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Abstract. The main contribution of this paper is to develop a statistical
framework, based on a Central Limit argument, for analysing the noise
in ciphertexts in homomorphic encryption schemes that are based on
Ring-LWE. Such an approach is very general: apart from finite variance,
no assumption on the distribution of the noise is required (in particular,
the noise need not be subgaussian). We demonstrate that such a Central
Limit approach can be used to obtain a high-quality approximation of
the distribution of the noise in an appropriate decoding basis, even in
dimension as small as n = 100. We apply our framework and results to
a homomorphic Ring-LWE cryptosystem of Lyubashevsky, Peikert and
Regev (Eurocrypt 2013, full version) in order to illustrate the benefit of
this approach. We show that a Central Limit approach leads to tighter
bounds for the probability of decryption failure than have been obtained
in prior work.

1 Introduction

The Learning with Errors or LWE problem [19, 20] has become a standard hard
problem in cryptology that is at the heart of lattice-based cryptography [15, 18].
The Ring Learning with Errors or Ring-LWE problem [21, 11] is a generalisation
of the LWE problem from the ring of integers to certain other number field rings
that potentially give far better efficiency.

A key application area of lattice-based cryptography is (fully, somewhat or
levelled) homomorphic encryption [7]. Homomorphic encryption enables an un-
trusted party to operate meaningfully on encrypted data belonging to a different
party, without requiring access to the secret key. A large number of homomor-
phic encryption schemes have been proposed in the literature, for example [2, 6,
8, 12, 4, 3], many of which [2, 6, 12, 3] are based on Ring-LWE. To illustrate the
ideas of this paper, we consider the symmetric key homomorphic cryptosystem
given by Lyubashevsky, Peikert and Regev in Section 8.3 of [12] (the full version
of [13]), which we term the SymHom cryptosystem.

A common feature among all homomorphic encryption schemes is that all
ciphertexts have an inherent noise. This is typically small in a fresh ciphertext,
but the noise grows as homomorphic evaluation operations are performed. If
the noise grows too large, then decryption fails. Thus a good understanding of
the randomness properties of the noise in a ciphertext is essential to be able to
choose appropriate parameters to ensure correctness and efficiency.



1.1 Contributions

The main contribution of this paper is to develop a statistical framework, based
on a Central Limit argument, for analysing the noise in ciphertexts in homo-
morphic encryption schemes that are based on Ring-LWE. This Central Limit
framework is essentially based on approximating the mean vector and the co-
variance matrix of the noise of a ciphertext when embedded into an appropriate
complex space and transformed with respect to an appropriate decryption basis.
We show that the approximate Normality of this embedded noise when expressed
in a decryption basis is fundamentally a Central Limit phenomenon arising from
the weighted sum of many random variables, where the weights arise from a
change of basis matrix to the decryption basis.

To illustrate the utility of this approach, our second contribution is to apply
this framework to the SymHom cryptosystem. In Theorems 1 and 2 we present
new, tighter bounds for the probabilities of incorrect decryption in degree-1 and
degree-2 SymHom ciphertexts.

1.2 Motivation for the Central Limit Approach in Ring-LWE

The decryption of ciphertexts in a Ring-LWE-based cryptosystem such as SymHom
requires us to consider the noise in a ciphertext as a real-valued vector with
respect to an appropriate “decoding” basis for the complex space H (see Sec-
tion 2.3) where the noise in the ciphertext is first obtained as a real-valued vector
with respect to a different basis for this complex space H [12]. For example, if
C(pΓ ) is a vector of dimension n expressing the noise in a ciphertext with respect
to the decoding pΓ -basis for H (Section 2.4) and C(T ) is a vector of dimension
n expressing the noise in a ciphertext with respect to the original T -basis for
H (Section 2.3), then C(pΓ ) = p∆C(T ) for an appropriate real-valued n × n
change of basis matrix ∆ and “scaling prime” p (which is the plaintext modulus

in SymHom). In particular, this means that we can express a component C
(pΓ )
j of

C(pΓ ) as

C
(pΓ )
j = p

n∑
k=1

∆jkC
(T )
k .

The components C
(T )
1 , . . . , C

(T )
n of C(T ) are identically distributed random vari-

ables that are uncorrelated and, in general, independent, with mean E
(
C

(T )
j

)
=

0 and some finite variance Var
(
C

(T )
j

)
= ρ2. Thus a component C

(pΓ )
j of a noise

vector in the pΓ -basis is a weighted sum of uncorrelated and in general indepen-
dent identically distributed random variables. We will show that the weightings
∆j1, . . . ,∆jn are of comparable size, which suggests that a Central Limit argu-

ment can be invoked to give a Normal approximation for a component C
(pΓ )
j .

For successful decryption, we require each component of C(pΓ ) to be bounded
by an appropriate threshold. A Central Limit approach enables us to bound the
probability of incorrect decryption using bounds on the tails of Normal distri-
butions.



Theorems 1 and 2 demonstrate the improvement that can be obtained by
using a Central Limit approach in comparison with prior bounds, such as those
of [12], obtained using δ-subgaussian random variables [14, 16]. For example,

if η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q is moderate or large, Theorem 1 gives a decryption

failure probability bound of

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

.

This is tighter than the equivalent δ-subgaussian decryption failure probability
bound of

2n exp(−1

2
η21)

which is obtained by using the tail bound of [16, Lemma 18] in the manner of [12,
Lemma 6.5].

