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Abstract
The area of practical computational integrity proof systems,
like SNARKs, STARKs, Bulletproofs, is seeing a very dy-
namic development with several constructions having ap-
peared recently with improved properties and relaxed setup
requirements. Many use cases of such systems involve, of-
ten as their most expensive part, proving the knowledge of a
preimage under a certain cryptographic hash function, which
is expressed as a circuit over a large prime field. A notable
example is a zero-knowledge proof of coin ownership in the
Zcash cryptocurrency, where the inadequacy of the SHA-256
hash function for such a circuit caused a huge computational
penalty.

In this paper, we present a modular framework and concrete
instances of cryptographic hash functions which work natively
with GF(p) objects. Our hash function POSEIDON uses up to
8x fewer constraints per message bit than Pedersen Hash.

Our construction is not only expressed compactly as a cir-
cuit, but can also be tailored for various proof systems using
specially crafted polynomials, thus bringing another boost in
performance. We demonstrate this by implementing a 1-out-
of-a-billion membership proof with Merkle trees in less than
a second by using Bulletproofs.

Previous Version. This paper is an updated version of
[GKR+19, Version: 20200205:104144]. Main differences
are:

• here we propose only POSEIDON over prime field: this
choice has been made since ...;

• the security analysis has been updated in order to take
care of recent attacks appeared on ePrint (e.g., [KR20,
BCD+20]): in particular, a further assumption on the
MixLayer has been added;

• the applications part & the comparison w.r.t. other
schemes have been updated.
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1 Introduction

The recent advances in computational integrity proof systems
made a number of computational tasks verifiable in short time
and/or in zero knowledge. Several protocols appeared that
require one party to prove the knowledge of a seed-derived
secret, of an element being part of a large set, or their combi-
nation. Whereas accumulator-based solutions [CL02,CKS09]
and algebraic Schnorr proofs exist in the area, they are quite
involving and thus error-prone, require a trusted setup, are lim-
ited in statement language, and are often slow. An alternative
is to express secret derivation using cryptographic hash func-
tions, and to prove set membership by presenting an opening
in a properly chosen Merkle tree, also built on a cryptographic
hash function. Such hash-based protocols require a compu-
tational integrity proof system, which can be applied to an
arbitrary arithmetic circuit. However, for the protocol to be
efficient, proofs must be generated and verified in reasonable
time, which in turn requires the hash function to be cheap in
a certain metric depending on the proof system.

In the middle of 2020, the most popular proof systems
are ZK-SNARKs (Pinocchio [PHGR13], Groth16 [Gro16],

PLONK [GWC19], Marlin [CHM+20] to name a few), Bullet-
proofs [BBB+18], ZK-STARKs [BBHR19], and MPC-in-the-
head systems [GMO16, AHIV17, CDG+17]. The former two
groups have already been applied to a number of real-world
protocols, whereas the latter ones are the most promising from
the perspective of post-quantum security. These systems use
two quite different circuit descriptions so that the proof size
and generation time are computed differently:

• The R1CS format (rank-1 quadratic constraints) de-
scribes the circuit as a set of special quadratic polyno-
mials of the form L1(X) · L2(X) = L3(X), where X is
the tuple of internal and input variables, Li are affine
forms and · is the field multiplication, and (possibly in
an affine-equivalent form) is used in almost all SNARKs
and Bulletproofs. The circuit multiplication and addi-
tion gates are defined over a prime field GF(p). The
proof generation complexity is directly proportional to
the number T of constraints, which often corresponds
to the number of multiplication gates. The prime field
GF(p) is the scalar field of an elliptic curve, where for
ZK-SNARKs the curve should be pairing-friendly and
for Bulletproofs it should just be a secure curve.

• The AET metric is used in ZK-STARKs and (to some
extent) in the PLONK proof system. The computation
is expressed as a set of internal program states related
to each other by polynomial equations of degree d. The
state consists of w field elements and undergoes T trans-
formations. The proof generation is roughly proportional
to the product w ·d ·T . The number and sparsity of poly-
nomial constraints do not play a major role.

Our goal was to design a family of hash functions that are
optimal in the R1CS (as the most widespread) and good in
the AET metric, while also supporting different finite field
sizes. It turned out that the substitution-permutation network
(SPN) design, well-known in symmetric cryptography, al-
lows for a generic hash function framework where the only
security-critical parameter that has to be changed for each
instance is the number of rounds, and we provide an efficient
and transparent strategy for its choice. The S-box is chosen
as the power map x 7→ xd , where d ≥ 3 is usually chosen as
the smallest integer that guarantees invertibility and provides
non-linearity. In particular, the cube function x3 is almost uni-
versally chosen, apart from cases of fields where this function
is not a bijection. Instead, we suggest other S-boxes such as
x5 or 1/x for these cases. Thanks to a succinct representation
of the functions and a low S-box degree, we are able to opti-
mize the circuit significantly for PLONK and RedShift proof
systems, with performance improvements by a factor of up to
40.

Our Contributions. We design and analyze a family of
hash functions over GF(p) named POSEIDON. The internal
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Table 1: Our primary proposals and their competitors. “Tree” refers to the Merkle tree arity and is equal to the rate/capacity ratio.
“Curve” denotes the curve (BLS12-381, BN254, Ed25519) whose (subgroup) scalar field determines the prime size. The R1CS/bit
costs are obtained by dividing the R1CS prover costs by the message rate. Timings are from a third-party implementation of
Rescue and POSEIDON on an i9-8950 CPU @2.9 Ghz and 32 GB RAM.

Name S-box Rate SB size Tree RF RP Curve R1CS R1CS Time
bits/perm. (log2 p) arity Scalar field /perm. /bit /perm.

POSEIDON-80 x5 510 255 2:1 8 33 BLS/BN/Ed 171 0.34 0.021 ms
x5 1020 255 4:1 8 35 225 0.22 0.05 ms

x5 510 255 2:1 8 57 243 0.47 0.033 ms
POSEIDON-128 x5 1020 255 4:1 8 60 BLS/BN/Ed 300 0.29 0.08 ms

x5 2040 255 8:1 8 63 405 0.2 0.259 ms

POSEIDON-256 x5 1020 255 2:1 8 120 BLS/BN/Ed 504 0.5 0.216 ms
x5 2040 255 4:1 8 120 600 0.3 0.578 ms

Pedersen Hash - 516 - 2:1 - BLS12-381 869 1.68

510 255 2:1 16 268 0.52 0.525 ms
Rescue x5 & x1/5 1020 255 4:1 10 BLS/BN/Ed 300 0.29 0.555 ms

2040 255 8:1 10 450 0.22 1.03 ms

permutation is called POSEIDONπ and is based on the HADES
design strategy [GLR+20], which is essentially a strategy
based on substitution-permutation networks with t cells, but
including the use of so-called partial rounds, which use non-
linear functions only for part of the state. In our specific con-
struction, only one S-box is used in these partial rounds, while
full non-linear layers (i.e., t S-boxes) are used in all other
rounds. This is done to reduce the R1CS or AET cost.

We aim to support security levels of 80, 128, and 256 bits,
where the security is the same for collision and preimage re-
sistance. For each pair (basic field, security level) we suggest
a concrete instance of POSEIDON. In our hash function, a few
S-box elements are reserved for the capacity (roughly double
the security level in bits), and the rest for the rate. The permu-
tation width is determined by the application: It is set close to
1280 bits for long-message hashing, whereas for Merkle trees
we support various widths to enable 2:1, 4:1, and other arities
and thus higher ZK performance.

We provide an extensive cryptanalysis of POSEIDON with an
accent on algebraic methods as these prove to be the most
effective. We explore different variants of interpolation, Gröb-
ner basis, and higher-order differential attacks. As our per-
mutations are quite wide, we do not aim for them behaving
like randomly chosen permutations. Instead, for a security
level of M bits we require that no attack could exhibit a non-
random (but relevant for collision/preimage search) property
of a permutation faster than in 2M queries. We then calculate
the maximum number of rounds for each field, security level,
and fixed permutation width that can be attacked. Then we
select the number of rounds for concrete instances together
with a security margin.

