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Abstract. This paper develops Central Limit arguments for analysing
the noise in ciphertexts in two homomorphic encryption schemes that
are based on Ring-LWE. The first main contribution of this paper is to
present an average-case noise analysis for the BGV scheme. Our approach
builds upon the recent work of Costache et al. that gives the approxi-
mation of a polynomial product as a multivariate Normal distribution.
We show how this result can be applied in the BGV context and experi-
mentally verify its improvement over prior, worst-case, approaches. Our
second main contribution is to develop a Central Limit framework to
analyse the noise growth in the homomorphic Ring-LWE cryptosystem
of Lyubashevsky, Peikert and Regev (Eurocrypt 2013, full version). Our
approach is very general: apart from finite variance, no assumption on
the distribution of the noise is required (in particular, the noise need not
be subgaussian). We show that our approach leads to tighter bounds for
the probability of decryption failure than have been obtained in prior
work.

1 Introduction

The Learning with Errors or LWE problem [30, 31] has become a standard hard
problem in cryptology that is at the heart of lattice-based cryptography [25, 28].
The Ring Learning with Errors or Ring-LWE problem [33, 21] is a generalisation
of the LWE problem from the ring of integers to certain other number field rings
that potentially give far better efficiency.

A key application area of lattice-based cryptography is (fully, somewhat or
levelled) homomorphic encryption [14]. Homomorphic encryption enables an un-
trusted party to operate meaningfully on encrypted data belonging to a different
party, without requiring access to the secret key. A large number of homomor-
phic encryption schemes have been proposed in the literature, for example [4, 12,
17, 22, 6, 5], many of which [4, 12, 22, 5] are based on Ring-LWE. To illustrate the
ideas of this paper, we first consider the widely-used BGV scheme [4], that has
been implemented in (e.g.) [19, 32]. We also consider the symmetric key homo-
morphic cryptosystem given by Lyubashevsky, Peikert and Regev in Section 8.3
of [22] (the full version of [23]), which we term the SymHom cryptosystem.

Ciphertexts in all homomorphic encryption schemes contain an inherent noise
that is needed for security. As more homomorphic evaluation operations are



performed, the noise grows, and if it exceeds a certain threshold, then decryption
will fail. It is thus essential to understand the noise growth behaviour in order to
choose secure and correct parameters. Ideally, we would model the noise growth
as tightly as possible, so that the most performant parameters that meet the
security and correctness requirements can be selected.

Prior approaches for noise analysis in BGV [15, 16, 10, 9] have been ‘worst-
case’: that is, they have modelled the noise growth after every BGV evaluation
operation using heuristic worst-case bounds. By tracing through the bounds after
each operation, the noise growth incurred by the overall evaluation can also be
bounded. However, there can be an unsatisfying gap between the final noise
bound and the typical size of the noise as observed in experiments [9], with the
gap growing as more computations are performed. In this work, we present for the
first time an ‘average-case’ noise analysis for BGV, where average case is meant
in the sense of the noise analysis for the TFHE scheme [6] as presented in [7].
That is, we show how for each homomorphic evaluation operation, the input and
output noises can be modelled as a Gaussian random variable. This enables us
to trace through the variances of the noise at each operation, and eventually
arrive at the variance of the noise after the evaluation. We therefore only need
to resort to a bound after the evaluation, where the Gaussian distribution of the
given variance implies a certain tail bound on the noise (holding with a certain
probability). This enables us to set parameters that are still large enough to
ensure correctness, but, due to the tighter analysis, may be smaller (and thus
more performant) than those that would be chosen under a worst-case analysis.

The fundamental issue with modelling the noise growth in schemes like BGV
or the SymHom cryptosystem is that the noise growth in multiplication is non-
linear. In more detail, if two BGV ciphertexts having noise polynomials v1 and
v2 are multiplied, then the resulting ciphertext has noise polynomial v1 · v2. In
particular, if X1 and X2 are subgaussian random variables arising from such
noise polynomials, then the product X1 ·X2 is not necessarily subgaussian and
indeed can have a much heavier tail [27]. For this reason, an average-case noise
analysis for BGV, and related schemes, such as CKKS [5] and BFV [13], was
believed until recently to be a challenging open question [9].

In this work, we demonstrate that a Central Limit approach can, under cer-
tain assumptions, be used to approximate the output noise of all BGV or SymHom
operations as a Gaussian. We now expand in more detail on our approach for
each scheme.

1.1 A Central Limit Approach for BGV

The first main contribution of this paper is to present an average-case noise
analysis for BGV, based on a Central Limit argument.

Average-case analyses for noise growth in FHE schemes have been presented
previously, for example for the TFHE scheme [6]. The approach, as presented
in [7], is as follows. It is assumed that the coefficients of a fresh TFHE ciphertext
are independent subgaussians, and that the coefficients of a ciphertext output of
the gate bootstrapping operation are also independent subgaussians. The latter



assumption is experimentally verified [7, Figure 10]. It is shown that every TFHE
operation can be implemented via gate bootstrapping on a linear combination
of ciphertexts. Thus, by linearity and by the assumption on gate bootstrapping,
every TFHE ciphertext noise coefficient can be modelled as a subgaussian, thus
permitting an average-case analysis.

Our approach is built upon the recent work of [8] that develops an average-
case noise analysis for the CKKS scheme [5]. To this end, the analysis relies
on Theorem 1, developed in [8], that gives the approximation of a polynomial
product as a multivariate Normal distribution. Our analyses for the noise poly-
nomials resulting from each BGV homomorphic operation follow from repeated
applications of this result and is summarised in Figure 4. We expect that a
similar approach could yield an average-case analysis for the BFV homomorphic
encryption scheme [13]. Indeed, an analysis of the distributional properties of the
multiplication of two polynomial ring elements could also be applicable in wider
contexts, such as in analysis of lattice-based key encapsulation mechanisms [2,
11].

We additionally present an experimental verification of the analysis by com-
paring with practical noise growth in HElib [19] and SEAL [32]. The results are
presented in Tables 1, 2, 3 and 4 and show that the average-case approach more
tightly models the noise growth. Moreover, we demonstrate the applicability
of our analysis by exhibiting specific computations for which the average-case
approach predicts lower parameters to support the computation than the worst-
case approach, and confirm this by successfully implementing these computations
with the smaller parameter set.

1.2 A Central Limit Approach for SymHom

The second main contribution of this paper is to develop a statistical framework,
based on a Central Limit argument, for analysing the noise in SymHom cipher-
texts. To illustrate the utility of this approach, we present in Theorem 2 and
Corollary 2 new, tighter bounds for the probabilities of incorrect decryption in
degree-1 and degree-2 SymHom ciphertexts. Our analysis can similarly be applied
for higher-degree ciphertexts [27].

In more detail, the Central Limit framework is essentially based on approx-
imating the mean vector and the covariance matrix of the noise of a ciphertext
when embedded into the complex space H and transformed with respect to an
appropriate “decoding” basis, that is required during decryption [22]. We show
that the approximate Normality of this embedded noise when expressed in a
decoding basis is fundamentally a Central Limit phenomenon arising from the
weighted sum of many random variables, where the weights arise from a change
of basis matrix to the decoding basis.

For example, if C(pΓ ) is a vector of dimension n expressing the noise in a
ciphertext with respect to the decoding pΓ -basis for H (Definition 8) and C(T )

is a vector of dimension n expressing the noise in a ciphertext with respect to the
original T -basis for H (Section 2.4), then C(pΓ ) = p∆C(T ) for an appropriate
real-valued n× n change of basis matrix ∆ and “scaling prime” p (which is the



plaintext modulus in SymHom). In particular, this means that we can express a

component c
(pΓ )
j of C(pΓ ) as

c
(pΓ )
j = p

n∑
k=1

∆jkc
(T )
k .

The components c
(T )
1 , . . . , c

(T )
n of C(T ) are identically distributed random vari-

ables that are uncorrelated and, in general, independent, having zero mean

E
(
c
(T )
j

)
= 0 and some finite variance Var

(
c
(T )
j

)
= ρ2. Thus a component c

(pΓ )
j

of a noise vector in the pΓ -basis is a weighted sum of uncorrelated and in gen-
eral independent identically distributed random variables. We will show that the
weightings ∆j1, . . . ,∆jn are of comparable size, which suggests that a Central
Limit argument can be invoked to give a Normal approximation for a compo-

nent c
(pΓ )
j . For successful decryption, we require each component of C(pΓ ) to

be bounded by an appropriate threshold. A Central Limit approach enables us
to bound the probability of incorrect decryption using bounds on the tails of
Normal distributions.

Theorem 2 and Corollary 2 demonstrate the improvement that can be ob-
tained by using a Central Limit approach in comparison with prior bounds,
such as those of [22], obtained using δ-subgaussian random variables [24, 26].

For example, if η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q is moderate or large, Theorem 2 gives a

decryption failure probability bound of

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

.

This is tighter than the equivalent δ-subgaussian decryption failure probability
bound of

2n exp(− 1
2η

2
1)

which is obtained by using the tail bound of [26, Lemma 18] in the manner of [22,
Lemma 6.5].

No concrete parameter recommendations for SymHom are specified in [22], so
in contrast to the situation with BGV, it is difficult to quantify the concrete
improvement. Asymptotically, ignoring constants, we tighten the bound by a
factor of ω(

√
log n), for power-of-two n and q following [22, Lemma 8.5]. However,

we emphasise that using such a Central Limit approach in analysing SymHom has
a number of advantages over other possible approaches, such as the subgaussian
approach used in [22]. These advantages are listed below and expressed in terms
of the above discussion.

1. A Central Limit approach makes no substantive distributional assumption

for the components c
(T )
k beyond finite variance, so is potentially applica-

ble to c
(T )
k that are chosen from heavy-tailed distributions. Thus a Central

Limit approach is more generally applicable than other approaches that for
example have a subgaussian requirement for such random variables.