Using such a Central Limit approach has a number of additional advantages
over other approaches, such as the subgaussian approaches of [12, 5]. These ad-
vantages are listed below and expressed in terms of the above discussion. These
advantages are also illustrated by Figure 3 of Example 1 (Section 2.5), which
considers a weighted sum of heavy-tailed Laplace distributions that model the
distribution of the noise in degree-2 SymHom ciphertexts arising as the output of
the homomorphic multiplication of two fresh ciphertexts.

1. A Central Limit approach makes no substantive distributional assumption

for the components C
(T )
k beyond finite variance, so is potentially applicable

to C
(T )
k that are chosen from heavy-tailed distributions. Thus a Central

Limit approach is more generally applicable than other approaches that for
example have a subgaussian requirement for such random variables.

2. A Central Limit approach gives an explicit approximating distribution for
the cryptographic random variable of interest which can be directly used
for general calculation or simulation purposes of use in cryptography. By
contrast, a subgaussian approach can never give a explicit approximating
distribution and can only give (generally weaker) tail bounds.

3. A Central Limit approach gives not only asymptotically an approximation
to a Normal distribution, but also a close approximation concretely, for prac-
tically relevant Ring-LWE dimensions n.

1.3 Structure of the Paper

We recall relevant background and introduce new tools in Section 2. We then
outline our Central Limit approach in Section 3, and illustrate one aspect of its
applicability by considering the SymHom cryptosystem in Section 4.



2 Background

In this section, we recall some relevant background and introduce new notation
and tools. We give notation and some useful definitions in Section 2.1 and recall
algebraic background in Section 2.2. We recall the definition and properties
of the complex space H in Section 2.3. We introduce a useful basis for H in
Section 2.4 and a useful product for H in Section 2.5. Finally, we recall the
statistical background for our Central Limit approach in Section 2.6.

2.1 Notation

We consider the ring R = Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic
polynomial of degree n, and we let Ra denote R/aR for an integer a. For simplic-
ity, we only consider the case where m is a large prime, though our arguments
apply more generally. In this case we have n = φ(m) = m − 1, and we also let
n′ = 1

2n = 1
2 (m−1). We let ζm denote a (primitive) mth root of unity, which has

minimal polynomial Φm(X) = 1 + X + . . . + Xn. The mth cyclotomic number
field K = Q(ζm) is the field extension of the rational numbers Q obtained by
adjoining this mth root of unity ζm, so K has degree n. The tensor product
K ⊗Q R is denoted by KR = K ⊗Q R.

The value or more formally the coset representative of (r mod q) nearest to
0 is denoted by JrKq = r − q[q−1r], and we use the same notation for a coset of
Zq. We can also extend this idea componentwise to vectors, and we write J·KBq
to indicate such an extension with respect to a basis B. We use † to denote the

complex conjugate transpose of a matrix, so T † = T
T

.
Encryption and decryption in Ring-LWE-based cryptography are inherently

statistical processes, and we are giving Central Limit approximations to the
distributions of cryptographic random variables of interest. Thus we use the
notation ∼.. to denote “is approximately distributed as” in the sense that we
may use the approximating distribution for practical purposes without signifi-
cant error, as is typically done by taking a Central Limit Normal distribution
approximation in statistical analysis. Furthermore, whilst Central Limit results
are formally asymptotic results concerning sums or means of random variables,
such Central Limit approximations usually apply in practice with relatively few
summands (except perhaps for pathological distributions) as illustrated for ex-
ample in Figure 3 of Example 1. We therefore typically use the phrasing “for
moderate or large . . .” in such a Central Limit context to emphasise that the
usual applicability of Central Limit approximations with relatively few sum-
mands. Furthermore, we denote by Q the “Q-function” giving the upper tail
probability for a standard Normal N(0, 1) distribution, so

Q(x) =
1√
2π

∫ ∞
x

exp(− 1
2z

2) dz .

This tail probability Q(x) is bounded by its asymptotic expansion, so

Q(x) ≤ (2πx2)−
1
2 exp(− 1

2x
2) ,



and we note that this bound is very tight even for moderate values of x > 0.
We now give three definitions relevant to our analysis. Definitions 1 and 2

are used to specify the SymHom cryptosystem, whilst Definition 3 specifies the
Ring-LWE problem.

Definition 1 ([16]). The univariate Balanced Reduction function R on R is

the random function R(a) =

{
1− (dae − a) with probability dae − a
−(dae − a) with probability 1− (dae − a).

The multivariate Balanced Reduction function R on Rl with support on
[−1, 1]l is the random function R = (R1, . . . ,Rl) with component functions
R1, . . . ,Rl that are independent univariate Balanced Reduction functions.

Definition 2 ([16]). Let B be a (column) basis matrix for the n-dimensional
lattice Λ in H. If R is the Balanced Reduction function, then the coordinate-
wise randomised rounding discretisation or CRR discretisation bXeBΛ+c of the
random variable X on H to the lattice coset Λ+c with respect to the basis matrix
B is the random variable

bXeBΛ+c = X +B R
(
B−1(c−X)

)
.

Definition 3 ([21, 11]). Let R be the ring of integers of a number field K.
Let q ≥ 2 be an integer modulus. Let R∨ be the dual fractional ideal of R. Let
Rq = R/qR and R∨q = R∨/qR∨. Let KR = K ⊗Q R.

Let χ be a distribution over KR. Let s ∈ R∨q be a secret. A sample from the
Ring-LWE distribution As,χ over Rq×KR/qR

∨ is generated by choosing a← Rq
uniformly at random, choosing e← χ and outputting

(a, b = (a · s)/q + e mod qR∨) .

Let Ψ be a family of distributions over KR. The Search Ring-LWE problem
is defined as follows: given access to arbitrarily many independent samples from
As,χ for some arbitrary s ∈ R∨q and χ ∈ Ψ , find s.

