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Abstract. We present ”UniqueChain”, a proof-of-stake based blockchain
protocol that achieves secure initialization of newly joining parties with-
out any additional trusted assumptions and fast messages (transactions)
confirmation. Specifically, the adversary can send corrupt instructions to
any parties at any time mildly and have messages delivery delay with an
upper bound. Security of our protocol holds if majority of overall stakes
are controlled by honest parties.
In ”UniqueChain”, we propose a new form of two-chain structure that
consists of two tightly linked chains named leader chain and transaction
chain with two types of corresponding blocks named leader block and
transaction block. To achieve the above guarantees, we formalize a se-
cure bootstrapping mechanism for new parties in open setting and real-
ize uniqueness of transaction chains held by honest parties. We prove
that ”UniqueChain” satisfies security properties as chain growth, chain
quality, common prefix and soundness, and two additional properties as
uniqueness and high efficiency.

Keywords: proof-of-stake, secure initialization, uniqueness, high efficiency

1 Introduction

Blockchain, the technique of the most concern, has been investigated in various
fields in recent years and believed to make huge changes to the future world, such
as finance. Bitcoin, introduced in [23], is the first successful implementation of
blockchain. Parties compete to extend chains by solving a computational puzzle
(proof-of-work), which is a moderately hard hash inequality [11, 26], and the
opportunity of a party to be winner is related to the amount of computational
power that he has invested.

In bitcoin system, any forks must consume extra computational power and it
is rational that a party extends one chain all the time. As a result, the best chain
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selection rule-longest chain enables the new parties to be initialized securely and
freely. So that bitcoin system can scale to a large network in the open setting.
The core of bitcoin system has been extracted called bitcoin backbone protocol
and analyzed under specific assumptions in [16, 24, 17]. Their works show that,
assuming the majority of computational power are controlled by honest parties,
bitcoin system satisfies three security properties as chain growth, chain quality
and common prefix.

However, due to the essence of proof-of-work (PoW) mechanism, bitcoin
system has wasted a huge amount of computational power, which is the non-
recyclable physical resource. Proof-of-stake (PoS) is the most desirable mecha-
nism to replace PoW, which enables a party to provide a proof that he is eligible
to extend the chain. Precisely, the process of winner selection is related to some
properties of the parties themselves, such as the balance of their accounts. It is
attractive to design a PoS based blockchain protocol that is as secure as PoW
based ones. Unfortunately, we have got the negative results of constructing a
blockchain protocol in open setting via PoS mechanism [3]. Nothing-at-stake
attack enables the adversary to generate an alternative blockchain that could
be better than honest parties’ local chains even if the minority of stakes are
controlled by him. So that the newly parties have no means of distinguishing
honest chains from the malicious one. A secure bootstrapping is necessary for
new parties to identify the correct version of local chains. Further, efficiency
has always been a fundamental problem of constructing blockchain protocols in
the scalable and open network. In short, it is meaningful to achieve PoS based
consensus among honest parties in open setting and there are three challenges
to be handled as posterior corruptions, secure initialization of new parties and
low efficiency. Here, we have the following interesting question:

Is it possible to construct a fast and provably secure proof-of-
stake based blockchain protocol in the open setting, which provides

secure initialization for new parties without any trusted assumptions?

1.1 Our Contributions

In this paper, we obtain a positive result of the above question. Informally,
our contributions can be briefly summarized in the following outline. First, we
introduce three main challenges about designing PoS based blockchain protocols
in the open setting.

– Posterior Corruptions. Unlike PoW based blockchain protocols, where
there are no free valid blocks. The essence of PoS mechanism determines
that the adversary can rewrite history freely by corrupting the elected hon-
est parties at some point in the future. It means that an (fully) adaptive
adversary can generate an alternative blockchain without losing anything to
mislead the existing honest parties to make wrong selections.

– Secure Initialization of New Parties. As discussed above, nothing-at-
stake attack enables the adversary to hold a chain that is indistinguishable
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from the existing honest parties’ and mislead the newly joining parties to
choose the wrong version of local chains successfully.

– Low Efficiency. Efficiency has always been a problem of blockchain proto-
cols to be solved. Note that, most of existing schemes can only guarantee a
common prefix of chains held by honest parties and the main reasons can be
listed as follows. (1). Due to the facts that an elected adversary may behave
maliciously (i.e., hide new blocks or broadcast more than one blocks at the
same time in PoS based blockchain protocols) and more than one parties
may be elected synchronously, so it is unavoidable that honest parties hold
different views of the latest several blocks, (2). Messages depend tightly on a
newly created block. Consequently, it is impossible to confirm messages im-
mediately and eventually when the block that consists of them is received.
We stress that the major cause is that honest parties hold different views of
the party who is eligible to create a block that consists of messages.

Handling Posterior Corruptions. In our protocol, we consider a mildly
adaptive adversary that the corrupt instruction takes δ slots to be effective.
Inspired by the solution in [3], existing honest parties can compare local chains
with the ones received from network. Based on protocol execution, at any time,
honest parties will always reject a chain pair if the leader chain forks more than
K ∈ N (the parameter of common prefix property) blocks or the transaction
chain is longer with more than one blocks from their local ones. In this way,
adversary cannot convince the existing honest parties to revise their local chains.

Note that parameter δ should be set reasonably in that (1). a small δ means
stronger security, but it will lead the existing honest parties to the adversarial
chain (2). a big δ means that protocol is secure with a relative static adversary.
We set δ > R+ε to ensure the leader blocks created by honest parties in current
epoch are confirmed before the corrupt instruction takes effect, where R is the
length of an epoch and ε is a secure margin for the last honest leader of an epoch.

Achieving Secure Initialization of Newly Joining Parties. As dis-
cussed above, it is impossible for the newly joining parties to be consistent with
existing honest parties without any additional help. [3] achieves secure bootstrap-
ping by providing new parties with a list of parties with honest majority. New
parties can be bootstrapped from the genesis block [1] that the initial parties
provide them with local states.

We can see that these given solutions aim to introduce a lower bound for
initializing new parties and the additional trusted assumption is unavoidable.
Therefore, we try to discard the trust assumption. Inspired by these existing
solutions, instead of providing the new parties with a trusted list of parties, we
propose a mechanism that allows the most recent elected parties to provide the
new parties with their local states in a self-organized manner.

Precisely, we introduce a new type of transactions called requesting transac-
tions Txr that allows new parties to require the current state for secure joining.
In details, Txr with fixed value v = 0 has at least one valid inputs and l̃ outputs,
where l̃ is the expected number of parties being elected during an epoch. Note
that we aim to let new parties obtain the common prefix (confirmed blocks)
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of existing honest parties’ local leader chains. A party Pj can provide the new
parties with his local leader chain Cloc by broadcasting a genaral (spending)
transaction at slot sleij′ as Txg = (h−1, v, sl

ei
j′ , π, ω = (sleij , c, σ)) successfully if

the followings are satisfied. (1). h−1 is index of Txr created at some slot of epoch
ei. (2). v = 0 is value of Txg. (3). H(pkj , sl

ei
j , nonce

ei) < T ei denotes that Pj is
elected as leader at slot sleij of epoch ei with random number nonceei and diffi-

cult target T ei . (4). H∗(pkj , nonceei) mod l̃+1 = i indicates that Pj can redeem
the ith output of Txr. (5). c = Encpk(C′loc) is encryption of Cloc’s latest l > K
blocks under public key of requiring party. (7). V erpkj (Txg, σ) = 1 denotes that
σ is correct signature of Txg under Pj ’s signing key. Note that H,H∗ are two
hash functions with specific outputs. As soon as all the elected honest parties
of epoch ei have broadcasted their transactions, then new parties can determine
the common prefix of exisiting honest parties’ local chains and further get a
correct local chain. More details are showed in section 4.

At the beginning of an epoch, the leader selection function H is determined
so are the elected parties of the current epoch. So that new parties can join the
network at any time. Note that party Pj can provide his whole local chain when
len(Cloc) ≤ K (len(Cloc) denotes length of Cloc) and new parties choose one chain
randomly in that no blocks have been confirmed by honest parties now.

Achieving High Efficiency of Handling Messages. In PoS based blockchain
protocol, there are two main ways to handle messages (1). an elected party is
eligible to create a block that consists of messages [20, 9, 1], (2). an elected par-
ty first creates an empty block, then the empty block is viewed as a random
beacon to select a party to generate a block with payloads [15, 10]. We can see
that the processes of leader electing and handling messages are synchronized, so
that the messages will be confirmed if and only if the backed block is confirmed
by honest parties. As discussed above, honest parties cannot hold a same local
chain. Consequently, the newly created blocks cannot be confirmed immediately
by honest parties, so are the messages packed in the blocks.

Fast messages confirmation means that once a transaction block is accepted
by an honest party, then it is confirmed by all honest parties finally without wait-
ing for being backed by several blocks. In our protocol, we separate these two
processes discussed above. More concretely, we introduce two types of blocks as
leader block and transaction block that correspond to two types of blockchains as
leader chain and transaction chain, and propose a new form of two-chain struc-
ture. Indeed, an elected party is allowed to create an empty block-leader block
and then he is eligible to create a transaction block that consists of messages if
his leader block has been confirmed by all the honest parties, which means that
the leader block is in common part of honest parties’ local chains.

The uniqueness of the common part held by honest parties determines the
uniqueness of party who is eligible to extend the current transaction chain
in network. As a result, at any slot, there is at most one valid newly created
transaction block in network and honest parties hold a same view of the current
transaction chain, and that is why we call our chain as unique chain. During
protocol execution, honest parties hold different local leader chains that enjoy
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a large common prefix with overwhelming probability and a same transaction
chain. We stress that transaction chain will not be extended until the length of
leader chain is at least K + 2 ∈ N and these two chains will not grow together
in that the elected adversary may not create or broadcast valid blocks. In short,
in our protocol, the honest parties hold forked local leader chains that enjoy
a common prefix and an unique local transaction chain that is at least K + 1
blocks shorter than leader chain.

UniqueChain ΠUC . Based on the above description, our blockchain con-
sists of two types of chains (Fig.2) and four phases (section 2.3). Precisely, we
present our protocol in the {Finit,Fres,FNET }-hybrid model and prove that
with overwhelming probability, the chains held by honest parties satisfy four
fundamental security properties as chain growth, chain quality, common prefix
and soundness, and two additional properties as uniqueness and high efficiency.

1.2 Related Work

Chaum introduces the first e-cash system with a central bank[8]. Bitcoin is the
first fully decentralized currency system [23] introduced by Nakamoto. The suc-
cess of bitcoin brings us the first scalable consensus protocol in the open setting,
where parties can join or leave freely.