We have evaluated the number of constraints in POSEIDON
instances for the R1CS metric and the AET metric. Our pri-
mary proposals POSEIDON-80/128/256 are listed in Table 1
(BLS being BLS12-3811, BN being BN254 [W+14], Ed be-
ing the Ristretto group2) and are compared to similar-purpose
designs. Finally, we refer to Supplementary Material A for a
complete overview of our auxiliary files, including reference
implementations and scripts to create POSEIDONπ instances.

We also have third-party benchmarks of POSEIDON for reg-
ular hashing3 (Table 1) and in ZK proof systems: PLONK
(Table 6), Groth16 (Table 3), and Bulletproofs (Table 5).

Comparison to HADES ( [GLR+20]). Since the design
of POSEIDON follows the same strategy as block ciphers in
[GLR+20], we provide an explicit list of new material crafted
for this paper:

• Hash-function specific (CICO, keyless, preimage) al-
gebraic attacks, their analysis, and fixes against recent
hash-only attacks

• Orientation towards various zero-knowledge proof sys-
tems and suggestions how to increase prover perfor-
mance in these systems

• Instances for Merkle trees and variable-length hashing

• Concrete benchmarks for zero-knowledge proofs of ac-
cumulated values in Merkle trees, and a demonstration

1https://electriccoin.co/blog/new-snark-curve/
2https://ristretto.group
3https://github.com/shamatar/poseidon_hash and https:

//github.com/shamatar/rescue_hash
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that it can be done in 1 second for billion-size trees

Related Work. The Zcash designers introduced a new 256-
bit hash function called Pedersen hash [HBHW19, p.134],
which is effectively a vectorized Pedersen commitment in el-
liptic curve groups with short vector elements. For the claimed
128-bit security level, it utilizes 869 constraints per 516-bit
message chunk, thus having 1.7 constraints per bit, whereas
our POSEIDON instances use from 0.2 to 0.45 constraints per
bit, depending on the underlying prime field.

For the binary field case, Ashur and Dhooghe [AD18] have
recently introduced the STARK-friendly block cipher JARVIS
and its derivative hash function FRIDAY with several instances
and security levels. They use a key-alternating structure with
a single inverse S-box, followed by an affine transforma-
tion (with low degree in the extension field). However, both
JARVIS and FRIDAY were successfully attacked shortly af-
ter their publication [ACG+19]. In the response, the authors
created a new family of SNARK/STARK-friendly hash func-
tions with Vision (binary fields) and Rescue (prime fields)
being main instances [AABS+19]. The latter two share some
similarity with our design with two important differences:
First, all S-box layers are full (there are no partial rounds).
Moreover, every second layer has S-boxes of the form x1/d

for small d. This approach prevents some algebraic attacks
but is also more expensive in software as the resulting power
functions have high Hamming weight and thus require many
squarings.

Structure of the Paper. We introduce POSEIDON as a
HADES-based hash in Section 2 and follow up with real-world
applications in Section 3. Concrete instances with round num-
bers and domain constants are given in Section 4. We sum-
marize the cryptanalysis results in Section 5 with the details
in Appendix. Finally, we estimate the performance of POSEI-
DON instances in zero-knowledge proof systems in Section 6
by computing R1CS (SNARK) and AET (STARK) costs.

Historic Remarks. We started working on the design of
POSEIDON in the fall of 2018. The work was triggered by
the STARK paper [BBHR19] where a Rijndael-based hash
function was proposed for zero-knowledge applications, but
we identified that the underlying cipher is not suitable for the
hash mode due to related-key trails. In the design of POSEI-
DON, we were inspired by the LowMC cipher [ARS+15] with
a partial S-box layer, the block cipher SHARK with its in-
verse S-box and its MDS matrix as the linear layer [RDP+96],
and by MiMC with its algebraically simple approach of us-
ing the cube S-box [AGR+16, GRR+16b]. We immediately
considered a partial S-box layer for most of the rounds in
order to gain performance and safe constraints. The S-box

was initially either the inverse or a power map (as the cube
function), but we later found out that the inverse function does
not provide a sufficiently fast degree growth.

In 2019, we separated the design into two parts due to
diverging analysis and use cases, namely the block ci-
pher HADESMiMC and the hash functions POSEIDON and
STARKAD. The latter was designed for binary fields, as we
thought that they are useful for STARKs. However, it turned
out that they are neither especially useful in this setting nor
equally secure [KR20,BCD+20], which is why we eventually
dropped STARKAD.4

After the first publications of the design, we got requests
from third parties to add explicit Merkle tree support and
encryption (to be verifiable in zero knowledge). Later we
were also asked to add weaker and stronger versions. Ini-
tially we allowed for greater flexibility in the choice of S-
boxes, curves, width, etc., but only a few parameter sets
are now given in the main body of this paper for the mat-
ter of user convenience: It turned out that too many possi-
ble parameters confuse users. Regarding zero-knowledge
proof systems, we initially targeted Groth16 [Gro16], Bul-
letproofs [BBB+18] and STARKs [BBHR19], and we later
also added PLONK [GWC19] due to its increased popularity.

2 The POSEIDON Hash Function

In the following, we propose the hash function POSEIDON,
which maps strings over Fp (for a prime p ≈ 2n) to fixed-
length strings over Fp, i.e., POSEIDON : F∗p → Fo

p, where
o is the output length measured in Fp elements (usually,
o = 1). It is constructed by instantiating a sponge function
with the POSEIDONπ permutation. POSEIDONπ is a variant
of HADESMiMC proposed in [GLR+20], albeit instantiated
with a fixed and known key.

We sometimes use the notation p ≈ 2n and N = n · t ≈
log2(p) · t to denote the approximate size of the texts in bits.

2.1 Sponge Construction for POSEIDONπ

Sponges. A sponge construction [BDPA08] builds upon an
internal permutation and can be used to achieve various goals
such as encryption, authentication, or hashing. In addition to
the internal permutation, it is usually defined by two parame-
ters, namely the rate (or arity in the context of tree hashing)
r and the capacity (or inner part) c. The rate determines the
throughput, whereas the capacity is crucial for the security
level. This means that, when fixing the size of the internal per-
mutation to N bits, a tradeoff between throughput and security
has to be made.

4For reference, we recall STARKAD in Supplementary Material J.
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Figure 1: A sponge hash function.

An example for a sponge hash function is proposed in Fig. 1,
where the construction is used to compute the hash output
h1 || h2 of the 4-block message m1 || m2 || m3 || m4, where mi
and hi are r-bit values. The initial state I contains all zeros,
i.e., I = 0r || 0c for an r-bit rate and a c-bit capacity.

Sponge Security. Depending on the properties of the N-bit
internal permutation, a sponge construction allows to make
strong arguments about the security of the overall design.
Specifically, if this permutation is modeled as a randomly
chosen permutation, the sponge function is indifferentiable
from a random oracle for up to 2c/2 calls (|F|c/2 calls if the
capacity is counted in field elements) [BDPA08]. A sponge
hash function with a capacity of c bits can therefore provide
2c/2 bits of collision and 2c/2 bits of (second) preimage resis-
tance.5

In this proposal, we instantiate the sponge function with our
new permutation POSEIDONπ. Given the size N of the permu-
tation and a desired security level s, we can hash r = N−2s
bits per call to the permutation. Following this design strat-
egy, we choose the number of rounds of the inner permutation
POSEIDONπ in order to ensure that such a permutation does
not exhibit non-generic properties up to 2M queries, where M
is the desired security level.6 For this we set the capacity to
2M and denote by POSEIDON-M a hash function that provides
M bits of security against collision and preimage attacks.