Let Υ be a distribution over a family of error distributions, each over KR. The
average-case Decision Ring-LWE problem is to distinguish with non-negligible
advantage between arbitrarily many independent samples from As,χ for a random
choice of (s, χ) ← U

(
R∨q
)
× Υ , and the same number of uniformly random

samples from Rq ×KR/qR
∨.

2.2 Cyclotomic Number Fields

There are n ring embeddings σ1, . . . , σn : K → C that fix every element of Q. Such
a ring embedding σk (for 1 ≤ k ≤ n) is defined by ζm 7→ ζkm, so

∑n
j=1 ajζ

j
m 7→∑n

j=1 ajζ
kj
m , and such ring embeddings occur in conjugate pairs. The canonical

embedding σ : K → Cn is a 7→ (σ1(a), . . . , σn(a))T .
The ring of integers OK of a number field is the ring of all elements of the

number field which are roots of some monic polynomial with coefficients in Z.
The ring of integers of the mth cyclotomic number field K is

R = Z [ζm] ∼= Z [x] /(Φm).



The canonical embedding σ embeds R as a lattice σ(R). The conjugate dual
of this lattice corresponds to the embedding of the dual fractional ideal

R∨ = {a ∈ K | Tr(aR) ⊂ Z}.

If we define t such that t−1 = m−1(1 − ζm), then [12, Lemma 2.16] shows that
R∨ = 〈t−1〉. We let (R∨)k denote the space of products of k elements of R∨,
that is to say

(R∨)
k

= {s1 . . . sk | s1, . . . , sk ∈ R∨} =
{
t−kr1 . . . rk | r1, . . . , rk ∈ R

}
.

2.3 The Complex Space H

The ring embeddings σ1, . . . , σn from K into C occur in complex conjugate pairs
with σk = σm−k. Accordingly, much of the analysis of Ring-LWE takes place in
a space H of conjugate pairs of complex numbers. It is sometimes convenient to
consider such a single conjugate pair in isolation, so giving rise to the space H2,
the 2-dimensional version of H. The conjugate pair mappings σ̃i : K → H2 for
1 ≤ i ≤ n′ are given for a ∈ K by

σ̃i(a) = (σi(a), σm−i(a))T ,

In particular, the canonical embedding actually embeds into H2× . . .×H2
∼= H.

Definition 4. The conjugate pairs matrix is the complex unitary n× n matrix
T , so T−1 = T †, given by

T = 2−
1
2



1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i


. ut

Definition 5. The complex conjugate pair space H = T (Rn), where T is the
conjugate pairs matrix. In particular, H2 = T (R2). ut

Definition 6. The I-basis for H is given by the columns of the n × n identity
matrix I, that is to say the I-basis is the standard basis. ut

Definition 7. The T-basis for H is given by the columns of the conjugate pairs
matrix T . ut



An element of H is expressed via the I-basis as a vector of n′ conjugate pairs.
Such an element of H can also be expressed (by construction) in the T -basis as
a real-valued vector. We also note that the vector representing an element in the
T -basis for H has the same norm as an element representing the same element
in the I-basis for H, as |Tv|2 = |v|2 because T is a unitary matrix. Expressing
elements of H as vectors in the T -basis therefore gives the isomorphism between
H and Rn as an inner product space.

The canonical embedding under σ of a sum in K gives a componentwise
addition in H for any basis for H. Similarly, the canonical embedding under
σ of a product in K gives rise to a componentwise �-product in H when the
vectors expressing the embedded elements are in the I-basis for H, when we
have σ(aa′) = σ(a)� σ(a′).

2.4 The pΓ -basis for H

In Definition 8 we specify the pΓ -basis for H in which elements of H are also
expressed as real-valued vectors. The pΓ -basis arises as the embedding of a basis
of conjugate pairs for R∨. The pΓ -basis is a more convenient basis for H in the
case when m is prime, and is a suitable basis for decryption.

Definition 8. The pΓ -basis for H is given by the columns of the matrix pΓ
(for p prime), where

Γ =
1

m


1− ζ1m 1− ζ2m 1− ζ3m . . . 1− ζnm
1− ζ2m 1− ζ4m 1− ζ6m . . . 1− ζ2nm

...
...

...
. . .

...

1− ζnm 1− ζ2nm 1− ζ3nm . . . 1− ζn2

m

 ,

and is the embedding of the basis
{
p
m (1− ζ1m), pm (1− ζ2m), . . . , pm (1− ζnm)

}
of

conjugate pairs for R∨ in H. ut

In Figure 1, we summarise our notation for elements of H expressed with
respect to the various bases. If Z is a vector expressing an element of H as a
vector of conjugate pairs in the I-basis (or standard basis) for H, then we have
real-valued vectors Z‡ = T †Z and Z∗ = (pΓ )−1Z expressing this element as a
vector in the T -basis and the pΓ -basis for H respectively.

The change of basis transformations between the T -basis and the pΓ -basis
are summarised in Figure 2, and the relevant properties of the (scaled) change-
of-basis matrix ∆ = ΓT−1 are given in Lemma 1.

Lemma 1. The change of basis matrix from the T -basis to the pΓ -basis of H is
the real invertible matrix p−1∆, where ∆ = Γ−1T satisfies ∆∆T = mI − J . ut

Proof. It is clear that ∆ = Γ−1T is invertible as both Γ−1 and T are invertible.
The matrix ∆−1 = T−1Γ = T †Γ has matrix entries ∆−1kl satisfying

m∆−1kl =

{
2−

1
2

((
1− ζklm

)
+
(
1− ζ−klm

))
= 2

1
2

(
1− Re

(
ζkl
))

[1 ≤ k ≤ n′]
2−

1
2

(
−i
(
1− ζ−klm

)
+ i
(
1− ζklm

))
= 2

1
2 Im

(
ζkl
)

[n′ < k ≤ n],



Basis for H I-Basis T -Basis pΓ -Basis

Vector or
Random Variable

Z Z‡ Z∗

Transformation from
the I-Basis

I T † p−1Γ−1

Fig. 1. Notation for the expression of an element of H as a vector in the various
different vector space bases for H. Note that p is a scaling factor.