2. A Central Limit approach gives an explicit approximating distribution for
the cryptographic random variable of interest which can be directly used
for general calculation or simulation purposes of use in cryptography. By
contrast, a subgaussian approach can never give a explicit approximating
distribution and can only give tail bounds. These tail bounds are generally
weaker, as is evidenced by comparing our Theorem 2 with the bound that
would be obtained following [22].

3. A Central Limit approach gives not only asymptotically an approximation
to a Normal distribution, but also a close approximation concretely, for prac-
tically relevant Ring-LWE dimensions n.

1.3 Structure of the Paper

We recall relevant background and introduce new tools in Section 2. We outline
our Central Limit approach for BGV in Section 3. We then outline our Central
Limit approach for the SymHom cryptosystem in Section 4.

2 Background

2.1 Notation

The value or more formally the coset representative of (r mod q) nearest to 0 is
denoted by JrKq = r − q[q−1r], and we use the same notation for a coset of Zq.
We can also extend this idea componentwise to vectors, and we write J·KBq to

indicate such an extension with respect to a basis B. We use † to denote the

complex conjugate transpose of a matrix, so T † = T
T

.

2.2 Central Limit Approximations

Encryption and decryption in Ring-LWE-based cryptography are inherently sta-
tistical processes, and we are giving Central Limit approximations to the distri-
butions of cryptographic random variables of interest. Thus we use the notation
∼ to denote either “is exactly distributed as” or “is approximately distributed
as” in the sense that we may use the approximating distribution for practical
purposes without significant error, as is typically done by taking a Central Limit
Normal distribution approximation in statistical analysis. Furthermore, whilst
Central Limit results are formally asymptotic results concerning sums or means
of random variables, such Central Limit approximations usually apply in prac-
tice with relatively few summands (except perhaps for pathological distributions)
as illustrated by the Berry-Esseen conditions [34] and related multidimensional
versions [35]. For example, the simplest form of these Berry-Esseen conditions
occurs for independent and identically distributed random variables X1, X2, . . .
with mean E(Xi) = 0. In this case, if Fn(x) = P(Yn ≤ x) is the distribution



function of Yn =
n

1
2 (X1 + . . .+Xn)

Var(Xi)
1
2

and Φ is the distribution function of a

standard Normal random variable Z ∼ N(0, 1), then

|Fn(x)− Φ(x)| < E(|Xi|3)

Var(Xi)
3
2

n−
1
2 .

We therefore typically use the phrasing “for moderate or large . . .” in such
a Central Limit context to emphasise the usual applicability of Central Limit
approximations with relatively few summands.

2.3 Cyclotomic Number Fields

We consider the ring R = Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic
polynomial of degree n = φ(m), and we let Ra denote R/aR for an integer a.
We let ζm denote a (primitive) mth root of unity. The mth cyclotomic number
field K = Q(ζm) is the field extension of the rational numbers Q obtained by
adjoining this mth root of unity ζm, so K has degree n. The tensor product
K ⊗Q R is denoted by KR = K ⊗Q R.

There are n ring embeddings σ1, . . . , σn : K → C that fix every element of
Q. Such a ring embedding σk (for 1 ≤ k ≤ n) is defined by ζm 7→ ζkm, so∑n
j=1 ajζ

j
m 7→

∑n
j=1 ajζ

kj
m , and such ring embeddings occur in conjugate pairs.

The canonical embedding σ : K → Cn is a 7→ (σ1(a), . . . , σn(a))T .
The ring of integers OK of a number field is the ring of all elements of the

number field which are roots of some monic polynomial with coefficients in Z.
The ring of integers of the mth cyclotomic number field K is

R = Z [ζm] ∼= Z [x] /(Φm).

The canonical embedding σ embeds R as a lattice σ(R). The conjugate dual
of this lattice corresponds to the embedding of the dual fractional ideal

R∨ = {a ∈ K | Tr(aR) ⊂ Z}.

If we define t such that t−1 = m−1(1 − ζm), then [22, Lemma 2.16] shows that
R∨ = 〈t−1〉. We let (R∨)k denote the space of products of k elements of R∨,
that is to say

(R∨)
k

= {s1 . . . sk | s1, . . . , sk ∈ R∨} =
{
t−kr1 . . . rk | r1, . . . , rk ∈ R

}
.

2.4 The Complex Space H

The ring embeddings σ1, . . . , σn from K into C occur in complex conjugate pairs
with σk = σm−k. Accordingly, much of the analysis of Ring-LWE takes place in
a space H of conjugate pairs of complex numbers.



Definition 1. The conjugate pairs matrix is the complex unitary n× n matrix
T , so T−1 = T †, given by

T = 2−
1
2



1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i


.

Definition 2. The complex conjugate pair space H = T (Rn), where T is the
conjugate pairs matrix.

Definition 3. The I-basis for H is given by the columns of the n × n identity
matrix I, that is to say the I-basis is the standard basis.

Definition 4. The T-basis for H is given by the columns of the conjugate pairs
matrix T .

An element of H is expressed via the I-basis as a vector of n′ = 1
2n conjugate

pairs. Such an element of H can also be expressed (by construction) in the T -
basis as a real-valued vector, giving the isomorphism between H and Rn as an
inner product space.

2.5 The BGV scheme

In this section we introduce the BGV scheme [4]. We generally follow the de-
scription of BGV given in [9], reproduced in Figure 1, that restricts to a power-

of-two cyclotomic ring, R =
Z[X]

(Xn + 1)
for n a power of two. The plaintext

space is given by Rt =
Zt[X]

(Xn + 1)
and the ciphertext space is given by Rq =

Zq[X]

(Xn + 1)
. We generally regard a polynomial element of Rq as having coeffi-

cients in {− 1
2 (q − 1), . . . , 12 (q − 1)}. A polynomial h ∈ R (or Rq or Rt) is given

by

h = h(X) =

n−1∑
i=0

hjX
j = h0 + h1X + . . .+ hn−1X

n−1,

where this polynomial may also be interpreted as vector h = (h0, . . . , hn−1) of
coefficients in an appropriate context.

We now describe in our notation the relevant parts of the BGV scheme in
order to define the noise in a BGV ciphertext.



The BGV scheme. BGV is a (levelled) FHE scheme parameterised by n, q, t, χ, S,
w, ` and λ. Let w be a base, then ` + 1 = blogw qc + 1 is the number of terms in the
decomposition into base w of an integer in base q. The Ring-LWE error distribution is
denoted χ and is typically a discrete gaussian with standard deviation σ = 3.2 [1]. The
underlying Ring-LWE problem is parameterised by n, q, σ and S, where the parameter
S denotes the secret key distribution. In implementations (e.g [19, 32]), S is often chosen
as a polynomial that has coefficients in {−1, 0, 1}. The security parameter is λ.

• SecretKeyGen(λ): Sample s← S and output sk = s.
• PublicKeyGen(sk): Set s = sk and sample a ← Rq uniformly at random and
e← χ. Output pk = ([−(as+ te)]q, a).

• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , `}, sample bi ← Rq uni-
formly at random and di ← χ. Output evk =

(
[−(bis+ tdi) + wis2]q, bi

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u ← S and
e1, e2 ← χ. Output ct = ([m+ p0u+ te1]q, [p1u+ te2]q).

• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output m′ = [[c0 + c1s]q]t.
• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).
• Multiply(ct0, ct1): Set c0 = [ct0[0]ct1[0]]q, c1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q,

and c2 = [ct0[1]ct1[1]]q. Output ct = (c0, c1, c2).
• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let evk[i][0] =

[−(bis+ tdi) +wis2]q and evk[i][1] = bi. Express c2 in base w as c2 =
∑`
i=0 c

(i)
2 wi.

Set c′0 = c0 +
∑`
i=0 evk[i][0]c

(i)
2 , and c′1 = c1 +

∑`
i=0 evk[i][1]c

(i)
2 . Output ct′ =

(c′0, c
′
1).

• ModSwitch(ct, p) : For p = q = 1 mod t with p dividing q. Let ct = (c0, c1).
Fix δi such that δi = −ci (mod q

p
) and δi = 0 (mod t). Set c′0 = p

q
(c0 + δ0) and

c′1 = p
q
(c1 + δ1). Output ct = (c′0, c

′
1).

Fig. 1. The BGV scheme as presented in [9].

SecretKeyGen. For emphasis, we write the secret key as s ∈ {−1, 0, 1}n, a
ternary vector of length n, which can more generally be regarded as a poly-
nomial of degree n− 1. We regard s as a constant vector known to the genuine
receiver. More generally, s can be regarded as a polynomial of degree n− 1.

PublicKeyGen. The public key (p0, p1) consists of two parts, with the first part
p0 a multivariate random variable and the second part p1 a constant vector. For
the second part p1, a constant vector a ∈ {− 1

2 (q − 1), . . . , 12 (q − 1)}n is chosen
and p1 is set to a, so p1 = a. For the first part p0 with secret key s ∈ {−1, 0, 1}n,
we have

p0 = −as− tε0, where ε0 ∼ N(0;σ2In)

is a spherically symmetric multivariate Normal random variable with component
variance σ2, where as denotes the appropriate polynomial product of a and s.
The distribution of the public key (p0, p1) is therefore given by

p0 ∼ N(−as; t2σ2In) and p1 = a.



Noise in BGV. In our analysis, we will give distributions for the multivariate ran-
dom variables arising in BGV before any reduction modulo q. For convenience,
we approximate discrete random variables in BGV by the obvious appropriate
continuous random variable.

For a BGV ciphertext (c0, c1) encrypting a message m, our analysis considers
the BGV Critical Value, W given by

W = c0 + sc1,

where sc1 denotes the appropriate polynomial product of s and c1. This BGV
Criticial Value is (we will show) an n-dimensional multivariate Normal random
variable that arises during BGV decryption with secret key s. The Noise V is
then given from the Critical Value W by subtracting m.