Our POSEIDONπ Sponges. We provide several POSEIDON
instances for different use cases, but they all use the sponge
construction in the same way as illustrated in Fig. 1:

1. Depending on the use case (Section 3), determine the
capacity element value and the input padding if needed.

2. Split the input into chunks of size r.

3. Apply the permutation POSEIDONπ to the capacity ele-
ment and the first chunk.

5We present the Sponge construction over a binary field in order to follow
the presentation made in [BDPA08]. It can easily be generalized for a prime
field Ft

p by replacing each (N/t)-bit word by a (dlog2(p)e)-bit one.
6In other words, the permutation cannot be distinguished from a randomly

drawn permutation.

4. Until no more chunks are left, add them into the state
and apply the permutation.

5. Output o output elements out of the rate part of the state.
If needed, iterate the permutation more times.

2.2 The HADES Design Strategy for Hashing

Cryptographic permutations usually consist of an efficient
round function which is applied sufficiently many times in
order to make the permutation behave like a randomly drawn
one. In general, the same round function is used throughout
the permutation, in order to destroy all of its possible symme-
tries and structural properties.

In HADES we consider different round functions within the
same construction. More precisely, we mix rounds with full
S-box layers and rounds with partial S-box layers. The mo-
tivation to have different types of rounds is that full S-box
layers are expensive in software and ZK proof systems but are
a good protection against statistical attacks, whereas partial
layers are relatively cheap but are, in some cases, similarly
good as full ones against algebraic attacks.

Details on the HADES Strategy. The HADES design strat-
egy consists of R f rounds in the beginning, in which S-boxes
are applied to the full state. After these rounds, RP rounds in
the middle contain only a single S-box in each round, and the
rest of the state goes through the non-linear layer unchanged
(i.e., identity functions are used instead of the missing S-
boxes). Finally, R f rounds at the end are applied by again
using S-boxes for the full state.

The idea of this approach is to provide arguments for the secu-
rity against statistical attacks using the RF = 2R f rounds with
full S-box layers in the beginning and in the end together with
the wide trail strategy [DR01], which is also used in, e.g., the
AES [DR02]. On the other hand, the RP rounds with partial
S-box layers are a more efficient way to increase the degree
of the overall function, and are mainly used for arguments
against algebraic attacks.

A detailed overview of this approach is shown in Fig. 2.

The Round Function. Each round function of our POSEI-
DON permutation consists of the following three components.

1. AddRoundConstants, denoted by ARC(·)

2. SubWords, denoted by S-box(·) or by SB(·)

3. MixLayer, denoted by M(·)

The MixLayer operation is the linear layer of our construction,
and it consists in multiplying the state with a t×t MDS matrix
in order to apply the wide trail strategy.

5
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Figure 2: Construction of the HADES-based POSEIDONπ per-
mutation.

In total we get:

ARC→ SB→M︸ ︷︷ ︸
First round

→ ·· · → ARC→ SB→M︸ ︷︷ ︸
(R−1)-th round

→ ARC→ SB→M︸ ︷︷ ︸
R-th round

While ARC(·) and M(·) are the same in each round, the
number of S-boxes is not the same, namely

• R f +R f = RF rounds have full S-box layers, i.e., t S-box
functions, and

• RP rounds have partial S-box layers, i.e., 1 S-box and
(t−1) identity functions.

We refer to [GLR+20] for more details about the HADES
design strategy.

Interaction Between Full and Partial Rounds. Note that
the same number of full rounds can be used instead of the
partial rounds without decreasing the security, but this leads to
substantially higher costs in our target applications. However,
replacing t partial rounds with one full round may keep the
costs in our target applications similar, but the security may
be severely decreased due to a significantly lower degree of 1
full round compared to t partial rounds.

2.3 The Permutation Family POSEIDONπ

The HADES design strategy provides a good starting point for
our new hash function. Indeed, the combination of full and
partial rounds allows us to make strong arguments about the
security, while also exploiting the smaller number of S-boxes
in the partial rounds in order to gain efficiency in the target
applications.

The primary application of our design is hashing in large
prime fields, hence POSEIDONπ takes inputs of t ≥ 2 words
in Fp, where p is a prime of size p≈ 2n (i.e., dlog2(p)e= n).
We will now describe the components of each POSEIDONπ

round in detail.

The S-Box Layer. For the applications we have in mind,
we focus on two S-boxes.

• First, we consider the α-power S-box, defined by
S-box(x) = xα, where α is the smallest positive integer
s.t. gcd(α, p−1) = 1. In the following, these permuta-
tions are called “xα-POSEIDONπ”. Examples are given
by α = 3 (x3-POSEIDONπ) if p 6= 1 mod 3 or α = 5
(x5-POSEIDONπ) if p 6= 1 mod 5.

• Secondly, we consider the inverse S-box(x)= x−1 (under
the assumption S-box(0) = 0). In the following, these
permutations are called “x−1-POSEIDONπ”.

It turns out that the S-box x5 is suitable for two of the most
popular prime fields in ZK applications, concretely the prime
subfields of the scalar field of the BLS12-381 and BN254
curves, so we mainly consider this S-box, but try to present
generic cryptanalytic results for other cases whenever possi-
ble.

The Linear Layer. A t× t MDS matrix7 with elements in
Fp exists if the condition (see [MS78] for details)

2t +1≤ p

is satisfied.

Given p and t, there are several ways to construct an MDS
matrix. One of them is using a Cauchy matrix [YMT97],
which we recall here briefly. For xi,yi ∈ Fp, where i ∈ [1, t],
the entries of the matrix M are defined by

Mi, j =
1

xi + y j
,

where the entries of {xi}1≤i≤t and {yi}1≤i≤t are pairwise dis-
tinct and xi + y j 6= 0, where i ∈ {1, . . . , t} and j ∈ {1, . . . , t}.

Avoiding Insecure Matrices. We emphasize that not every
MDS matrix provides the same level of security. In particular,
the matrix M must prevent the possibility to set up

7A matrix M ∈ Ft×t is called maximum distance separable (MDS) iff
it has a branch number B(M) equal to B(M) = t + 1. The branch number
of M is defined as B(M) = minx∈Ft {wt(x)+wt(M(x))}, where wt is the
Hamming weight in wide trail terminology. Equivalently, a matrix M is MDS
iff every submatrix of M is non-singular.
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(1) invariant (or iterative) subspace trails [GRR16a] (or
equivalently, truncated differentials) with prob. 1 with
inactive S-boxes over more than t − 1 rounds8 (more
details are given in the following), or

(2) invariant (or iterative) subspace trails with prob. 1 and
with active S-boxes for any number of rounds.

Regarding the first point, let S i be the subspace s.t. no S-box
is active in the first i consecutive rounds, that is,

S (i) :=
{

v ∈ Ft ∣∣ [M j · v]0 = 0 ∈ F, j < i
}
, (1)

where [x]0 denotes the first word of x ∈ Ft , S (0) = Ft , and
dim

(
S (i)
)
≥ t− i. For each pair of texts (x,y) in the same

coset of S i, no S-boxes are active in the first i consecutive
rounds. Hence, a truncated differential with prob. 1 (or equiv-
alently, a subspace trail) can be set up for the first i ≤ t−1
rounds. The matrix M must be chosen s.t. no subspace trail
with inactive/active S-boxes can be set up for more than t−1
rounds.

A detailed analysis of matrix properties related to this attack
vector can be found in [GRS20]. With these results in mind,
we suggest the following method to generate matrices:

1. Randomly select pairwise distinct {xi}1≤i≤t and
{yi}1≤i≤t , where xi + y j 6= 0 and where i ∈ {1, . . . , t}
and j ∈ {1, . . . , t}.