H with T -basis
p−1∆ = (pΓ )−1T

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
p∆−1 = T−1(pΓ )

H with pΓ -basis

Fig. 2. Change of Basis Matrices for the T -basis and pΓ -basis for H in which elements
of H are expressed as real-valued vectors.

so ∆−1 and hence ∆ are real matrices. Thus we have

∆∆T = ∆∆† = (Γ−1T )(Γ−1T )† = Γ−1TT †(Γ−1)† =
(
Γ †Γ

)−1
.

We note that Γ †jk = m−1(1 − ζ−jkm ) and that
∑n
l=1 ζ

l = −1 and so on. Thus∑n
l=1 ζ

l(j−k) = n if k = j and −1 if k 6= j (for 1 ≤ k, j ≤ n), which yields

(
Γ †Γ

)
jk

=

n∑
l=1

Γ †jlΓlk =
1

m2

n∑
l=1

(1− ζ−jl)(1− ζlk)

=
1

m2

n∑
l=1

1− 1

m2

n∑
l=1

ζlk − 1

m2

n∑
l=1

ζ−jl +
1

m2

n∑
l=1

ζl(k−j)

=

{
2m−2(n+ 1) = 2m−1 [k = j]
m−2(n+ 1) = m−1 [k 6= j],

so Γ †Γ = m−1(I + J). Thus ∆∆T = (Γ †Γ )−1 = mI − J . ut

2.5 The ⊗-product of elements of H

In certain Ring-LWE-based homomorphic encryption schemes, the embedded
noise in a fresh ciphertext can be approximated as a Normal random variable.
For a ciphertext obtained as the output of a homomorphic multiplication of two
fresh ciphertexts, its noise is defined to be the product of the noises in the input
ciphertexts. We will therefore be interested in the ⊗-product (Definition 9) of
two elements of H expressed in the T -basis.



Definition 9. The ⊗-product of two real vectors u = (u11, u12, . . . , un′1, un′2)T

and v = (v11, v12, . . . , vn′1, vn′2)T of length n = 2n′ is

u⊗ v =


u11
u12

...
un′1
un′2

⊗

v11
v12
...

vn′1
vn′2

 = T † (Tu� Tv) = 2−
1
2


u11v11 − u12v12
u11v12 + u12v11

...
un′1vn′1 − un′2vn′2
un′1vn′2 + un′2vn′1

 .

The ⊗-product of two vectors in H expressed in the T -basis is the expression in
the T -basis of the componentwise �-product of those two vectors when expressed
in the I-basis. ut

In Lemma 2 we consider the bivariate (conjugate pair) case, and show that
the resulting ⊗-product distribution is a Laplace distribution [10, 17]. The image
of this distribution under T then gives the corresponding distribution of the �-
product. The generalisation to the general case with n′ conjugate pairs is clear
and straightforward.

Lemma 2. Suppose that W =

(
W1

W2

)
= U ⊗ V =

(
U1

U2

)
⊗
(
V1
V2

)
is the ⊗-

product of the independent random variables U, V ∼ N(0, I2) with a standard
bivariate Normal distribution.
(i) The random variable W has a bivariate Laplace distribution with density

function fW (w) = π−1K0(2
1
2 |w|) for w ∈ R2, where K0 is the modified Bessel

function of the second kind given by K0(x) =

∫ ∞
0

exp(−x cosh t) dt.

(ii) A component Wj of W has a univariate Laplace distribution with density

function fWj (wj) = 2−
1
2 exp(−2

1
2 |wj |), and so has mean E(Wj) = 0, variance

Var(Wj) = 1, and tail probability P(|Wj | > θ) = exp(−2
1
2 θ). Furthermore,

these orthogonal components W1 and W2 of W are not independent but are
uncorrelated with covariance Cov(W1,W2) = 0. ut

Proof. Parts (i) and (ii) follow from the Preamble to Part II and from Sec-
tion 5.1.1 of [10]. Furthermore, it is discussed at the end of Section 1 of [10] how
a univariate Laplace distribution arises directly from the components of such an

⊗-product

(
U1

U2

)
⊗
(
V1
V2

)
= 2−

1
2

(
U1V1 − U2V2
U1V2 + U2V1

)
. ut

2.6 Lindeberg’s condition for the Central Limit Theorem

To obtain a Normal approximation for a weighted sum
∑n
j=1 ajXj of the form

encountered in Ring-LWE, we need a general form of the Central Limit Theorem
formally given by the Lindeberg condition [1]. We state such a Central Limit
result in Lemma 3. However, Lemma 3 can be informally expressed as that
the weighted sum

∑n
j=1 ajXj of the form encountered in Ring-LWE has an

approximate Normal distribution for moderate or large n provided that the
absolute weights aj are not dominated by just a few values.



