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Abstract. The area of practical computational integrity proof systems,
like SNARKs, STARKs, Bulletproofs, is seeing a very dynamic develop-
ment with several constructions appeared in 2019 with improved prop-
erties and relaxed setup requirements. Many use cases of such systems
involve, often as their most expensive apart, proving the knowledge of a
preimage under a certain cryptographic hash function, which is expressed
as a circuit over a large prime (sometimes binary) field. A zero-knowledge
proof of coin ownership in the Zcash cryptocurrency is a notable exam-
ple, where the inadequacy of SHA-256 hash function for such a circuit
caused a huge computational penalty.

In this paper, we present a modular framework and concrete instances
of cryptographic hash functions which either work natively with GF (p)
objects or on binary field elements. Our GF (p) hash-function Poseidon
uses up to 8x fewer constraints per message bit than Pedersen Hash,
whereas our binary hash-function Starkad wins by a substantial mar-
gin over the other recent designs. Our construction is not only expressed
compactly as a circuit, but also can be tailored for various proof sys-
tems using specially crafted polynomials, thus bringing another boost in
performance. We demonstrate this by implementing a 1-out-of-a-billion
membership proof using Merkle-trees in less than a second.
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1 Introduction

The recent advances in computational integrity proof systems made a number of
computational tasks verifiable in short time and/or in zero knowledge. Several
protocols appeared that require one party to prove the knowledge of a seed-
derived secret, of an element being part of a large set, or their combination.
Whereas accumulator-based solutions [16,15] and algebraic Schnorr proofs exist
in the area, they are quite involving and thus error-prone, require a trusted
setup, are limited in statement language, and are often slow. An alternative is
to express secret derivation via application of cryptographic hash functions, and
to prove set membership via presenting an opening in a properly chosen Merkle
tree, also built on a cryptographic hash function. Such hash-based protocols
require a computational integrity proof system, which can be applied to an
arbitrary arithmetic circuit. However, for the protocol to be efficient, proofs
must be generated and verified in reasonable time, which in turn requires the
hash function to be cheap in a certain metric depending on the proof system.

At the beginning of 2020, the most popular proof systems are ZK-SNARKs
(Pinocchio [43], Groth16 [26], Plonk [22], Marlin [18] to name a few), Bullet-
proofs [14], ZK-STARKs [8]. The former two groups have been already applied
to a number of real-world protocols, whereas the latter is the most promising
from the perspective of performance and post-quantum security. These three
systems use two quite different circuit descriptions so that the proof size and
generation time are computed differently:

– R1CS (Rank-1 quadratic constraints) describes the circuit as a set of special
quadratic polynomials of the form L1(X) · L2(X) = L3(X), where X is
the tuple of internal and input variables, Li are linear forms and · is the
field multiplication, and (possibly in an affine-equivalent form) is used in
almost all SNARKs and Bulletproofs. The circuit multiplication and addition
gates over a prime field GF (p). The proof generation complexity is directly
proportional to the number T of constraints, which often corresponds to the
number of multiplicative gates. The prime field GF (p) is the scalar field of
an elliptic curve, where for ZK-SNARKs the curve should be pairing-friendly
and for Bulletproofs it should be just a secure curve.

– The AET metric is used in ZK-STARKs. The computation is expressed as
a set of internal program states related to each other by polynomial equa-
tions of degree d. The state consists of w binary GF (2n) field elements and
undergoes T transformations. The proof generation is roughly proportional
to the product w · d · T , where n should be 32 or higher. The number and
sparsity of polynomial constraints do not play a major role.

Our goal was to design a family of hash functions that are optimal in either
the R1CS or the AET metric, and for different finite field sizes. Even though
the metrics are different we tried to make the hash functions to share as many
components as possible to reuse the analysis. It turned out that the substitution-
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Table 1: Our primary proposals and their competitors. ‘Tree‘ means Merkle tree
arity and is equal to the rate/capacity ratio. Curve denotes the curve whose (sub-
group) scalar field determines the prime size with BLS being BLS12-381, BN be-
ing BN254, Ed being Ristretto group. The R1CS/bit and AET/bit costs are ob-
tained by dividing the R1CS (resp. AET) prover costs by message rate. Note that
AET costs are measured in field operations, whose costs in software/hardware
grow quadratically with the field size.

Name S-Box Security Rate SB size Tree RF RP Curve R1CS R1CS
M n · t− 2M (log2 p) (nt/(2M − 1)) Scalar field /perm. /bit

x5 128 510 255 2:1 8 55 237 0.46
Poseidon-256 x5 128 1020 255 4:1 8 56 BLS/BN/Ed 288 0.28

x5 128 2040 255 8:1 8 57 387 0.19
Pedersen Hash - 128 516 - 2:1 - BLS12-381 869 1.68

Rescue x3 & x1/3 128 508 254 2:1 22 - - 264 0.52

Name S-Box Security Rate SB size Tree RF RP Field AET AET
M n · t− 2M (nt/(2M − 1)) /perm. /bit

x3 127 504 63 2:1 8 48 24779 49
Starkad-256 x3 127 1016 63 4:1 8 48 GF(263) 41086 41

x3 127 2032 63 8:1 8 48 73369 36
Friday-256 x−1 128 256 - - - GF(2256) 10371 41

Vision x−1 128 504 63 2:1 10 - GF(263) 34202 67

permutation network (SPN) design, well known in symmetric cryptography, al-
lows a generic hash function framework where the only security-critical param-
eter that has to be changed for each instance is the number of rounds, and we
provide an efficient and transparent strategy for its choice. The S-Box is chosen
as power maps x 7→ xd, where d ≥ 3 is usually chosen as the smallest integer
that guarantees invertibility and provides non-linearity. In particular, the cube
function x3 is almost universally chosen, apart from cases of fields where this
function is not a bijection. Instead, we suggest other S-Boxes such as x5 or 1/x
for these cases. Thanks to a succinct representation of the functions and low
S-box degree, we are able to optimize the circuit significantly for Plonk and
RedShift proof systems, with up to 40x performance increase.

Our Contributions. We design and analyze two families of hash functions:
Starkad and Poseidon, which are both based on the HadesMiMC strat-
egy [24]. The latter is a permutation design with t field elements forming the
internal state, and each round is a composition of the S-Box layer, a linear trans-
formation, and a round constant addition. We aim to support 128- and 256-bit
security, where the security level is the same for collision and preimage resis-
tance. For each pair (basic field, security level) we suggest a concrete instance
of either the Starkad (for binary fields) or the Poseidon (for prime fields)
permutation. Some middle rounds (called partial) carry only 1 rather than t
S-Boxes to save up R1CS or AET cost. Each hash function is a certain permuta-
tion in the sponge mode of operation, where a few S-Box elements are reserved
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for the capacity (roughly double the security level in bits), and the rest for the
rate. The permutation width is determined by an application: it is set close to
1500 bits for long-message hashing, whereas for Merkle trees we support various
width to enable 2:1, 4:1, and 8:1 arities and thus higher ZK performance.

We provide an extensive cryptanalysis of both families with an accent on al-
gebraic methods as these prove to be the most effective. We explore different
variants of interpolation, Gröbner basis, and higher-order differential attacks.
As our permutations are quite wide, we do not aim for them behaving like ran-
domly chosen permutations. Instead, for security level of M bits we require that
no attack could exhibit a non-random property of a permutation faster than in
2M queries. We then calculate the maximum number of rounds for each field,
security level, and fixed permutation width that can be attacked. Then we select
the number of rounds for concrete instances together with a security margin.

We have evaluated the number of constraints in Poseidon instances for the
R1CS metric and the STARK complexity in Starkad instances for the AET
metric. Our primary proposals Poseidon-252, Poseidon-256, and Starkad-
252 are listed in Table 1 and are compared to similar-purpose designs. As sup-
plementary material we provide reference implementations of various instances
of designs, scripts to choose and create those instances, as well as code for bench-
marks which we describe later in the paper5.

Related Work. The Zcash designers introduced a new 256-bit hash function
called Pedersen hash [28, p.134], which is effectively a vectorized Pedersen com-
mitment in elliptic curve groups with short vector elements. For the claimed
128-bit security level, it utilizes 869 constraints per 516-bit message chunks,
thus having 1.7 constraints per bit, whereas our Poseidon instances use from
0.2 to 0.45 constraints per bit, depending on the underlying prime field.

For the binary field case, Ashur and Dhooghe [5] have recently introduced the
STARK-friendly block cipher Jarvis and its derivative hash function Friday
with several instances and security levels. They use a key-alternating structure
with a single inverse S-Box, followed by an affine transformation (with low degree
in the extension field). However, both Jarvis and Friday were successfully
attacked shortly after their publication [3]. In the response, the authors created
a new family of SNARK/STARK-friendly family of hash functions with Vision
(binary fields) and Rescue (prime fields) being main instances [4]. The latter
share some similarity with our design with two important differences: all S-box
layers are full; and every second layer has S-boxes of type x1/d for small d. This
approach prevents some algebraic attacks but is also more expensive in software
as the resulting power functions have high Hamming weight and thus require
many squarings.

Structure of the Paper. We provide an overview of our design strategy in
Section 2. We summarize the cryptanalysis results in Section 3 with the details

5 https://github.com/anonymous-ccs/material-ccs
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in the appendix. We explain the rationale for the choice of the number of rounds
in Section 4. Then we suggest concrete parameters (permutation size, number
of rounds, round constant generation) for our designs Starkad and Poseidon
in Section 5. We estimate R1CS costs of Starkad instances in Section 6.1 and
AET (STARK) costs in Section 6.2.

2 The Starkad and Poseidon Hash Functions

2.1 Overview

In the following we propose two hash functions:

– the hash function6 Starkad-Hash for the binary case is constructed by in-
stantiating a sponge construction [10] with Starkad-Permutation – denoted
by Starkadπ;

– the hash function7 Poseidon-Hash for the prime case is constructed by
instantiating a sponge construction [10] with Poseidon-Permutation – de-
noted by Poseidonπ.

Both permutations are variants of HadesMiMC– the block cipher proposed in
[24] – instantiated by a fixed key, e.g. 0κ.

2.2 Sponge Construction for Starkad-Hash and Poseidon-Hash

We recall that when the internal permutation P of an N -bit sponge function
(composed of a c-bit capacity and an r-bit rate: N = c + r) is modeled as a
randomly chosen permutation, it has been proven by Bertoni et al. [10] to be
indifferentiable from a random oracle up to 2c/2 calls to P. In other words, a
sponge with a capacity of c provides 2c/2 collision and 2c/2 (second) preimage
resistance. Given a permutation of size N and a desired security level s, we
can hash r = N − 2s bits per call to the permutation. Following this design
strategy, we choose the number of rounds of the inner permutations Poseidonπ

and Starkadπ in order to ensure that such a permutation does not exhibit
non-generic properties up to 2M queries8, where M is the desired security level.

As usual, the message is first padded according to the sponge specification so
that the number of message blocks is a multiple of r, where r is the rate in the
sponge mode. In our case, we use the Poseidonπ or the Starkadπ permutation,
6 About the name: Starkad was a legendary hero in Norse mythology, who used to
hash his enemies with 22 swords in 23 arms.

7 About the name: Poseidon – brother of Zeus and Hades – was god of the Sea and
other waters, of earthquakes and of horses.