2. Determine if the matrix is secure using Algorithm 1,
Algorithm 2, and Algorithm 3 provided9 in [GRS20].
For a secure matrix, no infinitely long (invariant and/or
iterative) subspace trail (with or without active S-boxes)
can be set up for all rounds with partial S-box layers.

3. Repeat this procedure until a secure matrix is found.

We used this method to generate the matrices for the instan-
tiations given in Section 4. For [GRS20, Algorithm 3], we
used a search period of l = 4t, and we additionally made sure
that no invariant subspace trails with active S-boxes exist
for M,M2, . . . ,Ml . In our experiments, we observed that only
a few trials are needed in order to find a secure matrix for
sufficiently large fields.

To summarize, this approach allows us to make sure that our
MDS matrices do not exhibit the vulnerabilities discussed
in [GRS20], and our instantiations are thus secure against this
specific type of attack.

Efficient Implementation. We refer to Supplementary Ma-
terial B for details about efficient POSEIDONπ implementa-

8This fixes a weakness in the previous version of POSEIDON, where
specific choices of M over (Fp)

t could have resulted in vulnerable instances.
We refer to [KR20, BCD+20] for more details.

9https://extgit.iaik.tugraz.at/krypto/linear-layer-tool

tions. The main advantage of these strategies consists of re-
ducing the number of constant multiplications in each round
with a partial S-box layer from t2 to 2t, which is particu-
larly useful for large t and RP. For example, we implemented
x3-POSEIDONπ with (n, t,RF ,RP) = (64,24,8,42) in Sage,
and we could observe that the performance improves by a
factor of about 5, with the average computation time being 4
ms for the optimized version.

3 Applications

We suggest POSEIDON for all applications of zero-knowledge-
friendly hashing, concretely:

• Using POSEIDON for commitments in various proto-
cols, where the knowledge of the committed value is
proven in zero knowledge: For this we suggest a single-
call permutation-based hashing with POSEIDON-128 and
widths from 2 to 5 field elements. The advantage over
the Pedersen hash, for example, is that POSEIDON is
faster and can also be used in signature schemes which
allows for a smaller code footprint.

• Hashing multi-element objects with certain fields en-
coded as field elements, so that statements about these
fields are proven in zero knowledge: We suggest variable-
length sponge-based hashing with POSEIDON-128 or
POSEIDON-80 with width 5 (and rate 4).

• Using POSEIDON in Merkle trees to enable zero-
knowledge proofs of knowledge of a leaf in the tree
with optional statements about the leaf content: We rec-
ommend Merkle trees of arity 4 (i.e., width 5) with PO-
SEIDON-128 as the most performant, but trees of more
conventional arities can be used as well.

• Verifiable encryption with POSEIDON within Integrated
Encryption Scheme [GMHESÁ10]: Put POSEIDON in-
side the DuplexSponge authenticated encryption frame-
work [BDPA11] and initialize it with a session key based
on the recipient’s public key. Then one can prove that
the recipient can decrypt the ciphertext into a plaintext
with certain properties.

There exist several third-party protocols that already use PO-
SEIDON in these use cases:

• Filecoin employs POSEIDON for Merkle tree proofs with
different arities and for two-value commitments.10

• Dusk Network uses POSEIDON to build a Zcash-like
protocol for securities trading.11 It also uses POSEIDON
for encryption as described above.

10https://github.com/filecoin-project/neptune
11https://github.com/dusk-network/Poseidon252
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• Sovrin uses POSEIDON for Merkle-tree based revoca-
tion [sov19].

• Loopring uses POSEIDON for private trading on
Ethereum.12

4 Concrete Instantiations of POSEIDONπ

As of mid-2020, many protocols that employ zero-knowledge
proofs use (or plan to use) pairing-based proof sys-
tems [PHGR13, Gro16, GWC19, CHM+20] or Bullet-
proofs [BBB+18]. The elliptic curves used by these systems
are predominantly BLS12-381, BN254, and Ed25519. A hash
function friendly for such a system would operate in the scalar
prime field of the curve, and they all have a size of around
2255.

4.1 Main Instances

We present POSEIDONπ permutations for such prime fields,
and leave the other cases to the appendix. The S-box function
can be chosen as x5 in all cases, i.e., we use x5-POSEIDON
for hashing in all such protocols, though the concrete fields
are slightly different (this affects only constants and matrices,
but not the number of rounds).

The security levels M of 80 and 128 bits correspond to a
255-bit capacity, i.e., one field element. We focus on two
possible widths, namely t = 3 and t = 5, as they correspond
to popular cases of 2-to-1 and 4-to-1 compression functions.
In the Merkle tree case, this corresponds to trees of arity 2
and 4, respectively. The round numbers for 80- and 128-bit
security levels are given in Table 2, and a more extensive set
is given in the appendix. For M = 256 we select a capacity
and an output of 2 255-bit elements (one 510-bit element is
possible too).

All our MDS matrices are Cauchy matrices, and the method
to construct them is further described in Section 2.3. We use
sequences of integers for the construction.

The round constants and matrices are generated using the
Grain LFSR [HJMM08] in a self-shrinking mode, and the
detailed initialization and generation are described in Sup-
plementary Material F. Using this method, the generation
of round constants and matrices depends on the specific in-
stance, and thus different round constants are used even if
some of the chosen parameters (e.g., n and t) are the same.
Note that by using the Grain LFSR and instance-specific seed
values, this approach is reminiscent of nothing-up-my-sleeve
(NUMS) numbers. Indeed, letting the attacker freely choose
round constants and/or matrices can lead to attacks.

12https://tinyurl.com/y7tl537o

Table 2: Concrete instantiations of POSEIDONπ (with security
margin) over BLS12-381, BN254, Ed25519 scalar fields.

Instance (S-box: f (x) = x5) t RF RP

POSEIDONπ-128 3 8 57
5 8 60

POSEIDONπ-80 3 8 33
5 8 35

POSEIDONπ-256 6 8 120
10 8 120

We provide the round constants, the matrices, and test vectors
in auxiliary files for four primary instantiations. We also make
reference implementations for these instantiations and scripts
to calculate the round numbers, the round constants, and the
MDS matrices available online.13 We refer to Supplementary
Material A for a more detailed overview of the auxiliary files.

4.2 Domain Separation for POSEIDON

POSEIDON can be used in a number of applications, and hav-
ing the same instance for all of them is suboptimal. Also,
some protocols explicitly require several different hash func-
tions. We suggest using domain separation for this, concretely
encoding the use case in the capacity element (which is fine
as it is 256 bits large and has a lot of bits to fill) and using
some padding to distiguish inputs of different lengths if they
may happen. Although a concrete form of domain separa-
tion constants is not security critical, we suggest a common
methodology to unify potential implementations.

Concretely, we propose:

• Merkle Tree (all leafs are present, up to arity 32). The
capacity is 2arity− 1. A generic case is considered in
Supplementary Material I. We use no padding here.

• Merkle Tree (some leafs may be empty). The capacity
value equals the bitmask of which leafs are present. We
use no padding here.

• Variable-Input-Length Hashing. The capacity value
is 264 +(o−1) where o the output length. The padding
consists of one field element being 1, and the remaining
elements being 0.

• Constant-Input-Length Hashing. The capacity value
is length · (264)+(o−1) where o the output length. The
padding consists of the field elements being 0.

• Encryption. The capacity value is 232. The padding
consists of the field elements being 0.

13 https://extgit.iaik.tugraz.at/krypto/hadeshash
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• Future Uses. The capacity value is identifier ·(232). The
padding depends on the application.

