W = (W1, . . . ,W22l′ )

T is
given by

Wj = 2−
1
2 l
′
((±Y1) + (±Y2) + . . .+ (±Y2l′ )) .

However, ±Y1,±Y2, . . . ,±Y22l′ are independent and identically distributed ran-
dom variables with mean E(±Yj) = 0, so E(W ) = 0. Furthermore, the covariance
matrix of W = SY is given by

Cov(W ) = E
(
SY (SY )T

)
= SE

(
Y Y T

)
ST = ρ2SI22l′S

T = ρ2I22l′ .

Thus a component Wj of W has variance Var(Wj) = ρ2 and two distinct compo-
nents Wj and Wj′ of W have covariance Cov(Wj ,Wj′) = 0. The Central Limit
Theorem shows that that W ∼.. N(0, ρ2I22l′ ) is well-approximated by a multivari-

ate Normal N(0, ρ2I22l′ ) distribution for moderate and large 22l
′
. Thus W is close

to a spherically symmetric multivariate Normal distribution, but Y = S−1W is
an orthogonal transformation of W , so Y has a distribution that is close to the
δ-subgaussian N(0, ρ2I22l′ ) distribution. ut
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Fig. 9. The joint density function f(Y1,Y2)(y1, y2) = 1
2

exp(−2
1
2 (|y1| + |y2|)) of the

two independent Laplace random variables Y1 and Y2 with mean E(Yj) = 0, variance

Var(Yj) = 1 and density function fYj (yj) = 2−
1
2 exp(−2

1
2 |yj |).

Example 2 illustrates that any moderate or high dimension random vari-
able Y with independent and identically distributed components having finite
variance can be considered as being close to some multivariate Normal random
variable and hence to some δ-subgaussian random variable. However, it would
clearly be inaccurate to calculate a box-out probability function BY (θ) using a
δ-subgaussian tail bound for a typical component Yj in a case where Yj is a very
heavy-tailed random variable that is far from satisfying such a δ-subgaussian
tail bound. The fundamental issue with the δ-subgaussian approach outlined in
Figure 8 is that the BY (θ) can be far from invariant under orthogonal transfor-
mations of a spherically symmetric random variable Y . More generally BY (θ)
does not transform in an appropriate way under linear transformations of Y to
allow the universal use of such a “δ-subgaussian proximity” approach.

5.2 Contrast with the Central Limit Approach

Figure 9 is a two dimensional illustration of the general pyramidal shape arising
as the Laplace density function for a real-valued high-dimensional random vec-
tor expressing a degree-2 SymHom ciphertext. Such a density function consists of
ridges along the axes of the T -basis for H, with corries or depressions between
the ridges. Univariate marginal random variables in directions “along” or “close
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to” to the ridges cannot be approximated by a δ-subgaussian random variable.
By contrast, univariate marginal random variables in directions “away” from the
ridges that go “through the corries” can be approximated by a Normal random
variable. Furthermore, in high dimensions, “most” directions (loosely speaking)
go through the corries and stay away from the ridges, so in general univariate
marginal random variables can be approximated by a Normal random variable.
Such an argument can loosely be thought of as the geometric expression of a
Lindeberg Central Limit result, such as Propostion 3. Thus Figure 9 illustrates
that the density function of a vector whose independent components have fi-
nite variance is close to that of some Normal random variable “away” from the
ridges. Furthermore, we also note that these comments also apply to higher de-
gree SymHom ciphertext vectors, whose density functions have the same general
pyramidal shape but with more pronounced ridges.

In addressing SymHom decryption, we have to approximate the distribution of
the vector C(S) = ΨC(T ) = ST−1C(T ) expressing a SymHom ciphertext in an ap-
propriate decryption S-basis in the situation of Proposition 3. The δ-subgaussian

approach is always to approximate each component C
(S)
j =

∑n
j=1 ΨjkC

(T )
k of

C(S) as a δ-subgaussian random variable, even though such an approximation
may not be valid, for example “along the ridges”. More generally, Proposition 3
and the associated Lindeberg Central Limit theory show that the natural ap-

proach for any distribution of C
(T )
k with finite component variance is to ap-

proximate the distribution of C
(S)
j =

∑n
j=1 ΨjkC

(T )
k as a Normal distribution

for appropriate weights Ψjk. Indeed, this theory makes it difficult to conceive of
a general situation in which the entries Ψjk of the matrix Ψ would mean that
the distribution of the ciphertext vector C(S) in the decryption S-basis for H
could be approximated by some δ-subgaussian distribution, but that C(S) could
not be approximated by the Normal N(0;ΨΨT ) distribution in the manner of
Proposition 3.

Another advantage of the Central Limit approach is that is allows the use
of better tail bounds than a δ-subgaussian approach. For example, Theorem 1
gives a decryption failure probability bound for a degree-1 SymHom cryptosystem

ciphertext of
2n exp(− 1

2η
2
1)

(2π)
1
2 η1

for moderate or large η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q, which

is tighter than the equivalent δ-subgaussian decryption failure probability bound
of 2n exp(− 1

2η
2
1) obtained by using the tail bound of [17, Lemma 18] in the

manner of [13, Lemma 6.5]. More generally, such a Central Limit framework
is particularly suited for making a concrete determination of or finding a good
bound for a decryption failure probability in a Ring-LWE cryptosystem.