Lemma 3. Suppose X1, X2, . . . are independent and identically distributed con-
tinuous random variables that are symmetric about 0 with mean E(Xj) = 0
and variance Var(Xj) = 1, and that have common density function fXj , and

suppose that for constants a1, a2, . . . the sum
∑l
j=1 ajXj has variance function

a(l)2 =
∑l
j=1 a

2
j , and that the functions ãj are defined by ãj(l) =

|aj |
a(l)

. In this

case, Lindeberg’s condition is that for any given ε > 0, the sum

l∑
j=1

ãj(l)
2 ΨXj

(
ε

ãj(l)

)
→ 0 as l→∞, where ΨXj

(θ) =

∫ ∞
θ

x2fXj
(x) dx.

If Lindeberg’s condition is satisfied, then a(l)−1
∑l
j=1 ajXj tends in distribution

to a standard Normal N(0, 1) distribution as l→∞. ut

Proof. We can define a random variable X
(α)
j =

{
Xj [|Xj | > α]
0 [|Xj | ≤ α]

for α > 0

obtained by “censoring” Xj at the minimum absolute value α and so on. With
this notation, Lindeberg’s condition [1] in our case is that for any given ε > 0,

the sum 1
a(l)2

∑n
j=1 E

((
(ajXj)

(εα(l))
)2)→ 0 as n→∞. We therefore note that

E
(

(ajXj)
(εa(l))2

)
= 2

∫ ∞
εa(l)

x2 fajXj
(x) dx = 2

∫ ∞
εa(l)

x2

|aj |
fXj

(
x

|aj |

)
dx

= 2|aj |2
∫ ∞
εãj(l)−1

x′2 fXj (x′) dx′ = 2|aj |2 ΨXj

(
ε

ãj(l)

)
,

so giving the form of Lindeberg’s condition of the Lemma. If Lindeberg’s condi-
tion is satisfied, then the convergence in distribution to Normality follows from
the Lindeberg form of the Central Limit Theorem [1]. ut

3 Central Limit Framework

The decryption of ciphertexts in certain Ring-LWE homomorphic encryption
schemes requires us to consider the noise in a ciphertext as a real-valued vector
in an appropriate “decoding” basis, such as the pΓ -basis. Let C(pΓ ) be a vector
expressing the noise in such a ciphertext in the pΓ -basis. In this section, we use a
Central Limit approach to approximate the distribution of C(pΓ ). In Section 3.1
we present our main result, Proposition 3, which gives a good approximation
for the distribution of C(pΓ ) as a Normal random variable. In Section 3.2 we
illustrate the closeness of our Central Limit Normal approximation.

3.1 Details of the Central Limit approach

Proposition 1 gives a Central Limit approximation to a weighted sum of the
form

∑n
j=1 ajXj for independent and identically distributed random variables



X1, . . . , Xn. This proposition is a summary of the Lindeberg condition for a Cen-
tral Limit Theorem (see Section 2.6) and essentially states that a good Normal
approximation exists for the weighted sum if enough of the largest weights |aj |
are of comparable size.

Proposition 1. Suppose that X = (X1, . . . , Xn) has components X1, . . . , Xn

that are independent and identically distributed random variables with mean
E(Xj) = 0 and finite variance Var(Xj) = ρ2. For weights a = (a1, . . . , an), the
weighted sum aTX =

∑n
j=1 ajXj ∼.. N(0, |a|2ρ2) has an approximate Normal

distribution for moderate or large n, provided that the weights a1, . . . , an are
not dominated by just a few of these weights. ut

Concretely, in a typical parameter situation of Ring-LWE where we have
n > 102, (or n > 103 in the case of homomorphic encryption), we can expect
Proposition 1 to give a good approximation when as few as (for example) about
20 of the largest weights are comparable. We can extend Proposition 1 in the
obvious way to give the multivariate case of Proposition 2.

Proposition 2. Suppose that X = (X1, . . . , Xn) has components X1, . . . , Xn

that are independent and identically distributed random variables with mean
E(Xj) = 0 and finite variance Var(Xj) = ρ2, so X has covariance matrix ρ2In.
If A is a n×nmatrix whose entries Ajk satisfy the Proposition 1 weights criterion,
then the transformed random variable AX ∼.. N(0, ρ2AAT ) can be approximated
as a multivariate Normal distribution for moderate or large n. ut

In Proposition 3, we apply Proposition 2 to approximate the distribution
of the noise in a Ring-LWE ciphertext expressed in an appropriate decryption
basis. We note the proof of Proposition 3 is complicated by the fact that a pair
of random variables in the T -basis arising as the image of a conjugate pair in
the I-basis are uncorrelated but not independent (see for example Lemma 1).

Proposition 3. Suppose that C(T ) is a vector expressing the noise in a Ring-

LWE ciphertext in the T -basis for H, so a component C
(T )
j of C(T ) has mean

E
(
C

(T )
j

)
= 0 and finite variance Var

(
C

(T )
j

)
= ρ2. Suppose further that the

S-basis given by the columns of the n × n matrix S is an appropriate basis of
H for decryption, and that Ψ = ST−1 is the change of basis matrix from the
T -basis to the S-basis for H. If the entries Ψjk of Ψ satisfy the Proposition 1
weights criterion, then the distribution of the noise C(S) in this ciphertext in the
(decryption) S-basis for H can be approximated as

C(S) ∼.. N(0; ρ2ΨΨT ) for moderate or large n.