5 Cryptanalysis Summary of POSEIDON

As for any new design, it is paramount to present a concrete
security analysis. In the following, we provide an in-depth
analysis of the security of our construction. Due to a lack of
any method to ensure that a hash function based on a sponge
construction is secure against all possible attacks, we base
our argumentation on the following consideration. As we just
recalled in the previous section, when the internal permuta-
tion P of an (N = c+ r)-bit sponge function is modeled as a
randomly chosen permutation, the sponge hash function is in-
differentiable from a random oracle up to 2c/2 calls to P . Thus,
we choose the number of rounds of the inner permutation case
in order to provide security against distinguishers relevant to
collision/preimage attacks. Equivalently, this means that such
a number of rounds guarantees that P does not exhibit any
relevant non-random/structural properties (among the ones
known in the literature).

5.1 Definitions

Definition 5.1. The function F is T -secure against collisions
if there is no algorithm with expected complexity smaller than
T that finds x1,x2 such that F(x1) = F(x2).
Definition 5.2. The function F is T -secure against preimages
if there is no algorithm with expected complexity smaller than
T that for given y finds x such that F(x) = y.
Definition 5.3. The function F is T -secure against second
preimages if there is no algorithm with expected complexity
smaller than T that for given x1 finds x2 such that F(x1) =
F(x2).
Definition 5.4. The invertible function P is T -secure against
the CICO (m1,m2)-problem if there is no algorithm with
expected complexity smaller than T that for given m1-bit I1
and m2-bit O1 finds I2,O2 such that P(I1||I2) = P(O1||O2).

5.2 Security Claims

In terms of concrete security, we claim that POSEIDON-M
is 2M-secure against collisions and (second) preimages. To
help increase confidence in our design and simplify external
cryptanalysis, we also explicitly state another claim about
our internal permutation: POSEIDONπ is 2min(M,m1,m2)-secure
against the CICO (m1,m2)-problem.

Even though an attack below these thresholds may not affect
any concrete applications of our hash functions, we would
still consider it an important cryptanalytic result.

5.3 Summary of Attacks

Here we list the main points of our cryptanalysis results. The
number of rounds R = RP +RF we can break depends on
the security level M and the number of S-boxes t, which we
specify for each concrete hash function instance in the next
section.

Before going on, we point out that for all attacks that are in
common to the ones proposed for the cipher HadesMiMC
[GLR+20], here we limit ourselves to report the main idea
and result. For all other cases (namely, higher-order differen-
tials, zero-sum partitions, Gröbner basis attacks, and preimage
attacks), we present here more details. In any case, all details
are provided as supplementary material.

We highlight that the following cryptanalysis is not equiva-
lent to the one presented for the block cipher HADESMiMC.
Indeed, the scenarios are different (in one case the goal is to
guarantee the impossibility to find the secret key, while here
there is no secret key material and the goal is to guarantee that
the internal permutation looks like a pseudo-random permuta-
tion). This means that certain attacks that we consider here are
not valid in the case of a block cipher and vice-versa. Just to
give some examples, the rebound attack [LMR+09,MRST09]
holds only in the context studied here, while a MitM scenario
(crucial in the case of an SPN cipher) does not work in the
context of a sponge function, since the attacker does not know
the full output. More details are given in the following.
Proposition 5.1 (Informal). The following number of rounds
for x5-POSEIDON-128 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 56+ dlog5(t)e.

Proof. We substitute α = 5,M = 128 and log2(p) = 255 to
Equations (2),(3),(5) and see that no one is satisfied, i.e., the
attacks do not work.

Proposition 5.2 (Informal). The following number of rounds
for x5-POSEIDON-80 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 35+ dlog5(t)e.

Proposition 5.3 (Informal). The following number of rounds
for x5-POSEIDON-256 over Fp with ≈ 256-bit p protects
against statistical and algebraic attacks:

RF = 6, R = RF +RP = 111+ dlog5(t)e.

5.4 Security Margin

Given the minimum number of rounds necessary to provide
security against all attacks known in the literature, we arbi-
trarily decided to add
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(1) two more rounds with full S-box layers, and

(2) 7.5% more rounds with partial S-box layers,

i.e., +2 RF and +7.5% RP. The resulting number of rounds
for our primary instances is given in Table 2.

5.5 Attack details

All the attacks below are applied to the internal permutation
POSEIDONπ. The sponge framework dictates that all the at-
tacks on the hash function with complexity below 2c/2 must
result from attacks on the permutation. Thus we show that no
such attack on the permutation should exist.

5.5.1 Statistical Attacks

Differential/Linear Distinguishers. As shown in the ap-
pendix, at least 6 rounds with full S-box layers are necessary
to provide security against the statistical attacks we consider.
In more detail, for

RF <

{
6 if M ≤ (blog2 pc−C ) · (t +1)
10 otherwise

(2)

linear [Mat93] and differential [BS91, BS93] attacks may be
possible, where C = 2 for S(x) = 1/x and C = log2(α−1) for
S(x) = xα (where remember that α is an odd integer number),
e.g., C = 1 for S(x) = x3 and C = 2 for S(x) = x5.

Before going on, we highlight that we exploit only rounds
with full S-box layers in order to prevent statistical attacks (as
done in [GLR+20]). As explained in [KR20], under the as-
sumption made for the linear layer in Section 2.3, it is possible
to exploit both the rounds with partial and full S-box layers
in order to guarantee security against some statistical attacks,
like differential and linear attacks. Our decision to consider
only rounds with full S-box layers has been made since a
similar condition on the rounds with full S-box layers (e.g.,
RF ≥ 6) is necessary for the security against some algebraic
attacks (e.g., Gröbner basis attacks – see in the following) and
in order to provide simple security arguments for all statistical
attacks (including e.g. the rebound one).

(Invariant) Subspace Trails. We emphasize that the
choice of the matrix that defines the linear layer, made in
Section 2.3, prevents the existence of subspaces S that gener-
ate infinitely long subspace trails, namely a finite collection of
subspaces {S0, . . . ,Sr−1} s.t. each coset of Si is mapped into
a coset of Si+1 with probability 1 (where the index is taken
modulo r) an arbitrary number of times. This allows to fix the
weakness of the previous version of POSEIDON.

Other Attacks. Finally, we briefly mention that the same
number of rounds given before for the case of differen-
tial/linear attacks guarantees security against other attacks
as truncated differentials [Knu94], impossible differentials
[BBS99], rebound attacks [LMR+09, MRST09], and so on.
More details are given in the appendix.

5.5.2 Algebraic Attacks

In order to estimate the security against algebraic attacks, we
evaluate the degree of the reduced-round permutations and
their inverses. Roughly speaking, our results can be summa-
rized as follows, where n' log2(p).

Interpolation Attack. The interpolation attack [JK97] de-
pends on the number of different monomials in the interpola-
tion polynomial, where (an upper/lower bound of) the number
of different monomials can be estimated given the degree of
the function. The idea of such an attack is to construct an
interpolation polynomial that describes the function. If the
number of unknown monomials is sufficiently large, then this
cannot be done faster than via a brute-force attack.

For a security level of M bits, the number of rounds that can
be attacked is

• for S(x) = xα:

R≤ dlogα(2) ·min{M, log2(p)}e+ dlogα te (3)

• for S(x) = 1/x:

bRF log2(t)c+RP≤dlog2(t)e+d0.5 ·min{M, log2(p)}e
(4)

In general, the number of unknown monomials does not de-
crease when increasing the number of rounds. Hence, a higher
number of rounds likely leads to a higher (or equal) security
against this attack. We also consider various approaches of
the attack (such as the MitM one) in Supplementary Mate-
rial C.2.1.

Gröbner Basis Attack. In a Gröbner basis attack [CLO97],
one tries to solve a system of non-linear equations that de-
scribe the function. The cost of such an attack depends on the
degree of the equations, but also on the number of equations
and on the number of variables. Since there are several ways
for describing the studied permutation, there are several ways
to set up such a system of equations and so the attack. Here,
we focus on two extreme cases:

1. In the first case, the attacker derives equations, one for
each word, for the entire r-round permutation. Assuming
S(x) = xα (analogous for the others), we show that the
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attack complexity is about α2t (see below), therefore for
a security level of M bits the attack works at most on
logα 2min{n/2,M/2} rounds.