Recently, a number of works focus on the investigation of security of bitcoin
system. Garay et al. formally analyze the core of Nakamoto’s blockchain protocol
in synchronous network [16] and propose two security properties as chain quality
and common prefix. [21] is the first to define chain growth property formally.
Pass et al. extend their works to asynchronous networks [24]. In [17], Garay et
al. further consider the difficulty target recalculation function in the adaptive
setting. Chain quality, chain growth and common prefix have been considered
as the fundamental properties of blockchain protocols. [12, 14, 27, 28] analyze
bitcoin system in the rational setting.

Despite the success of PoW based blockchain protocols, they have some
inevitable flaws, i.e., consuming a huge amount of non-recyclable physical re-
sources. It is meaningful to construct blockchain protocols that rely on environment-
friendly resource. PoS mechanism [2] enables a party to prove ownership of some
stakes and a number of works have been studied PoS based blockchain protocols.

Sleepy [25] studies the distributed protocols in a sleepy model of computa-
tion where players can be on-line (alert) or off-line (asleep), considers a fixed
stakeholder distribution and sporadic participation happens at any given point.
Ouroboros [22], the first PoS based blockchain protocol with rigorous security
guarantees, does not consider sporadic participation that parties are fixed in
genesis block. The elegant work Algorand [18] is an adaptive secure PoS based
blockchain protocol. But it requires the elected committee members being online
and makes progress if majority of committee members do show up. What’s more,
the current committee runs a Byzantine agreement protocol, which can only be
secure against 1

3 adversary. Snow White [3] is the first to formally articulate
the robust requirements for PoS based blockchain protocols. A negative result
is concluded that it is impossible for a newly joining party correctly identifying
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the true version of history without additional trusted advices. Further, a mild-
ly adaptive adversary is considered and the check pointing idea helps existing
parties to choose the best local chains correctly. [9] presents Ouroboros Praos,
the first PoS based blockchain protocol that guarantees security against a fully
adaptive adversary in semi-synchronous setting with cryptographic techniques
as verifiable random function and forward secure digital signature scheme. [1]
improves Ouroboros Praos to achieve dynamic availability as bitcoin system.
In this protocol, the new or off-line parties can safely (re-)join and bootstrap
their local chain from the genesis block. In fact, the genesis block consists of the
initial parties who provide their local states for new parties. However, it ignores
a condition that the adaptive adversary may corrupt most of the initial parties
and provide the wrong version of local states for the requesting parties.

The two-chain structure blockchain has been studied. [10] proposes a scheme
with two types of chains called PoW-chain and PoS-chain via combining PoW
and PoS mechanisms efficiently to against a malicious majority of computing
power in open setting. [15] shows a PoS based blockchain with two chains to
mimic PoW based blockchains. [13] achieves high throughput via proposing two
types of blocks called key-block and micro-block, in which the current leader
do not stop handling transactions (micro-block) until the next leader is elected
(key-block). In these proposed schemes, the blocks with messages (transactions)
link to the newly-created empty blocks, which have not been confirmed by hon-
est parties. So that they only guarantee the common-prefix property of honest
parties’ local chains and messages (transactions) are confirmed only when the
corresponding block is deep enough. Consequently, fast messages confirmation
is still not achieved.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. In section 2, we present the
preliminaries of our protocol. The ideal functionalities used in our protocol are
showed in section 3. Then we give the detailed construction of our protocol in
section 4. Security analysis is in section 5. Conclusion is presented in section 6.

2 Preliminaries

In this section, we follow Canetti’s formulation of the multiparty protocol exe-
cution [6, 7] and Pass’s cryptographic model for blockchain protocol [24] to give
the formal model of protocol execution and some related definitions.

2.1 The Model of Protocol Execution

Epoch-based execution. Protocol executes in disjoint and consecutive time in-
tervals called epoch. More concretely, time is divided into fixed size unites called
slot sl and each epoch e consists of R ∈ N slots that ei = {sleij , j ∈ {1, ..., R}}
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denotes the ith epoch. We assume that each party holds almost synchronous
local clock, so is the current slot.

The parties. In open setting, parties can join or leave the network safely
without any permissions. We classify parties who maintain the system into two
sets in the network as the existing parties E that have caught up with protocol
execution and the joining parties J that are in the initializing phase.When a
party P ∈ J is initialized successfully, then we have E = E∪{P} and J = J/{P}.
Further, E consists of honest parties H and corrupted parties C.

The adversary. In decentralized setting, adversary A is fully adaptive that
controls the entire local states of corrupted parties as soon as it sends the corrupt
instruction. In our epoch-based protocol, we set A as mildly adaptive that the
corrupt instruction takes effect after δ > R + ε slots since it is sent. Parameter
δ guarantees the adversary can control the whole leaders of the current epoch
with negligible probability, even if he can foresee the leaders at the starting of
the epoch (the time that leader election function is determined). We set a secure
margin ε that ensures the block created by the last honest leader of an epoch
to be confirmed by all honest parties before the corrupt instruction takes effect.
Note that A can send corrupt instruction at any time of protocol execution,
which will take effect in the next epoch.

In order to describe easily, we borrow the flat model from [16] that each party
holds one unite of stake and security holds if majority of existing parties are
honest. More formally, there exists a constant ϕ > 0 such that during protocol

execution, we have |H||C| ≥ 1 + ϕ. Moreover, we assume that |E| · p << 1, where

p = T ei

2k
(security parameter k) is probability that a party with one unit stake is

elected at a given slot of epoch ei and T ei is different target determined by the
current distribution of stakes in network to ensure a stable growth of chain.

FUNCTIONALITY FNET

FNET is parameterized by ∆, interacts with an ideal adversary S and a set of parties
P ⊆ E . At slot sleij (i ∈ N, j ∈ {1, ..., R}), it proceeds as follows.

– Upon receiving input (Broadcast,m) from a party Pi′ ∈ P, sends (Broadcast,m)
to S and records (Pi′ ,m, b = 0, sleij ).

– Upon receiving (Broadcast,m, P ′i′ , t) from S, where P ′i′ ∈ P, then
• if there is a record (Pi′ ,m, b = 0, sleij ) and t 6 sleij +∆, then sends (m,P ′i′) to

all the other parties at time t and sets b = 1.
• else, if t > sleij +∆, then sends (m,P ′i′) to all the other parties at time sleij +∆

and sets b = 1.
• else, ignores the message.

Fig. 1. The Communication Network Functionality FNET
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Communication Network. In blockchain protocol, the parties communi-
cate with each other via a diffusion mechanism that guarantees the messages
sent by a party can be eventually received by the other parties. Here, we assume
a slot-synchronous network and parties (in E or J) have access to a function-
ality FNET that is parameterized with an upper bound ∆ 6 1 slot to reflect
the network latency and guarantee that the messages sent by honest parties are
delivered within a slot. Formally, FNET proceeds as follows. Upon receiving an
instruction to diffuse messages from a party at slot sleij , then FNET asks the
adversary for the delivery time. If the specified time t ≤ sleij + ∆, then set the
delivery time as t′ = t, else t′ = sleij +∆. Note that the source of messages can
be modified by adversary and no messages delivery is delayed by more than one
slot. FNET is described in Fig.1.

2.2 Notations

Cryptographic Techniques.

1. Collision-Resistant Hash Functions. In our protocol, function H determines
the leaders of each slot andH∗ determines the serial number of the requesting
transaction’s output that can be redeemed by a party. Note that for each
epoch, there is an unique random seed nonce for H and H∗.
– H : {0, 1}∗ → {0, 1}k, where k is security parameter.
– H∗ : {0, 1}∗ → {0, 1}k′ , where l̃ = 2k

′
is the expected number of parties

being elected during a given epoch.
2. Semantically-Secure Public Key Encryption Scheme. (Gen,Enc,Dec) is de-

noted as a semantically secure public key encryption scheme.
3. Digital Signature Scheme. (Gen, Sig, V er) is denoted as an unforgeable dig-

ital signature scheme.
4. Commitment Scheme. (Com,Open) is denoted as a commitment scheme

with security properties as correctness, binding and hiding.

Two Types of Blocks. In our protocol, we propose two types of blocks
B = (h−1, sl, pk, σ) and B̃ = (h̃−1, h−1, sl, pk,X, nonce, σ). B denotes leader
block that is an empty block created by the elected parties of each slot and B̃
denotes transaction block that consists of messages created by a party if his
former leader block B′ has been confirmed by the honest parties.

– Bi′ = (h−1, sl
ei
j , pki′ , σi′) and V(Bi′) = 1 if and only if:

• h−1 = H(Bi′−1). Bi′ links to its parent leader block correctly.
• Bi′ .sl > Bi′−1.sl. Leader chain with a strictly increasing sequence of

time.
• H(nonceei , sleij , pki′) < s∗T ei . Party Pi′ with address pki′ and stake s is

the leader of sleij exactly, where nonceei determines the leader election
function of ei, T

ei is the difficult target of ei and s = 1.
• V erpki′ ([Bi′ ], σi′) = 1. The signature on (h−1, sl

ei
j , pki′) under Pi′ ’s sign-

ing key is correct.
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– B̃j′ = (h̃−1, h
′

−1, sl
ei
j , pkj′ , X, noncej′ , σj′) and Ṽ(B̃j′) = 1 if and only if:

• h̃−1 = H(B̃j′−1). B̃j′ links to its parent transaction block correctly.
• B̃j′ .sl > B̃j′−1.sl. Transaction chain with a strictly increasing sequence

of time.
• h′−1 = H(B′). B̃j′ links to its parent leader block B′ correctly.
• Fresh(B′) = 1. B′ is the latest confirmed leader block by honest parties

up to the beginning of sleij .

• B̃j′ .pk = B′.pk. The creator of a confirmed leader block pkj′ is eligible
to create a transaction block.

• V (X) = 1. The messages packed in transaction block are valid.
• noncej′ ∈R {0, 1}k. A random value that is sampled uniformly from
{0, 1}k and used for generating nonceei+1 .

• V erpkj′ ([B̃j′ ], σj′) = 1. The signature on (h−1, h
′

−1, sl
ei
j , pkj′ , X) under

Pj′ ’s signing key is correct.