8 In other words, such a permutation cannot be distinguished from a randomly drawn
permutation.
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where N ≥ 4 ·M . For Poseidon-256 (analogous for Starkad-256), we thus use
the Poseidon permutation with N = n · t ≥ 1024. The capacity is chosen to be
256. This choice allows e.g. for processing more input bits then SHA-256 (512
bits) while at the same time offering collision security and (second) preimage
security of 128 bits. Similar considerations hold as well for Poseidon-128 and/or
Starkad-128.

2.3 Security Claims

In terms of concrete security, we expect it to be infeasible for all our hash func-
tions to find collision attacks or preimage attacks with a cost substantially lower
than 2M evaluations of the permutation.

To help increase confidence in our design and simplify external cryptanalysis,
we also explicitly state another claim about our internal permutation about the
difficulty of the so-called constrained-input constrained-output problem of the
permutation: We expect it to be infeasible for all our permutations, to solve the
CICO problem by fixing m1 bits of the input and m2 bits of the output of the
permutation with a cost substantially lower than 2min(M,m1,m2) evaluations of the
permutation.

Even though an attack below this threshold may not affect any concrete applica-
tion of our hash functions, we would still consider it an important cryptanalytic
result.

2.4 The Hades Strategy

Cryptographic permutations are typically designed by iterating an efficiently
implementable round function many times in the hope that the resulting com-
position behaves like a randomly drawn permutation. In general, the same round
function is iterated enough times to make sure that any symmetries and struc-
tural properties that might exist in the round function vanish.

Instead of considering the same round function in order to construct the cipher
(to be more precise, the same non-linear layer for all rounds), in [24] authors
propose to consider a variable number of S-Boxes per round, that is, to use
different S-Box layers in the round functions.

Due to our goals, in the following we shortly describe the cipher presented in
[24] as a keyless permutation, by replacing the AddRoundKey operation with an
AddRoundConstant operation. Similar to other SPN designs, each round of a
keyless permutation based on Hades is composed of three steps:

1. AddRoundConstant – denoted by ARC(·);

2. SubWords – denoted by S-Box(·) or SB(·);
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3. MixLayer – denoted by M(·).
A final round constant addition is usually added after the last round, but we do
not use this in the Starkad/Poseidon hash functions for uniformity:

ARC → SB →M︸ ︷︷ ︸
1st round

→ ...→ ARC → SB →M︸ ︷︷ ︸
(R−1)-th round

→ ARC → SB →M︸ ︷︷ ︸
R-th round

The crucial property of Hades is that the number of S-Boxes per round is not
the same for every round :

– a certain number of rounds – denoted by RF – has a full S-Box layer, i.e., t
S-Box functions;

– a certain number of rounds – denoted by RP – has a partial S-Box layer,
i.e., 1 ≤ s < t S-Boxes and (t− s) identity functions.

In the following, we limit ourselves to consider only the case s = 1, that is, RP
rounds have a single S-Box per round and t− 1 identity functions.

In more details, assume RF = 2 ·Rf is an even number9. Then

– the first Rf rounds have a full S-Box layer,

– the middle RP rounds have a partial S-Box layer (i.e., 1 S-Box layer),

– the last Rf rounds have a full S-Box layer.

Figure 1 shows the Hades strategy. Note that the rounds with a partial S-Box
layer are “masked” by the rounds with a full S-Box layer, which means that an
attacker should not (directly) take advantage of the rounds with a partial S-Box
layer.

Behind the Hades Strategy. The crucial point of our design is that it con-
tains both rounds with full S-Box layers and rounds with partial S-Box layers.
This allows to provide simpler argumentation about the security against statis-
tical attacks than the one proposed for P-SPN permutations.

In more details, a certain number of rounds RstatF = 2 · Rstatf with full S-Box
layers situated at the beginning and the end provides security against statisti-
cal attacks. Indeed, even without the middle part, they are sufficient in order
to apply the “wide-trail” strategy, in a way that we are going to show in the
following. Security against all algebraic attacks is achieved working both with
rounds RF = RstatF + R′F ≥ RstatF with a full S-Box layer and rounds RP ≥ 0
with a partial S-Box layer. Even if few (even one) S-Boxes per round are po-
tentially sufficient to increase the degree of the encryption/decryption function
(which mainly influences the cost of an algebraic attack), other factors can play
9 RF = 2 · Rf is even in order to have a “symmetric” permutation. Note that some
attacks – like the statistical ones – have the same performance both in the forward
and in the backward direction. Thus a “symmetric” permutation with RF = 2 · Rf

guarantees the same security against these attacks both in the chosen-/known-input
scenario and in the chosen-/known-output one.

7



ARC(·)

S S S S S S . . . S

M(·)

...

ARC(·)

S S S S S S . . . S

M(·)

...

ARC(·)

. . . S

M(·)

...

ARC(·)

S S S S S S . . . S

M(·)

...

ARC(·)

S S S S S S . . . S

M(·)

...

Rstat
f

RP

Rstat
f

Rf

Rf

Rstat
f

RP

Ralg
f

Fig. 1: Construction of the Hades-like permutation.

a crucial role in the cost of such attacks (e.g. a Gröbner basis attack depends
also on the number of non-linear equations to solve).

With this in mind, the idea is to construct “something in the middle” between an
SPN and a P-SPN permutation. Moreover, since we aim to have the same security
w.r.t. chosen-input and chosen-output attacks, we consider a permutation which
is “symmetric”: in other words, the same number of rounds with full non-linear
layer is applied at the beginning and at the end, where the rounds with partial
non-linear layers are in the middle and they are “masked” by the rounds with
full non-linear layers. As a result, depending on the cost metric that one aims to
minimize (e.g. the total number of non-linear operations) and on the size of the
S-Box, in the following we provide the best ratio between the number of rounds
with full S-Box layer and with partial ones in order to both achieve security and
minimize the cost metric.

For more details about the Hades strategy, we refer to [24].

What about the choice of the linear and of the non-linear layer? This
strategy does not pose any restriction/constriction on the choice of the linear
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layer and/or on the choice of the S-Box. The idea is to consider a “traditional”
SPN permutation based on the wide-trail strategy, and then to replace a certain
number of rounds with full S-Box layers with the same number of rounds with
partial S-Box layers in order to minimize the number of non-linear operations,
but without affecting the security. The Hades strategy has a huge impact espe-
cially for permutations with low-degree S-Box, since in this case a large number
of rounds is required to provide security against algebraic attacks.

2.5 The Permutations Starkadπ and Poseidonπ

Roughly speaking, the permutations Poseidonπ and Starkadπ are obtained
by applying the Hades strategy to the cipher Shark [44], proposed by Rijmen
et al. in 1996, and omitting the keys. Both permutations work with texts of t ≥ 2
words in Fp or F2n , where p is a prime of size p ≈ 2n.

The linear layer of Poseidonπ and Starkadπ consists of the multiplication
with a fixed t× t MDS matrix10. The number of rounds R = 2 ·Rf +RP depends
on the choice of the S-Box and of the parameters n and t. For the applications
we have in mind, we focus on

– the cubic S-Box S-Box(x) = x3 – remember that the cube S-Box is a bijection
in GF (2n) iff n is odd and it is a bijection in GF (p) iff p = 2 mod 3; in
the following, these permutations are called “x3−Poseidonπ” for the prime
case and “x3 − Starkadπ” for the binary case;

– the S-Box S-Box(x) = x5 – remember that x5 is a bijection in GF (2n)
iff 2n 6= 1 mod 5, and it is a bijection in GF (p) iff p 6= 1 mod 5; in the
following, these permutations are called “x5 − Poseidonπ” for the prime
case and “x5 − Starkadπ” for the binary case;

– the inverse one S-Box(x) = x−1; in the following, these permutations are
called “x−1−Poseidonπ” for the prime case and “x−1−Starkadπ” for the
binary case.

About the MDS Matrix. A t× t MDS matrix11 with elements in GF (2n) (or
GF (p) where p ≈ 2n) exists if the condition (see [37] for details)

2t+ 1 ≤ 2n or/and 2t+ 1 ≤ p

(or equivalently t · log2(2t+ 1) ≤ N) is satisfied.

Given n and t, there are several ways to construct an MDS matrix (similar for
prime case). One of them is using a Cauchy matrix [45], which we recall here
briefly. Let xi, yi ∈ F2n for i = 1, ..., t s.t.
10 The schemes can be easily modified in order to also allow near-MDS matrices.
11 A matrix M ∈ Ft×t is called Maximum Distance Separable (MDS) matrix iff it has

branch number B(M) equal to B(M) = t+1. The branch number of M is defined as
B(M) = minx∈Ft{wt(x)+wt(M(x))}, where wt is the hamming weight. Equivalently,
a matrix M is MDS iff every submatrix of M is non-singular.
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– ∀i 6= j : xi 6= xj , yi 6= yj ,

– for 1 ≤ i ≤ t and 1 ≤ j ≤ t: xi ⊕ yj 6= 0.

To fulfill these conditions, one can simply consider xi s.t. the t − log2(t) most
significant bits are zero. Then, choosing r ∈ F2n s.t. the t−log2(t)most significant
bits are non zero, let yi = xi ⊕ r. Let A be the Cauchy matrix defined by

ai,j =
1

xi ⊕ yj
.

It follows that A is MDS. A similar construction works for Fp.

Efficient Implementation. We refer to App. A for a complete description
about possible strategies for efficient Poseidon and Starkad implementations.
The main advantage of these strategies consists of reducing the number of con-
stant multiplications in each round with a partial S-Box layer from t2 to 2t,
which is particularly useful for large t and RP . For example, we implemented
Poseidon π with (t, RF , RP ) = (24, 8, 42) in Sage, and we could observe that
the performance improves by a factor of about 5, with the average computation
time being 4 ms for the optimized version.

3 Cryptanalysis Summary of the Starkad and Poseidon
Hashes

As for any new design, it is paramount to present a concrete security analysis. In
the following, we provide an in-depth analysis of the security of our construction.
Due to a lack of any method to ensure that an hash function based on a sponge
construction is secure against all possible attacks, we base our argumentation
on the following consideration. As we just recalled in the previous section, when
the internal permutation P of an N = c+ r bit sponge function is modeled as a
randomly chosen permutation, the sponge hash function is indifferentiable from
a random oracle up to 2c/2 calls to P. Thus, we choose the numbers of rounds
of the inner permutation case in order to guarantee security against any (secret-
/known-/chosen-) distinguisher. Equivalently, this means that such number of
rounds guarantee that P does not present any non-random/structural property
(among the ones known in the literature12).

Now we list the main points of our cryptanalysis results. The number of rounds
we can break depends on the security level M and the number of S-Boxes t,
which we specify for each concrete hash function instance in the next section.
Before going on, we highlight that all details about cryptanalysis are provided as
Supplementary Material.

Ftp versus Ft2n . From the designer’s point of view, the prime field version Ftp
appears stronger than the binary field version Ft2n , since fewer known attacks
12 We do not exclude that a non-random property can be discovered in the future.
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apply. In particular, the designer must take into account the higher-order differ-
ential attack when they determine the number of rounds to provide security in
Ft2n . Vice versa, this attack does not apply (or is much less powerful) in Ftp (due
to the fact that the only subspaces of Fp are {0} and Fp itself).