2. In the second case, since a partial S-box layer is used,
it may be more efficient to consider degree-α equations
for single S-boxes. In this case, more rounds can be
necessary to guarantee security against this attack.

In both cases, it is possible to make use of the existence of
the subspace S (r) defined as in Eq. (1) in order to improve
the attack. As shown in [BCD+20], such a subspace can be
exploited in order to replace some non-linear equations of
the system that we are trying to solve with linear equations.
Indeed, given a text in a coset of the subspace S (r), the out-
put of such a text after r rounds with partial S-box layers is
simply the result of an affine map applied to the input (i.e., no
S-box is involved). As explained in detail in Supplementary
Material C.2.2, this issue can easily be fixed both by a careful
choice of the matrix that defines the linear layer (see Sec-
tion 2.3 for details) and, if necessary, by adjusting the number
of rounds with partial S-box layers.

With optimistic (for the adversary) complexity of the Gaussian
elimination, we obtain for each S-box two attacks which are
faster than 2M if either condition is satisfied:

• if S(x) = xα:R≤ logα(2) ·min
{

M
3 ,

log2(p)
2

}
,

R≤ t−1+min
{

logα(2)·M
t+1 ,

logα(2)·log2(p)
2

} (5)

• if S(x) = 1/x:
bRF log2(t)c+RP ≤ d0.5 ·min{M, log2(p)}e+ dlog2(t)e
bRF log2(t)c+RP ≤ t−1+ dlog2(t)e+

+min
{⌈ M

t+1

⌉
,d0.5 · log2(p)e

}
(6)

Higher-Order Differential Attack. Working over F2n t ≡
Fn·t

2 , the higher-order differential attack [Knu94] depends on
the algebraic degree of the polynomial function that defines
the permutation, where the algebraic degree δ of a function
f (x)= xd of degree d over F2n is defined as δ= hw(d) (where
hw(·) is the Hamming weight). The idea of such an attack is
based on the property that given a function f (·) of algebraic
degree δ,

⊕
x∈V⊕φ f (x) = 0 if the dimension of the subspace

V satisfies dim(V )≥ δ+1. If the algebraic degree is suffi-
ciently high, the attack does not work.

At first thought, one may think that this attack does not apply
(or is much less powerful) in Ft

p (due to the fact that the only
subspaces of Fp are {0} and Fp itself). Recently, it has been
shown in [BCD+20] how to set up an higher-order differential

over Ft
p. Given f over Fp of degree d ≤ p−2, ∑x∈Fp f (x) = 0.

Since this result is related to the degree of the polynomial
that describes the permutation, we claim that the number of
rounds necessary to provide security against the interpolation
attack provides security against this attack as well.

(We Do Not Care About) Zero-Sum Partitions. Another
property that can be demonstrated for some inner primitive
in a hash function (with a relatively low degree) is based on
the zero-sum partition. This direction has been investigated
e.g. in [BCD11] for two SHA-3 candidates, Luffa and KEC-
CAK. More generally, a zero-sum structure for a function f (·)
is defined as a set Z of inputs zi that sum to zero, and for
which the corresponding outputs f (zi) also sum to zero, i.e.,
∑i zi = ∑i f (zi) = 0. For an iterated function, the existence
of zero sums is usually due to the particular structure of the
round function or to a low degree. Since it is expected that a
randomly chosen function does not have many zero sums, the
existence of several such sets can be seen as a distinguishing
property of the internal function.
Definition 5.5 (Zero-Sum Partition [BCD11]). Let P be a per-
mutation over Ft

q for a prime q≥ 2. A zero-sum partition for
P of size K < t is a collection of K disjoint sets {X1, . . . ,XK}
with the following properties:

• Xi ⊂ Ft for each i = 1, . . . ,k and
⋃k

i=1 Xi = Ft ,

• ∀i = 1, . . . ,K : the set Xi satisfies the zero-sum property
∑x∈Xi x = ∑x∈Xi P(x) = 0.

Here we explicitly state that we do not make claims about
the security of POSEIDONπ against zero-sum partitions. This
choice is motivated by the gap present in the literature be-
tween the number of rounds of the internal permutation that
can be covered by a zero-sum partition and by the number of
rounds in the corresponding sponge hash function that can be
broken e.g. via a preimage or a collision attack. As a concrete
example, consider the case of KECCAK: While 24 rounds of
KECCAK- f can be distinguished from a random permutation
using a zero-sum partition [BCD11] (that is, full KECCAK- f ),
preimage/collision attacks on KECCAK can only be set up
for up to 6 rounds of KECCAK- f [GLL+20]. This hints that
zero-sum partitions should be largely ignored for practical
applications.

For completeness, we mention that a zero-sum partition on
(a previous version of) reduced-round POSEIDONπ has been
proposed in [BCD+20]. Such a property can cover up to RF =
6 rounds (i.e., 2 rounds at the beginning and 4 rounds at the
end) by exploiting the inside-out approach and by choosing
a subspace of texts after the first R f rounds with full S-box
layers and before the RP rounds with partial S-box layers.
Since the number of rounds of this new version is not smaller
than the number of rounds of the previous one, and since
RF ≥ 8 (see Section 5.4), it seems that a zero-sum partition
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cannot be set up for full POSEIDONπ.

6 POSEIDON in Zero-Knowledge Proof Sys-
tems

Our hash functions have been designed to be friendly to zero-
knowledge applications. Specifically, we aim to minimize the
proof generation time, the proof size, and the verification time
(when it varies). Before presenting concrete results, we give a
small overview of ZK proof systems to date.

6.1 State of the Art

Let P be a circuit over some finite field F where gates are
some (low-degree) polynomials over F with I and O being
input and output variables, respectively: P (I) = O. The com-
putational integrity problem consists of proving that some
given O0 is the result of the execution of P over some I0:
P (I0) = O0. It is not difficult to show that any limited-time
program on a modern CPU can be converted to such a cir-
cuit [BCTV14], and making the proof zero-knowledge is often
possible with little overhead.

The seminal PCP series of papers states that for any pro-
gram P it is possible to construct a proof of computational
integrity, which can be verified in time sublinear in the size
of P . However, for a long time the prover algorithms were so
inefficient that this result remained merely theoretical. Only
recently, proof systems where the prover costs are polynomial
in |P | were constructed, but they required a trusted setup: a
verifier or someone else (not the prover) must process the
circuit with some secret s and output a reference string S,
used both by the prover and the verifier. In this setting, the
prover’s work can even be made linear in |P |, and the verifier’s
costs are constant. These systems were called SNARKs for
proof succinctness. The first generation of SNARKs, known
as Pinocchio and Groth16 [PHGR13, Gro16], require a sepa-
rate trusted setup for each circuit. The next generation, which
includes Sonic [MBKM19], PLONK [GWC19], and Mar-
lin [CHM+20], can use one reference string of size d for
all circuits with at most d gates, thus simplifying the setup
and its reuse. Later on, proof systems without trusted se-
tups appeared, of which we consider Bulletproofs [BBB+18],
STARKs [BBHR19], and RedShift [KPV19] the most interest-
ing, though all of them come with deficiencies: Bulletproofs
have linear verifier times (but rather short proofs), STARKs
work with iterative programs, and RedShift has large proofs
(up to 1 MB for millions of gates).

Current benchmarks demonstrate that programs with mil-
lions of gates can be processed within a few seconds with
the fastest proof systems, which solves the computational in-
tegrity problem for some practical programs. Among them,

privacy-preserving cryptocurrencies, mixers, and private vot-
ing are prominent examples. In short, such applications work
as follows:

1. Various users add publicly hashes of some secret and
public values to some set V , which is implemented as a
Merkle tree. Hashes can be currency transaction digests,
public keys, or other credentials.