Modulus switching. The key technical tool for noise management in BGV is
modulus switching. In Lemma 1 we give an alternative expression for the BGV
ModSwitch operation to that given in Figure 1 that will be more convenient for
our analysis. Lemma 1 can be seen as giving an explicit implementation of the
Scale operation described in earlier analyses of BGV [10, 15].

Lemma 1. Suppose that (c0, c1) is a BGV ciphertext with respect to a modulus
q and consider a ModSwitch operation with respect to a new modulus p < q.
The BGV ModSwitch operation maps an input ciphertext part ci to the nearest

integer polynomial to
p

q
ci having the same value modulo t as ci. More formally,

this output ciphertext (c′0, c
′
1) after the ModSwitch operation can be expressed as

c′i =

⌊
p

q
ci

⌉
+

((
ci −

⌊
p

q
ci

⌉)
mod t

)
[i = 0, 1].

Proof. We let r =
q

p
, so the integer r = 1 mod t. The ModSwitch operation uses

δi = −ci mod r and δi = 0 mod t for i = 0, 1. The Chinese Remainder Theorem
shows that δ0 and δ1 are uniquely defined modulo rt, so have coefficients lying
between − 1

2rt and 1
2rt. This specification for δi also gives

ci + δi = 0 mod r and ci + δi = ci mod t [i = 0, 1].

In addition, the Chinese Remainder Theorem shows that c0 +δ0 and that c1 +δ1
have unique solutions modulo rt given by

c0 + δ0 = rc0 mod rt and c1 + δ1 = rc1 mod rt.

The parts of output ciphertext (c′0, c
′
1) after the ModSwitch operation therefore

satisfy

c′0 =
c0 + δ0
r

= c0 mod t and c′1 =
c1 + δ1
r

= c1 mod t,



so the output ciphertext parts have the same values modulo t as the input
ciphertext parts.

The output ciphertext parts c′0 and c′1 are “modulo p” polynomials with
coefficients lying in {− 1

2 (p−1), . . . , 12 (p−1)} obtained as the direct contractions
of “modulo q” polynomials as

c′0 =
c0 + δ0
r

=
p

q
(c0 + δ0) and c′1 =

c1 + δ1
r

=
p

q
(c1 + δ1)

We note that these new ciphertext parts can also be expressed as

c′0 =
c0
r

+
δ0
r

and c′1 =
c0
r

+
δ1
r
,

where
δ0
r

and
δ1
r

are polynomials with coefficients between − 1
2 t and 1

2 t. Thus

the BGV ModSwitch operation maps an input ciphertext part ci to an output

ciphertext part c′i, where c′i is the nearest integer polynomial to
ci
r

=
p

q
ci having

the same value modulo t as ci, which gives the expression in the statement of
the Lemma.

2.6 The SymHom scheme

In this section we introduce the SymHom cryptosystem. In order to do so, we
first need two definitions. A description of SymHom cryptosystem, in the notation
of [22], is then given in Figure 2.

Definition 5 ([26]). The univariate Balanced Reduction function R on R is

the random function R(a) =

{
1− (dae − a) with probability dae − a
−(dae − a) with probability 1− (dae − a).

The multivariate Balanced Reduction function R on Rl with support on
[−1, 1]l is the random function R = (R1, . . . ,Rl) with component functions
R1, . . . ,Rl that are independent univariate Balanced Reduction functions.

Definition 6 ([26]). Let B be a (column) basis matrix for the n-dimensional
lattice Λ in H. If R is the Balanced Reduction function, then the coordinate-
wise randomised rounding discretisation or CRR discretisation bXeBΛ+c of the
random variable X on H to the lattice coset Λ+c with respect to the basis matrix
B is the random variable

bXeBΛ+c = X +B R
(
B−1(c−X)

)
.

We now describe in our notation the relevant parts of the SymHom cryptosys-
tem in order to define the noise in a SymHom ciphertext. We first recall that the
SymHom secret key is an element s ∈ R, the plaintext space is Rp, and a plaintext
µ ∈ Rp is encrypted to give a linear polynomial over R∨q .

The first step of the encryption process is to generate a random input for a
discretisation process to a coset depending on the plaintext µ. Accordingly, we



The SymHom cryptosystem. Let ψ be a continuous LWE error distribution over KR,
and let b·e denote any valid discretisation to cosets of some scaling of R∨ (e.g. using
the decoding basis of R∨). The cryptosystem is defined formally as follows.

– Gen: choose s′ ← bψeR∨ , and output s = t · s′ ∈ R as the secret key.
– Encs(µ ∈ Rp): choose e← bpψet−1µ+pR∨ . Let c0 = −c1 · s+ e ∈ R∨q for uniformly

random c1 ← R∨q , and output the ciphertext c(S) = c0 + c1S. The noise in c(S) is
defined to be e.

– Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨)kq , and decode it to e = Jc(s)K ∈
(R∨)k. Output µ = tk · e mod pR.

For ciphertexts c, c′ of arbitrary degrees k, k′, their homomorphic product is the degree-
(k + k′) ciphertext c(S) � c′(S) = c(S) · c′(S), that is to say standard polynomial
multiplication. The noise in the result is defined to be the product of the noise terms
of c, c′. Similarly, for ciphertexts c, c′ of equal degree k, their homomorphic sum is
c(S) � c′(S) = c(S) + c′(S), and the noise in the resulting ciphertext is the sum of
those of c, c′.

Fig. 2. The SymHom cryptosystem as defined in [22, Section 8.3].

let Y be a random variable on H such that TY ∼ N(0; p2ρ2In) is a spherically
symmetric n-dimensional Normal random variable with component variance p2ρ2

for an appropriately chosen ρ2. We term Y the Underlying Noise, and Y is a
complex-valued random vector expressed in the I-basis for H.

Specifically, we discretise Y to the coset σ(pR∨) + σ(t−1µ) of the lattice
σ(pR∨) obtained by the canonical embedding of the scaled dual fractional ideal
pR∨. We consider the coordinate-wise randomised rounding discretisation with
respect to the pΓ -basis for H, and following Definition 6 we denote this discreti-
sation of Y by Y ′(µ) = b Y epΓσ(pR∨)+σ(t−1µ).

The Noise random variable Y ′′(µ) in the encryption of the plaintext µ is then
defined to be Y ′′(µ) = σ−1(Y ′(µ)), and is an element of a coset of pR∨+t−1µ con-
taining information about µ. For obvious reasons, we refer to Y ′(µ) = σ(Y ′′(µ))
as the Embedded Noise, and we note that Y ′(µ) expresses the Embedded Noise
in the I-basis of H. We summarise this discussion in Figure 3.

In the next step of encryption, we form the ciphertext from the Noise Y ′′(µ)
and the secret key s in the following way. We choose A uniformly in R∨q , and
we let A′(µ) = −As + Y ′′(µ) ∈ R∨q . The ciphertext C(θ;µ) is the polynomial
in θ over R∨q defined as C(θ;µ) = A′(µ) + Aθ. We note that this polynomial
can be expressed directly in terms of the Noise Y ′′(µ) and the secret key s
as C(θ;µ) = A(θ − s) + Y ′′(µ). A fresh ciphertext is defined to be a degree-1
ciphertext, since the polynomial C(θ;µ) is linear.

The output ciphertext of a homomorphic multiplication of two degree-1 ci-
phertext polynomials is obtained simply by multiplying these polynomials to-
gether. Thus we can obtain the degree-2 ciphertext polynomial over R∨q corre-
sponding to the product µ1µ2 of plaintexts µ1 and µ2 as C(θ;µ1, µ2) = C(θ;µ1)�
C(θ;µ2), where C(θ;µ1) = A′1(µ1) + A1θ and C(θ;µ2) = A′2(µ2) + A2θ. This
degree-2 ciphertext polynomial is C(θ;µ1, µ2) = A′1(µ1)A′2(µ2) + (A2A

′
1(µ1) +



Description Random Variable Range of Random Variable

Underlying Noise Y Complex Space H

Embedded Noise Y ′(µ) Lattice Coset σ(pR∨) + σ(t−1µ)

Noise Y ′′(µ) Number Field Coset pR∨ + t−1µ

Fig. 3. Notation for the Noise-related quantities used in encryption of the plaintext µ.

A1A
′
2(µ2)) θ + A1A2θ

2, which is given in terms of the secret key s and its con-
stituent Noises Y ′′1 (µ) and Y ′′2 (µ) by

C(θ;µ1, µ2) = A1A2(θ− s)2 + (A2Y
′′
1 (µ1) +A1Y

′′
2 (µ2)) (θ− s) + Y ′′1 (µ1)Y ′′2 (µ2).

The Noise in this degree-2 output ciphertext C(θ;µ1, µ2) is defined to be the
product Y ′′1 (µ1)Y ′′2 (µ2) of the Noises Y ′′1 (µ1) and Y ′′2 (µ2) of the degree-1 input
ciphertexts. This process extends in the obvious way to give ciphertexts of higher
degree.

3 A CLT approach to BGV noise analysis

3.1 BGV Polynomial Multiplication

Many BGV operations involve polynomial multiplication in R or Rq, that is to
say modulo Xn + 1, and we express such a polynomial multiplication using a
modified Sign function ξ on the integers given by ξ(z) = Sign(z) for z 6= 0 with
ξ(0) = 1. A term of (hh′) can then be specified as

(hh′)i =

n−1∑
j=0

ξ(i− j) hi−jh′j [i = 0, . . . , n− 1].

and the subscripts are interpreted modulo n to lie in {0, . . . , n− 1}.
BGV requires to construct the polynomial product in R or Rq of a constant

or scalar and a (discretised) multivariate Normal random variable or of two
multivariate Normal random variables. We use the following result, developed
for the CKKS context in [8].