Statistical Attacks. As we show in the following, for any S-Box (x3, x5, 1/x),
at least 6 rounds with full S-Box layer are necessary to provide security against
statistical attacks (differential, linear, truncated/impossible differential attacks,
rebound attack) we consider. In more details:

RF ≥

{
6 if C× (t+ 1) ≤ N + n−M
10 otherwise

(where log2 p = n) are sufficient to prevent statistical attacks, where C = 1 for
the cubic S-Box and C = 2 for the other two considered S-Boxes.

Algebraic Attacks. In order to estimate the security against algebraic attacks,
we evaluate the degree of the reduced-round permutations and their inverses.
Roughly speaking, our results can be summarized as following (where n ' log2(p)
for the prime field):

Interpolation Attack. The interpolation attack depends on the number of differ-
ent monomials of the interpolation polynomial, where (an upper/lower bound
of) the number of different monomials can be estimated given the degree of the
function. The idea of such an attack is to construct an interpolation polynomial
that describes the function. If the number of monomials is too big, then such
a polynomial cannot be constructed faster than via a brute force attack. For a
security level of M bits, the numbers of rounds that can be attacked are

S(x) = x3 : RF +RP ≤ log3(2) ·min{n,M}+ log2 t

S(x) = x5 : RF +RP ≤ log5(2) ·min{n,M}+ log2 t

S(x) = 1/x : RF log2(t) +RP ≤ log2(t) + 0.5 ·min(M,n)

(1)

Gröbner Basis. In a Gröbner basis attack, one tries to solve a system of non-
linear equations that describe the function. The cost of such an attack depends
obviously on the degree of the equations, but also on the number of equations
and on the number of variables. Working on the cubic S-Box case (analogous for
the others), we show that the attack complexity is about O(D2t), therefore for a
security level of M bits the attack works at most on log3 2

min{n/2,M/2} rounds,
which is smaller than for the interpolation attack. If a partial S-Box layer is used,
it could become more efficient to consider degree-3 equations for single S-Boxes.
In this case, more rounds can be necessary to guarantee security against this
attack. With optimistic (for the adversary) complexity of the Gaussian elimina-
tion, we obtain for each S-Box two attacks which are faster than 2M if either
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condition is satisfied:

S(x) = x3 :

{
RF +RP ≤ 0.32 ·min(M,n)

(t− 1) ·RF +RP ≤ 0.18 ·min(M,n)− 1

S(x) = x5 :

{
RF +RP ≤ 0.21 ·min(M,n)

(t− 1) ·RF +RP ≤ 0.14 ·min(M,n)− 1

S(x) = 1/x :

{
RF log2(t) +RP ≤ log2(t) + 0.5 ·min(M,n))

(t− 1) ·RF +RP ≤ 0.25 ·min(M,n)− 1

(2)

Higher-Order Differential Attack. The higher-order differential attack depends
on the boolean degree, where the boolean degree δ of a function f(x) = xd is given
by δ = hw(d) where hw(·) is the hamming weight. The idea of such an attack
is based on the property that given a function f(·) of boolean degree δ, then⊕

x∈V⊕φ f(x) = 0 if the dimension of the subspace V satisfies dim(V ) ≥ δ+1. If
the boolean degree is sufficiently high, then the attack does not work. The attack
applies to the binary field case, where we use the x3 S-Box only. We obtained that
the boolean degree grows accordingly to the algebraic degree, as the polynomial
becomes dense and any monomial of degree d implies the existence of almost
all monomials of smaller degree, which contain, among others, a monomial with
degree of weight log2 d. Eventually we obtain the following condition for the
attack to work in the binary field case:

RF +RP ≤ log3(2) ·min(M,n) + 2 + log2 t. (3)

Zero-Sum Partition. The zero-sum partition distinguisher can be applied for
q = q1 + q2 rounds as long as the boolean degree in the forward direction for q1
and in the backward direction for q2 does not exceed M . In the case in which
the S-Box is defined by a power map with low degree, this allows attacking the
same number of rounds as for the higher-order differential attack (as the inverse
function has high algebraic degree). In all other cases, one has to approximately
double the number of rounds considered in a higher-order differential attack in
order to guarantee security (as the inverse function has almost the same algebraic
degree).

Security Margin. Given the minimum number of rounds necessary to provide
security against all attacks known in the literature, we arbitrarily decided to
add:

– two more rounds with full S-Box layers (+2 RF );

– 7.5% more rounds with partial S-Box layers (+7.5% RP ).
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4 Number of Rounds Needed for Security

The design goal is to offer a family of hash functions which minimize the R1CS
costs (Starkad instances, Section 6.1) or AET (STARK) costs in (Poseidon
instances, Section 6.2). It turns out that for the fixed S-Box function the min-
imum costs are delivered by a primitive with the smallest number of S-Boxes,
though the field size also plays a role. For each combination (security level M ,
prime/binary field type, S-Box size, S-Box function) we minimize the number of
S-Boxes taking into account Equations (1),(2),(3).

Minimize “Number of S-Boxes” In our design strategy, we always exploit
the “wide-trail” strategy in order to guarantee security against statistical attacks.
In other words, for this class of attacks, we work only with rounds with full S-
Box layers in order to guarantee security. All our instances are secure against
statistical attacks if

RstatF ≥

{
6 if C× (t+ 1) ≤ N + n−M
10 otherwise

where C = 1 for the cubic S-Box and C = 2 for the other two considered S-Boxes.
In order to minimize the number of S-Boxes for given n and t, the goal is to find
the best ratio between RP and RF that minimizes

number of S-Boxes = t ·RF +RP , (4)

where t ≥ 2 and where the number of non-linear operations is proportional to
the number of S-Boxes.

Overall, the S-Box type and the number of rounds should be chosen as follows:

– If you plan to use a binary field F2n with n odd13:

• Use S-Box x3;

• Select RF to be 6 or higher.

• Select RP that minimizes tRF + RP such that no inequation (1),(2) is
satisfied.

– If you plan to use a prime field Fp and GCD(q, p−1) = 1 for q = 3 or q = 5:

• Use S-Box xq;

• Select RF to be 6 or higher.

• Select RP that minimizes tRF + RP such that no inequation (1),(2) is
satisfied.

13 Note that x 7→ x3 is a permutation over F2n if and only if GCD(3, 2n− 1) = 1, that
is if and only if n is odd.
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– for all other cases, we suggest to:14

• Use S-Box x−1;

• Select RF to be 6 or higher.

• Select RP that minimizes tRF + RP such that no inequation (1),(2) is
satisfied.

Before going on, we mention that other S-Boxes can be used as well (e.g., x 7→
x7). We have set up a script that calculates the number of rounds accordingly,
using the security margin further described at the end of Section 3. Our resulting
instances are given in Tables 5-6.

Results via Script. A complete analysis on how to set up the script – in order
to guarantee security and to find the best ratio between RP and RF – for this
case has been proposed in [24]. For this reason, we refer to [24], and we limit
ourselves here to report the minimum number of rounds necessary to provide
security.

For completeness, we mention that the simplest way to set up the script is to
test (e.g., by brute force) all possible values RP and RF that provide security
(equivalently, for which the previous inequalities are satisfied), and find the ones
that minimize the cost metric.

5 Concrete Instantiations – Poseidonπ and Starkadπ

For our applications, we are interested in the cases:

– text size: N = 1536 = 3 · 29 (where N = n · t ' t · log2 p);

– security level in bits: M = 128 and M = 256.

All our MDS matrices are Cauchy matrices, and the method to construct them
is further described in Section 2.5. We use ascending sequences of integers (or
elements in F2n) for the construction.

The round constants are generated using the Grain LFSR [27] in a self-shrinking
mode:

1. Initialize the state with 80 bits b0, b1, . . . , b79, where

(a) b0, b1 describe the field,

(b) bi for 2 ≤ i ≤ 5 describe the S-Box,

14 Since we do not present any concrete application that makes use of this S-Box (and
due to page limitation), we present a complete cryptanalysis of this case only on an
extended version of the paper.
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(c) bi for 6 ≤ i ≤ 17 are the binary representation of n,

(d) bi for 18 ≤ i ≤ 29 are the binary representation of t,

(e) bi for 30 ≤ i ≤ 39 are the binary representation of RF ,

(f) bi for 40 ≤ i ≤ 49 are the binary representation of RP ,

(g) bi for 50 ≤ i ≤ 79 are set to 1.

2. Update the bits using bi+80 = bi+62 ⊕ bi+51 ⊕ bi+38 ⊕ bi+23 ⊕ bi+13 ⊕ bi.

3. Discard the first 160 bits.

4. Evaluate bits in pairs: If the first bit is a 1, output the second bit. If it is a
0, discard the second bit.

Using this method, the generation of round constants depends on the specific
instance, and thus different round constants are used even if some of the chosen
parameters (e.g., n and t) are the same.

If a randomly sampled integer is bigger than (or equal to) p, we discard this
value and take the next one. Note that cryptographically strong randomness is
not needed for the round constants, and other methods can also be used. We give
both the matrices and the round constants in auxiliary files for three example
instantiations:

– “x3 − Poseidon”-Permutation in Fp with p = 264 − 28 − 1, n = 64, t = 24,
N = 1536,

– “x−1 −Poseidon”-Permutation in Fp with
p = 2252 + 27742317777372353535851937790883648493, n = 253, t = 6,
N = 1518,

– “x3−Starkad”-Permutation in F2n with p(x) = x63+x+1, n = 63, t = 24,
N = 1512.

We also make reference implementations for various instantiations and scripts
to calculate the round numbers, the round constants, and the MDS matrices
available online15.

5.1 Domain Separation for Starkad-Hash and Poseidon-Hash

For some of our use cases, we require independent hash functions, i.e., different
instances of our initial hash function. This can be done using domain separa-
tion in the following way. We define the original hash function to be Starkad-
Hash0000, which has an initial state of (0r || 0000 || 0c−4). Using this technique,
we specify Starkad-Hashi to be a hash function with (0r || i || 0c−4) as its

15 https://github.com/anonymous-ccs/material-ccs
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initial sponge state, where 0 ≤ i ≤ 15. The same approach is applied to Po-
seidon-Hash, resulting in 16 different hash functions for Starkad-Hash and
Poseidon-Hash each. Note that we essentially increase the rate r by 4 bits,
while at the same time reducing the capacity c by 4 bits, which means that we
lose a small amount of security.

5.2 Merkle Tree Instances of Poseidon and Starkad

As a hash function used in a Merkle tree of a fixed arity always gets a message
input of bounded length, it makes sense to have a compact padding of input
elements. Concretely, we suggest the following:

– Poseidon and Starkad instances with width t are used for Merkle trees
with arity t − c where c is the capacity (at word-level, namely c elements
in F). As the hash output is equal in size to the capacity, we should have
c|(t− c). In the prime field setting with 128-bit security and 256-bit field we
will have c = 1 and arity t− 1.

– A tree node may have from 0 to t − c child elements. The missing child
element is denoted by ∅ and we denote F̂ = F ∪ {∅}.

– A node hash function Ĥ maps F̂t−c to Fc. Therefore, a missing subtree of
depth 1 (a single node) is represented as ∅, a missing subtree of depth 2 has
the hash Ĥ2

∅ = Ĥ(∅, ∅, . . . , ∅), and a missing subtree of depth d has the hash

Ĥd
∅ = Ĥ(Ĥd−1

∅ , Ĥd−1
∅ , . . . , Ĥd−1

∅ ).