In our protocol, a blockchain C∗ = {C, C̃} consists of two chains called leader
chain C = B0, B1, ..., Bn and transaction chain C̃ = B̃1, ..., B̃m, where B0 is
genesis block created by initial parties, Bn and B̃m are the heads of C and C̃.
Let len(C) = n + 1 and len(C̃) = m denote the length of C and C̃ respectively.
What’s more, n −m ≥ K, where K ∈ N is the parameter of common prefix
property. Let Cdκ denotes a chain by pruning the κ rightmost blocks of C and if
κ ≥ len(C), then Cdκ = ε is an empty string. C1 � C2 means that C1 is a prefix
of C2. C∗ is valid if V(Bi) = 1 and Ṽ(B̃j) = 1, where Bi ∈ C (i ∈ {1, ..., n}) and

B̃j ∈ C̃ (j ∈ {1, ...,m}). More formally, C∗ is pictured in Fig.2.

Fig. 2. UniqueChain Structure
The black arrows denote leader chain C and the blue arrows denote the transaction
chain C̃. Dark blue blocks denote the blocks that have been confirmed by honest parties
and the red blocks denote the unstable blocks. C̃ starts when block B1 has been backed
by K blocks. Block Bi+1 is the latest confirmed block held by honest parties and
n−m ≥ K. Note that C and C̃ do not grow synchronously at some slots.

Two Types of Transactions. For the secure joining of new parties, we
introduce two types of transactions Txg and Txr. Txg denotes the general trans-
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actions between payer and payee, and Txr is the requesting transaction that en-
ables the new parties to obtain a trusted set of leader chains provided by the most
recent elected parties. Note that transaction Tx redeems (spends) transaction
Tx′ means that the output(s) of Tx′ is the input(s) of Tx.

– Txg = (h−1, v, sl, π, b = 0, ω) is treated as a general transaction that Pi′ pays
for Pj′ , where h−1 is index of the spent transactions Tx′g, v is transaction
value, sl denotes the time that Txg is created, π specifies the conditions that
Txg can be spent, b = 0 indicates that Txg is a general transaction and ω is
witness to make Txg be evaluated true Tx′g.π(Txg) = 1.

– Txr = (h−1, v, sl, π, b = 1, ω) is requesting transaction with at least one
valid input and l̃ outputs broadcasted by new parties who intend to join
and maintain protocol execution. l̃ = p ∗ |E| ∗ R is the expected number
of parties being elected during epoch ei. The other notations h−1, v, sl, π, ω
are the same as in Txg, b = 1 denotes that Txr is a requesting transaction.
The i′th output of Txr can be redeemed by Txg = (h−1, v, sl, π, b = 0, ω)
broadcasted by party Pj′ with address pkj′ successfully (Txr.π(Txg) = 1) if
• h−1 is index of Txr and v = 0.
• Txg.sl = Txr.sl+1 for Txr.sl < sleiR or Txg.sl = sl

ei+1

1 for Txr.sl = sleiR .
• ω = (sleij′′ , c, σ)
∗ H(pkj′ , sl

ei
j′′ , nonce

ei) < T ei . Pj′ is a leader of slot sleij′′ .
∗ c = Encpk(C′loc). The encryption of the latest l consecutive blocks
C′loc of Pj′ ’s local leader chain, where l > K.

∗ V erpkj′ ([Txg], σ) = 1. The signature on (h−1, v, sl, π, b = 0, sleij′′ , c)
under Pj′ ’s signing key is correct.

• H∗(pkj′ , sleij′′ , nonceei) mod l̃ + 1 = i′. Txg can redeem the i′th (i′ ∈
{1, ..., l̃}) output of Txr.

Remarks. With the uniqueness property of transaction chains held by
honest parties (section 5.1), and the tight relation between leader chains and
transaction chains, new parties can only be provided with leader chains. Here
we explain that our method is practical. (1). It is feasible to treat new parties as
ordinary users to broadcast transactions. (2). Txr with value v = 0 is just treated
as a mechanism to help new parties to initiate securely and not a permission for
joining the system. Honest parties are willing to provide new parties with local
states honestly to increase their power and further guarantee security of system
and honest parties’ interests. (3). In slot-synchronous network, Txr must be
received by honest parties at the end of Txr.sl and the corresponding redeeming
transactions Txg broadcasted by honest parties must be received by new parties
at the end of the next slot, so that new parties can be initialized within two
slots. (4). Under honest majority assumption, more than half of elected parties
of an epoch are honest and H∗(pkj′ , sleij′′ , nonceei) mod l̃ + 1 = i′ indicates that
Pj′ can only redeem the i′th output of Txr successfully, so that more than half
of chains obtained by new parties are provided by honest parties. (5). c ensures
that only new parties who have sent requesting transactions can get the set of
chains and c can be not verified publicly for (4).
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2.3 Overview of Protocol ΠUC

In this section, we present a high overview of protocol ΠUC . In our protocol, the
two chains C and C̃ are plaited tightly. Precisely, as described in section 2.2 and
pictured in Fig.2, a leader block Bi links to its former block Bi−1, a transaction
block B̃j links to its former block B̃j−1 and a confirmed leader block B′ that has
been in the common part of honest parties’ local chains. Informally, our protocol
consists of four phases and proceeds as follows.

1.Initialization. The initial epoch e0 consists of two slots sle01 and sle02 .
The initial parties agree on a difficult target T e1 and a random value noncee1

for the first epoch e1 together, where T e1 is determined by the distribution of
initial parties’ stakes and noncee1 is a random beacon for selecting leaders. More
concretely, each party Pi first computes and broadcasts the commitment of his
stake si and uniformly selected values ri, r

′
i as Com(si, ri; r

′
i). Then he collects

the received commitments at the end of sle01 , opens and broadcasts messages
as (si, ri). Finally, he collects all the valid openings and computes the genesis
block as B0 := (T e1 , noncee1) locally at the end of sle02 . What’s more, based on
the uniqueness property of transcation chains held by honest parties, T ei and
nonceei are determined by the stakes distribution and the nonce in transaction
blocks of epoch ei−1 (i ∈ {2, 3, ...}) respectively. During protocol execution, for
the initialization of newly joining parties, they are bootstrapped by broadcasting
the defined requesting transactions Txr at any slot.

2.Fetching Information from Network. During protocol execution, par-
ties can collect information from network that consists of transactions, blockchain-
s, ect. At slot sleij , the elected parties of ei extract the set of requesting transac-
tions and provide the new parties with their local states (chains) by broadcasting
the defined redeeming transactions. The elected parties of sleij extract the set of
chains. The parties whose former leader blocks have been backed by K blocks
extract the set of chains and transactions. The new parties extract the set of
corresponding redeeming transactions to get a trusted set of chains.

3.Update Local State. Upon receiving information from network, each
existing party compares them with local state and determines the best local state
via executing protocol BestV alid′ (Fig.6). For the new parties, they execute
protocol BestV alid′′ (Fig.7) to determine the initial state (chain).

4.Extend Chain. At slot sleij , each existing party tries to extend local chain.

Formally, party Pi′ with local chain C∗i′ = (Ci′ , C̃i′) first determines whether he
is elected as a leader by computing H(sleij , pki′ , nonce

ei) ≤ T ei and if it is true,
he creates a leader block B to extend Ci′ . At the same time, if a leader block
B′ created by Pj′ with local chain C∗j′ = (Cj′ , C̃j′) has been backed by K blocks

in his local chain, then he creates a transaction block B̃ to extend C̃j′ . Finally,
the elected parties broadcast their updated local states (chains).

2.4 Security Properties

The security properties of blockchain protocols have been well defined [16, 21,
24]. In our protocol, we consider chain growth and chain quality of the leader
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chains and transaction chains held by existing honest parties, common prefix
of the leader chains held by existing honest parties and chain soundness [15] of
leader chains held by new parties.

Definition 1 (Chain Growth). Consider protocol ΠUC , chain growth property
with parameters g and g̃ states that during protocol execution EXECΠUC ,A,Z ,

for any two existing honest parties P1 and P2 with local chains C∗1 = {C1, C̃1}
at slot sl and C∗2 = {C2, C̃2} at slot sl′ respectively. Let t = sl′ − sl > 0, then it
holds that len(C2)− len(C1) ≥ g · t and len(C̃2)− len(C̃1) ≥ g̃ · t, where g ≥ g̃ are
the lower bound of chain growth rate.

Definition 2 (Chain Quality). Consider protocol ΠUC , chain quality property
with parameters µ ∈ (0, 1), µ̃ ∈ (0, 1) and l ∈ N states that during protocol
execution EXECΠUC ,A,Z , for any existing honest party P with local chain C∗ =

{C, C̃}. It holds that for any large enough l consecutive blocks of C and C̃, the
ratios of blocks created by adversary are at most µ and µ̃ respectively.

Definition 3 (Common Prefix of leader chain). Consider protocol ΠUC , com-
mon prefix property with parameter K ∈ N states that during protocol execution
EXECΠUC ,A,Z , for any two existing honest parties P1 and P2 with local chains

C∗1 = {C1, C̃1} at slot sl and C∗2 = {C2, C̃2} at slot sl′ respectively. Let sl′ ≥ sl,

then it holds that CdK1 � C2.

Definition 4 (Soundness of leader chain). Consider protocol ΠUC , soundness
property with parameter K ∈ N states that during protocol execution EXECΠUC ,A,Z ,

for a new party P1 initialized with chain C∗1 = {C1, C̃1} at slot sl and an exist-
ing honest party P2 with local chain C∗2 = {C2, C̃2} at slot sl, then it holds that

CdK1 � C2 and CdK2 � C1.

Based on the above four properties, we prove that the transaction chains
held by honest parties satisfy uniqueness and further high efficiency of handling
messages is achieved.

Definition 5 (Uniqueness of transaction chain). Consider protocol ΠUC , u-
niqueness property states that during protocol execution EXECΠUC ,A,Z , for any

two honest parties P1 and P2 with local chains C∗1 = {C1, C̃1} and C∗2 = {C2, C̃2}
at the end of slot sl respectively. Then it holds that C̃1 = C̃2.

Definition 6 (High Efficiency). Consider protocol ΠUC , high efficiency prop-
erty states that during protocol execution EXECΠUC ,A,Z , if a transaction block

B̃ has been confirmed by an existing honest party P at slot sl, then B̃ will be
confirmed finally by all the existing honest parties at the end of sl.

3 Ideal Functionalities

Following Canetti’s formulation of the real world protocol executions [4], we
present our blockchain protocol ΠUC (UniqueChain) in the {FinitFres,FNET }-
hybrid model. Formally, the execution of ΠUC is directed by an environment
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Z(1k) with security parameter k. Z activates a number of parties (stakeholders)
with inputs X. Moreover, Z communicates with a mildly adaptive adversary A
who controls a certain number of parties freely. In this section, we introduce the
ideal functionalities used in our protocol and their implementations are presented
in appendix A and B.