Theorem 1. Suppose that Z ∼ N(µ; ρ2In) and Z ′ ∼ N(µ′; ρ′2In), then the poly-
nomial product ZZ ′ (modulo Xn + 1) is well-approximated as a multivariate
Normal distribution for large n given by

ZZ ′ ∼ N
(
µµ′ ; ρ2∗In + S

)
,

where ρ2∗ = nρ2ρ′2 +ρ′2|µ|2 +ρ2|µ′|2 and S is an off-diagonal matrix with Si,i′ =

ρ′2
∑n−1
j=0 ξ(i− j)ξ(i′ − j)µi−jµi′−j + ρ2

∑n−1
j=0 ξ(i− j)ξ(i′ − j)µ′i−jµ′i′−j.

Following the approach of [8], we make the Small-S assumption: that this
off-diagonal matrix S is negligible compared to ρ2∗IN and we disregard it. This
assumption is reasonable in many circumstances of interest in BGV as the mes-
sage vector length is generally bounded.



Corollary 1. Suppose that Z ∼ N(µ; ρ2In) and Z ′ ∼ N(µ′; ρ′2In) are indepen-
dent, λ is a constant vector and the Small-S assumption is valid. Approximations
to the distribution of λZ, ZZ ′, Z2 are then given by:

λZ ∼ N
(
λµ ; ρ2|λ|2In

)
,

ZZ ′ ∼ N
(
µµ′ ; nρ2ρ′2 + ρ′2|µ|2 + ρ2|µ′|2)In

)
and Z2 ∼ N

(
µ2 ; 2ρ2(nρ2 + 2|µ|2)In

)
.

We also add a further variant of these results, as adapted in a special case
for general (i.e., not necessarily Normal) distributions Z and Z ′, which we use
when considering the BGV ModSwitch operation.

Lemma 2. Suppose that Z = (Z0, . . . , Zn−1)T and Z ′ = (Z ′0, . . . , Z
′
n−1)T are

independent vectors of independent and identically distributed components with
mean E(Zi) = E(Z ′i) = 0 and respective variances Var(Zi) = ρ2 and Var(Z ′i) =
ρ′2. The polynomial product ZZ ′ is well-approximated as a multivariate Normal
distribution for large n given by

ZZ ′ ∼ N(0;nρ2ρ′2In).

Proof. The proof is similar to that given for Theorem 1 given in [8]. A compo-
nent (ZZ ′)i of ZZ ′ is the sum of n summands of the form ±ZjZ ′j′ with mean

E(±ZiZ ′i′) = 0 and variance Var(±ZiZ ′i′) = ρ2ρ′2. Thus the Central Limit The-
orem shows that the distribution of this component (ZZ ′)i and be approximated
for large n as (ZZ ′)i ∼ N(0, nρ2ρ′2). Furthermore, distinct components (ZZ ′)i
and (ZZ ′)i′ (i 6= i′) have covariance Cov((ZZ ′)i, (ZZ

′)i′) = 0 (as they have 0
means), which gives the result.

3.2 BGV Noise Analysis

We now give a series of results showing how the noise in a ciphertext output
from each BGV operation follows a Gaussian distribution with zero mean and
a specified component variance. We begin with Lemma 3 about the noise of a
fresh BGV ciphertext, and we note that a similar result can be inferred from
Lemma 1 of [9].

Lemma 3. [Fresh] The noise random variable Vfresh for a fresh BGV ciphertext
has a Normal distribution given by Vfresh ∼ N(0; ρ2freshIN ), where the component
variance ρ2fresh can be accurately approximated with high probability as

ρ2fresh ≈ ( 4
3n+ 1)t2σ2.

Proof. The first part of the public key p0 = [−(as + te)]q (in the notation of
Figure 1) can be expressed as p0 = −as − te + qα for an appropriate integer
vector α. For the second part of the public key p1 = a, we therefore have p0 +
sp1 = −te+ qα. The BGV Critical Value Wfresh used for decryption of the fresh



ciphertext (c0, c1) given by c0 = m+ p0u+ te1 and c1 = p1u+ te2 corresponding
to message m is given by

Wfresh = c0 + sc1 = m+ p0u+ te1 + s(p1u+ te2)
= m+ u(−as− te+ qα) + te1 + s(au+ te2)
= m+ quα+ t(−ue+ e1 + se2).

If the standard deviation of t(−ue+e1 +se2) is not too large, reducing the BGV
Critical Value W modulo q and then modulo t gives the message m. Thus the
noise random variable corresponding to the BGV Critical Value Wfresh is

Vfresh = t(−ue+ e1 + se2).

Corollary 1 shows that −ue ∼ N(0; |u|2σ2In) and that se2 ∼ N(0; |s|2σ2In), so
the distribution of the fresh noise random variable Vfresh is

Vfresh ∼ N(0; ρ2freshIn), where ρ2fresh = (1 + |u|2 + |s|2)t2σ2.

The random vectors u and s have independent Uniform distributions on
{−1, 0, 1}n, so squared components u2i and s2i take the value 1 with probabil-
ity 2

3 and 0 with probability 1
3 . Thus both |s|2, |u|2 ∼ Bin(n, 23 ) have Binomial

distributions, so can be approximated by independent Normal N( 2
3n,

2
9n) dis-

tributions for large n. The distribution of ρ2fresh = (1 + |u|2 + |s|2)t2σ2 can
therefore be approximated as a Normal N(( 4

3n + 1)t2σ2, 49n(t2σ2)2) distribu-

tion. The standard deviation of ρ2fresh is 2
3 (t2σ2)n

1
2 , which is small compared

to the mean ( 4
3n + 1)t2σ2 of ρ2fresh. Thus ρ2fresh can be accurately approximated

by ( 4
3n+ 1)t2σ2 with high probability. If the corresponding component standard

deviation ( 4
3n+ 1)

1
2 tσ is small compared to q, so it does not generally affect any

modular reduction, then the fresh ciphertext noise is Vfresh ∼ N(0; ρ2freshIn), with
noise variance ρ2fresh ≈ ( 4

3n+ 1)t2σ2.

We now give a series of results about the noise distribution resulting from
the application of BGV operations to BGV ciphertexts. We start with Lemma 4
giving the distribution of the noise random variable following the application of
the BGV Add operation to two BGV ciphertexts.

Lemma 4. [Add] Suppose that the noise random variables V and V ′ for two in-
dependent BGV ciphertexts have 0-mean multivariate Normal distributions given
by V ∼ N(0; ρ2In) and V ′ ∼ N(0; ρ′2In). Let Vadd be the noise random variable
for the ciphertext output from the BGV Add operation applied to these two ci-
phertexts, then Vadd ∼ N(0; ρ2addIn), where the component variance ρ2add is given
by

ρ2add = ρ2 + ρ′2 .

Proof. Suppose that (c0, c1) and (c′0, c
′
1) are the independent BGV ciphertexts

having respective underlying messages m and m′ respectively and having the
given noise random variables

V = (c0 + sc1)−m ∼ N(0; ρ2In) and V ′ = (c′0 + sc′1)−m′ ∼ N(0; ρ′2In).



The BGV Add operation gives the new ciphertext (c0 + c1, c
′
0 + c′1) with message

m+m′ and noise random variable

Vadd = (c0 + c′0) + s(c1 + c′1)− (m+m′) = V + V ′ ∼ N(0; (ρ2 + ρ′2)In).

The BGV Add operation can also be used to add a ciphertext to itself. For
competeness, we also give (without proof) the distribution of the noise random
variable for such an integer multiple of a ciphertext in Lemma 5.

Lemma 5. [Integer Multiple] Suppose that the noise random variable V of
a BGV ciphertext (c0, c1) has 0-mean multivariate Normal distribution given by
V ∼ N(0; ρ2In). The noise random variable of the integer multiple k(c0, c1) of
the BGV ciphertext (c0, c1) for an integer k is kV ∼ N(0; k2ρ2In).

The application of the BGV Multiply operation to the BGV ciphertexts
(c0, c1) and (c′0, c

′
1) gives a 3-part ciphertext

(c∗0, c
∗
1, c
∗
2) = (c0c

′
0, c0c

′
1 + c1c

′
0, c1c

′
1) .

This 3-part ciphertext can potentially be decrypted by considering the 3-part
Multiply Critical Value

Wmult = c∗0 + sc∗1 + s2c∗2 = c0 + s(c′0, c0c
′
1 + c1c

′
0) + s2c1c

′
1

= (c0 + sc1)(c′0 + sc′1) = WW ′,

where W = c0+sc1 and W ′ = c′0+sc′1 are the BGV Critical Values of the original
ciphertexts (c0, c1) and (c′0, c

′
1). If m and m′ are the messages corresponding to

the ciphertexts (c0, c1) and (c′0, c
′
1), then the message m·m′ corresponding to this

3-part ciphertext can be found by reducing this Critical Value Wmult modulo q
and then modulo t. The distribution of the noise random variable following the
application of the BGV Multiply operation is given in Lemma 6.

Lemma 6. [Multiply] Suppose that the noise random variables V and V ′ for
two independent BGV ciphertexts have 0-mean multivariate Normal distributions
given by V ∼ N(0; ρ2In) and V ′ ∼ N(0; ρ′2In). Further suppose that the Small-
S assumption is valid for the distributions m + V and m′ + V ′, where m and
m′ are the underlying messages. Let Vmult be the noise random variables for
the ciphertext output from the BGV Multiply operation applied to these two
ciphertexts, then Vmult ∼ N(0; ρ2multIn), where the component variance ρ2mult is
given by

ρ2mult = nρ2ρ′2 + ρ′2|m|2 + ρ2|m′|2.