– The node hash function Ĥ, based on the permutation Π of width t, is defined
as follows:

Ĥ(Xc+1, Xc+2, . . . , Xt) = Πc+1...2c(X̃1, X̃2, X̃3, . . . , X̃t),

where Πc+1...2c are the first c non-capacity elements of the output of Π and

X̃1 = . . . = X̃c−1 = 0, X̃c =
∑
i

2i[Xi 6= ∅]; X̃i>c =

{
Xi, Xi 6= ∅;
0, Xi = ∅

where [] is the Iverson bracket (1 if the input is true, 0 otherwise).

Sponge Padding. For a variable-length sponge instance of Poseidon and
Starkad, we pad all message strings from F∗ with a single element 1 ∈ F and
then, if necessary, with as many zero elements as needed to have the message
length be a multiple of t− c.
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6 Poseidon and Starkad in Zero-Knowledge Proof
Systems

Our hash functions have been designed to be friendly to zero-knowledge appli-
cations. Concretely, we aim to minimize proof generation time, proof size, and
verification time (when it varies). Before presenting concrete results, we make a
small overview of ZK proof systems to date.

State of the Art. Let P be a circuit over some finite field F where gates are some
(low-degree) polynomials over F with I and O being input and output variables,
respectively: P(I) = O. The computational integrity problem consists of proving
that some given O0 is the result of the execution of P over some I0: P(I0) = O0.
It is not difficult to show that any limited-time program on a modern CPU
can be converted to such a circuit [9], and making the proof zero-knowledge is
often possible with little overhead. The seminal PCP series of papers states that
for any program P it is possible to construct a proof of computational integrity,
which can be verified in time sublinear in the size of P. However, for long time the
prover algorithms were so inefficient that this result remained merely theoretical.
Only recently, proof systems where the prover costs are polynomial in |P| were
constructed, but they required a trusted setup: a verifier or someone else (not the
prover) must process the circuit with some secret s and output a reference string
S, used both by the prover and the verifier. In this setting, the prover’ work can
even be made linear in |P|, and the verifier’s costs are constant. Such systems
were called SNARKs for proof succinctness. The first generation of SNARKs,
known as Pinocchio and Groth16 [43,26], require a separate trusted setup for
each circuit. The next generation, which includes Sonic [38], Plonk [22], and
Marlin [18], can use one reference string of size d for all circuits with at most d
gates, thus simplifying the setup and its reuse. Later on, proof systems without
trusted setups appeared, of which we consider Bulletproofs [14], STARKs [8], and
RedShift [32] the most interesting, though all of them come with deficiencies:
Bulletproofs have linear verifier times (but rather short proofs), STARKs work
with iterative programs, and RedShift has big proofs (up to 1 MB for millions
of gates).

Current benchmarks demonstrate that programs with millions of gates can be
processed within a few seconds with the fastest proof systems, which solves
the computational integrity problem for some practical programs. Among them,
privacy-preserving cryptocurrencies, mixers, and private voting are prominent
examples. Shortly, such applications work as follows:

1. Various users add publicly hashes of some secret and public values to some
set V , which is implemented as a Merkle tree. Hashes can be currency trans-
action digests, public keys, or other credentials.

2. Only those who know a secret behind some hash are declared eligible for an
action (e.g., to vote or to spend money);
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3. A user who wants to perform the action proves that they know a tree leaf
L and a secret K such that L is both the hash of K and a leaf in V . If the
proof passes, the user is allowed to perform and action (e.g., to vote). If an
action must be done only once, a deterministic hash of the secret and leaf
position can be computed and published.

This paradigm is behind the cryptocurrency Zcash and the Ethereum mixer
Tornado16.

The bottleneck of such a system is usually the proof creation time, which took
42 seconds in the early version of Zcash, and sometimes the verifier’s time. Both
are determined by the size of the circuit that describes a Merkle proof and are
thus dependent on the hash function that constitutes the tree.

Unfortunately, a single hash function cannot be optimal for all ZK proof systems,
because they use different arithmetizations: STARKs can use prime and binary
fields, Bulletproofs uses any prime field, whereas most SNARKs use a prime
field based on a scalar field of a pairing-friendly elliptic curve. Therefore, for
each proof system a new instance of Starkad or Poseidon may be needed. In
the future text we describe how this is done and how to optimize a circuit for
some proof systems.

6.1 SNARKs with Poseidonπ

In SNARKs, the prime field is typically the scalar field of some point on a pairing-
friendly elliptic curve. The primitive Poseidonπ can be represented as such a
circuit with reasonably few gates, but the parameters of Poseidonπ must have
been determined first by p. Concretely, after p is fixed, we first check if x3 or
x5 are bijections in GF (p), which is true if p mod 3 6= 1 (resp., p mod 5 6= 1). If
both inequalities are not satisfied, we have to use the inverse S-Box or consider
another prime power for the S-box.

Groth16

Groth16 [26] is an optimization of the Pinocchio proof system and to date the
fastest SNARK with the smallest proofs. The Groth16 prover complexity is O(s)
where s is the number of rank-1 constraints – quadratic equations of the form
(
∑
i uiXi)(

∑
i viXi) =

∑
i wiXi, where ui, vi, wi are field elements and Xi are

program variables. It is easy to see that the S-Box x3 is represented by 2 con-
straints, the S-Box x5 by 3 constraints, and the S-Box 1/x by 3 constraints (1

16 https://medium.com/@tornado.cash/introducing-private-transactions-on-
ethereum-now-42ee915babe0
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for non-zero case, and two more for the zero case). Thus, in total we have

2tRF + 2RP constraints for x3-based Poseidonπ; (5)

3tRF + 3RP constraints for x5-based Poseidonπ; (6)

3tRF + 3RP constraints for x−1-based Poseidonπ. (7)

It requires a bit more effort to see that we do not need more constraints as the
linear layers and round constants can be incorporated into these ones. However, it
is necessary to do some preprocessing. For example, in the Poseidonπ setting,
the full S-Box layers are followed by linear transformation M = (Mi,j). Each
round with a full S-Box layer can be represented by the following constraints in
the SNARK setting:(∑

j

Mi,jxi,j

)
·
(∑

j

Mi,jxi,j

)
= yi 1 ≤ i ≤ t, (8)

yi ·
(∑

j

Mi,jzi,j

)
= zi, (9)

where M = It×t for the first round. However, in a round with a partial S-Box
layer, we will have only one such constraint for j = 1. For the rest of the t − 1
variables we will have linear constraints of the form∑

j

Mi,jxi,j = ui ,where 2 ≤ i ≤ t.

Since the linear constraints have little complexity effect in the Groth16, in the
partial S-Box rounds linear constraints can be composed with the ones from the
previous round(s) using the following equation:

∑
k

Mi,k

(∑
j

Mi,jxi,j

)
= vk 2 ≤ k ≤ t.

We can now calculate the number of constraints for the sponge mode of operation
and for Merkle trees. In sponges, the 2M bits are reserved for the capacity, so
N − 2M bits are fed with the message. Therefore, we get

– 2tRF+2RP

N−2M constraints per bit for x3-based Poseidonπ;

– 3tRF+3RP

N−2M constraints per bit for x5-based Poseidonπ;

– 3tRF+3RP

N−2M constraints per bit for x−1-based Poseidonπ.

For the Merkle tree, we suggest a 1-call sponge where all branches must fit into
the rate. Then a Merkle tree has arity N

2M−1. Based on that we can calculate how
many constraints we need to prove the opening in a Merkle tree of, for example,
232 elements (the recent ZCash setting). The tree will have 32

log2[N/(2M)−1] levels

19



Table 2: libsnark[1] performance of Poseidon-Hash with S-box x5 over prime
field and 127-bit collision resistance.

Arity Width libsnark ZK proof time R1CS
for one hash constraints

Prove Verify
2:1 3 57.5ms 1.2ms 344
3:1 4 84.0ms 1.2ms 507
8:1 9 120.2ms 1.3ms 834

Table 3: Number of constraints for a circuit proving a Merkle tree entry in the
set of 230 elements, with the S-box x5 over a suitable prime field with 128-bit
collision resistance.

Poseidon
Arity Width RF RP Total constraints
2:1 3 8 55 7110
4:1 5 8 56 4320
8:1 9 8 57 3870

Pedersen hash
510 171 - - 43936

Rescue
2:1 3 22 - 11880
4:1 5 14 - 6300
8:1 9 10 - 5400

with the number of constraints in each according to the above. The libsnark
performance of Poseidon-Hash is given in table 2.

As an example, we calculate the concrete number of constraints for a Merkle
tree proof, where the tree has 230 elements, assuming a security level of 128 bits
and a prime field of size close to 2256. We take the S-Box equal to x5 as it fits
many prime fields: Ristretto17, BN254, and BLS12-381 scalar fields. The results
are in Table 3.

Bulletproofs

Bulletproofs [14] is a proof system that does not require a trusted setup. It is
notable for short proofs which are logarithmic in the program size, and also for
the shortest range proofs that do not require a trusted setup. However, its verifier
is linear in the program size. For the use cases where the trusted setup is not an
option, the Bulletproofs library ‘dalek‘ is among the most popular ZK primitives.
17 https://ristretto.group
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Table 4: Bulletproofs performance to prove 1 out of 230-Merkle tree.

Field Arity Merkle 230-tree ZK proof R1CS
Bulletproofs time Constraints

Prove Verify
Poseidon hash

2:1 16.8s 1.5s 7110
BLS12-381 4:1 13.8s 1.65s 4320

8:1 11s 1.4s 3870
2:1 11.2s 1.1s 7110

BN254 4:1 9.6s 1.15s 4320
8:1 7.4s 1s 3870
2:1 8.4s 0.78s 7110

Ristretto 4:1 6.45s 0.72s 4320
8:1 5.25s 0.76s 3870

We have implemented18 a Merkle tree prover for Poseidon in Bulletproofs using
the same constraint system as for Groth16 with results outlined in Table 4.
The performance varies since the underlying curves are based on prime fields of
different size and weight: BN254 uses a 255-bit prime whereas BLS12-381 uses a
381-bit one (the reason for that is the recent reevaluation of discrete logarithm
algorithms specific to pairing-friendly curves).

Plonk

Plonk [22] is a new SNARK using universal trusted setup, where a structured
reference string of size d can be used for any circuit of d gates or less. The setup
is pretty simple as for the secret k the values kd · B are stored, where B is an
elliptic curve point and · denotes scalar multiplication. The setup is used for
short polynomial commitments and proofs by Kate et al. [31].

The standard version of Plonk works with the same constraint system as we
have described, plus it uses special machinery to lay out wires in the circuit.
A prover first crafts three polynomials of degree equal to the number of gates,
which are responsible for left input, right input, and output, respectively. Then
he allocates several supplementary polynomials to describe the wire layout. The
prover complexity for a Poseidon permutation with the S-Box x5 of width w
and R rounds is 11(w(w + 6) + 3)R point multiplications, and the proof has 7
group elements and 7 field elements.

As we have almost identical rounds, the Plonk compiler can be heavily optimized.
Concretely, we suggest:

18 https://github.com/anonymous-ccs/material-ccs/blob/master/bulletproofs
/gadget_poseidon.rs
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– Define a separate polynomial for each S-box line;

– Get rid of wire layout polynomials;

– Express round transitions as a system of affine equations over polynomial
values at adjacent points.