In particular, the pΓ -basis for H yields C(pΓ ) ∼.. N(0; p2ρ2(mI − J)). ut

Proof. We can split Ψ = (Ψ ′|Ψ ′′) into two n × n′ submatrices and we similarly

split C(T ) =
(
C(T )′

∣∣∣C(T )′′
)T

into the first n′ components C(T )′ and the final n′

components C(T )′′ . Furthermore, their conjugate pairs origin means that C(T )′



and C(T )′′ are uncorrelated (see for example Lemma 2(ii)). The components

C
(T )′

1 , . . . , C
(T )′

n′ of C(T )′ are independent and identically distributed with mean

0 and variance ρ2, so Proposition 2 gives Ψ ′C(T )′ ∼.. N(0; ρ2Ψ ′Ψ ′T ), and we
similarly have Ψ ′′C(T )′′ ∼.. N(0; ρ2Ψ ′′Ψ ′′T ). Thus

C(S) = ΨC(T ) = Ψ ′C(T )′ + Ψ ′′C(T )′′ ∼.. N(0; ρ2ΨΨT )

as C(S) is the sum of two uncorrelated approximate multivariate Normal random
variables, so has an approximate Normal distribution with covariance matrix
ρ2Ψ ′Ψ ′T + ρ2Ψ ′′Ψ ′′T = ρ2ΨΨT . ut

3.2 Quality of the CLT approximation

The Central Limit Theorem is formally a statement about the convergence (in
distribution) of an appropriate weighted sum of random variables to a Normal
distribution in the limit as the number of summands n tends to infinity. When
such a result is applied in a concrete setting with a fixed finite n, it is reasonable
to question the speed of this convergence, and in particular how accurate the
approximation is. This issue is made more precise in a companion work [17], and
can be verified empirically.

We illustrate the practical accuracy of our approach in Example 1 below,
which models the following situation of interest. Let C(pΓ ) be the noise vector
a Ring-LWE ciphertext expressed in the pΓ -basis. Then we can express C(pΓ )

in the T -basis as C(pΓ ) = p∆C(T ), where ∆ is the change-of-basis matrix of

Lemma 1, and the components C
(T )
i are identically distributed random variables

that are uncorrelated and in general independent having mean 0 and variance

ρ2. We can express a component C
(pΓ )
j of C(pΓ ) as

C
(pΓ )
j = p

n∑
k=1

∆jkC
(T )
k (1)

where the ∆jk are proportional to various sums and differences of mth roots of
unity with absolute size about 1, as any row of ∆ has squared length

∑n
k=1∆

2
jk =

n. Proposition 3 then yields the Normal approximation for a component as

C
(pΓ )
j ∼.. N

(
0, np2ρ2

)
. Example 1 illustrates the closeness of such a Central

Limit Normal approximation for the situation of Equation 1.

Example 1. Let m = 101 and n = 100 and let Y = (Y1, . . . , Yn)T be a vector
of independent and identically distributed Laplace random variables Y1, . . . , Yn
with mean E(Yj) = 0 and variance ρ2 = Var(Yj) = 1. We take p = 1 without
loss of generality and consider the distribution of W = ∆Y where ∆ = Γ−1T
is the change of basis matrix from the T -basis to the Γ -basis of H. We consider
the first component W1 =

∑n
j=1∆1kYk of W = ∆Y , where the first row ∆1 =



-40 -20 20 40

0.01

0.02

0.03

0.04

Fig. 3. An empirical density function based on 104 realisations of W1 =
∑100
j=1∆1kYk

where Y1, . . . , Y100 are independent and identically distributed Laplace random vari-
ables with variance 1 (solid line) and the density function of the corresponding approx-
imating Normal N(0, 102) distribution (dashed line).

(∆11, . . . ,∆1n) of ∆ is given by

∆1 =



−1.41, −1.40, −1.39, −1.37, −1.35, −1.32, −1.28, −1.24, −1.20, −1.15,
−1.10, −1.04, −0.98, −0.91, −0.84, −0.77, −0.69, −0.62, −0.54, −0.45,
−0.37, −0.28, −0.20, −0.11, −0.02, 0.07, 0.15, 0.24, 0.33, 0.41,

0.50, 0.58, 0.66, 0.73, 0.81, 0.88, 0.94, 1.01, 1.07, 1.12,
1.17, 1.22, 1.26, 1.30, 1.33, 1.36, 1.38, 1.40, 1.41, 1.41,
−0.04, −0.13, −0.22, −0.31, −0.39, −0.47, −0.56, −0.64, −0.71, −0.79,
−0.86, −0.93, −0.99, −1.05, −1.11, −1.16, −1.21, −1.25, −1.29, −1.32,
−1.35, −1.38, −1.39, −1.41, −1.41, −1.41, −1.41, −1.40, −1.39, −1.37,
−1.34, −1.31, −1.27, −1.23, −1.19, −1.14, −1.08, −1.02, −0.96, −0.89,
−0.82, −0.75, −0.68, −0.60, −0.52, −0.43, −0.35, −0.26, −0.18, −0.09


.

The closeness of the Central Limit approximation for W1 =
∑n
j=1∆1kYk with

mean E(W1) = 0 and variance Var(W1) = 102 to a Normal N(0, 102) random
variable with mean 0 and variance 102 is illustrated by the comparison between
the empirical density function of W1 and the N(0, 102) density function shown
in Figure 3. ut

4 Application to SymHom

In this section, we apply the Central Limit framework developed in Section 3
to the symmetric-key homomorphic cryptosystem presented in [12, Section 8.3],



The SymHom cryptosystem. Let ψ be a continuous LWE error distribution over KR,
and let b·e denote any valid discretisation to cosets of some scaling of R∨ (e.g. using
the decoding basis of R∨). The cryptosystem is defined formally as follows.

– Gen: choose s′ ← bψeR∨ , and output s = t · s′ ∈ R as the secret key.
– Encs(µ ∈ Rp): choose e← bpψet−1µ+pR∨ . Let c0 = −c1 · s+ e ∈ R∨q for uniformly

random c1 ← R∨q , and output the ciphertext c(S) = c0 + c1S. The noise in c(S) is
defined to be e.

– Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨)kq , and decode it to e = Jc(s)K ∈
(R∨)k. Output µ = tk · e mod pR.

For ciphertexts c, c′ of arbitrary degrees k, k′, their homomorphic product is the degree-
(k + k′) ciphertext c(S) � c′(S) = c(S) · c′(S), that is to say standard polynomial
multiplication. The noise in the result is defined to be the product of the noise terms
of c, c′. Similarly, for ciphertexts c, c′ of equal degree k, their homomorphic sum is
c(S) � c′(S) = c(S) + c′(S), and the noise in the resulting ciphertext is the sum of
those of c, c′.

Fig. 4. The SymHom cryptosystem as defined in [12, Section 8.3].

which we refer to as the SymHom cryptosystem. Our analysis enables us to present,
in Theorems 1 and 2, new, tighter bounds for the respective probabilities of the
incorrect decryption in degree-1 and degree-2 SymHom ciphertexts. Our analysis
can similarly be applied for higher-degree ciphertexts [17].

4.1 Noise in SymHom ciphertexts

A description of SymHom cryptosystem, in the notation of [12], is given in Figure 4.
We now describe in our notation the relevant parts of the SymHom cryptosystem in
order to define the noise in a SymHom ciphertext. We first recall that the SymHom

secret key is an element s ∈ R, the plaintext space is Rp, and a plaintext µ ∈ Rp
is encrypted to give a linear polynomial over R∨q .

The first step of the encryption process is to generate a random input for a
discretisation process to a coset depending on the plaintext µ. Accordingly, we
let Y be a random variable on H such that TY ∼ N(0; p2ρ2In) is a spherically
symmetric n-dimensional Normal random variable with component variance p2ρ2

for an appropriately chosen ρ2. We term Y the Underlying Noise, and Y is a
complex-valued random vector expressed in the I-basis for H.

Specifically, we discretise Y to the coset σ(pR∨) + σ(t−1µ) of the lattice
σ(pR∨) obtained by the canonical embedding of the scaled dual fractional ideal
pR∨. We consider the coordinate-wise randomised rounding discretisation with
respect to the pΓ -basis for H, and following Definition 2 we denote this discreti-
sation of Y by Y ′(µ) = b Y epΓσ(pR∨)+σ(t−1µ).

The Noise random variable Y ′′(µ) in the encryption of the plaintext µ is then
defined to be Y ′′(µ) = σ−1(Y ′(µ)), and is an element of a coset of pR∨+t−1µ con-
taining information about µ. For obvious reasons, we refer to Y ′(µ) = σ(Y ′′(µ))



Description Random Variable Range of Random Variable

Underlying Noise Y Complex Space H

Embedded Noise Y ′(µ) Lattice Coset σ(pR∨) + σ(t−1µ)

Noise Y ′′(µ) Number Field Coset pR∨ + t−1µ

Fig. 5. Notation for the Noise-related quantities used in encryption of the plaintext µ.

as the Embedded Noise, and we note that Y ′(µ) expresses the Embedded Noise
in the I-basis of H. We summarise this discussion in Figure 5.

In the next step of encryption, we form the ciphertext from the Noise Y ′′(µ)
and the secret key s in the following way. We choose A uniformly in R∨q , and
we let A′(µ) = −As + Y ′′(µ) ∈ R∨q . The ciphertext C(θ;µ) is the polynomial
over R∨q defined as C(θ;µ) = A′(µ) + Aθ. We note that this polynomial can be
expressed directly in terms of the Noise Y ′′(µ) and the secret key s as C(θ;µ) =
A(θ− s) +Y ′′(µ). A fresh ciphertext is defined to be a degree-1 ciphertext, since
the polynomial C(θ;µ) is linear.

The output ciphertext of a homomorphic multiplication of two degree-1 ci-
phertext polynomials is obtained simply by multiplying these polynomials to-
gether. Thus we can obtain the degree-2 ciphertext polynomial over R∨q corre-
sponding to the product µ1µ2 of plaintexts µ1 and µ2 as C(θ;µ1, µ2) = C(θ;µ1)�
C(θ;µ2), where C(θ;µ1) = A′1(µ1) + A1θ and C(θ;µ2) = A′2(µ2) + A2θ. This
degree-2 ciphertext polynomial is C(θ;µ1, µ2) = A′1(µ1)A′2(µ2) + (A2A

′
1(µ1) +

A1A
′
2(µ2)) θ + A1A2θ

2, which is given in terms of the secret key s and its con-
stituent Noises Y ′′1 (µ) and Y ′′2 (µ) by

C(θ;µ1, µ2) = A1A2(θ− s)2 + (A2Y
′′
1 (µ1) +A1Y

′′
2 (µ2)) (θ− s) + Y ′′1 (µ1)Y ′′2 (µ2).

The Noise in this degree-2 output ciphertext C(θ;µ1, µ2) is defined to be the
product Y ′′1 (µ1)Y ′′2 (µ2) of the Noises Y ′′1 (µ1) and Y ′′2 (µ2) of the degree-1 input
ciphertexts. This process extends in the obvious way to give ciphertexts of higher
degree.

4.2 Decryption using the pΓ -basis

In this section, we specify in our notation a decryption process for the SymHom

cryptosystem using the pΓ -basis of H (though any appropriate basis can be
used). We recall (see Figure 1) that we write Z‡ and Z∗ to express an element
of H as a vector in the T -basis and the pΓ -basis respectively.