Proof. Suppose that (c0, c1) and (c′0, c
′
1) are the independent BGV ciphertexts

having respective underlying messages m and m′ respectively and having the
given noise random variables

V = (c0 + sc1)−m ∼ N(0; ρ2In) and V ′ = (c′0 + sc′1)−m′ ∼ N(0; ρ′2In).



The BGV multiplication operation gives the new 3-part ciphertext

(c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1) with corresponding message m ·m′.

The corresponding BGV Critical Value is

Wmult = (c0 + sc1)(c′0 + sc′1) = (m+ V )(m′ + V ′).

The corresponding noise random variable Vmult therefore has the same covariance
matrix as the product of m + V ∼ N(m; ρ2In) and m′ + V ′ ∼ N(m′; ρ′2In). The
result then follows from Theorem 1 and Corollary 1.

Remark 1. In practice, to use Lemma 6, we need to approximate |m|2 and |m′|2.
If the components of m and m′ can be regarded as being independently and uni-
formly distributed on T = {− 1

2 (t− 1), . . . , 12 (t− 1)}, then Var(mi) = Var(m′i) =
1
12 (t2−1). In this case, we have |m|2, |m′|2 ≈ 1

12n(t2−1), and so the component
variance ρ2mult can be accurately approximated with high probability as

ρ2mult ≈ n
(
ρ2ρ′2 + 1

12 (t2 − 1)(ρ2 + ρ′2)
)
.

The BGV Relinearize operation is used to convert a 3-part ciphertext aris-
ing after a BGV Multiply operation to a standard 2-part BGV ciphertext. The
distribution of the Noise random variable following the application of a BGV
Relinearize operation of the form described in Figure 1 is given in Lemma 7.
The result is analogous to prior results [9, 20, 29] about the BGV and BFV
Relinearize operations.

We note that well-known implementations of BGV use more extensively op-
timised variants of this basic BGV Relinearize operation, so this result may
need adapting for such optimised variants.

Lemma 7. [Relinearize] Suppose that a 3-part BGV ciphertext arising from
a BGV Multiply operation has a 0-mean multivariate Normal noise random
variable given by V ∼ N(0; ρ2In). Consider a BGV Relinearize operation with
` + 1 terms in the decomposition into base w of an integer in base q with ` =
blogw qc in which a coefficient in {− 1

2 (q − 1), . . . , 12 (q − 1)} is represented as
vector with (` + 1) components lying between − 1

2w and 1
2w. Let Vrelin be the

noise random variable for the ciphertext output from such a BGV Relinearize

operation, then Vrelin ∼ N(0; ρ2relinIn), where the component variance ρ2relin is given
by

ρ2relin = ρ2 + 1
12n(`+ 1)w2t2σ2 .

Proof. We consider the 3-part ciphertext (c∗0, c
∗
1, c
∗
2) = (c0c

′
0, c0c

′
1 + c1c

′
0, c1c

′
1)

arising from the application of the BGV Multiply operation to the ciphertext
(c0, c1) and the ciphertext (c′0, c

′
1). For a BGV scheme with parameter `, the

ciphertext component c∗2, a polynomial with coefficients between 1
2 (q − 1) and

1
2 (q − 1), is expressed as

c∗2 =
∑`
i=0 giw

i, for decompsition polynomials gi(x) =
∑n−1
j=0 gijx

j ,



The integer coefficients gij of these decomposition polynomials gi can be regarded
as independent random variables lying uniformly between − 1

2w and 1
2w, so we

have E(gij) = 0 and Var(gij) = 1
12w

2.
The BGV Relinearize operation transforms this 3-part ciphertext into a

standard 2-part BGV ciphertext by using the Evaluation Keys

αi = −(βis+ tdi) + wis2 and βi [i = 0, . . . , `],

where β0, . . . , β` are independent random elements of Rq and d0, . . . , d` are in-
dependent random variables with the error distribution χ, and we note that
αi + sβi = s2wi − tdi The output of the BGV Relinearize operation is the
2-part ciphertext (c0, c1) given by

c0 = c∗0 +
∑̀
i=0

αigi and c1 = c∗1 +
∑̀
i=0

βigi.

The BGV Critical Value Wrelin of this 2-part ciphertext (c0, c1) is given by

Wrelin = c0 + sc1 = c∗0 +
∑`
i=0 αigi + sc∗1 + s

∑`
i=0 βigi

= c∗0 + sc∗1 +
∑`
i=0(αi + sβi)gi = c∗0 + sc∗1 + s2

∑`
i=0 w

igi − t
∑`
i=0 digi

= c∗0 + sc∗1 + s2c∗2 − t
∑`
i=0 digi = W − t

∑`
i=0 digi,

where W = c∗0 + sc∗1 + s2c∗2 is the BGV Critical Value for the 3-part cipher-
text (c∗0, c

∗
1, c
∗
2). Thus the BGV Relinearize operation has noise random vari-

able Vrelin given by
Vrelin = V − t

∑`
i=0 digi

A component dij of d has mean E(dij) = 0 and variance Var(dij) = σ2, and
a component gij has mean E(gij) = 0 and variance Var(gij) = 1

12w
2 as gij is

uniformly distributed between − 1
2w and 1

2w. Thus Lemma 2 shows that digi ∼
N(0; 1

12nw
2σ2), and hence that

t
∑`
i=0 digi ∼ N(0; 1

12n(`+ 1)w2t2σ2 In).

Thus the BGV Relinearize operation has a noise random variable Vrelin with a
distribution

Vrelin ∼ N(0; (ρ2 + 1
12n(`+ 1)w2t2σ2)In),

with component variance ρ2relin = ρ2 + 1
12n(`+ 1)w2t2σ2.

The BGV ModSwitch operation is, as we noted earlier, the key technical
tool for noise management in BGV and is used to move from a modulus q to a
smaller modulus p. The result of Lemma 8 gives an expression for the component
variance ρ2mod-sw of the noise random variable for the BGV ModSwitch operation

containing two terms. However, the first term γ2ρ2 =

(
p

q

)2

ρ2 is much smaller

than the second term 1
12 ( 2

3n+ 1)(t2− 1) in many situations of interest, in which
case the noise component variance ρ2mod-sw ≈ 1

12 ( 2
3n+ 1)(t2 − 1) is constant and

does not depend on the input noise variance ρ2.



Lemma 8. [ModSwitch] Suppose that a BGV ciphertext (c0, c1) with respect
to a modulus q has a 0-mean multivariate Normal noise random variable given
by V ∼ N(0; ρ2In). Then the output ciphertext (c′0, c

′
1) after a ModSwitch opera-

tion of this ciphertext to a modulus p < q has noise random variable Vmod-sw ∼
N(0; ρ2mod-swIn), where the component variance ρ2mod-sw can be accurately approx-

imated with high probability in terms of the contraction factor γ =
p

q
as

ρ2mod-sw ≈ γ2ρ2 + 1
12 ( 2

3n+ 1)(t2 − 1).

Proof. Lemma 1 shows that the output ciphertext (c′0, c
′
1) (with modulus p)

following the application of the BGV ModSwitch to the input ciphertext (c0, c1)
(with modulus q) is given by

c′i = bγcie+ ((ci − bγcie) mod t) [i = 0, 1],

In order to analyse the BGV ModSwitch operation, we define

Ui = ((ci − bγcie) mod t) = c′i − bγcie [i = 0, 1],

which we can regard as integer random variables with independent components
Uij taking values in the set T = { 12 (t−1), . . . , 12 (t−1)} of modulo t values (where
t is odd) having an almost exactly Uniform distribution on T for BGV moduli
p < q (a full justification for this statement is omitted for space reasons).

The BGV Critical Value Wmod-sw for the decryption of this ciphertext (c′0, c
′
1)

obtained from the BGV ModSwitch operation is

Wmod-sw = c′0 + sc′1 = bγc0e+ sbγc1e+ (U0 + sU1)
= γ(c0 + sc1) + (U0 + sU1) + (bγc0e+ s bγc1e − γ(c0 + sc1))
= γW + (U0 + sU1) + ((bγc0e − γc0) + s(bγc1e − γc1)) ,

We note that the final term (bγc0e − γc0) + s(bγc1e − γc1) arises from rounding
components to the nearest integers. Thus this term is negligible as each compo-
nent consists of the sum of (1 + |s|) ≈ ( 2

3n+ 1) Uni((− 1
2 ,

1
2 )) rounding random

variables, and so for practical purposes the BGV ModSwitch Critical Value is
given by

Wmod-sw = γW + (U0 + sU1).

The BGV ModSwitch noise random variable Vmod-sw corresponding to this
BGV ModSwitch Critical Value is is given by

Vmod-sw = γV + (U0 + sU1).

The first term γV ∼ N(0; γ2ρ2In) in this expression has a symmetric multivariate
Normal distribution with mean 0 and component variance γ2ρ2. A component
(U0 + sU1)i of the second term U0 + sU1 is a sum of (1 + |s|2) independent
Uni(− 1

2 t,
1
2 t) random variables, so the Central Limit Theorem shows that the

component (U0 + sU1)i can be regarded as having a Normal distribution with
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Fig. 4. Component variances in the zero-mean Normal random variable giving the
noise in the output ciphertext after homomorphic evaluation operations on input ci-
phertexts with input noises given by the zero-mean Normal random variables of the
given component variances. (Other notation as given in Lemmas 3-8.)

N(0, 1
12 (1+|s|2)(t2−1)In) for large n with component variance 1

12 (1+|s|2)(t2−1).
Thus the BGV ModSwitch operation has a distribution given by

Vmod-sw ∼ N
(
0; γ2ρ2 + 1

12 (1 + |s|2)(t2 − 1)In
)

with component variance ρ2mod-sw = γ2ρ2 + 1
12 (1 + |s|2)(t2 − 1). However, |s|2

is the sum of n Uniform Ternary random variable, so is very close to 2
3n with

high probability for large n, when the component variance can be accuately
approximated as

ρ2mod-sw ≈ γ2ρ2 + 1
12 ( 2

3n+ 1)(t2 − 1).