Finit. At the beginning of protocol execution, a genesis block that consist-
s of the difficult target T e1 and random value noncee1 of epoch e1 is created.
Formally, Finit is parameterized by the initial parties P1, ..., Pn and their respec-
tive stakes s1, ..., sn, and proceeds as follows. In genesis epoch e0 = {sle01 , sl

e0
2 },

based on the stakes distribution of initial parties, Finit computes T e1 and choose
a random value noncee1 ∈R {0, 1}k, and then generates genesis block as B0 =
(T e1 , noncee1). Now, the initial parties are initialized and get into epoch e1 to
start protocol execution. In non-genesis epoch, upon receiving the request of
secure joining from new parties, Finit returns B0.

Fres. At any slot, each party has access to Fres to determine if he is eligible
to create a leader block or a transaction block and ask for the validity of blocks.
Formally, each party first sends the register command for joining and unregister
command for leaving the execution. At any slot, Fres grants each registered party
with one unit of stake, sets a party as leader with probability p. What’s more,
Fres maintains a set (Ctr,P) = {(Ctreij ,P

ei
j )}i∈N, j∈{1,...,R}, where Ctreij is a

counter and Ctre0b = 0 (b ∈ {1, 2}), and Peij is a set of elected parties at sleij and
initialized to φ (an empty set). If at least one parties are elected at sleij , then set
Ctreij = Ctreij−1+1 and adds the corresponding elected parties to Peij , otherwise,
set Ctreij = Ctreij−1 and Peij = φ. Each elected party can create a leader block.
Further, if Ctreij −K = Ctreij′ > 0 and Peij′ 6= φ, then Fres uniformly selects a
party P ∈ Peij′ who is eligible to create a transaction block, where Ctreij is the
current counter. At any time, each party has access to the verification process
of Fres to verify blocks. The formal description of Fres is given in Fig.4.

FUNCTIONALITY Finit

Finit is parameterized by initial parties P1, ..., Pn and their respective stakes s1, ..., sn,
interacts with initial parties, new parties and ideal adversary S. Upon receiving any
forms of messages, it first gets the current slot from local clock and proceeds as follows.

– Upon receiving (Initialize, Pi′ , si′) from Pi′ at sleij (i ∈ N, j ∈ {1, ..., R})
• if i = 0 and j = 1, then
∗ computes the difficult target T e1 , samples a random value noncee1 ∈R

{0, 1}k and creates a genesis block B0 = (T e1 , noncee1), then stores B0

and sends (Initialized,B0) to Pi′ at sle02 .
• else, if i > 0 and B0 has been created, then sends (Initialized,B0) to Pi′ .
• else, sends (Error) to Pi′ .

Fig. 3. Initialization Functionality Finit
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FUNCTIONALITY Fres

Fres is parameterized by probability p, security parameter k, interacts with an ideal
adversary S and a set of parties E.

– Registration
1. Upon receiving (Register, Pi′) from party Pi′ ∈ E, if there is a record

(Pi′ , rei′ = 1), then ignore the message. Otherwise, send (Register, Pi′) to
S. Upon receiving (Registered, Pi′) from S, then record (Pi′ , rei′ = 1) and
send (Registered) to Pi′ . (Pi′ registered)

2. Upon receiving (Unregister, Pi′) from party Pi′ ∈ E, if there is no record
(Pi′ , rei′ = 1), then ignore the message. Otherwise, update record (Pi′ , rei′ =
0) and send (Unregistered) to Pi′ . (Pi′ unregistered)

– Stake Election. At slot sleij (i ∈ N, j ∈ {1, ..., R}).
1. Creating Leader Block: we set Ctreij = Ctreij−1 or Ctreij = Ctr

ei−1

R for j = 1
, and Pei

j = φ, every registered party is granted with one unite stake seij,i′ = 1.
• Upon receiving (L-Elect, Pi′) from Pi′ , proceed as follows.
∗ If there is a record (Pi′ , rei′ = 1, seij,i′ = 1), then

· with probability p, choose h ∈R {0, 1}k, then set Pei
j = Pei

j ∪
Pi′ , record the entry ((Pi′ , rei′ = 1, seij,i′ = 0),Pei

j ) and send (L −
Elected, Pi′ , f = 1) to Pi′ . (Pi′ is elected)
· with probability 1 − p, record the entry ((Pi′ , rei′ = 1, seij,i′ =

0),Pei
j ) and send (L-Elected, Pi′ , f = 0) to Pi′ . (Pi′ is not elected)

∗ Otherwise, send (L-Elected, Pi′ , f = 0) to Pi′ . (Pi′ is not elected)
If Pei

j 6= φ, then set Ctreij = Ctreij + 1. Update record as (Pei
j , Ctr

ei
j ).

(Record the elected parties Pei
j and the corresponding counter Ctreij of

sleij )
• Upon receiving (Compute,B−1, Pi′) from Pi′ . (Compute the index of the

former leader block)
∗ If Pi′ ∈ Pei

j and there is a record (B−1, h−1), then send
(Computed, h−1) to Pi′ . Otherwise, choose a random value h−1 ∈
{0, 1}k, record (B−1, h−1) and send (Computed, h−1) to Pi′ .

∗ Otherwise, send (Error) to Pi′ .
• Upon receiving (Sign, Pi′ , B) from Pi′ .
∗ If there is a record Pi′ ∈ Pei

j , then send (Sign, Pi′ , B) to adversary.
Upon receiving (Signed, (Pi′ , B), σ) from the adversary, record (B, σ)
and then send (Signed, (B, σ)) to Pi′ .

∗ Otherwise, send (Error) to Pi′ .
2. Creating Transaction Block:

• Upon receiving (T -Elect, Pj′) from Pj′ , then compute Ctreij −K = Ctreij′′ .

If Ctreij′′ > 0 and Pei
j′′ 6= φ, then uniformly choose a party Pj̃ ∈R Pei

j′′ .
(Only one party Pj̃ is elected to create transaction block).
∗ If Pj′ = Pj̃ , then record (Pj′ , Ctr

ei
j , Ctr

ei
j′′) and send (T −

Elected, Pj′ , f̃ = 1) to Pj′ . (Pj is elected)
∗ Otherwise, send (T -Elected, Pj′ , f̃ = 0) to Pj′ . (Pj′ is not elected)

• Upon receiving (Compute, B̃−1, B−1, Pj′). (Compute the index of the for-
mer transaction block and the corresponding leader block)
∗ If there is a record (Pj′ , Ctr

ei
j , Ctr

ei
j′′), then if there is a record

(B̃−1, h̃−1), (B−1, h−1)), send (Computed, h̃−1, h−1) to Pj′ . Other-
wise, choose h̃−1, h−1 ∈ {0, 1}k, record ((B̃−1, h̃−1), (B−1, h−1)) and
send (Computed, h̃−1, h−1) to Pj′ .

∗ Otherwise, send (Error) to Pj′ .
• Upon receiving (Sign, Pj′ , B̃) from Pj′ .
∗ If there is a record (Pj′ , Ctr

ei
j , Ctr

ei
j′′), then send (Sign, Pj′ , B̃) to

adversary. Upon receiving (Signed, (B̃, σ̃)) from the adversary, then
record (B̃, σ̃) and send (Signed, (B̃, σ̃)) to Pj′ .

∗ Otherwise, send (Error) to Pj′ .
– Verification Upon receiving (V erify, P ′i′ , B(B̃), σ(σ̃)) from a party Pi′ ∈ E.
• If there is a record of the form (P ′i′ , B(B̃), σ(σ̃)), then send f ′(f̃ ′) = 1 to Pi′ .
• Otherwise, send f ′(f̃ ′) = 0 to Pi′ .

Fig. 4. Resource functionality Fres
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4 Protocol ΠUC

In this section, we present the detailed description of our protocol ΠUC in the
{Finit,Fres,FNET }-hybrid model and give the corresponding sub-protocols.

4.1 The Formal Description of ΠUC

We now present protocol ΠUC in {FinitFres,FNET }-hybrid model. First each
party is initialized via Finit to get genesis block B0 and then gets information
from the network via FNET that consists of blockchains, transactions, ect. Note
that new parties only extract the corresponding redeeming transactions received
from network. Then, each party performs some validations via BestV alid′ (in
Fig.6)or BestV alid′′ (in Fig.7) to get the best local state and try to extend local
chain via Fres. Finally, each party updates and broadcasts local state via FNET .
More details are presented in Fig.5.

4.2 The Best Chain Algorithm: BestV alid

In decentralized setting, at any slot sleij (i ∈ N, j ∈ {1, ..., R}) each party
determines the local state independently. Algorithm BestV alid allows honest
parties to hold the best local states. In our protocol, we introduce two algorithms
BestV alid′ and BestV alid′′ for the existing parties and new parties respectively.

BestV alid′. It is parameterized with two content validation predicates V(·)
and Ṽ(·) to determine the validity of leader blocks and transaction blocks, and
parameter K ∈ N. It takes a set of chains Ceij and party Pi′ ’s local chain C∗loc as
inputs and proceeds as follows. A detailed description is showed in Fig.6.

– Discard chains in Ceij that the leader chains fork more than K blocks or the
transaction chains fork more than one blocks from local one. This comes
from the common prefix property of leader chains and the uniqueness of
transaction chains held by honest parties (theorem 3 and theorem 7).

– Discard invalid chains in the updated set Ceij,1. Validation predicates V(·) and

Ṽ(·) evaluate every leader block and transaction block in Ceij,1 sequentially.
– Discard chains in the updated set Ceij,2, where there are more than one differ-

ent blocks with the same slot created by a same party. The elected adversary
may create several valid blocks and send to different honest parties. What’s
more we believe that each honest elected party only creates one valid block.

– Compare local chain with the chains in the updated set Ceij,3 and determine
the best local one.

BestV alid′′. It is parameterized with parameters K ∈ N and l > K, and
content validation predicates V(·) and Ṽ(·). It takes two sets of chains Ceij and

C′eij as inputs and proceeds as follows. A detailed description is showed in Fig.7.

– Discard chain C′i′ ∈ C′eij if len(C′i′) 6= l, where i′ ∈ {1, ..., |C′eij |}. We believe
honest parties must provide chains correctly. What’s more, l > K ensures
new parties to get the latest confirmed part of honest parties’ local chains,
where l is the parameter of chain quality property of honest leader chains.
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PROTOCOL ΠUC

The protocol is parameterized by content validation predicates V and Ṽ, interacts with
parties Pi′ (i′ ∈ {1, 2, ...}) and adversary A at slot sleij (i ∈ N, j ∈ {1, 2, ..., R}) of
epoch ei. Proceeds as follows.