As a result, our optimized Plonk compiler makes only (w+11)R point multipli-
cations for a single permutation call, whereas the proof consists of ((w+3) group
elements and 2w field elements. This brings a 25-40x increase in performance
depending on w.

RedShift

RedShift [32] is a STARK-inspired proof system which works with arbitrary
set of constraints. It can be viewed as Plonk with pairing-based polynomial
commitments with the trusted setup being replaced by Reed-Solomon trustless
commitments. The RedShift proof is cλ log d2 KB large, where d is the degree
of circuit polynomials and cλ ≈ 2.5 for 120-bit security. Due to similarity, we
can make the same optimizations as in Plonk, so that the entire Merkle tree
proof requires polynomials of degree 4800 for width 5, resulting in the entire
proof being around 12 KB in size. Unfortunately, no RedShift library is publicly
available so far, and hence we could not measure the actual performance.

6.2 STARKs with Starkadπ

ZK-STARKs [8] is a proof system for the computational integrity, which is not
vulnerable to quantum computers and does not use a trusted setup. STARKs
operate with programs whose internal state can be represented as a set of w
registers, each belonging to a binary field GF (2n) or to a 2n-subgroup of a
prime-order group.

Here n = 32 and higher are preferred. The program execution is then represented
as a set of T internal states. The computational integrity is defined as the set of
all wT registers satisfying certain s polynomial equations (constraints) of degree
d.

Before going into the details, we mention the ongoing public “StarkWare hash
challenge” competition19, which aims to evaluate the security of proposed STARK-
Friendly Hash (SFH) candidates including Starkad and Poseidon. The chal-
lenge is proposed at four security levels: low security, medium security, target
security, and high security in multiple scenarios.

19 https://starkware.co/hash-challenge/
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STARK Costs. According to [36], the number of constraints does not play
a major role in the prover, verifier, or communication complexity, which are
estimated as follows:

Prover Operations in GF (2n) = 8w · T · d · log(wT ), (10)
Prover Memory = Ω(w · T · n), (11)

Communication = Verifier Time = n · (m+ log2(8Td)), (12)

where m is the maximum number of variables in a constraint polynomial.

The primitive Starkadπ can be represented as such a program with few registers
and number of steps and low degree. For x3 to be invertible, n has to be odd,
so we select n = 63 for our primary instance of Starkadπ to be close to 64 bits
in order to efficiently utilize the carry-less multiplication (CLMUL) instruction
set available in recent CPUs to speed up finite field operations. Following the
same approach as for SNARKs in Section 6.1, we keep in registers only S-Box
inputs and the permutation outputs. Setting w = t, we get T = RF + dRP /te
and wT = tRF +RP . Thus, the complexity is calculated as follows:

Prover Operations in GF (2n) = 24(tRF +RP ) · log2(tRF +RP ), (13)
Prover Memory = Ω(63 · (tRF +RP )), (14)

Communication = Verifier Time = 63 · (t+ log22(24(tRF +RP ))). (15)

We are flexible in choosing the number of S-Boxes t. This number can be chosen
by the application, for instance a Merkle tree with arity a and 128-bit security
would require t = 4a+4. For example, if we choose the binary tree then t = 12,
which requires to set RF = 8, RP = 48 (security level of M = 128 bits) to both
protect from known attacks and have a reasonable security margin. In the sponge
setting, we reserve 4 S-Boxes for the capacity in the 128-bit security level, and
8 S-Boxes for the capacity in the 256-bit security level. Thus, for our primary
instance Starkad − 256, we get an AET cost of 24779 in GF (263) for each
permutation call. As we process 504 bits per call, we obtain a prover complexity
of 49 operations per bit.

Vision. For fair comparison, we include the AET costs of Vision in the same
methodology. The authors of [4] describe a set of AIR constraints of width 2t
(with t being the number of S-boxes) and degree 2 for half a round. For the S-box
of size 63 and 2:1 compression rate and 128-bit security we need 12 S-boxes and
10 rounds so the prover costs are 8 · 24 · 20 · log(24 · 20) = 34202.
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SUPPLEMENTARY MATERIAL

A Efficient Implementation

Like for LowMC, the fact that the non-linear layer is partial in RP rounds can
be used to reduce the size of the round constants required in each round RP .
Referring to [21], we recall here an equivalent representation of an SPN with
partial non-linear layer for an efficient implementation.

Round Constants. In the description of an SPN, it is possible to swap the
order of the linear layer and the round constant addition as both operations are
linear. The round constant then needs to be exchanged with an equivalent one.
For round constant c(i), the equivalent one can be written as ĉ(i) =MC−1(c(i)),
where MC is the linear layer in the i-th round. If one works with partial non-
linear layers, it is possible to use this property to move parts of the original
round constants from the last round all the way through the permutation to the
beginning. To arrive at such a reduced variant, we work as following:

– First, we find an equivalent round constant that is applied before the affine
layer.

– Then we split the round constants in two parts, one that applies to the S-Box
part of the non-linear layer and one that applies to the identity part of the
non-linear layer. The constant part that only applies to the non-linear layer
part can now move further up.

– Working in this way for all round constants, we finally end up with an
equivalent representation in which round constants are only added to the
output of the S-Boxes apart from one constant which is applied to the entire
state after the first Rf rounds.

This simplified representation can in certain cases also reduce the implementa-
tion cost of an SPN permutation with a partial non-linear layer. For instance,
the standard representation of HadesCubic requires constants matrices of total
size t · n · (R+ 1), where R = RP +RF is the number of rounds. The optimized
representation only requires t · n · (RF + 1) + n · RP , thus potentially greatly
reducing the amount of needed memory and calculation to produce the round
constants.

Linear Layer. For our design the situation is simpler than for LowMC, since
we can guarantee the existence of invertible sub matrices. Hence, a similar trick
can be used also for the matrix multiplication.
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Focusing on the rounds with a single S-Box, let M be the t× t MDS matrix of
the linear layer:

M =



M0,0 M0,1 M0,2 · · · M0,t−1 M0,t

M1,0

M2,0

... M̂
Mt−1,0

Mt,0


≡
[
M0,0 v

w M̂

]

where M̂ is a (t − 1) × (t − 1) MDS matrix (note that since M is MDS, every
submatrix of M is also MDS), v is a 1 × (t − 1) matrix and w is a (t − 1) × 1
vector. By simple computation, the following equivalence holds:

M =

[
1 0

0 M̂

]
︸ ︷︷ ︸

M ′

×
[
M0,0 v
ŵ I

]
︸ ︷︷ ︸

M ′′

, (16)

where
ŵ = M̂−1 × w

and I is the (t − 1) × (t − 1) identity matrix. Note that both M ′ and M
′′
are

two invertible matrices20.

As for the round constants discussed previously, it is possible to use the equiva-
lence (16) in order to swap the S-Box layer (formed by a single S-Box and t− 1
identity functions) and the matrix multiplication with the matrixM ′. As a result,
each linear part in the RP rounds is defined only by a multiplication with a ma-
trix of the formM

′′
, which is a sparse matrix, since (t−1)2−(t−1) = t2−3t+2

coefficients of M
′′
are equal to zero (moreover, t− 1 coefficients of M

′′
are equal

to one). It follows that this optimized representation potentially greatly reduces
the number of operations needed to compute the linear layer multiplication.

B Security Analysis – Starkad and Poseidon with
S-Box(x) = x3

B.1 Security Analysis – Statistical Attacks

Differential Cryptanalysis. Differential cryptanalysis [11,12] and its varia-
tions are the most widely used techniques to analyze symmetric-key primitives.
The differential probability of any function over the finite field F2n is defined as

Prob[α→ β] := |{x : f(x)⊕ f(x⊕ α) = β}|/(2n).
20 First of all, det(M ′) = det(M̂) 6= 0 since M̂ is an MDS matrix, and so it is invertible.

Secondly, det(M) = det(M ′)·det(M
′′
). Since det(M) 6= 0 and det(M ′) 6= 0, it follows

that det(M
′′
) 6= 0.
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Since the cubic function f(x) = x3 is an almost perfect non-linear permutation
(APN) [42,41], it has an optimal differential probability over a prime field or F2n

(where n is odd). In other words, for this function the probability is bounded
above by 2/2n or 2/|Fp|.

As largely done in the literature, we claim that Starkad and Poseidon are
secure against differential cryptanalysis if each differential has probability at
most 2−N . Since it is in general hard to compute the probability of a differential,
we assume that this fact is satisfied if each characterestic has probability at most
2−2·N . In order to compute the minimum number of rounds to guarantee this,
we work only with the rounds with full S-Box layers. In other words, we limit
ourselves to work with a “weaker” version of the permutation defined as

RRf ◦ L ◦RRf (·), (17)

where

– L is an invertible linear layer (which is the “weakest” possible assumption),

– R(·) =M ◦ S-Box ◦ARK(·) where S-Box(·) is a full S-Box layer (remember
that M is an MDS matrix).

We are going to show that this “weaker” permutation is secure against dif-
ferential cryptanalysis for RF = 2Rf = 10. As a result, it follows that also
Starkad/Poseidon (instantiated with RF rounds with full S-Box layers) is se-
cure against such an attack. Indeed, if the linear layer L (which we only assume
to be invertible) is replaced by RP rounds of Starkad/Poseidon, its security
cannot decrease. The same strategy is exploited in the following in order to prove
security against all attacks in this subsection.

In order to prove the result just given, we need a lower bound on the number
of minimum number of active S-Boxes. Observe that the minimum number of
“active” S-Boxes in the permutation

Rs ◦ L ◦Rr(·) ≡ SB ◦M ◦ SB︸ ︷︷ ︸
s−1 times

◦ L′︸︷︷︸
≡L◦M(·)

◦SB ◦M ◦ SB︸ ︷︷ ︸
r−1 times

(·)

(where s, r ≥ 1, R(·) is a round with full S-Box layer and where L′ is an invertible
linear layer) are at least21

number active S-Boxes ≥
(⌊
s/2
⌋
+
⌊
r/2
⌋)
·(t+ 1)︸ ︷︷ ︸

due to final/initial rounds

+
(
s mod 2

)
+
(
r mod 2

)
.

We emphasize that the (middle) linear L′(·) ≡ L ◦M(·) plays no role in the
computation of the previous number. Since at least 2 · (t+1) S-Boxes are active

21 If s = 2 · s′ is even, then the minimum number of active S-Boxes over Rs(·) rounds
with full S-Box layer is bs/2c·(t+1). Instead, if s = 2·s′+1 is odd, then the minimum
number of active S-Boxes over Rs(·) rounds with full S-Box layer is bs/2c ·(t+1)+1.
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in the 4 middle rounds of R2◦L◦R2(·), and since the maximum differential prob-
ability of the cubic S-Box is DPmax = 2−n+1, each characteristic has probability
at most

(2−n+1)2·(t+1) =

{
2−2N · 2−2n+2t+2 ≤ 2−2N if n ≥ t+ 1,

2−1.25·N · 2−0.75·N−2n+2t+2 < 2−1.25·N

(where the second inequality holds since 0.75 ·N + 2n ≥ 2t+ 2) for each t ≥ 2
and n ≥ 3 (note that 0.75 ·N +2t = n · (0.75t+2)). By doubling this number of
rounds, we get that each charaterestic has probability at most 2−2.5·N . Finally,
1 more round guarantees that no differential attack can be set up.