3.3 Experimental verification

The analysis of the previous subsections shows that the noise in a BGV ci-
phertext can, under certain assumptions, be expressed as a multivariate Normal
random variable after every homomorphic operation. The analysis is summarised
in Figure 4. This enables us to model the noise growth throughout a BGV homo-
morphic evaluation in an ‘average-case’ manner, as was done for TFHE in [7];
that is, tracing through the variances at each operation, in order to find the
variance of the noise in the output ciphertext. The variance can then be used
to determine a bound on the noise in the output ciphertext to set parameters
for correctness. Such an average-case approach is in contrast to a ‘worst-case’
analysis, as employed in prior studies on BGV [16, 10, 9]; that is, tracing through
a bound on the noise at each operation in order to determine a bound on the
noise in the output ciphertext. Since worst-case bounds are used in these prior
studies at each step, we expect that the final bound could be very loose. This
was confirmed by experiments in [9], which compared the observed noise growth
in the HElib [19] implementation of BGV to the predicted noise growth from
worst-case analyses.

In this section, we illustrate the efficacy of our average-case approach by
comparing the noise growth predicted by these with observed noise growth in
both HElib [19] and SEAL [32] and with the noise growth predicted by worst-case



bounds as developed in [9] following Iliashenko [20]. Our experiments use HElib
version 2.2.1 and SEAL version 4.0. We show that our average-case analysis can
tightly estimate the practical noise growth, thus closing the gap between worst-
case predicted noise and practically observed noise highlighted in [9]. To do so,
we consider the homomorphic evaluation of two circuits. The results for HElib
are displayed in Tables 1 and 2 respectively. The results for SEAL are displayed
in Tables 3 and 4 respectively.

The first circuit considered is the same circuit as was used in [9]. The evalua-
tion is as follows in the i-th trial. First, fresh ciphertexts ct1 and ct2 encrypting
i+1 and i are generated. Next, ct3 is generated as the homomorphic addition of
ct1 and ct2. Next, ct4 is generated as the homomorphic multiplication of ct3
and ct2. For n > 2048, ct5 is generated by modulus switching ct4 down to the
next prime in the chain (for n = 2048 the parameters are too small to support
this operation). We measure the noise budget after each operation and output
an average over 10000 trials. The results for HElib and SEAL are presented in
Table 1 and Table 3 respectively.

We also explore the noise growth in a second deeper circuit, using the same
parameter settings as the previous experiment. The evaluation is as follows in
the i-th trial. First, fresh ciphertexts ct1, . . . , ct8 encrypting i + 1, . . . , i + 8
respectively are generated. Next, ciphertexts ct9, . . . , ct12 are generated as the
multiplication of ct1 and ct2; . . . ; ct7 and ct8 respectively. Next ciphertexts
ct13 and ct14 are generated as the multiplication of ct9 and ct10; and ct11 and
ct12 respectively. Finally, ciphertext ct15 is generated as the multiplication of
ct13 and ct14. We measure the noise budget after each multiplication and output
an average over 10000 trials. The results for HElib and SEAL are presented in
Table 2 and Table 4 respectively.

For both circuits, the HElib parameters were chosen as follows. The standard
deviation of the error distribution was set to σ = 3.2, the ring dimension was
set to n ∈ {2048, 4096, 8192, 16384} and the corresponding maximal ciphertext
modulus q was set so that log q ∈ {54, 109, 218, 438}. The plaintext modulus was
set as t = 3. Other parameters are set according to HElib default parameter
settings, detailed in [9]. The parameter set n = 2048 is omitted in Table 2 as it
is too small to support the homomorphic evaluation of the circuit.

For both circuits, the SEAL parameters were chosen as follows. The standard
deviation of the error distribution was set to σ = 3.2, the ring dimension was
set to n ∈ {4096, 8192, 16384, 32768} and the corresponding maximal ciphertext
modulus q was set so that log q ∈ {109, 218, 438, 881}. The plaintext modulus
was set to be a suitable integer of 20 bits, a default choice in the SEAL examples.
In SEAL, the parameter sets with n ∈ {4096, 8192} were too small to support
the deeper circuit.

We present average case bounds for each operation as follows: we trace
through the component variance of the noise polynomial after each operation,
using the formulae in Figure 4. We model the variance after multiplication as in
Remark 1. We then translate the variance after each operation into a bound on
the noise after each operation following the approach described in [8]. That is,



we allow an error tolerance α (we set α = 0.001 in the experiments), such that
our noise bound is exceeded with probability α.

Lemma 9 ([8]). Suppose a noise polynomial is distributed as N(0, ρ2In). For a
threshold T > 0, the error tolerance α = P(‖Z‖∞ > T ) satisfies

T =
√

2 · ρ · erf−1((1− α)
1
n ) .

We express our results in terms of the noise budget (Definition 7). Loosely
speaking, the noise budget is the number of bits left for homomorphic computa-
tion before a wraparound modulo q that would lead to decryption failure.

Definition 7 ([9]). Let ct be a BGV ciphertext with respect to modulus q having
Critical Value W modulo q. The noise budget for this ciphertext is defined as

log2 (q)− log2 (‖W‖)− 1 .

The HElib results in Tables 1 and 2 show that the average-case approach
much more closely models the observed noise growth for fresh ciphertexts, addi-
tion, and multiplication. While the average-case modelling does not completely
close the heuristic-to-practical gap identified in [9], the improvement is still sig-
nificant. For example, the gap is reduced by as much as 25 bits in the case of
the deeper circuit.

The SEAL results of Tables 3 and 4 are even more promising and show
that the average-case heuristics tightly model the observed noise growth for
fresh ciphertexts, addition, and multiplication, including deeper multiplication.
In most cases, the heuristic-to-practical gap is reduced to only 3-5 bits.

There are some discrepancies between the SEAL implementation and the
heuristic estimates that may account for differences between the observed and
predicted behaviour. For example, in Table 4, for n = 16384, after the third mul-
tiplication, the average-case heuristic overestimates the remaining noise budget
by one bit. We do not relinearize (in doing so, diverging from the SEAL recom-
mendations), so by the third multiplication in the second circuit, the ciphertexts
are much larger. This introduces additional noise not accounted for in the heuris-
tics. We would expect such an additional noise to increase as n increases, and
this expectation is confirmed by the results for n = 32768. Moreover, modifying
our experiments to relinearize inputs before the next multiplication significantly
reduces (but does not totally account for) the overestimation.

For modulus switching, in both libraries, the remaining noise budget is over-
estimated by the average-case approach. This may also be due to specificities
in the libraries. For example, in our HElib implementation we modulus switch
to the ‘natural’ prime set following the expected usage of the library, whereas
the heuristic analyses are for a general situation of modulus switching to any p.
Modifying HElib to explore this further is beyond the scope of this work.

Both our worst-case and average-case heuristic estimates assume that the
secret distribution is uniform ternary, as is done in our analysis of Section 3.2,
and as is the distribution used in SEAL. The secret distribution implemented



n
Enc Add Mult ModSwitch

W A x W A x W A x W A x

2048 35.0 41.0 48.7 34.0 41.0 48.2 17.0 26.0 39.1 - - -
4096 89.0 96.0 104 88.0 95.0 103 70.0 80.0 93.5 39.0 46.0 40.6
8192 199 206 213 198 205 213 179 189 203 148 155 149
16384 417 425 433 416 424 432 396 407 422 366 374 368

Table 1. The column x gives the observed mean of the noise budget in HElib cipher-
texts over 10000 trials of the homomorphic evaluation described in the first circuit and
in [9] for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column W
gives an estimate of the noise budget using worst-case heuristic bounds following [9].
The column A gives an estimate of the noise budget using an average case approach.

n
Enc Mult1 Mult2 Mult3

W A x W A x W A x W A x

4096 89.0 96.0 104 71.0 80.0 94.3 35.0 49.0 75.8 0 0 38.8
8192 199 206 213 180 189 203 142 156 184 66.0 90.0 145
16384 417 425 433 397 407 422 357 372 402 277 302 361

Table 2. The column x gives the observed mean of the noise budget in HElib cipher-
texts over 10000 trials of the homomorphic evaluation described above in the second
circuit for parameter sets with dimension n ∈ {4096, 8192, 16384}. The column W gives
an estimate of the noise budget using worst-case heuristic bounds following [9]. The
column A gives an estimate of the noise budget using an average case approach.

in HElib is also ternary, but with a slightly different variance1. We found that
this discrepancy impacts the heuristic-to-practical gap only minimally. Indeed,
adapting the heuristics for the HElib secret distribution made no difference in the
predicted remaining average-case noise budget in low-depth computation, while
for larger n, and after two or more multiplications, the predicted remaining noise
budget was 2 bits closer to the observed remaining noise budget.