1. Initialization.
– if i = 0 and j = 1, then party Pi′ sends (Initialize, Pi′ , si′) to Finit and gets

(Initialized,B0).
– else, party Pi′ sends (Initialize, Pi′) to Finit, gets (Initialized,B0) and sends

(Broadcast, Txr, Pi′) to FNET .
Return (Initialized, Pi′) to the environment Z.

2. Fetching Information from Network. Each party fetches information from
FNET .

– Collect the information Mei
j received during sleij .

• the existing elected parties of sleij extract the set of chains Cei
j fromMei

j .
(The elected parties of sleij are eligible to extend leader chain).

• the existing elected parties of ei
∗ extract the requesting transactions Tei

j,r from Mei
j .

∗ create and broadcast general transactions Txg to redeem transactions
in Tei

j,r. (The elected parties of ei provide the new parties with their
local states by broadcasting the redeeming transactions).

• the parties whose former leader blocks have been backed by K blocks ex-
tract the set of chains Cei

j and the set of transactions Tei
j = {Tei

j,g,T
ei
j,r}

fromMei
j . (The parties are eligible to create transaction blocks that con-

sist of payloads)
• the new parties
∗ extract the set of chains Cei

j from Mei
j .

∗ extract the corresponding valid redeeming transactions Txg from Tei
j,g,

decrypt c in each Txg and get a set of chains C′eij . (The new parties
get a trusted set of leader chains).

3. Update Local State. After receiving information from FNET , then
– each existing party with local chain C∗loc, updates local chain as C∗loc :=
BestV alid′(C∗loc,C

ei
j ).

– each new party gets the initial local state as C∗loc := BestV alid′′(C′eij ,C
ei
j ).

4. Extend Chain. Each party Pi′ tries to extend local chain C∗loc = {C, C̃}. We
assume that Pi′ has registered to Fres and been granted with stakes si′ .

– Upon receiving (Input-Stake, Pi′) from environment Z, Pi′ extends chain C.
• send (L-Elect, B, Pi′) to Fres and then receive (L-Elected, Pi′ , f).
• if f = 1, then send (Compute,B−1, Pi′) to Fres and receive

(Computed, h−1).
• send (Sign, Pi′ , B) to Fres and receive (Signed, (B, σ)).
• set C := C ||B, C∗loc := {C, C̃} and send (Broadcast, C∗loc, Pi′) to FNET .

Return (Return-Stake, Pi′) to environment Z.
– Upon receiving (Input-Stake,X, Pi′) from the environments Z, where X is

the block payloads, Pi′ extends chain C̃.
• send (T -Elect, Pi′) to Fres and receive (T -Elected, Pi′ , f̃).
• if f̃ = 1, then send (Compute, B̃−1, B−1, Pi′) to Fres and receive

(Computed, h̃−1, h−1).
• send (Sign, Pi′ , B̃) to Fres and receive (Signed, (Pi′ , B̃), σ̃).
• set C̃ := C̃ || B̃, C∗loc := {C, C̃} and send (Broadcast, C∗loc, Pi′) to FNET .

Return (Return-Stake, Pi′) to environment Z.

Fig. 5. The Unique Chain Protocol ΠUC
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BestV alid′

BestV alid′ with parameter K ∈ N and two content validation predicates V(·) and
Ṽ(·). At slot sleij (i ∈ N, j ∈ {1, ..., R}), it takes a set of chains Cei

j := {(Ci′ , C̃i′), i′ ∈
{1, 2, ...,

∣∣Cei
j

∣∣}} and party P ’s local chain C∗loc := (C, C̃) as inputs and proceeds as
follows.

1. For each C∗i′ = (Ci′ , C̃i′) ∈ Cei
j , do

– if Ci′ forks from Cloc with more than K blocks or C̃i′ forks from C̃loc with more
than one blocks, then
• remove (Ci′ , C̃i′) from Cei

j and set Cei
j,1 := Cei

j /C
∗
i′

2. For each C∗i′ = (Ci′ , C̃i′) ∈ Cei
j,1, where i′ ∈ {1, ..,

∣∣Cei
j,1

∣∣}, do

– for each leader block B ∈ Ci′ and transaction block B̃ ∈ C̃i′
• if V(B) 6= 1 or Ṽ(B̃) 6= 1, then
∗ remove (Ci′ , C̃i′) from Cei

j,1 and set Cei
j,2 = Cei

j,1/C
∗
i′

3. For each given C∗i′ ∈ C
ei
j,2 (i′ ∈ {1, ..,

∣∣Cei
j,2

∣∣}), do

– for C∗j′ ∈ C
ei
j,2/C

∗
i′ , if (B.sl = B′.sl ∧ B.pk = B′.pk) ∨ (B̃.sl = B̃′.sl ∧ B̃.pk =

B̃′.pk), where B, B̃ ∈ C∗i′ , B′, B̃′ ∈ C∗j′ . Then
• remove C∗i′ and C∗j′ from Cei

j,2, and set Cei
j,3 := Cei

j,2/(C
∗
i′ , C∗j′)

4. For each C∗i′ = (Ci′ , C̃i′) ∈ Cei
j,3, where i′ ∈ {1, ..,

∣∣Cei
j,3

∣∣}, do

– set C∗best := C∗loc = (C, C̃)
– if len(Ci′) > len(C) or len(C̃i′)− len(C̃) = 1, then set C∗best := C∗i′ = (Ci′ , C̃i′)
– otherwise, set C∗best := C∗loc = (C, C̃)

Return C∗best

Fig. 6. The Best Valid Chain Protocol BestV alid′

– Clarify the chains in the updated set C′eij,1 into two sets C′eij,11 and C′eij,12.
As described in BestV alid′ that the leader chains held by honest parties
cannot be forked by more than K blocks. Let C′eij,11 be the set of chains that
fork more than K blocks from the chains in C′eij,12, so that ensures the chains
held by honest parties are in one set.

– Compare the size of C′eij,11 and C′eij,12, and choose the one whose size is bigger

than 1
2 |C
′ei
j |, i.e., C′eij,11. Based on the security assumption, at any time of

protocol execution, the majority of parties are honest, so are the elected
parties during an epoch. As a result, we believe that C′eij,11 must consists of
all the chains sent by honest parties. Now, we stress that the new parties
have determined the correct version of honest parties’ local leader chains.

– Find a set of transaction chains from Ceij that match with the leader chains

in C′eij,11 and get a set of chain pairs C′′eij,11. Clarify the set C′′eij,11 into several
subsets {C′′eij,111, ...,C′′j,11n}. in our protocol, the honest parties hold a same
local transaction chain, which will be proved in the uniqueness property.
So let C′′eij,11i be the set of chain pairs that with a same transaction chain.
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Without loss of generality, we assume that the size of C′′eij,111 is the biggest

one and if |C′′eij,111| > 1
2 |C
′ei
j |, then continue the process. Otherwise, halt.

– Verify every chain in C′′eij,111 and discard the invalid ones. If the updated

set C′′′eij,111 satisfies |C′′′eij,111| > 1
2 |C
′ei
j |, then uniformly choose a chain C′∗ ∈

C′′′eij,111 and set the corresponding chain C∗ ∈ Ceij as the current local chain.

BestV alid′′

BestV alid′′ with parameters K ∈ N and l > K, and two content validation predicates
V(·) and Ṽ(·). It takes two sets of chains Cei

j and C′eij as inputs, and proceeds as follows.

1. For each C′i′ ∈ C′eij , where i′ ∈ {1, ..., |C′eij |}, do
– if len(C′i′) 6= l, then remove C′i′ from C′eij and set C′eij,1 := C′eij /C′i′ .

2. For a given chain C′1 ∈ C′eij,1, set C′eij,11 = {C′1} and C′eij,12 = φ
– for each chain C′i′ ∈ C′eij,1, where i′ ∈ {2, ..., |C′eij,1|}
• if C′i′ forks more than K blocks from C′1, then set C′eij,12 := C′eij,12 ∪ C′i′ .
• else, set C′eij,11 := C′eij,11 ∪ C′i′ .

3. Compute the size of sets C′eij,11 and C′eij,12 as n11 and n12

– if n11 >
1
2
|C′eij |, then set C′eij,11 := C′eij,11

– else, if n12 >
1
2
|C′eij |, then set C′eij,11 := C′eij,12.

– else, halt.
4. Find a set of transaction chains from Cei

j that match with the leader chains in
C′eij,11 and get a set of chain pairs C′′eij,11.

5. For a given chain pair C′∗1 = (C′1, C̃′1) ∈ C′′eij,11, set C′′eij,111 = {(C′1, C̃′1)}.
– for every chain C′∗i′ = (C′i′ , C̃′i′) ∈ C′′eij,11, where i′ ∈ {2, ..., |C′′eij,11|}
• if C̃′i′ = C̃′h, where 1 ≤ h < i′, then set C′′eij,11h := C′′eij,11h ∪ (C′i′ , C̃′i′).
• else, add (C′i′ , C̃′i′) to C′′eij,11i′

– set C′′eij,111 be the set with the biggest size in {(C′′eij,11u), 1 ≤ u ≤ |C′′eij,11|}
• if |C′′eij,111| > 1

2
|C′eij |, then for every chain C′∗i′ = (C′i′ , C̃′i′) ∈ C′′eij,111,

where i′ ∈ {1, ..., |C′′eij,111|}
∗ for every B ∈ C′i′ and B̃ ∈ C̃′i′ , if V(B) 6= 1 or Ṽ(B̃) 6= 1, then remove
C′∗i′ from C′′eij,111 and set C′′′eij,111 = C′′eij,111/C′

∗
i′ .

• else, halt.

6. If |C′′′eij,111| > 1
2
|C′eij |, then uniformly choose a chain C′∗ = (C′, C̃′) ∈ C′′′eij,111, find

a chain (C, C̃) ∈ Cei
j that matches with (C′, C̃′) and set C∗loc := (Cloc, C̃loc) = (C, C̃)

Return C∗loc

Fig. 7. The Best Valid Chain Protocol BestV alid′′

5 Security Analysis of ΠUC

In this section, we give a detailed security analysis of our protocol ΠUC . For-
mally, we first prove that ΠUC satisfies the security properties defined in section
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2.4 and then conclude that ΠUC indeed solves the challenges of designing PoS
based blockchain protocols in the open setting better.

Main Parameters. Before showing the proofs of security properties, we
present some parameters that make the description of proofs more convenient.

1. Let α := 1 − (1 − p)|H| be the probability that at least one honest party is
elected to create leader block at a given slot.

2. Let β := 1− (1− p)|C| be the probability that at least one corrupted party
is elected to create leader block at a given slot.