Security up to 2M ≤ 2N . For completeness, we present the number of rounds
necessary to provide security up to 2M (that is, data and computational cost of
the attacker upper bounded by 2M ). Using the same analysis as before, it turns
out that

RF =

{
6 if t+ 1 ≤ N + n−M
10 otherwise

guarantees that no differential attack can be set up.

Linear Cryptanalysis. Similar to differential attacks, linear attacks [39] pose
no threat to the Starkad/Poseidon families of permutations instantiated with
the same number of rounds previously defined for classical differential crypt-
analysis. This follows from the fact that the cubic function is almost bent (AB),
which means that its maximum square correlation is limited to 2−n+1 (see [2] for
details). As a result, it offers the best possible resistance against linear cryptanal-
ysis much like an APN function provides optimal resistance against differential
cryptanalysis.

For completeness, we remember a function f(·) is AB and/or APN if and only if
its inverse f−1(·) is AB and/or APN [17]. As a result, both the forward and the
inverse permutation are secure against linear and differential cryptanalysis22.

Truncated Differential. A variant of classical differential cryptanalysis is the
truncated differential one [33], in which the attacker can specify only part of the
difference between pairs of texts.

We consider the “weaker” permutation described in (17) again. Focusing only on
active/passive bytes (and not on the actual differences), there exist several dif-
ferentials with probability 1 for a maximum of 1 round of Starkad/Poseidon,
e.g.

[α, 0, ..., 0]T
R(·)
−−−→M × [β, 0, ..., 0]T

22 Remember that if a matrix M is MDS, then also M−1 is MDS.
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where α, β denote non-zero differences. Due to the next S-Box layer, the linear
relations given by M × (β, 0, ..., 0)T are destroyed in the next round. As a result,
no probability-one truncated differential covers more than a single round.

Since no linear relation survives the S-Box layer, it seems hard to set up a
truncated differential for more than 2 rounds. As a result, it turns out that 4
rounds with full S-Box layer makes HadesCubicπ secure against this attack.

Rebound Attacks. The rebound attacks [34,40] have much improved the best
known attacks on many hash functions, especially for AES-based schemes. The
goal of this attack is to find two (input, output) pairs (p1, c1) and (p2, c2) such
that the two inputs satisfy a certain (truncated) input difference and the corre-
sponding outputs satisfy a certain (truncated) output difference.

The rebound attack consists of two phases, called inbound and outbound phase.
According to these phases, the internal permutation of the hash function is split
into three sub-parts. Let f be the permutation, then we get f = ffw ◦ fin ◦
fbw. The part of the inbound phase is placed in the middle of the permutation
and the two parts of the outbound phase are placed next to the inbound part.
In the outbound phase, two high-probability (truncated) differential trails are
constructed, which are then connected in the inbound phase. Since the rebound
attack is a differential attack, as first thing an attacker needs to construct a “good”
(truncated) differential trail. A good trail used for a rebound attack should have
a high probability in the outbound phases and can have a rather low probability
in the inbound phase. In the first phase, the attacker uses the knowledge of
the key to find pairs of texts that satisfy the middle rounds of the truncated
differential trail. In the second one, they propagate the solutions found in the
first phase in the forward and in the backward directions, and check if at least
one of them satisfies the entire differential trail.

The best rebound attack on AES proposed in [30] covers 8 rounds. Here we claim
that 6 rounds with full S-Box layers are sufficient to protect Starkad/Poseidon
from this attack. To support it, note that (1st) 1 round of Starkad/Poseidon
provides full diffusion while 2 rounds of AES are necessary to provide it and
(2nd) the best truncated differential covers 1 round of Starkad/Poseidon vs
3 rounds of AES23. Since the best results on AES in the literature cover at most
8 rounds, due to the similarity between AES and Starkad/Poseidon and due
to the previous observations, we argue that it is not possible to mount a rebound
attack on more than 5 rounds with full S-Box layers of Starkad/Poseidon.
Hence, 6 rounds of Starkad/Poseidon with full S-Box layers are sufficient to
guarantee security against this attack.

Multiple-of-n and Mixed Differential Cryptanalysis. The “Multiple-of-
8” distinguisher [25] was proposed at Eurocrypt 2017 by Grassi et al. as the
23 The best truncated differential distinguisher with prob. 1 covers 2 rounds of AES.
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first 5-round secret-key distinguisher for AES that exploits a property which is
independent of the secret key and of the details of the S-Box. It is based on a
new structural property for up to 5 rounds of AES: by appropriate choices of a
number of input pairs it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace is always a
multiple of 8. The input pairs of texts that satisfy a certain output difference are
related by linear/differential relations. Such relations are exploited by a variant of
such a distinguisher, called the “mixture differential" distinguisher [23] proposed
at FSE/ToSC 2019.

Regarding Starkad/Poseidon, it is possible to set up such distinguishers on 2
rounds only. In particular, consider a set of texts with 2 ≤ s ≤ t active words (and
t− s constants words). The number of pairs of texts that satisfy an (arbitrary)
output truncated differential is always a multiple of 2s−1. Moreover, the relations
of the input pairs of texts exploited by mixture differential cryptanalysis are
known. The proofs of these two properties are analogous to the ones proposed
in [25] and in [23]. E.g., consider two texts T 1 and T 2 of the form

T 1 = C ⊕
[
x0, x1, 0, ..., 0

]T
, T 2 = C ⊕

[
y0, y1, 0, ..., 0

]T
for some constant C and where xi 6= yi for i = 0, 1. After one round, the
difference in each word is of the form

M0 · [SB(x0 ⊕ c0)⊕ SB(x1 ⊕ c1)]⊕M1 · [SB(y0 ⊕ c0)⊕ SB(y1 ⊕ c1)],

where M0,M1 depend on the MixLayer and c0, c1 depend on the secret key. By
simple observation, the same output difference is given by the pair of texts

T̂ 1 = C ⊕
[
y0, x1, 0, ..., 0

]T
, T̂ 2 = C ⊕

[
x0, y1, 0, ..., 0

]T
.

Combining this result with a 1-round truncated differential with prob. 1, it is
possible to set up a multiple-of-n distinguisher (where n = 2s−1) and a mixture
differential one on 2 rounds of Starkad/ Poseidon. Using the inside-out ap-
proach, it is possible to set up such attack on 4-round of Starkad/Poseidon.
As a result, it turns out that 6 rounds with full S-Box layers make it secure
against these attacks.

Invariant Subspace Attack. The invariant subspace attack [35] makes use
of affine subspaces that are invariant under the round function. As the round
constant addition translates this invariant subspace [7], random round constants
provides a good protection against such attacks.

Integral/Square Attack. Integral cryptanalysis is a technique first applied on
SQUARE [20] and is particularly efficient against designs based on substitution-
permutation networks, like AES or Starkad/Poseidon.
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The idea is to study the propagation of sums of values. For the case of Starkad/Poseidon,
it is possible to set up an integral distinguisher over two rounds, e.g.AC...

C

 S-Box(·)
−−−−−→

AC...
C

 M(·)
−−−→

AA...
A

 S-Box(·)
−−−−−→

AA...
A

 M(·)
−−−→

BB...
B


where A denotes an active word, C a constant one and B a balanced one24.
Using the inside-out approach, it is possible to set up such attack on 4-round
of HadesCubicπ. As a result, it turns out that 6 rounds with full S-Box layers
make HadesCubicπ secure against this attack.

B.2 Security Analysis – Algebraic Attacks

First we introduce a simple lemma, which follows from the iterative structure of
the HadesCubic permutation.

Lemma 1. The algebraic degree D3(r) of r-round Starkad/Poseidon with
S-Box x3 as a function of input and, optionally, key variables is at most 3r, no
matter if partial or full rounds are used.

Interpolation Attack. One of the most powerful attacks is the interpolation
attack, introduced by Jakobsen and Knudsen [29] in 1997. In the case of a keyed
function Ek : F2N → F2N , the strategy of the attack is to construct a polynomial
representation of the function without knowledge of the secret key. If an adver-
sary can construct such a polynomial then it can compute any output without
knowing the key, thus enabling forgeries (for MAC settings) and other attacks.
The interpolation polynomial P (x) representing Ek(x) can be constructed using
e.g. the Vandermonde matrix – cost approximately of O(t2) – or the Lagrange’s
theorem – cost approximately of O(t · log t), where x is the indeterminate corre-
sponding to the input.

Such attack can be opportunely modified for the case of an unkeyed permutation
E(·). In such a case, assume it is possible to construct the interpolation poly-
nomial without using the full code-book. In this case, such a polynomial can be
exploited to set up a forgery attack on the permutation E, which –in general –
is instead not possible for a (pseudo-)random permutation.

In more details, each output word of an SPN permutation can be represented
as a multivariate polynomial where the variables are the inputs to each S-Box.

24 For completeness, we recall that given a set of texts {xi}i∈I , the word xj is active if
xji 6= xjl for each i 6= l, constant if xji = xjl for each i, l, and balanced if

⊕
i x

j
i = 0.
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Consider a permutation input where χ input words are unknown to us, and the
other t− χ words are known:

χ unknown input words and t− χ known input words.

A (rough) estimation of the number of monomials of the interpolation polynomial
(and so of the complexity of the attack) is given by

(D3(r) + 1)χ,

As a result, by requiring that the number of monomials be close to the number of
possible input values 2χn, the number of rounds must be at least r ' n · log3(2).

However, just reaching the full degree is not sufficient to prevent the interpolation
attack. First, the polynomial should be dense to guarantee that most monomials
occur in it. As showed in [24], the interpolation polynomial is dense when working
in Fp. The situation is instead different when working in F2n , where one needs
at least 1 + dlog3(2n − 1)e + dlog2(t)e rounds in order to guarantee that Ek is
dense.

Since S-Box−1(x) = x1/3 = x(2
n+1−1)/3 has an higher degree than S-Box(x) =

x3, we do not expect the attack performs better when considering the backward
direction instead of the forward one.

Secondly, we consider the algebraic degree not at round r but at round r − 1
to account for partial S-Box case where the degree increase is delayed for t − 1
words by 1 round. As a result, the total number of rounds R must satisfy 25

R ≥ 1 +
⌈
n · log3(2)

⌉
+Φ(t)

to thwart the interpolation attack where

Φ(t) =

{
log2(t) working in F2n

log3(t) working in Fp

Security up to 2M ≤ 2N . For completeness, we present the number of rounds
necessary to provide security up to 2M (that is, data and computational cost of
the attacker upper bounded by 2M ).

Using the same argumentation given before, the number of rounds must satisfy

(3r−Φ(t)−1 + 1)χ ≈ 2min(M,n·χ)

that is r ≥ 1+Φ(t) +min{n,M/χ} · log3(2). The maximum number of attacked
rounds is achieved for χ = 1. As a result, we have RP + RF ≥

(
1 +

⌈
log3(2) ·

min(M,n)
⌉)
+Φ(t).

25 We emphasize that in this analysis we do not take into account the cost to construct
the interpolation polynomial, which is (in general) non-negligible.
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Gröbner Basis Attack. We consider the Gröbner Basis Attack in the same
setting: some permutation inputs are unknown and the rest are known to the
attacker. Given some words of the permutation output, they have to find the
unknowns.