The results for n = 4096 in Table 3 give an interesting example where the
worst-case approach predicts that there is no remaining noise budget after the
multiplication, suggesting that the parameter set is too small to support the eval-
uation of this circuit. In contrast, the average-case analysis predicts there are 6
bits remaining, and indeed there is an observed average remaining noise budget
of 8 bits. To further illustrate the utility of the average-case approach, we now
exhibit additional specific computations for which the average-case approach
predicts lower parameters to support the computation than the worst-case ap-
proach. The examples here are illustrative and we expect that many other such
circuits could be found. To characterise a broad range of circuits, we focus on
an L-level circuit with ζ additions and one multiplication at each level. We fix
ciphertext moduli q that achieve 128-bit security according to the Homomor-

1 https://github.com/homenc/HElib/blob/f0e3e010009c592cd411ba96baa8376eb485247a/

src/keys.cpp#L1145



n
Enc Add Mult ModSwitch

W A x W A x W A x W A x

4096 34.0 40.0 44.0 33.0 40.0 43.0 0 6.00 8.00 0 8.00 2.00
8192 135 142 146 134 141 145 97.0 106 111 95.0 102 95.0
16384 349 357 360 348 356 360 310 321 323 304 312 304
32768 784 792 796 783 792 795 744 755 759 733 741 734

Table 3. The column x gives the observed mean of the noise budget in SEAL cipher-
texts over 10000 trials of the homomorphic evaluation described in the first circuit and
in [9] for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column W
gives an estimate of the noise budget using worst-case heuristic bounds following [9].
The column A gives an estimate of the noise budget using an average case approach.

n
Enc Mult1 Mult2 Mult3

W A x W A x W A x W A x

16384 349 357 361 311 321 325 235 250 252 83.0 108 104
32768 784 792 796 745 756 757 667 683 676 511 537 515

Table 4. The column x gives the observed mean of the noise budget in SEAL cipher-
texts over 10000 trials of the homomorphic evaluation described above in the second
circuit for parameter sets with dimension n ∈ {4096, 8192, 16384}. The column W gives
an estimate of the noise budget using worst-case heuristic bounds following [9]. The
column A gives an estimate of the noise budget using an average case approach.

phic Encryption Security Standard [1] for error distribution standard deviation
σ = 3.2, uniform ternary secret, and n ∈ {4096, 8192, 16384}; and allow to vary
the plaintext modulus t. Given a circuit parameterised by L, ζ and t, we inves-
tigate the predicted noise growth for different parameter sets according to the
average-case and worst-case approaches.

We exhibit in Table 5 an example for L = 3, ζ = 8, and t = 256, following
parameter choices in [9]. It can be seen that the worst-case approach indicates
that the n = 16384 parameter set is required, while the average-case approach
indicates that n = 8192 suffices. In Table 6, we see another example, for L = 2,
ζ = 3, and t = 257. In this situation, the average-case approach predicts that
the n = 4096 parameter set suffices to support the computation, while the
worst-case approach suggests n = 8192 is required. We implemented this latter
circuit in HElib, and found indeed that the computation could be supported
with n = 4096.

4 A CLT approach to SymHom noise analysis

In this section, we present a Central Limit approach to SymHom noise analysis.
For simplicity, we restrict our discussion to the situation where m is prime,
though our arguments apply more generally.



n W A

8192 0 17
16384 183 229

Table 5. The column W gives an estimate of the noise budget for the circuit pa-
rameterised by L = 3, ζ = 8, t = 256, for the parameter set determined by the ring
dimension n, using worst-case heuristic bounds following [9]. The column A gives an
estimate of the noise budget for the same circuit using an average case approach.

n W A

4096 0 19
8192 105 124

Table 6. The column W gives an estimate of the noise budget for the circuit pa-
rameterised by L = 2, ζ = 3, t = 257, for the parameter set determined by the ring
dimension n, using worst-case heuristic bounds following [9]. The column A gives an
estimate of the noise budget for the same circuit using an average case approach.

4.1 Additional background

In this section, we introduce some relevant definitions. Definition 8 specifies the
pΓ -basis for H in which elements of H are expressed as real-valued vectors. The
pΓ -basis arises as the embedding of a basis of conjugate pairs for R∨. The pΓ -
basis is a more convenient basis for H in the case when m is prime, and is a
suitable basis for decryption.

Definition 8. The pΓ -basis for H is given by the columns of the matrix pΓ
(for p prime), where

Γ =
1

m


1− ζ1m 1− ζ2m 1− ζ3m . . . 1− ζnm
1− ζ2m 1− ζ4m 1− ζ6m . . . 1− ζ2nm

...
...

...
. . .

...

1− ζnm 1− ζ2nm 1− ζ3nm . . . 1− ζn2

m

 ,

and is the embedding of the basis
{
p
m (1− ζ1m), pm (1− ζ2m), . . . , pm (1− ζnm)

}
of

conjugate pairs for R∨ in H.

In Figure 5, we summarise our notation for elements of H expressed with
respect to the various bases. If Z is a vector expressing an element of H as a
vector of conjugate pairs in the I-basis (or standard basis) for H, then we have
real-valued vectors Z‡ = T †Z and Z∗ = (pΓ )−1Z expressing this element as a
vector in the T -basis and the pΓ -basis for H respectively.

The change of basis transformations between the T -basis and the pΓ -basis
are summarised in Figure 6, and the relevant properties of the (scaled) change-
of-basis matrix ∆ = ΓT−1 are given in Lemma 10.

Lemma 10. The change of basis matrix from the T -basis to the pΓ -basis of H
is the real invertible matrix p−1∆, where ∆ = Γ−1T satisfies ∆∆T = mI − J .



Basis for H I-Basis T -Basis pΓ -Basis

Vector or
Random Variable

Z Z‡ Z∗

Transformation from
the I-Basis

I T † p−1Γ−1

Fig. 5. Notation for the expression of an element of H as a vector in the various
different vector space bases for H. Note that p is a scaling factor.

H with T -basis
p−1∆ = (pΓ )−1T

−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
p∆−1 = T−1(pΓ )

H with pΓ -basis

Fig. 6. Change of Basis Matrices for the T -basis and pΓ -basis for H in which elements
of H are expressed as real-valued vectors.

Proof. It is clear that ∆ = Γ−1T is invertible as both Γ−1 and T are invertible.
The matrix ∆−1 = T−1Γ = T †Γ has matrix entries ∆−1kl satisfying

m∆−1kl =

{
2−

1
2

((
1− ζklm

)
+
(
1− ζ−klm

))
= 2

1
2

(
1− Re

(
ζkl
))

[1 ≤ k ≤ n′]
2−

1
2

(
−i
(
1− ζ−klm

)
+ i
(
1− ζklm

))
= 2

1
2 Im

(
ζkl
)

[n′ < k ≤ n],

so ∆−1 and hence ∆ are real matrices. Thus we have

∆∆T = ∆∆† = (Γ−1T )(Γ−1T )† = Γ−1TT †(Γ−1)† =
(
Γ †Γ

)−1
.

We note that Γ †jk = m−1(1 − ζ−jkm ) and that
∑n
l=1 ζ

l = −1 and so on. Thus∑n
l=1 ζ

l(j−k) = n if k = j and −1 if k 6= j (for 1 ≤ k, j ≤ n), which yields

(
Γ †Γ

)
jk

=

n∑
l=1

Γ †jlΓlk =
1

m2

n∑
l=1

(1− ζ−jl)(1− ζlk)

=
1

m2

n∑
l=1

1− 1

m2

n∑
l=1

ζlk − 1

m2

n∑
l=1

ζ−jl +
1

m2

n∑
l=1

ζl(k−j)

=

{
2m−2(n+ 1) = 2m−1 [k = j]
m−2(n+ 1) = m−1 [k 6= j],

so Γ †Γ = m−1(I + J). Thus ∆∆T = (Γ †Γ )−1 = mI − J .

The noise in a SymHom ciphertext obtained as the output of a homomorphic
multiplication of two fresh ciphertexts is the product of the noises in the input
ciphertexts. We will therefore be interested in the ⊗-product (Definition 9) of
two elements of H expressed in the T -basis.



Definition 9. The ⊗-product of two real vectors u = (u11, u12, . . . , un′1, un′2)
and v = (v11, v12, . . . , vn′1, vn′2) of length n = 2n′ is

u⊗ v =


u11
u12

...
un′1
un′2

⊗

v11
v12
...

vn′1
vn′2

 = T † (TuTv) = 2−
1
2


u11v11 − u12v12
u11v12 + u12v11

...
un′1vn′1 − un′2vn′2
un′1vn′2 + un′2vn′1

 .

The ⊗-product of two vectors in H expressed in the T -basis is the expression in
the T -basis of the componentwise product of those two vectors when expressed
in the I-basis.

4.2 A Central Limit approach to approximate the distribution of
C(pΓ )

To obtain a Normal approximation for a weighted sum
∑n
j=1 ajXj of the form

encountered in SymHom, we need a general form of the Central Limit Theorem
formally given by the Lindeberg condition [3, 34]. We state such a Central Limit
result in Lemma 11. However, Lemma 11 can be informally expressed as that
the weighted sum

∑n
j=1 ajXj of the form encountered in Ring-LWE has an

approximate Normal distribution for moderate or large n provided that the
absolute weights aj are not dominated by just a few values.

Lemma 11. Suppose X1, X2, . . . are independent and identically distributed
continuous random variables that are symmetric about 0 with mean E(Xj) = 0
and variance Var(Xj) = 1, and that have common density function fXj

, and

suppose that for constants a1, a2, . . . the sum
∑l
j=1 ajXj has variance function

a(l)2 =
∑l
j=1 a

2
j , and that the functions ãj are defined by ãj(l) =

|aj |
a(l)

. In this

case, Lindeberg’s condition is that for any given ε > 0, the sum

l∑
j=1

ãj(l)
2 ΨXj

(
ε

ãj(l)

)
→ 0 as l→∞, where ΨXj

(θ) =

∫ ∞
θ

x2fXj
(x) dx.

If Lindeberg’s condition is satisfied, then a(l)−1
∑l
j=1 ajXj tends in distribution

to a standard Normal N(0, 1) distribution as l→∞.

Proposition 1 gives a Central Limit approximation to a weighted multivariate
sum of the form for independent and identically distributed random variables
X1, . . . , Xn. This proposition is a summary of the Lindeberg condition for a
Central Limit Theorem and essentially states that a good Normal approximation
exists for the weighted sum if enough of the largest (in absolute value) weights
are of comparable size. Concretely, in a typical parameter situation of Ring-LWE
where we have n > 102, (or n > 103 in the case of homomorphic encryption),
we can expect Proposition 1 to give a good approximation when as few as (for
example) about 20 of the largest weights are comparable.