3. Xei
j and Y eij are boolean random variables, where i ≥ 1, j ∈ {1, ..., R}. Let

Xei
j = 1 if at least one honest party is elected at the jth slot of epoch ei,

otherwise, Xei
j = 0. Let Y eij = 1 if at least one corrupted party is elected at

the jth slot of epoch ei, otherwise, Y eij = 0. Further, we have that Pr[Xei
j =

1] = α and Pr[Y eij = 1] = β.

Remarks. In proof-of-stake based blockchain protocols, even if more than one
parties are elected at a slot, the chain can only be extended by one block, which
is different from the proof-of-work based blockchain protocols.

5.1 Proofs of Security Properties

In this section, we present the proofs of security properties with respect to leader
chains and transaction chains held by honest parties.

The security analysis of leader chain.

1. Achieving chain growth property.

Lemma 1. During protocol execution, for a given slot sleij , suppose that an
honest party P1 holds leader chain C1 at the beginning of sleij and Xei

j = 1.
Then at the end of sleij , for any honest party P2 with chain C2 and with
overwhelming probability, it holds that len(C2)− len(C1) = 1.

Proof. Consider protocol execution, at any time, a broadcasted block must
be received by all the parties within a slot, so that the chains held by honest
parties must with the same length at the end of any slot. Further, an elected
honest party must create a leader block honestly that will be received by all
the honest parties at the end of current slot. Note that, when Xei

j = 1, the
honest parties may receive several valid blocks and choose different blocks
to extend local chains. So that each honest party’s local chain is increased
by one block with overwhelming property. This completes the proof.

Lemma 2. During protocol execution, suppose that an honest party P1 holds
chain C1 at the beginning of sleij . Then at the beginning of sleij+t (t > 0), for
any honest party P2 with chain C2. With overwhelming probability, it holds
that len(C2)− len(C1) ≥

∑j+t−1
j Xei

j .
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Proof. From lemma 1, we can see that honest parties’ local leader must
be extended by one block when Xei

j = 1, moreover, a broadcasted valid
block that created by a corrupted party can also be received and accepted
by honest parties. So that len(C2) − len(C1) ≥

∑j+t−1
j Xei

j for t > 0. This
completes the proof.

Theorem 1. (Chain Growth). During protocol execution EXECΠUC ,A,Z ,
for any two existing honest parties P1 and P2 with local leader chains C1
and C2 at the beginning of sleij and sleij+t respectively, where t > 0. Then
the probability that len(C2)− len(C1) ≥ g · t, where g = (1− ε)α, is at least
1− e−Ω(t).

Proof. From the definition of variable Xei
j , we have that Pr[Xei

j = 1] = α.

Let ω =
∑j+t−1
j Xei

j , then by Chernoff bound, we have Pr[ω < (1−ε)α · t] <
e−Ω(t). From lemma 2, we have len(C2)− len(C1) ≥

∑j+t−1
j Xei

j . Thus,

Pr[len(C2)− len(C1) ≥
∑j+t−1
j Xei

j ≥ (1− ε)α · t] ≥ 1− e−Ω(t)

Let g = (1− ε)α. This completes the proof.

2. Achieving chain quality property.

Lemma 3. During protocol execution, any l ∈ N consecutive blocks of a
chain C are created in at least l

α+β consecutive slots.

Proof. Gathering all the resources in the network, we have that C will be
extended by one block when Xei

j = 1 or Y eij = 1 at a slot. At slot sleij , C is
extended by one block with probability α+ β. Let S be a set of consecutive
slots during which the l consecutive blocks are created. So we get that |S| ≥
l

α+β . This completes the proof.

Theorem 2. (Chain Quality). During protocol execution EXECΠUC ,A,Z ,
for any existing honest party P with local chain C, for any l ∈ N consecutive
blocks of C. Then the probability that the ratio of blocks created by adversary
is at most µ = 1+ε

1−ε ·
1

1+ϕ is at least 1− e−Ω(l).

Proof. From lemma 3, we have that these l consecutive blocks are created
in at least l

α+β consecutive slots. Further, we let X(S) and Y (S) be the
number of blocks that are created during S by honest and corrupted parties
respectively. By Chernoff bound, with overwhelming probability, we have
that Y (S) ≤ (1 + ε)β|S| and X(S) ≥ (1− ε)α|S|. Then, we get the following
inequality:

Y (S)
l ≤ Y (S)

X(S) ≤
(1+ε)β|S|
(1−ε)α|S| = (1+ε)β

(1−ε)α = 1+ε
1−ε ·

p|C|
p|H| ≤

1+ε
1−ε ·

1
1+ϕ

Where the second equality follows from the fact that |E| · p << 1 and the

last inequality follows from |H|
|C| ≥ 1 + ϕ. Let µ = 1+ε

1−ε ·
1

1+ϕ , this completes

the proof.
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3. Achieving common prefix property.
First, we analysis two cases that may cause the honest parties’ local leader
chains diverge for more than K blocks.
– Case 1: At some slot, the adversary broadcasts a hidden leader chain

that forks more than K blocks from honest parties’ local ones.
– Case 2: For K consecutive slots, there are more than one parties are

elected as leaders at each slot. Note that, the elected parties can be hon-
est or corrupted as long as they create valid leader blocks and broadcast
them.

Based on the BestV alid′ protocol (Fig.6), we know that honest parties can-
not choose a chain that forks more than K blocks from local chains. So that
Case 1 happens with eligible probability.
For Case 2, we let A1 denotes the event that more than one parties are
elected as leaders at a given slot and the block created by each of them is
valid, A2 denotes the event that A1 happens for K consecutive slots. Then
we have:

Pr[A2]=(Pr[A1])K ≤ (1− (1− p)|E| − |E|p(1− p)|E|−1)K

Based on the assumption that p · |E| << 1, we have that

Pr[A2] ≤ p2|E|(|E| − 1) ≈ 0

Theorem 3. (Common Prefix). During protocol execution EXECΠUC , for
any two existing honest parties P1 and P2 with local leader chains C1 at slot
sleii′ and C2 at slot sl

ej
j′ (i and j can be same) respectively. Let sl

ej
j′ ≥ sleii′ ,

then the probability that CdK1 � C2 is at least 1− e−Ω(K).

Proof. Based on the analysis of the two cases above, with overwhelming
probability, we have that at any slot, the leader chains held by honest parties
cannot diverge for more than K blocks. What’s more, in our slot-synchronous
network, the chains held by honest parties with the same length at the end of

some slot. Assume that P2 holds chain C3 at sleii′ , then we have CdK1 = CdK3 .

Further, we have that CdK3 � C2 (that follows from BestV alid′). So the

probability that CdK1 � C2 is at least 1− e−Ω(K). This completes the proof.

4. Achieving soundness property
In the proof-of-work based blockchain protocol, a new party can take the
longest chain among a set of chains received from the network as the best
local chain. However, as we have discussed, the longest chain strategy is
useless and a new party can be mislead by adversary easily in the proof-
of-stake based blockchain protocol. We say that a new party is initialized

securely, if he holds a leader chain C1 that satisfies CdK1 � C2 and CdK2 �
C1, where C2 is leader chain held by an existing honest party. The main
challenge for new parties joining securely is getting the correct version of
common part held by honest parties and that is also the main idea of our
BestV alid′′ protocol. We stress that the transaction chain C̃1 held by a new
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party satisfies C̃1 = C̃2, where C̃2 is a transaction chain held by an existing
honest party and that can be guaranteed by the uniqueness property of
transaction chains held by honest parties.

Theorem 4. (Soundness). During protocol execution EXECΠUC ,A,Z , for a
new party P1 who is initialized with leader chain C1 and an existing honest

party P2 with local leader chain C2 at sl. Then the probability that CdK1 � C2
and CdK2 � C1 is at least 1− e−Ω(K).

Proof. After executing the BestV alid′′ protocol, suppose that a new party
P1 obtains a leader chain C1 and an existing honest party P2 with local
leader chain C2 at sl. Then with overwhelming probability, it holds that

CdK1 � C2 and CdK2 � C1.

Consider a contradiction that CdK1 � C2 (or CdK2 � C1), we assume that B is
the last common block of C1 and C2, then B must be at least K deeps in C1
and C2. Further, we assume that C′1 is the latest l blocks of C1 (l > K), so

that C′dK1 � C2. However, based on the execution of protocol BestV alid′′,
we have that C′1 must not fork more than K blocks with the chains in set
C′eij,11, which consists of all the leader chains of the honest elected parties
in current epoch. Further, based on the common prefix property of leader

chains held by honest parties, it holds that C′dK1 � C2 and then CdK1 � C2.
This completes the proof.

.

The security analysis of transaction chain.

1. Achieving chain growth property.

Lemma 4. During protocol execution, suppose that a leader block B is
backed by K blocks at the beginning of slot sleij in a leader chain held by
an honest party and created by an honest party P . Then the transaction
chain C̃ held by any honest party must be extended with one transaction
block B̃ at the end of sleij .

Proof. From protocol execution, we believe that an elected honest party must
create and broadcast a block honestly, so that the newly-created block can be
received by all the honest parties within a slot. Based on the common prefix
property of leader chains held by honest parties (theorem 3), at the begin-
ning of sleij , B has been in the common part of honest parties’ local chains

and its creator P is eligible to create a transaction block B̃. So that at the
end of sleij , B̃ must be received by all the other honest parties in that P is
an honest party. This completes the proof.

Theorem 5. During protocol execution EXECΠUC ,A,Z , for any two exist-

ing honest parties P1 and P2 with local transaction chains as C̃1 and C̃2 at
the beginning of slot sleij and sleij+t respectively, where t > 0. Then the prob-

ability that len(C̃2) − len(C̃1) ≥ g̃ · t, where g̃ = (1 − ε)α · 1+ϕ2+ϕ is at least

1− e−Ω(t).
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Proof. Note that we consider the chain growth property of transaction
chain when the length of the corresponding leader chain is at least K.
Gathering all the resources in the network, at a given slot sleij , the expect-
ed number of elected parties is p|E|. At any slot, Let A1 denotes the event
that the confirmed leader block is created by an honest party, A2 denotes
the event that the transaction chain will grow with one block as the corre-
sponding leader chain grows with one block. We have

Pr[A1] ≥ p|H|
p|E| ≥

1+ϕ
2+ϕ

Following from the result of lemma 4, with overwhelming probability, we
have that Pr[A2] ≥ α· Pr[A1]. Further, we have

Pr[len(C̃2)− len(C̃1) ≥ (1− ε)α · 1+ϕ2+ϕ · t] ≥ 1− e−Ω(t),

where g̃ = (1− ε)α · 1+ϕ2+ϕ . This completes the proof.