Decryption of a degree-1 ciphertext polynomial C(θ;µ) begins by evaluating
this polynomial at the secret s. We obtain information about the Noise since
C(s;µ) = Y ′′(µ) mod R∨q . If we embed C(s;µ) in H under σ and perform a
reduction modulo q with respect to to the pΓ -basis, then we obtain an integer
vector Jσ(C(s;µ))KpΓq with entries in [− 1

2q,
1
2q).

The Embedded Noise Y ′(µ) is expressed in the I-basis for H, so Y ′(µ) is
expressed with respect to the T -basis of H as the real vector Y ′(µ)‡ = T †Y (µ).



However, the change of basis from this T -basis to the pΓ -basis of H is given by
p−1∆ = p−1Γ−1T , so there is a real transformation Y ′(µ)∗ = p−1∆Y (µ)‡ that
gives a real vector Y ′(µ)∗ specifying the Embedded Noise expressed in the pΓ -
basis for H. This allows us to write Y ′(µ)∗ = Jσ(C(s, µ))KpΓq if the Embedded
Noise is small enough. In this case, we can recover the real vector Y ′(µ)∗ and
hence the real Embedded Noise vector Y ′(µ)‡ with respect to the T -Basis. This
allows us to determine the coset representative σ(t−1µ) for the coset of the lattice
σ(pR∨) corresponding to the plaintext µ ∈ Rp. Thus if the Embedded Noise is
small enough with high probability, then we can recover the plaintext µ with
high probability.

This decryption process generalises to degree-2 and higher degree ciphertexts
in a natural way. For example, if C(θ;µ1) and C(θ;µ2) are two degree-1 cipher-
texts with respective Embedded Noises Y ′1(µ1) and Y ′2(µ2), then the degree-2
ciphertext C(s;µ1, µ2) = Y ′′(µ1)Y ′′(µ2) = C(s;µ1)C(s;µ2) mod (R∨)2q, and

so we obtain (Y ′1(µ1)� Y ′2(µ2))
∗

= Jσ(C(s;µ1, µ2))Km
−1pΓ

q for small Embedded
Noise. Thus if this Embedded Noise is small enough with high probability, we
can recover the plaintext product µ1µ2 ∈ Rp with high probability.

4.3 Decryption Failure Probabilities in the SymHom cryptosystem

We now present in Theorems 1 and 2 our main results, which give (respectively)
bounds for the probability of the incorrect decryption of degree-1 and degree-2
SymHom ciphertexts. Both results follow from the fact that SymHom decryption
using (for example) the pΓ -basis for H fundamentally involves a change of basis
transformation between bases for H ultimately to the pΓ -basis.

Theorem 1. If η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q is moderate or large, then the probabil-

ity of the incorrect decryption of a SymHom degree-1 ciphertext in the pΓ -basis
for H is bounded by

P

(
Incorrect decryption of SymHom
degree-1 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

. ut

Proof. The vector expressing the Embedded Noise in the pΓ -basis for H is of the

form
(
bZepΓΛc

)∗
, where Z = TZ‡ and p−1Z‡ = (p−1T †)Z ∼ N(0, ρ2In). However,(

bZepΓΛc

)∗
= (pΓ )−1bZepΓΛ+c ≈ ∆(p−1T †)Z, so Lemma 1 shows that(

bZepΓΛc

)∗
∼.. N(0; ρ2∆∆T ) = N(0; ρ2(mI − J)).

Thus
(
bZepΓΛc

)∗
is well-approximated by a multivariate Normal random vari-

able U ∼ N(0; ρ2(mI − J)), with components U1, . . . , Un ∼ N(0, nρ2). These
components therefore have an upper tail probability function given for α > 0 by

P(Uj > α) = P
(

(n
1
2 ρ)−1Uj > (n

1
2 ρ)−1α

)
= Q

(
(n

1
2 ρ)−1α

)
,



where the Q-function is as defined in Section 2.1. We can now obtain a bound
for the tail probability for the maximum of |U1|, . . . , |Un| for moderate (n

1
2 ρ)−1α

by using the union bound [9] to obtain

P (max{|U1|, . . . , |Un|} > α) = 2 P (max{U1, . . . , Un} > α) ≤ 2nP(Uj > α)

≤ 2nQ
(

(n
1
2 ρ)−1α

)
≤ 2n

3
2 ρ

(2π)
1
2α

exp

(
− α2

2nρ2

)
.

We can now give a bound for the probability of decryption failure for a degree-
1 ciphertext using the Γ -basis. In this case, decryption fails if the absolute size
of any component of exceeds 1

2q, so taking α = 1
2q for moderate and large

η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q gives

P

(
Incorrect decryption of SymHom
degree-1 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

. ut

Theorem 2. If η2 = 1
2 (n

1
2mpρ1ρ2)−1q is moderate or large, then the probability

of the incorrect decryption of a SymHom degree-2 ciphertext in the pΓ -basis for
H is bounded by

P

(
Incorrect decryption of SymHom
degree-2 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
2)

(2π)
1
2 η2

. ut

Proof. The decryption of a SymHom degree-2 ciphertext C(θ;µ1, µ2) involves pro-

cessing this ciphertext as Jσ(C(s;µ1, µ2))Km
−1pΓ

q , that is to say by regarding this
Embedded Noise expressed as a vector with respect to the rescaled decoding con-
jugate pair m−1pΓ -basis. The processing of a degree-2 ciphertext fundamentally
therefore simply involves change of basis transformations for bases for H ulti-
mately to the m−1pΓ -basis. Thus we can adapt the argument of the proof of
Theorem 1 simply by using the appropriate moments, and so we can replace ρ
in η1 with mpρ1ρ2 in to give η2 = η1(n, q,mpρ1ρ2) = 1

2 (n
1
2mpρ1ρ2)−1q. ut
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