2. Only those who know a secret behind some hash are
declared eligible for an action (e.g., to vote or to spend
money).

3. A user who wants to perform the action proves that they
know a tree leaf L and a secret K such that L is both the
hash of K and a leaf in V . If the proof passes, the user is
allowed to perform an action (e.g., to vote). If an action
must be done only once, a deterministic hash of the secret
and leaf position can be computed and published.

This paradigm is behind the cryptocurrency Zcash and
Ethereum mixers.

The bottleneck of such a system is usually the proof creation
time, which took 42 seconds in the early version of Zcash,
and sometimes the verifier’s time. Both are determined by the
size of the circuit that describes a Merkle proof and are thus
dependent on the hash function that constitutes the tree.

Unfortunately, a single hash function cannot be optimal for all
ZK proof systems, because they use different arithmetizations:
STARKs can use prime and binary fields, Bulletproofs uses
any prime field, whereas most SNARKs use a prime field
based on a scalar field of a pairing-friendly elliptic curve.
Therefore, for each proof system a new instance of POSEIDON
may be needed. In the following we describe how this is done
and how to optimize a circuit for some proof systems.

6.2 SNARKs with POSEIDONπ

In SNARKs, the prime field is typically the scalar field
of some pairing-friendly elliptic curve. The primitive
POSEIDONπ can be represented as such a circuit with rea-
sonably few gates, but the parameters of POSEIDONπ must
have been determined first by p. Concretely, after p is fixed,
we first check if xα is invertible in GF(p), which is true if
p mod α 6= 1. If this inequality is not satisfied for a small α,
we use the inverse S-box or consider another prime power for
the S-box.

6.2.1 Groth16

Groth16 [Gro16] is an optimization of the Pinocchio proof
system and currently the fastest SNARK with the smallest
proofs. The Groth16 prover complexity is O(s), where s is
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the number of rank-1 constraints – quadratic equations of
the form (∑i uiXi)(∑i viXi) = ∑i wiXi, where ui,vi,wi are field
elements and Xi are program variables. It is easy to see that
the S-box x3 is represented by 2 constraints, the S-box x5 by
3 constraints, and the S-box 1/x by 3 constraints (1 for the
non-zero case, and two more for the zero case). Thus, in total
we have

2tRF +2RP constraints for x3-POSEIDONπ,

3tRF +3RP constraints for x5-POSEIDONπ,

3tRF +3RP constraints for x−1-POSEIDONπ.

It requires a bit more effort to see that we do not need more
constraints as the linear layers and round constants can be
incorporated into these ones. However, it is necessary to do
some preprocessing. For example, in the POSEIDONπ setting,
the full S-box layers are followed by a linear transformation
M. Each round with a full S-box layer can be represented by
the following constraints in the SNARK setting:(

∑
j

Mi, jxi, j

)
·
(

∑
j

Mi, jxi, j

)
= yi 1≤ i≤ t,

yi ·
(

∑
j

Mi, jzi, j

)
= zi,

where M = It×t for the first round. However, in a round with a
partial S-box layer, we will have only one such constraint for
j = 1. For the rest of the t−1 variables we will have linear
constraints of the form

∑
j

Mi, jxi, j = ui ,where 2≤ i≤ t.

Since the linear constraints have little complexity effect in
Groth16, in the partial S-box rounds they can be composed
with the ones from the previous round(s) using

∑
k

Mi,k

(
∑

j
Mi, jxi, j

)
= vk 2≤ k ≤ t.

We can now calculate the number of constraints for the sponge
mode of operation and for Merkle trees. In sponges, the 2M
bits are reserved for the capacity, so N−2M bits are fed with
the message. Therefore, we get

• 2tRF+2RP
N−2M constraints per bit for x3-POSEIDONπ,

• 3tRF+3RP
N−2M constraints per bit for x5-POSEIDONπ,

• 3tRF+3RP
N−2M constraints per bit for x−1-POSEIDONπ.

For the Merkle tree, we suggest a 1-call sponge where all
branches must fit into the rate. Then a Merkle tree has arity
N

2M −1. Based on that we can calculate how many constraints
we need to prove the opening in a Merkle tree of, for example,

Table 3: libsnark [lib] performance of the POSEIDON preim-
age prover (one permutation call). Here t denotes the width.

Field Arity (t)
libsnark ZK proof time R1CS

constraintsfor one hash
Prove Verify

POSEIDON-128

BN254 2:1 (3) 43.1ms 1.2ms 276
4:1 (5) 57.9ms 1.1ms 440

POSEIDON-80

BN254 2:1 (3) 32.8ms 1.2ms 180
4:1 (5) 46.9ms 1.1ms 290

232 elements (the recent ZCash setting). The tree will have
32

log2[N/(2M)−1] levels with the number of constraints in each
according to the above. The libsnark performance of the
POSEIDON preimage prover (proof that for given y you know
x such that H(x) = y) is given in Table 3. These experiments
were performed on a desktop with an Intel Core i7-8700 CPU
(@3.2GHz) and 32 GiB of memory.

As an example, we calculate the concrete number of con-
straints for a Merkle tree proof, where the tree has 230 ele-
ments, assuming a security level of 128 bits and a prime field
of size close to 2256. We take the S-box equal to x5 as it fits
many prime fields: Ristretto (the prime group based on the
scalar field of Ed25519), BN254, and BLS12-381 scalar fields.
The results are in Table 4.

6.2.2 Bulletproofs

Bulletproofs [BBB+18] is a proof system that does not re-
quire a trusted setup. It is notable for short proofs which are
logarithmic in the program size, and also for the shortest range
proofs that do not require a trusted setup. However, its verifier
is linear in the program size. For the use cases where the
trusted setup is not an option, the Bulletproofs library “dalek”
is among the most popular ZK primitives. We have imple-
mented14 a Merkle tree prover for POSEIDON in Bulletproofs
using the same constraint system as for Groth16 with results
outlined in Table 5. The performance varies since the under-
lying curves are based on prime fields of different size and
weight: BN254 uses a 254-bit prime whereas BLS12-381 uses
a 381-bit one (the reason for that is the recent reevaluation
of discrete logarithm algorithms specific to pairing-friendly
curves).

14https://github.com/lovesh/bulletproofs-r1cs-gadgets/bl
ob/master/src/gadget_poseidon.rs
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Table 4: Number of R1CS constraints for a circuit proving a
leaf knowledge in the Merkle tree of 230 elements.

POSEIDON-128

Arity Width RF RP Total constraints

2:1 3 8 57 7290

4:1 5 8 60 4500

8:1 9 8 63 4050

Rescue-x5

2:1 3 16 - 8640

4:1 5 10 - 4500

8:1 9 10 - 5400

Pedersen hash

510 171 - - 41400

SHA-256

510 171 - - 826020

Blake2s

510 171 - - 630180

MiMC-2p/p (Feistel)

1:1 2 324 - 19440

6.2.3 PLONK

PLONK [GWC19] is a novel but popular SNARK using a
universal trusted setup, where a structured reference string
of size d can be used for any circuit of d gates or less. The
setup is pretty simple as for the secret k the values {ki ·B}i≤d
are stored, where B is an elliptic curve point and · denotes
scalar multiplication. A PLONK proof is a combination of
KZG polynomial commitments [KZG10] and their openings,
both using the SRS.

The standard version of PLONK works with the same con-
straint system as we have described, plus it uses special ma-
chinery to lay out wires in the circuit. A prover first crafts
three polynomials of degree equal to the number of gates,
which are responsible for the left input, the right input, and
the output, respectively. Then they allocate several supple-
mentary polynomials to describe the wire layout. The prover
complexity for a POSEIDONπ permutation with the S-box x5

of width w and R rounds is 11(w(w+ 6)+ 3)R point multi-
plications, and the proof has 7 group elements and 7 field
elements. A third-party non-optimized implementation of a
PLONK prover in Rust (Intel(R) Core(TM) i5-7300HQ CPU
@ 2.50GHz) gives us benchmarks, which we provide in Ta-
ble 6.