In summary, the Central Limit approach is to be preferred to a δ-subgaussian
approach. The Central Limit approach has a basic theoretical foundation, gives
a specified Normal approximating distribution (addressing component correla-
tions), and allows the use of better tail bounds than a δ-subgaussian approach.
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A The Lindeberg Central Limit Theorem

The basic univariate Central Limit Theorem [9] is concerned with the distri-
bution of the sum

∑n
j=1Xj of independent and identically distributed random

variables X1, . . . , Xn. When considering the distribution of a component of vec-
tor expressing the ciphertext in a Ring-LWE cryptosystem such as SymHom cryp-
tosystem, we need to consider the distribution of the weighted sum

∑n
j=1 ajXj

for an appropriate choice of weights a1, . . . , an. To obtain a Normal approxima-
tion for such a weighted sum

∑n
j=1 ajXj we need a more general form of the

Central Limit Theorem formally given by the Lindeberg condition [1]. Such a
result is informally summarised in Proposition 1, as stated in Section 3.2.

Proposition 1. Suppose X1, X2, . . . are independent and identically distributed
random variables with mean E(Xj) = 0 and finite variance Var(Xj) = σ2. For
weights a = (a1, . . . , an), the weighted sum

n∑
j=1

ajXj ∼.. N(0, |a|2σ2) for moderate or large n

has an approximate Normal distribution provided that the weights a1, . . . , an
are not dominated by just a few weights. ut

The informal summary of the Central Limit Theorem for a weighted sum
given by Proposition 1 can be justified by such a Lindeberg Central Limit The-
orem as stated for a weighted sum in Lemma 3. We also give such a result for
the particular case of the Laplace distribution in Lemma 4.
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Lemma 3. Suppose X1, X2, . . . are independent and identically distributed con-
tinuous random variables that are symmetric about 0 with mean E(Xj) = 0 and
variance Var(Xj) = 1, and that have common density function fXj . For constants

a1, a2, . . ., the sum
∑l
j=1 ajXj has variance function a(l)2 =

∑l
j=1 a

2
j , and the

functions ãj are defined by ãj(l) =
|aj |
a(l)

. In this case, Lindeberg’s condition is

that for any given ε > 0, the sum

l∑
j=1

ãj(l)
2 ΨXj

(
ε

ãj(l)

)
→ 0 as l→∞, where ΨXj (θ) =

∫ ∞
θ

x2fXj (x) dx.

If Lindeberg’s condition is satisfied, then a(l)−1
∑l
j=1 ajXj tends in distribution

to a standard Normal N(0, 1) distribution as l→∞. ut

Proof. We can define a random variable X
(α)
j =

{
Xj [|Xj | > α]
0 [|Xj | ≤ α]

for α > 0

obtained by “censoring” Xj at the minimum absolute value α and so on. With
this notation, Lindeberg’s condition [1] in our case is that for any given ε > 0,

the sum 1
a(l)2

∑n
j=1 E

((
(ajXj)

(εα(l))
)2)→ 0 as n→∞. We therefore note that

E
(

(ajXj)
(εa(l))2

)
= 2

∫ ∞
εa(l)

x2 fajXj (x) dx = 2

∫ ∞
εa(l)

x2

|aj |
fXj

(
x

|aj |

)
dx

= 2|aj |2
∫ ∞
εãj(l)−1

x′2 fXj (x
′) dx′ = 2|aj |2 ΨXj

(
ε

ãj(l)

)
,

so giving the form of Lindeberg’s condition of the Lemma. If Lindeberg’s condi-
tion is satisfied, then the convergence in distribution to Normality follows from
the Lindeberg form of the Central Limit Theorem [1]. ut

Lemma 4. Suppose X1, X2, . . . are independent Laplace random variables with
mean E(Xj) = 0 and variance Var(Xj) = 1, so have common density func-

tion fXj (xj) = 2−
1
2 exp(−2

1
2 |xj |). For constants a1, a2, . . ., define the functions

a(l)2 =
∑l
j=1 a

2
j and ãj(l) =

|aj |
a(l)

. If
∑l
j=1 exp

(
−εãj(l)−1

)
→ 0 as l → ∞ for

any given ε > 0, then a(l)−1
∑l
j=1 ajXj tends in distribution to a standard Nor-

mal N(0, 1) as l→∞. ut

Proof. When Xj has a Laplace distribution, the function ΨXj of the Lindeberg
condition of Lemma 3 evaluates to

ΨXj (θ) =

∫ ∞
θ

x2fXj (x) dx =

∫ ∞
θ

x2 2−
1
2 exp(−2

1
2 |x|) dx

= (θ2 + 2
1
2 θ + 1) exp(−2

1
2 θ).
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In this case, the Lindeberg condition of Lemma 3 is therefore given by

l∑
j=1

ãj(l)
2 ΨXj

(
ε

ãj(l)

)
=

l∑
j=1

ã(l)2

(
ε2

ãj(l)2
+

2
1
2 ε

ãj(l)
+ 1

)
exp

(
− 2

1
2 ε

ãj(l)

)

=

l∑
j=1

(
ε2 + 2

1
2 εãj(l) + ãj(l)

2
)

exp

(
− 2

1
2 ε

ãj(l)

)
.

We recall that 0 ≤ ãj(l) ≤ 1, so the convergence of this sum depends only on
the exponential term. Upon re-scaling ε, we thus obtain a Lindeberg’s condition
of
∑l
j=1 exp

(
−εãj(l)−1

)
→ 0 as l →∞ for convergence of a(l)−1

∑l
j=1 ajXj to

a standard Normal N(0, 1) distribution. ut
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