2. Achieving chain quality property.

Lemma 5. During protocol execution, an honest party with local transaction
chain C̃, then the probability that a block B̃ ∈ C̃ is created by the adversary

is at most |C||E| .

Proof. From protocol execution, we know that B̃ is created by the adversary
if and only if the corresponding leader block B is created by him. Based on
the analysis of theorem 5, we get that the probability that B is created by

the adversary is at most |C||E| . This completes the proof.

Theorem 6. During protocol execution EXECΠUC , for an existing honest
party P with local transaction chain C̃, for any l ∈ N consecutive blocks of
C̃. Then with probability at least 1 − e−Ω(l), it holds that the ratio of blocks
created by adversary is at most µ̃ = 1

1+ϕ .

Proof. Based on the result of lemma 3, these l consecutive transaction blocks
are created in at least S̃ = l

α+β consecutive slots. Following from the result of
lemma 5, at any slot, the probability that a leader block created by adversary

is confirmed by honest parties is at most |C||E| . What’s more, the transaction

chain will be extended with one block when a leader block is confirmed by
honest parties. So we have that the number of transaction blocks created

by adversary in the l consecutive blocks is at most |C||E| ·
l

α+β .

Let X̃(S̃) and Ỹ (S̃) denote the number of transaction blocks created by
honest paries and adversary during S̃ respectively, then we have

Ỹ (S̃)
l ≤ Ỹ (S̃)

X̃(S̃)
≤
|C|
|E| ·

l
α+β

|H|
|E| ·

l
α+β

= |C|
|H| ≤

1
1+ϕ

Let µ̃ = 1
1+ϕ , this completes the proof.

3. Achieving uniqueness property.
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Lemma 6. During protocol execution EXECΠUC ,A,Z , for a given slot sleij ,
there are at most one valid transaction block in the network. (Based on
BestV alid′, we do not consider the condition that adversary may create and
broadcast more than one valid transaction blocks at the same time)

Proof. Consider a contradiction that there are two different valid transaction
blocks B̃1 and B̃2 created by P1 and P2 respectively at sleij . Let B1 and B2

are the corresponding leader blocks that are linked by B̃1 and B̃2 respective-
ly. Based on protocol execution, B1 and B2 must be backed by K blocks and
held by two different honest parties P1 with local leader chains C1 and P2

with local leader chains C2 at sleij . Further, we get that that CdK1 � C2 and

CdK2 � C1, which contradicts the common prefix property of leader chains
held by honest parties (theorem 3). This completes the proof.

Theorem 7. During protocol execution EXECΠUC , at the end of any slot
sleij , for any two existing honest parties P1 and P2 with local transaction

chains C̃1 and C̃2 respectively. Then with overwhelming probability, it holds
that C̃1 = C̃2.

Proof. Consider a contradiction that C̃1 6= C̃2, which means that len(C̃1) 6=
len(C̃2) or there are some blocks are different in these two chains.
For condition 1, we assume that len(C̃1) < len(C̃2). Without loss of general-
ity, let len(C̃2) − len(C̃1) = 1. Based on lemma 6, it must be the case that
the last block B̃len(C̃2) of C̃2 is not accepted or received by P1 at the end of

sleij . Further, we can see that B̃len(C̃2) must be valid and created at the be-

ginning of sleij or before in that it has been accepted by an honest party P2.

What’s more, based on the slot-synchronous network assumption, B̃len(C̃2)
must have been received by all the honest parties at the end of sleij . As a

result, if B̃len(C̃2) has been confirmed by an honest party, then with over-
whelming probability that it must be confirmed by all the honest parties. So
that condition 1 happens with negligible probability.
For condition 2, we assume the last blocks of C̃1 and C̃2 are different, which
are denoted as B̃1 and B̃2. What’s more, Based on protocol execution, these
two blocks must be valid and received by all the honest parties at the end
of sleij , which contradicts to the result of lemma 6.
This completes the proof.

4. Achieving high efficiency

Theorem 8. During protocol execution EXECΠUC , at slot sl, once a transaction
block B̃ is confirmed by an honest party P , then with overwhelming proba-
bility, B̃ must be confirmed finally by all the honest parties at the end of
sl.

Proof. Based on the uniqueness property of transaction chains held by
honest parties (theorem 7), at the end of each slot, all the honest parties hold
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a same view of local transaction chain. So with overwhelming probability,
if B̃ is confirmed by an honest party, then it will be confirmed by all honest
parties within a slot. This completes the proof.

5.2 Further Discussions

Compared with previous related works [20, 9, 1, 15, 10, 3, 18, 13], ”UniqueChain”
solves the challenges of designing proof-of-stake based blockchain protocols bet-
ter (section 1.1). Precisely, (1). new parties can join protocol execution at any
time and be initialized securely without any additional trusted assumptions.
With honest majority assumption, we let the elected parties of the current e-
poch provide new parties with their local chains and no party can provide more
than one chains, so the majority of these chains are provided by honest parties.
Further, we propose a best chain selection rule BestV alid′′ for new parties to
select a correct local chain from the received chains. Note that the set of parties
who provide new parties with local chains are not fixed and predicted, and they
are self organized. What’s more, we also consider the fairness of new parties
that a new party can be initialized securely if and only if he has broadcasted a
valid request (requesting transaction). (2). We have identified that the essential
cause of low efficiency for handling messages is that honest parties hold different
views of the last several blocks of local chains, so it always takes a long time to
uniform the honest parties’ views. In this protocol, based on the common prefix
property of leader chains held by honest parties, we propose a new way to link
the two chains. Formally, we use the uniqueness of the confirmed leader blocks
(the common part of leader chains held by honest parties) to select an unique
party to handle messages, which guarantees the uniqueness of valid block with
messages in the network at any time. As a result, once a block with messages is
added by an honest party to his local chain, then due to the latency of network,
it must be confirmed by all the honest parties within a slot.

However, an elected honest party of the current epoch is responsible to help
the new parties to be initialized securely and might be eligible to create a
transaction at some point of future, so that our protocol cannot support a
fully adaptive adversary as in [9, 1]. We will continue to optimize our protocol
to achieve the better security properties.

6 Conclusion

In this work, we propose a fast and provably secure proof-of-stake based blockchain
protocol ΠUC in open setting, which executes in a slot-synchronous network and
with a mildly adaptive adversary. Based on the honest majority assumption, ex-
cept for three fundamental security properties of blockchain protocols as chain
growth, chain quality and common prefix, our protocol also achieves soundness
of chains held by newly joining parties without any additional trusted assump-
tions and uniqueness of chains that consist of messages held by honest parties,
which guarantees the high efficiency of handling messages.



26 Peifang Ni, Hongda Li, Xianning Meng, and Dongxue Pan

References

1. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. computer and
communications security 2018, 913–930 (2018)

2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work.
Computer Science pp. 142–157 (2014)

3. Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. IACR
Cryptology ePrint Archive 2016, 919 (2016)

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science. p. 136 (2001)

5. Canetti, R.: Universally composable signature, certification, and authentication.
In: IEEE Workshop on Computer Security Foundations (2004)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000), https://eprint.
iacr.org/2000/067

8. Chaum, D.: Blind Signatures for Untraceable Payments. Springer US (1983)

9. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain pp. 66–98 (2018)

10. Duong, T., Fan, L., Veale, T., Zhou, H.: Securing bitcoin-like backbone protocols
against a malicious majority of computing power. IACR Cryptology ePrint Archive
2016, 716 (2016)

11. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Interna-
tional Cryptology Conference on Advances in Cryptology. pp. 139–147 (1993)

12. Eyal, I.: The miner’s dilemma. Computer Science pp. 89–103 (2014)

13. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng: a scalable
blockchain protocol. networked systems design and implementation pp. 45–59
(2016)

14. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
International Conference on Financial Cryptography & Data Security (2014)

15. Fan, L., Zhou, H.: iching: A scalable proof-of-stake blockchain in the open setting
(or, how to mimic nakamoto’s design via proof-of-stake). IACR Cryptology ePrint
Archive 2017, 656 (2017)

16. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications 9057, 281–310 (2015)

17. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty pp. 291–323 (2017)

18. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. symposium on operating systems prin-
ciples 2017, 51–68 (2017)

19. Hofheinz, D., Mllerquade, J.: Universally composable commitments using random
oracles. In: Theory of Cryptography Conference (2004)

20. Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: A provably
secure proof-of-stake blockchain protocol. IACR Cryptology ePrint Archive 2016,
889 (2016)

21. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols
(2015)



Title Suppressed Due to Excessive Length 27

22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: International Cryptology Conference (2017)

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted (2008)
24. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 643–673 (2017)

25. Pass, R., Shi, E.: The sleepy model of consensus. In: International Conference on
the Theory & Application of Cryptology & Information Security (2017)

26. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release Cryp-
to. Massachusetts Institute of Technology (1996)

27. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin (2015)

28. Schrijvers, O., Bonneau, J., Dan, B., Roughgarden, T.: Incentive compatibility of
bitcoin mining pool reward functions (2016)

A The Implementation of Finit

We denote ϕinit as the ideal protocol of Finit, where the parties are dummy that
they only forward messages sent by environment Z to Finit and then forward
the messages sent by Finit to environment Z. Further, we denote Πinit as the
protocol that implements ϕinit securely. Informally, the genesis epoch consists
of two slots e0 = {sle01 , sl

e0
2 }, each party Pi′ first commits to his local stake si′

(si′ = 1 in our protocol) and a random value ri′ ∈ {0, 1}k, and broadcasts the
commitment Ci′ via FNET . Then, Pi′ collects all the received commitments and
opens his commitment to others via FNET . Finally, they determine the difficult
target T e1 and random value noncee1 for epoch e1. During protocol execution,
the new parties obtain these messages from the genesis block B0.Πinit is formally
described in Fig.8.

Let EXECFinitϕinit,S,Z be the random variable that denotes the joint outputs
of all the parties by executing protocol ϕinit with adversary S and environment
Z. Let EXECFNETΠinit,A,Z be the random variable that denotes the joint outputs
of all the parties by executing protocol Πinit with adversary A and environment
Z. We have the following lemma.

Lemma 7. Consider the ideal protocol described above and the real protocol
Πinit (Fig.8), it holds that these two random variables EXECFNETΠinit,A,Z and

EXECFinitϕinit,S,Z are indistinguishable.

Proof. Consider the adversary A for Πinit, we construct the adversary S for
ϕinit with security parameter k. Note that S maintains a local table T .