For generic systems, the complexity of computing a Gröbner basis for a system
of N polynomials fi in V variables is O

((
V+Dreg

Dreg

)ω)
operations over the base

field F [19], where Dreg is the degree of regularity and 2 ≤ ω < 3 is the linear
algebra constant. We note that the memory requirement of these algorithms is
of the same order as the running time. The degree of regularity depends on the
degrees of the polynomials d and the number of polynomials N. When V = N,
we have the simple closed form

Dreg := 1 +
N−1∑
i=0

(di − 1), (18)

where di is the degree of the i-th polynomial fi in the polynomial system we
are trying to solve (see [6] for details). In the over-determined case, i.e., V < N,
the degree of regularity can be estimated by developing the Hilbert series of
an ideal generated by generic polynomials 〈f0, . . . , fN−1〉 of degrees di (under
the assumption that the polynomials behave like generic systems). Closed-form
formulas for Dreg are known for some special cases, but not in general.

Full-permutation equations. In the first case we derive equations, one by word,
for the entire r-round permutation. We consider the case when the number χ of
unknown input variables equals the number of known output variables. Then we
get χ equations of degree D3(r) = 3r of χ variables, so the degree of regularity
is

Dreg = 1 + χ(3r − 1) = 3r − χ+ 1.

The attack complexity can be estimated by(
V+Dreg

Dreg

)2

≈
(
χ3r

χ

)2

≈ (3r)2χe2χ

2πχ
,

where 2π is due to Stirling’s approximation. If we target a security level of M
bits, the number of rounds to be attacked is calculated as

(3r)2χe2χ

2πχ
≤ 2min(M,nχ)

=⇒ (3r)2χe2χ ≤ 2πχ2min(M,nχ)

=⇒ r ≤ log2(2πχ)

2χ log2(3)
− log2(e)

log2(3)
+

min(M,nχ)

2χ log2(3)
.

Since the maximum number of attacked rounds is achieved for χ = 1 and since
log2(2π)
2 log2(3)

− log2(e)
log2(3)

< 0, the security is provided by chosen

r >
min(M,n)

2 log2(3)
=

1

2 log2(3)
·min(M,n) ≤ 0.32 ·min(M,n).
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Equations for each S-Box. Here we consider equations of degree 3 for each S-
Box, which relate its inputs and outputs. Given χ unknown permutation inputs
and χ known outputs, we get (t − 1)RF + RP + χ unknown S-Boxes, and for
each we use 1 variable (for its input). In total, we get (t− 1)RF +RP equations
for the S-Box inputs in all rounds, and χ equations for the last-round outputs.
Denoting q = (t− 1)RF +RP +χ, the degree of regularity is Dreg = 1+2q. The
attack complexity can be estimated by(

V+Dreg

Dreg

)2

≈
(
3q

q

)2

=

(
(3q)!

q! · (2q)!

)2

≈ 25.5q(
4πq
3

) ≈ 25.4q,

where we used Stirling’s approximation for the factorials. We also note that the
last approximation only holds true for q ≥ 85. As q denotes the number of vari-
ables used in the attack – which is the same as the number of S-boxes in our
construction – this bound is sufficient to provide security for our proposed instan-
tiations. On the other hand, we do not claim that this approximation provides
security for every possible instantiation, in particular when using comparatively
small state sizes. We will apply the same technique later when evaluating the
security of x5-Poseidon and x−1-Poseidon.

If we target a security level of M bits, the number of rounds to be attacked is
calculated as

25.4((t−1)RF+RP+χ) ≤ 2min(M,nχ)

=⇒ 5.4((t− 1)RF +RP + χ) ≤ min(M,nχ)

=⇒ (t− 1)RF +RP + χ ≤ 0.18 ·min(M,nχ).

Since the maximum number of rounds to be attacked is achieved for χ = 1, the
security is provided by chosen

(t− 1)RF +RP > 0.18 ·min(M,n)− 1.

Combining the two strategies together, we get the following conditions:

RF +RP ≥ 0.32 ·min(M,n), (19)
(t− 1)RF +RP ≥ 0.18 ·min(M,n)− 1. (20)

Higher-Order Differential Attack. A well-known result from the theory of
Boolean functions is that if the algebraic degree of a vectorial Boolean function
f(·) (like a permutation) is d, then the sum over the outputs of the function
applied to all elements of a vector space V of dimension ≥ d + 1 is zero (as is
the sum of all inputs, i.e., the elements of the vector space). The same property
holds for affine vector spaces of the form {v+ c | v ∈ V} for arbitrary constant c⊕

v∈V⊕c
v =

⊕
v∈V⊕c

f(v) = 0.
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This is the property exploited by higher-order diff. attack [33].

Working at word level, the number of rounds (RF+RP ) given by the interpolation
attack provides security also against higher-order differential attacks. Indeed, for
the interpolation attack it is required that the degree d after r rounds satisfies
d ≥ 2N . Instead, for higher-order differentials (working at word level), it is
sufficient that d ≥ N + 1. The conclusion follows immediately.

What happens working – instead – on a bit level? To prevent such attacks,
ideally we would like to be able to make a statement such as “After r rounds
there is no output bit and no input subspace of dimension d′ s.t. the derivative
of the polynomial representation of the output bit with respect to this subspace
is the zero polynomial.” To achieve such a goal, we need to estimate the growth
of the boolean degree. First of all, the degree of the S-Box f(x) = x3 in its
algebraic representation in F2n is only 2. Thus, clearly the boolean degree of
the permutation after r rounds is bounded from above by 2r. It is furthermore
generally bounded from above by N − 1 as it is a permutation.

However, it turns out that the boolean degree grows slower than expected be-
cause the monomial x2

k

is a linear transformation in Fn2 , and a high degree
in F2n may not imply a high degree in Fn2 . Nevertheless we assume26 that the
boolean degree of f is at least q if f over F2n contains a monomial xd where
d has Hamming weight q. From the interpolation attack details we know that
after r+log2 t rounds the polynomial of f is dense and thus contains most of the
monomials of degree 3r and smaller. We now recall that for integer d there are
at least log d integers smaller than d with Hamming weight blog2 dc − 1. There-
fore for a polynomial in 1 variable, that is dense up to degree d, the boolean
degree is at least blog2 dc−1. For a polynomial in χ variables that is dense up to
total degree d, we can find a monomial with degree up to d/χ in each variable,
so the boolean degree would be χ · (blog2(d/χ)c) − χ. Thus if bits in χ input
words are unknown, the boolean degree after r rounds can be lower bounded as
χ ·(blog2(3r−log2 t/χ)c)−χ. As long as the degree is smaller than min(M,χn), we
get a valid attack. Therefore we have the condition for the number of attacked
rounds:

log2(3
r−log2 t/χ)− 2 ≤ min{M/χ, n}.

For M < n the maximum number of rounds is reached for χ = 1, whereas for
M ≥ n the maximum is reached for χ =M/n. Eventually we get that at most

r = 0.63min(M,n) + 2 + log2 t

rounds can be attacked.

26 This assumption is due a recent result found by C. Cid, M. Eichlseder, L. Grassi, R.
Lüftenegger, C. Rechberger, M. Schofnegger and Q. Wang – Private Communication.
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Higher-Order Differential Attacks on Fp. Here we emphasize an important
difference between the higher-order differential attack on F2n and on Fp. Given
a function f(·) of degree d, the sum over the outputs of the function applied to
all elements of a vector space V of dimension ≥ d+ 1 is zero.

The crucial point here is that the previous result holds if V is a (sub)space, and
not only a generic set of elements. While F2m is always a subspace of F2n for
each m ≤ n, the only subspaces of Fp are {0} and Fp. It follows that the biggest
subspace of (Fp)t has dimension t, with respect to the biggest subspace of (F2n)

t,
which has dimension n · t = N .

As a result, in the case in which a permutation is instantiated over Fp, a lower
degree (and hence a smaller number of rounds) is sufficient to protect it from
the higher-order differential attack with respect to the number of rounds for the
F2n case. In more details, the number of rounds necessary to protect our de-
sign against the interpolation attack are sufficient in order to guarantee security
against this attack also.

Zero-Sum Distinguishers. The fact that some inner primitive in a hash func-
tion has a relatively low degree can often be used to construct higher-order diff.
distinguishers, or zero-sum structures. This direction has been investigated e.g.
in [13] for two SHA-3 candidates, Luffa and Keccak. More generally, a zero-
sum structure for a function f(·) is defined as a set Z of inputs zi that sum
to zero, and for which the corresponding outputs f(zi) also sum to zero, i.e.⊕

i zi =
⊕

i f(zi) = 0. For an iterated function, the existence of zero sums
is usually due either to the particular structure of the round function or to a
low degree. Since it is expected that a randomly chosen function does not have
many zero sums, the existence of several such sets can be seen as a distinguishing
property of the internal function.

By using the inside-out technique, here we investigate the minimum number of
rounds of x3 −Poseidonπ sufficient to prevent zero-sum structures.

Definition 1 (Zero-sum Partition [13]). Let P be a permutation from F2n

to F2n . A zero-sum partition for P of size K = 2k < 2n is a collection of 2k
disjoint sets {X1, X2, ..., Xk} with the following properties:

– Xi = {xi1, ..., xi2n−k} ⊂ F2n for each i = 1, ..., k and⋃2n−k

i=1 Xi = F2n ,

– ∀i = 1, ..., 2k : the set Xi satisfies zero-sum
⊕2k

j=1 x
i
j =

⊕2k

j=1 P (x
i
j) = 0.

We focus on creating zero-sum partitions of the permutation P (·) of the form
P (·) = Rr ◦ ... ◦ R1(·), where all Ri are permutations over Fn2 . Remember that
for the permutation in a hash function, one can exploit any state starting from
an intermediate state. Thus, assume one can find a set of texts X = {xi}i and
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a set of texts Y = {yi}i with the property
⊕

i
Rr−1 ◦ ... ◦ Rs+1(yi) = 0 and⊕

i
Rs ◦ ... ◦ R1(xi) = 0 for a certain s. Working with the intermediate states

(remember that there is no secret material), the idea is to choose texts inX
⊕
Y :

the inputs pi are defined as the (r − s)-round decryptions of X
⊕
Y , while the

corresponding outputs ci are defined as the s-round encryptions of X
⊕
Y . This

results into a zero-sum partition {pi} for the permutation P .

To avoid such an attack, we require that Rr−1 ◦ ... ◦Rs+1(·) and Rs ◦ ... ◦R1(·)
have maximum degree. About the forward direction of the permutation, one
can simply reuse the result already proposed for the higher-order differential
discussed in the previous section, i.e. we need 0.63 ·M + log2 t rounds to achieve
the full boolean degree.

About the backward direction we limit ourselves to recall here that the algebraic
degree of S-Box(x) = x1/3 (i.e. the inverse S-Box) is (n+1)/2. This implies that
2 rounds are sufficient to prevent such attack in this direction.

Proposition 1. The algebraic degree of S-Box−1(x) = x1/3 = x(2
n+1−1)/3 is

(n+ 1)/2 (remember that n is odd).

Proof. We prove this result by induction. For n = 3, it follows that S-Box−1(x) =
x1/3 = x5. Since x5 = x4 · x and since x4 is a linear operation in GF (2n), the
result follows immediately.