Proposition 1. Suppose that X = (X1, . . . , Xn) has components X1, . . . , Xn

that are independent and identically distributed random variables with mean
E(Xj) = 0 and finite variance Var(Xj) = ρ2, so X has covariance matrix ρ2In.
If A is a n × n matrix whose entries Ajk are not dominated by just a few of
these entries, then the transformed random variable AX ∼ N(0, ρ2AAT ) can be
approximated as a multivariate Normal distribution for moderate or large n.

In Proposition 2, we apply Proposition 1 to approximate the distribution of
the noise in a SymHom ciphertext expressed in an appropriate decryption basis.
We note the proof of Proposition 2 is complicated by the fact that a pair of
random variables in the T -basis arising as the image of a conjugate pair in the
I-basis are uncorrelated but not independent (see for example Lemma 10).

Proposition 2. Suppose that C(T ) is a vector expressing the noise in a Ring-

LWE ciphertext in the T -basis for H, so a component c
(T )
j of C(T ) has mean

E
(
c
(T )
j

)
= 0 and finite variance Var

(
c
(T )
j

)
= ρ2. Suppose further that the

S-basis given by the columns of the n × n matrix S is an appropriate basis of
H for decryption, and that Ψ = ST−1 is the change of basis matrix from the
T -basis to the S-basis for H. If the entries Ψjk of Ψ are not dominated by just
a few values, then the distribution of the noise C(S) in this ciphertext in the
(decryption) S-basis for H can be approximated as

C(S) ∼ N(0; ρ2ΨΨT ) for moderate or large n.

In particular, the pΓ -basis for H yields C(pΓ ) ∼ N(0; p2ρ2(mI − J)).

Proof. We can split Ψ = (Ψ ′|Ψ ′′) into two n × n′ submatrices and we similarly

split C(T ) =
(
C(T )′

∣∣∣C(T )′′
)T

into the first n′ components C(T )′ and the final n′

components C(T )′′ . Furthermore, their conjugate pairs origin means that C(T )′

and C(T )′′ are uncorrelated. The components c
(T )′

1 , . . . , c
(T )′

n′ of C(T )′ are indepen-
dent and identically distributed with mean 0 and variance ρ2, so Proposition 1
gives Ψ ′C(T )′ ∼ N(0; ρ2Ψ ′Ψ ′T ), and we similarly have Ψ ′′C(T )′′ ∼ N(0; ρ2Ψ ′′Ψ ′′T ).
Thus

C(S) = ΨC(T ) = Ψ ′C(T )′ + Ψ ′′C(T )′′ ∼ N(0; ρ2ΨΨT )

as C(S) is the sum of two uncorrelated approximate multivariate Normal random
variables, so has an approximate Normal distribution with covariance matrix
ρ2Ψ ′Ψ ′T + ρ2Ψ ′′Ψ ′′T = ρ2ΨΨT .

The Central Limit Theorem is formally a statement about the convergence
(in distribution) of an appropriate weighted sum of random variables to a Normal
distribution in the limit as the number of summands n tends to infinity. When
such a result is applied in a concrete setting with a fixed finite n, it is reasonable
to question the speed of this convergence, and in particular how accurate the
approximation is. This issue is made more precise in a companion work [27], and
can be verified empirically.



4.3 SymHom decryption using the pΓ -basis

We now specify a decryption process for the SymHom cryptosystem using the pΓ -
basis of H (though any appropriate basis can be used). We recall (see Figure 5)
that we write Z‡ and Z∗ to express an element of H as a vector in the T -basis
and the pΓ -basis respectively.

Decryption of a degree-1 ciphertext polynomial C(θ;µ) begins by evaluating
this polynomial at the secret s. We obtain information about the Noise since
C(s;µ) = Y ′′(µ) mod R∨q . If we embed C(s;µ) in H under σ and perform a
reduction modulo q with respect to to the pΓ -basis, then we obtain an integer
vector Jσ(C(s;µ))KpΓq with entries in [− 1

2q,
1
2q).

The Embedded Noise Y ′(µ) is expressed in the I-basis for H, so Y ′(µ) is
expressed with respect to the T -basis of H as the real vector Y ′(µ)‡ = T †Y (µ).
However, the change of basis from this T -basis to the pΓ -basis of H is given by
p−1∆ = p−1Γ−1T , so there is a real transformation Y ′(µ)∗ = p−1∆Y (µ)‡ that
gives a real vector Y ′(µ)∗ specifying the Embedded Noise expressed in the pΓ -
basis for H. This allows us to write Y ′(µ)∗ = Jσ(C(s, µ))KpΓq if the Embedded
Noise is small enough. In this case, we can recover the real vector Y ′(µ)∗ and
hence the real Embedded Noise vector Y ′(µ)‡ with respect to the T -Basis. This
allows us to determine the coset representative σ(t−1µ) for the coset of the lattice
σ(pR∨) corresponding to the plaintext µ ∈ Rp. Thus if the Embedded Noise is
small enough with high probability, then we can recover the plaintext µ with
high probability.

This decryption process generalises to degree-2 and higher degree ciphertexts
in a natural way. For example, if C(θ;µ1) and C(θ;µ2) are two degree-1 cipher-
texts with respective Embedded Noises Y ′1(µ1) and Y ′2(µ2), then the degree-2
ciphertext C(s;µ1, µ2) = Y ′′(µ1)Y ′′(µ2) = C(s;µ1)C(s;µ2) mod (R∨)2q, and so

we obtain (Y ′1(µ1)Y ′2(µ2))
∗

= Jσ(C(s;µ1, µ2))Km
−1pΓ

q for small Embedded Noise.
Thus if this Embedded Noise is small enough with high probability, we can
recover the plaintext product µ1µ2 ∈ Rp with high probability.

4.4 Decryption Failure Probabilities in the SymHom cryptosystem

We now present in Theorem 2 and Corollary 2 our main results of this section,
which give (respectively) bounds for the probability of the incorrect decryption
of degree-1 and degree-2 SymHom ciphertexts. Both results follow from the fact
that SymHom decryption using (for example) the pΓ -basis for H fundamentally
involves a change of basis transformation between bases for H ultimately to the
pΓ -basis.

In the following, we denote by Q the “Q-function” giving the upper tail
probability for a standard Normal N(0, 1) distribution, so

Q(x) =
1√
2π

∫ ∞
x

exp(− 1
2z

2) dz .

This tail probability Q(x) is bounded by its asymptotic expansion, so

Q(x) ≤ (2πx2)−
1
2 exp(− 1

2x
2) ,



and we note that this bound is very tight even for moderate values of x > 0.

Theorem 2. If η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q is moderate or large, then the probabil-

ity of the incorrect decryption of a SymHom degree-1 ciphertext in the pΓ -basis
for H is bounded by

P

(
Incorrect decryption of SymHom
degree-1 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

.

Proof. The vector expressing the Embedded Noise in the pΓ -basis for H is of the

form
(
bZepΓΛc

)∗
, where Z = TZ‡ and p−1Z‡ = (p−1T †)Z ∼ N(0, ρ2In). However,(

bZepΓΛc

)∗
= (pΓ )−1bZepΓΛ+c ≈ ∆(p−1T †)Z, so Lemma 10 shows that

(
bZepΓΛc

)∗
∼ N(0; ρ2∆∆T ) = N(0; ρ2(mI − J)).

Thus
(
bZepΓΛc

)∗
is well-approximated by a multivariate Normal random variable

U ∼ N(0; ρ2(mI − J)), with components U1, . . . , Un ∼ N(0, nρ2). These compo-
nents therefore have an upper tail probability function given for α > 0 by

P(Uj > α) = P
(

(n
1
2 ρ)−1Uj > (n

1
2 ρ)−1α

)
= Q

(
(n

1
2 ρ)−1α

)
,

where the Q-function is as defined above. We can now obtain a bound for the tail
probability for the maximum of |U1|, . . . , |Un| for moderate (n

1
2 ρ)−1α by using

the union bound [18] to obtain

P (max{|U1|, . . . , |Un|} > α) = 2 P (max{U1, . . . , Un} > α) ≤ 2nP(Uj > α)

≤ 2nQ
(

(n
1
2 ρ)−1α

)
≤ 2n

3
2 ρ

(2π)
1
2α

exp

(
− α2

2nρ2

)
.

We can now give a bound for the probability of decryption failure for a degree-
1 ciphertext using the Γ -basis. In this case, decryption fails if the absolute size
of any component of exceeds 1

2q, so taking α = 1
2q for moderate and large

η1(n, q, ρ) = 1
2 (n

1
2 ρ)−1q gives

P

(
Incorrect decryption of SymHom
degree-1 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
1)

(2π)
1
2 η1

.

Corollary 2. If η2 = 1
2 (n

1
2mpρ1ρ2)−1q is moderate or large, then the probabil-

ity of the incorrect decryption of a SymHom degree-2 ciphertext in the pΓ -basis
for H is bounded by

P

(
Incorrect decryption of SymHom
degree-2 ciphertext in pΓ -basis

)
≤

2n exp(− 1
2η

2
2)

(2π)
1
2 η2

.



Proof. The decryption of a SymHom degree-2 ciphertext C(θ;µ1, µ2) involves pro-

cessing this ciphertext as Jσ(C(s;µ1, µ2))Km
−1pΓ

q , that is to say by regarding this
Embedded Noise expressed as a vector with respect to the rescaled decoding con-
jugate pair m−1pΓ -basis. The processing of a degree-2 ciphertext fundamentally
therefore simply involves change of basis transformations for bases for H ulti-
mately to the m−1pΓ -basis. Thus we can adapt the argument of the proof of
Theorem 2 simply by using the appropriate moments, and so we can replace ρ
in η1 with mpρ1ρ2 in to give η2 = η1(n, q,mpρ1ρ2) = 1

2 (n
1
2mpρ1ρ2)−1q.
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