Upon receiving (Initialize, Pi′ , si′) from A, if it has a record B0 ∈ T , then
send (Initialized,B0) to A. Otherwise, pass the message to the functional-
ity Finit and receive (Initialized,B0) from Finit, then record B0 and send
(Initialized,B0) to A.

Now, we can see that for each query fromA, the form of output is (Initialized,B0),
where B0 = (T e1 , noncee1), T e1 is determined by the distribution of initial par-
ties’ stakes and noncee1 is sampled uniformly from {0, 1}k. Therefore, EXECFNETΠinit,A,Z
and EXECFinitϕinit,S,Z are indistinguishable.
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Protocol Πinit

Πinit is parameterized by security parameter k, interacts with parties Pi′ (i′ ∈
{1, 2, ...}), adversary A and environment Z. For each Pi′ , it proceeds as follows.
Upon receiving (Initialize, Pi′ , si′) from Z, Pi′ gets the current slot sleij (i ∈ N, j ∈
{1, ..., R}) from the local clock.

– If i = 0 and j = 1, then chooses random values r′i′ , ri′ ∈ {0, 1}k, computes com-
mitment as Ci′ := Com(r′i′ ; si′ , ri′) and sends (Broadcast, Pi′ , Ci′) to FNET .
• collects all the received commitments C := {Ci′ , i

′ ∈ {1, 2, ...}}, opens com-
mitment as (si′ , ri′) and sends (Broadcast, Pi′ , (si′ , ri′)) to FNET at slei2 .

• collects all the received openings O := {(si′ , ri′), i′ ∈ {1, 2, ...}}, computes the
difficult target T e1 according to the distribution of stakes {si′ , i′ ∈ {1, 2, ...}}
and random value noncee1 := ⊕i′ri′

• set B0 = (T e1 , noncee1)
– Else, collects the message received from FNET , extracts the set Cei

j of chains and
sets B0 as the first common block of the majority of leader chains in Cei

j

Output (Initialized,B0) to the environment Z.

Fig. 8. The Initialization Protocol Πinit

B The Implementation of Fres

As described above, we denote ϕres as the ideal protocol of Fres, where the
parties are dummy that they only forward the messages sent by environment Z
to Fres and then forward the messages sent by Fres to Z. Further, we denote
Πres as the protocol that implements ϕres securely. Informally, at any slot, first
each party determines whether he is the leader by computing a hash function.
Moreover, a party also checks if his leader block is deep enough in local chain
and determines whether he is eligible to crete a transaction block. After that,
any parties can verify the validity of leader blocks and transaction blocks. We
show Πres in the {FRO,FSIG}-hybrid model (Fig.9), where functionalities FRO
and FSIG have been well defined in [19] and [5] respectively.

Let EXECFresϕres,S,Z be the random variable that denotes the joint outputs of
all the parties by executing protocol ϕres with adversary S and environment Z.
Let EXECFRO,FSIGΠres,A,Z be the random variable that denotes the joint outputs of
all the parties by executing protocol Πres with adversary A and environment Z.
We have the following lemma.

Lemma 8. Consider the ideal protocol describes above and the real protocol
Πres in Fig.9, it holds that these two random variables EXECFresϕres,S,Z and

EXECFRO,FSIGΠres,A,Z are indistinguishable.

Proof. Consider the adversary A for Πres, we construct the adversary S for
ϕres with security parameter k. Note that S maintains a local table T . At
sleij (i ∈ N, j ∈ {1, ..., R}) and it proceeds as follows.
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1. Simulating Registration Phase
Upon receiving (Register, Pi′) from A, send (Register, Pi′) to Fres and
obtain (Registered, Pi′), then send (Registered, Pi′) to A. Upon receiv-
ing (Unregister, Pi′) from A, send (Unregister, Pi′) to Fres and obtain
(Unregistered, Pi′), then send (Unregistered, Pi′) to A.

2. Simulating Stake Election Phase
– Creating Leader Blocks
• Upon receiving (L-Elect, Pi′) from A, if there is a record (Pi′ , h),

then send h to A. Otherwise, send (L-Elect, Pi′) to Fres and obtain
(L-Elected, Pi′ , f). If f = 1, choose random value h ∈ {0, 1}k such
that h ≤ T ei . Otherwise, choose random value h ∈ {0, 1}k such that
h > T ei . Then record (L-Elected, Pi′ , h) and send h to A.

• Upon receiving (Compute,B−1, Pi′) fromA, if their is a record (B−1, h−1),
then send h−1 toA. Otherwise, send (Compute,B−1, Pi′) to Fres and
obtain (Computed, h−1), then record (B−1, h−1) and send h−1 to A.

• Upon receiving (Sign,B, Pi′) from A, if there is a record (B, σ), then
send (Signed, (B,Pi′), σ) to A. Otherwise, send (Sign,B, Pi′) to
Fres and obtain (Signed,B, σ), then record (B, σ) and send (Signed,
(B,Pi′), σ) to A.

– Creating Transaction Blocks
• Upon receiving (T -Elect, Pj′) from A, if there is a record (Pj′ , f̃),

then send f̃ to A. Otherwise, send (T -Elect, Pj′) and obtain (T -

Elected, Pj′ , f̃), then record (Pj′ , f̃) and send f̃ to A.

• Upon receiving (Compute, B̃−1, B−1, Pj′) from A, if there is a record

(B̃−1, B−1, h̃−1, h−1), then send (h̃−1, h−1) to A. Otherwise, send
(Compute, B̃−1, B−1, Pj′) to Fres and obtain (Computed, h̃−1, h−1),

then record (B̃−1, B−1, h̃−1, h−1) and send (h̃−1, h−1) to A.
• Upon receiving (Sign, B̃, Pj′) from A, if there is a record (B̃, σ̃),

then send (Signed, (B̃, Pj′), σ̃) to A. Otherwise, send (Sign, B̃, Pj′)

to Fres and obtain (Signed, (B̃, σ)), then record (B̃, σ̃) and send
(Signed, (B̃, Pj′), σ̃) to A.

3. Simulating Verification Phase
– Upon receiving (V erify, (B,P ′i′), σ) fromA, if there is a record ((P ′i′ , h), (B, σ)),

then send (h, y′i′ = 1) to A. Otherwise, choose h ∈ {0, 1}k such that
h > T ei and send (h, y′i = 0) to A or choose h ∈ {0, 1}k such h > T ei

and send (h, y′i′ = 1) to A or choose h ∈ {0, 1}k such that h ≤ T ei and
send (h, y′i′ = 0) to A.

– Upon receiving (V erify, (B̃, P ′i′), σ̃) fromA, if there is a record ((P ′i′ , f̃), (B̃, σ)),

then send ỹ′i′ = f̃ to A. Otherwise, send ỹ′i′ = 0 to A.

Now, from the above simulation, we can see that the environment Z gets
what he should gets in the real protocol execution. Precisely, for each Elect,
Compute and Sign query, Free chooses uniformly from {0, 1}k. For each V erify
query, S responds according to the records in T , which also come from Fres. In
fact, S just transfers message between Z and Fres. As a result, we have that
EXECFresϕres,S,Z and EXECFRO,FSIGΠres,A,Z are indistinguishable.
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Protocol Πres

Πres is parameterized by probability p, security parameter k, interacts with parties
Pi′ ∈ E (i′ ∈ {1, 2, ...|E|}), adversary A and environment Z. For each Pi′ , at slot
sleij (i ∈ N, j ∈ {1, ..., R}), it proceeds as follows.

– Registration.
1. Upon receiving (Register, Pi′) from Z, if Pi′ has been registered with rei′ = 1,

then ignore the message. Otherwise, set rei′ = 1, record (Pi′ , rei′ = 1) and
send (Registered, Pi′) to Z.

2. Upon receiving (Unregister, Pi′) from environment Z, if Pi′ has not been
registered with rei′ = 1, then ignore the message. Otherwise, set rei′ = 0,
record (Pi′ , rei′ = 0) and send (Unregistered, Pi′) to Z.

– Stake Election.
1. Creating leader Blocks: every registered party Pi′ with one unit stake seij,i′ =

1 proceeds as follows.
• Upon receiving (L-Elect, Pi′) from Z
∗ If there is a record (Pi′ , rei′ = 1, seij,i′ = 1), then query FRO with input

(pki′ , sl
ei
j ) and obtain h. If h ≤ T ei , send (L-Elected, Pi′ , f = 1) to

Z, otherwise, send (L-Elected, Pi′ , f = 0) to Z.
∗ Otherwise, if rei′ = 0 or seij,i′ = 0, then send (L-Elected, Pi′ , f = 0)

to Z.
• Upon receiving (Compute,B−1, Pi′) from Z, query FRO with input (B−1)

and obtain h−1, then send (Computed, h−1, Pi′) to Z.
• Upon receiving (Sign,B, Pi′) from Z, send (Sign,B, Pi′) to FSIG, obtain

(Signed, (B,Pi′), σ), then send (Signed, (B,Pi′), σ) to Z.
2. Creating Transaction Blocks: if a leader block Bj′ is backed by K′ blocks

created by party Pj′ , then Pj′ proceeds as follows.
• Upon receiving (T -Elect, Pj′) from Z, if K′ = K, then send (T -
Elected, Pj′ , f̃ = 1) to Z. Otherwise, send (T -Elected, Pj′ , f̃ = 0) to Z.

• Upon receiving (Compute, B̃−1, B−1, Pj′) from Z, query FRO with input
(B̃−1, B−1) and obtain (h̃−1, h−1), then send (Computed, h̃−1, h−1, Pj′) to
Z.

• Upon receiving (Sign, B̃, Pj′) from Z, then send (Sign, B̃, Pj′) to FSIG

and obtain (Signed, (B̃, Pj′), σ̃), then send (Signed, (B̃, Pj′), σ̃) to Z.
– Verification: each existing party Pi′ ∈ E proceeds as follows. Upon receiving

(V erify, (B,P ′i′), σ) or (V erify, (B̃, P ′i′), σ̃) from Z.
• Send (pk′i′ , sl

ei
j ) to FRO and obtain h, if h ≤ T ei , then set yi′ = 1, otherwise

set yi′ = 0.
• Send (V erify, (B,P ′i′ , σ)) or (V erify, (B̃, P ′i′ , σ̃)) to FSIG and obtain y′i′ or
ỹ′i′

• If yi′ = 1∧y′i′ = 1 or ỹ′i′ = 1, then send (V erified, f ′ = 1) or (V erified, f̃ ′ =
1) to Z. Otherwise, send (V erified, f ′ = 0) or (V erified, f̃ ′ = 0) to Z

Fig. 9. The Resource Protocol Πres