Assume the result is true for n − 1 = 2n′ + 1. Here we show that it works for
n = 2n′ + 3. Observe that

2n+1 − 1

3
=

22n
′+4 − 1

3
= 22n

′+2 +
22n

′+2 − 1

3

thus
x

2n+1−1
3 = x2

2n′+2

· x
22n
′+2−1
3 .

Since the exponent of the first term on the r.h.s. is a power of 2, it is linear
in GF (2n). By the induction assumption, the second term has algebraic degree
(n− 1)/2. It follows that the algebraic degree is (n+ 1)/2.

C Security Analysis – x5-Poseidon

For some practical applications, we need to work with a prime p s.t. p = 1
mod 3. Since the cubic function x3 is invertible if and only if p = 2 mod 3, we
need to change the S-Box for this particular case.

We decided to work with S-Box(x) = x5 which is invertible if and only if p 6= 1
mod 5. Since the analysis for this case is similar to the one just given for the cubic
case, we limit ourselves here to briefly discuss the number of rounds necessary
to guarantee security in GF(p) (due to our target application).
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C.1 Statistical Attacks

Differential Cryptanalysis. As before, HadesFifthπ instantiated by S-Box(x) =
x5 is secure against statistical attacks if and only if

RstatF ≥ 6.

The main difference here is due to differential and linear attacks. In particular,
since27 DPmax(S-Box(x) = x5) = 4/p (or equivalently 2−n+2 in F2n), it follows
that the minimum number of rounds necessary to guarantee security against
linear and differential attacks is given by

RF =

{
6 if 2t+ 2 < N + dlog2(p)e −M
10 if 2t+ 2 ≥ N + dlog2(p)e −M

for a security level up to 2M ≤ 2N (that is, in the case in which the data and
the computational cost of the attacker is upper bounded by 2M ).

Linear Cryptanalysis. Similar considerations hold for linear cryptanalysis.

Rebound Attacks. Due to the same argumentation in order to provide security
of HadesCubic instantiated by S-Box(x) = x3 against the rebound attack, 6
rounds provide security also HadesFifth instantiated by S-Box(x) = x5 against
the rebound attack.

C.2 Algebraic Attacks

Interpolation Attack. Due to the previous analysis, the number of rounds
necessary to prevent the interpolation attack is given by

RF +RP ≥ Rinter(N, t) ≡ 1 +
⌈
log5(2) ·min

{
dlog2(p)e;M

}⌉
+ dlog5(t)e

working in Fp. In particular, note that the degree of the encrypted function
after r rounds is well approximated by 5r−1, and where log5(t) more rounds
are necessary to guarantee that the polynomial is sparse. Since the degree of
S-Box−1(x) = x1/5 is much higher:

1

5
mod p ≡


4·p−3

5 if p mod 5 = 2
2·p−1

5 if p mod 5 = 3
3·p−2

5 if p mod 5 = 4

the same number of rounds guarantee security in the case in which the attacker
is performed in the decryption direction.
27 Note that (x+∆I)

5 − x5 = ∆O is an equation of degree 4, hence there are at most
4 different solutions.
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Higher-Order Diff. Attack. Since we present HadesFifth-Hash instantiated by
S-Box(x) = x5 just over GF(p), we refer to previous discussion against higher-
order diff. attacks over Fp, and we limit ourselves to remember that the number
of rounds necessary to guarantee security against the interpolation attack is also
also sufficient to guarantee security against higher-order diff. attacks.

Gröbner Basis Attack. Using exactly the same analysis as for x3-Poseidon,
we get the following conditions:

RF +RP ≥ 0.21 ·min(M,n), (21)
(t− 1)RF +RP ≥ 0.14 ·min(M,n)− 1. (22)

D AET Complexity of Friday

Friday [5] is a recent STARK-friendly symmetric hash function introduced by
Ashur and Dhooghe and based on a new block cipher Jarvis. It is presented
in several instances with different security levels. Friday-128 offers 64 bits of
collision resistance, and Friday-256 offers 128 bits of collision resistance.

Here we compute the numbers for Friday in order to compare it with our design.
Note, however, that Jarvis and consequently Friday are vulnerable to algebraic
attacks [3] and thus the stated round number would have to be increased in order
to restore security. This would also result in a higher cost in this setting.

The proposed version of Friday uses 10 and 14 rounds for a block size of 128
and 256 bits, respectively. An inverse S-Box (in GF (2128), GF (2256)) is followed
by two transformations of degree 4 in the field and a constant addition. We
have to use 5 registers per round: S-Box input, S-Box output, a temporary
register to store the information if the input is zero, the output of the first
degree-4 transformation, and the round constant. All these variables are linked
by constraints of degree not more than 4. One can optimize it by adding two more
intermediate variables for the linear transformations and reducing the degree to
2. In total, we get T = 10(14), w = 7, d = 2:

Prover Operations in Friday-128 = 8 · 7 · 2 · 10 log 70 = 6865 (23)
Prover Operations in Friday-256 = 8 · 7 · 2 · 14 log 98 = 10372 (24)

or 54 (respectively, 41) operation per bit. Note that these operations are done
in bigger fields than our GF (263) so the actual time difference is much bigger.

E Compact Constraints for STARKs and SNARKs

In this section we show how to generate constraints for S-Boxes that depend on
only a few variables. This is useful when t is relatively small compared to RP .
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Let us denote the outputs of the ARK transformation in round r byA1
r, A

2
r, . . . , A

t
r.

Let us also denote the inputs to the MDS matrix in round r by B1
r , B

2
r , . . . , B

t
r.

We obtain that in full rounds

S(Air) = Bir,

whereas in partial rounds

S(Atr) = Btr, Air = Bir, i < t.

The S-Box inputs then will be

Air for i < t : r ∈ [1;RF /2] ∪ [RF /2 + 1 +RP ;RF +RP ]

Atr : r ∈ [RF /2 + 1;RF /2 +RP ].
(25)

It is obvious that the equations above plus the MDS and ARK affine transfor-
mations

MBr +Kr = Ar+1. (26)

fully determine the permutation. Therefore, using 2Rt variables {Air, Bir} we can
describe the permutation using constraints of degree equal to the S-Box degree
d.

As we have mentioned, one can do better by substituting equations (26) for all
Bir thus getting equations on only Rt variables {Air}. In the same way we can
get rid of Air that are not inputs to S-Boxes, thus leaving with equations on
RF t + RP variables. However, this procedure creates equations with too many
variables as S-Box outputs in the first partial rounds now depend on the S-Box
inputs of all future partial rounds. Our goal is to construct compact equations
on the same variables. We are going to work with two consecutive segments of
t partial rounds each, let them be rounds from r to r + 2t − 1. We proceed as
follows:

1. Express Atj , j ∈ [r + t; r + 2t− 1] as affine functions of

A1
r+t, A

2
r+t, . . . , A

t
r+t, B

t
r+t, B

t
r+t+1, . . . , B

t
r+2t−1.

2. Using Gaussian elimination, express (A1
r+t, A

2
r+t, . . . , A

t
r+t) as affine func-

tions of

Atr+t, A
t
r+t+1, . . . , A

t
r+2t−1, B

t
r+t, B

t
r+t+1, . . . , B

t
r+2t−1.

3. Express Btj , j ∈ [r; r + t− 1] as affine functions of

A1
r+t, A

2
r+t, . . . , A

t
r+t, A

t
r+1, A

t
r+2, . . . , A

t
r+t.

4. Using Gaussian elimination, express (A1
r+t, A

2
r+t, . . . , A

t
r+t) as affine func-

tions of
Atr+1, A

t
r+2, . . . , A

t
r+t, B

t
r, B

t
r+1, . . . , B

t
r+t−1.
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5. Combine items 2 and 4 and get a system of t affine equations that link

Atr+t, A
t
r+t+1, . . . , A

t
r+2t−1, B

t
r+t, B

t
r+t+1, . . . , B

t
r+2t−1,

Atr+1, A
t
r+2, . . . , A

t
r+t, B

t
r, B

t
r+1, . . . , B

t
r+t−1.

6. Substitute Btj ← S(Atj) and get a system of t degree-d polynomial constraints
on (Atr+t, A

t
r+t+1, . . . , A

t
r+2t−1, A

t
r+1, A

t
r+2, . . . , A

t
r+t).

The resulting system P1 of polynomial constraints does not depend on r except
for the constant term, which is determined by round constants. We do not have
a formal proof that the systems composed at steps 1 and 3 have rank t but
experiments show that it is the case for all matrices we tried.

We thus get the following system of constraints for the entire permutation:

– For the first group of full rounds: t(RF /2−1) constraints of degree d that link
(A1

r, A
2
r, . . . , A

t
r, A

1
r+1, A

2
r+1, . . . , A

t
r+1), r ∈ [1;RF /2 − 1]. The constraints

depend on r in the constant terms only.

– Bridging the last full and t first partial rounds: t constraints of degree d that
link (A1

RF /2
, A2

RF /2
, . . . , AtRF /2

, AtRF /2+1, A
2
RF /2+2, . . . , A

t
RF /2+t

).

To get them, we express AtRF /2+1, A
2
RF /2+2, . . . , A

t
RF /2+t

as affine functions
of (A1

RF /2
, A2

RF /2
, . . . , AtRF /2

, BtRF /2
,

B2
RF /2+1, . . . , B

t
RF /2+t−1) and then substituting B as degree-d functions.

– For all RP partial rounds: divide them into groups of t rounds and use the
system P1 (derived above) to link them consecutively, thus RP−t constraints
in total.

– Bridging the last t partial and round (RP+RF /2+1) (full one): t constraints
of degree d.

– For the last group of full rounds: t(RF /2− 1) constraints of degree d.

This totals to tRF +RP − t constraints of degree d.
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F Concrete instances for some field sizes

Table 5: A range of different parameter sets for Starkadπ and Poseidonπ

instantiated by S-Box(x) = x3 (with security margin).

Security Text Size S-Box Size # S-Boxes RF RP Field Cost
M N = n× t (n or log2 p) (t) Eq. (4)

128 1536 768 2 8 82 Fp 98
128 1536 384 4 8 83 Fp 115
128 1536 256 6 8 84 Fp 132
128 1536 192 8 8 84 Fp 148
128 1536 96 16 8 64 Fp 192

128 1512 63 24 8 45 F2n 237
128 1551 33 47 8 25 F2n 401
128 1581 31 51 8 24 F2n 432

256 1536 768 2 8 169 Fp 185
256 1536 384 4 8 170 Fp 202
256 1536 256 6 8 170 Fp 218
256 1536 192 8 8 127 Fp 191
256 1536 96 16 8 64 Fp 192

256 1512 63 24 8 45 F2n 237
256 1551 33 47 8 25 F2n 401
256 1581 31 51 8 24 F2n 432
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Table 6: A range of different parameter sets for Poseidonπ instantiated by
S-Box(x) = x5 (with security margin).

Security Text Size S-Box Size # S-Boxes RF RP Field Cost
M N = n× t (n or log2 p) (t) Eq. (4)

128 1536 768 2 8 55 Fp 71
128 1536 384 4 8 56 Fp 88
128 1536 256 6 8 56 Fp 104
128 1536 192 8 8 57 Fp 121
128 1536 96 16 8 43 Fp 171

256 1536 768 2 8 114 Fp 130
256 1536 384 4 8 116 Fp 148
256 1536 256 6 8 116 Fp 164
256 1536 192 8 8 86 Fp 150
256 1536 96 16 8 43 Fp 171
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