As we have almost identical rounds, the PLONK compiler can

Table 5: Bulletproofs performance to prove 1 out of 230-
Merkle tree.

Field Arity
Merkle 230-tree ZK proof R1CS

constraintsBulletproofs time
Prove Verify

POSEIDON-128

2:1 16.8s 1.5s 7290
BLS12-381 4:1 13.8s 1.65s 4500

8:1 11s 1.4s 4050

2:1 11.2s 1.1s 7290
BN254 4:1 9.6s 1.15s 4500

8:1 7.4s 1s 4050

2:1 8.4s 0.78s 7290
Ristretto 4:1 6.45s 0.72s 4500

8:1 5.25s 0.76s 4050

SHA-256 [BBB+18]

GF(2256) 2:1 582s 21s 762000

Table 6: PLONK performance to prove a 1-out-of-2n-Merkle
tree of arity 4.

Field Set size
Merkle 2n-tree ZK proof R1CS

constraintsPLONK time
Prove Verify

POSEIDON-128

216 3.59s 0.7ms 2400
BLS12-381 234 6.3s 1.55ms 5100

268 9.9s 2.7ms 10200

be heavily optimized. Concretely, we suggest the following.

• Define a separate polynomial for each S-box line.

• Get rid of wire layout polynomials.

• Express round transitions as a system of affine equations
over polynomial values at adjacent points.

As a result, our optimized PLONK compiler makes only
(w+11)R point multiplications for a single permutation call,
whereas the proof consists of (w+ 3) group elements and
2w field elements. This might bring a 25-40x increase in
performance depending on w.

6.2.4 RedShift

RedShift [KPV19] is a STARK-inspired proof system which
works with an arbitrary set of constraints. It can be viewed as
PLONK with pairing-based polynomial commitments with
the trusted setup being replaced by Reed-Solomon trust-
less commitments. The RedShift proof is cλ logd2 KB large,
where d is the degree of the circuit polynomials and cλ ≈ 2.5
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for a 120-bit security. Due to similarity, we can make the
same optimizations as in PLONK, so that the entire Merkle
tree proof requires polynomials of degree 4800 for width 5,
resulting in the entire proof being around 12 KB in size. Un-
fortunately, no RedShift library is publicly available so far,
and hence we could not measure the actual performance.

6.3 Comparison with Other Hash Algorithms

Unfortunately, no zero-knowledge system implementation
contains all the primitives we want to compare with. However,
for all systems we are interested it, the prover performance in-
creases monotonically (and in practice, almost linearly) with
the number of multiplications or, equivalently, with the num-
ber of R1CS constraints. We thus provide a summary of con-
straint counts for various hash functions in the concrete case
of a Merkle tree with 230 elements in Table 4. We take Blake2s
and Pedersen hash estimates from [HBHW19], the SHA-256
count from Hopwood’s notes15, whereas for MiMC and Res-
cue we calculated them ourselves based on the round numbers
provided in in [AGR+16, AABS+19]. The table implies that
POSEIDON and Rescue should have the fastest provers, which
is also confirmed for the STARK case [BSGL20]. However,
Rescue has a slower performance in the non-ZK case (Ta-
ble 1).

6.4 STARKs with POSEIDONπ

ZK-STARKs [BBHR19] is a proof system for the computa-
tional integrity, which is not vulnerable to quantum computers
and does not use a trusted setup. STARKs operate with pro-
grams whose internal state can be represented as a set of w
registers, each belonging to a binary field GF(2n) or to a 2n-
subgroup G of a prime-order group (this is our primary case,
as the scalar fields of BLS12-381 and BN254 have such a big
subgroup).

The program execution is then represented as a set of T inter-
nal states. The computational integrity is defined as the set
of all wT registers satisfying certain s polynomial equations
(constraints) of degree d.

STARK Costs. According to [Sta18], the number of con-
straints does not play a major role in the prover, verifier, or
communication complexity, which are estimated as follows:

• 8w ·T ·d · log(wT ) operations in G for the prover,

• a prover memory in Ω(w ·T ·n), and

• a communication (verifier time) of n · (m+ log2(8T d)),

15https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Cir
cuit%20Optimisation%20handout.pdf

where m is the maximum number of variables in a constraint
polynomial.

The primitive POSEIDONπ can be represented as such a pro-
gram with few registers, a small number of steps, and low
degree. Following the same approach as for SNARKs in Sec-
tion 6.2, we keep in registers only S-box inputs and the per-
mutation outputs. Setting w = t, we get T = RF +dRP/te and
wT = tRF +RP. Thus, the complexity is as follows:

• 24(tRF +RP) · log2(tRF +RP) operations in G for the
prover,

• a prover memory in Ω(63 · (tRF +RP)), and

• a communication (verifier time) of 63 · (t +
log2

2(24(tRF +RP))).

We suggest t ∈ {3,5} in order to support the same Merkle tree
cases as before. Thus, for our primary instance POSEIDON-
128, we get an AET cost of 20540 for each permutation call
for a width of 3. As we process 510 bits per call, we obtain
a prover complexity of 40 operations per bit. For a width
of 5 we get an AET cost of 38214, which translates to 38
operations per bit in G.
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SUPPLEMENTARY MATERIAL

A Auxiliary Files

We provide the following files as supplementary material:

• calc_round_numbers.py

• generate_parameters_grain.sage

• poseidonperm_x5_254_3.sage

• poseidonperm_x5_254_5.sage

• poseidonperm_x5_255_3.sage

• poseidonperm_x5_255_5.sage

• test_vectors.txt

• poseidonperm_x3_64_24_optimized.sage

The first two scripts can be used to calculate round num-
bers and generate round constants and matrices, while the
next five files contain the reference implementations and test
vectors. Finally, we provide an optimized implementation
of x3-POSEIDONπ, using the modifications shown in Supple-
mentary Material B. All supplementary files are available
online.16

B Efficient Implementation

Like for LowMC, the fact that the non-linear layer is partial
in RP rounds can be used to reduce the size of the round con-
stants required in each partial round. Referring to [DKP+19],
we recall here an equivalent representation of an SPN with
partial non-linear layers for an efficient implementation.

Round Constants. In the description of an SPN, it is pos-
sible to swap the order of the linear layer and the round
constant addition as both operations are linear. The round
constant then needs to be exchanged with an equivalent one.
For round constant c(i), the equivalent one can be written as
ĉ(i) = MC−1(c(i)), where MC is the linear layer in the i-th
round.

If one works with partial non-linear layers, it is possible to
use this property to move parts of the original round constants
from the last round all the way through the permutation to the
beginning. In order to do this, it is sufficient to split the round
constants in two parts, one that applies to the S-box part of
the non-linear layer and one that applies to the identity part
of the non-linear layer. The constant part that only applies to
the non-linear layer part can now move further up. Working

16https://extgit.iaik.tugraz.at/krypto/hadeshash

in this way for all round constants, it is possible to finally end
up with an equivalent representation in which round constants
are only added to the output of the S-boxes apart from one
constant which is applied to the entire state after the first R f
full rounds.

Linear Layer. The situation for our design is simpler than
for LowMC, since it is always possible to guarantee the ex-
istence of invertible sub-matrices. Hence, a similar trick pro-
posed for LowMC in [DKP+19] works here as well for the
matrix multiplication.

Focusing on the rounds with a single S-box, let M be the t× t
MDS matrix of the linear layer:

M =



M0,0 M0,1 M0,2 · · · M0,t−1 M0,t
M1,0
M2,0

... M̂
Mt−1,0

Mt,0


=

=

[
M0,0 v

w M̂

]
,

where M̂ is a (t−1)×(t−1) MDS matrix (note that since M
is MDS, every submatrix of M is also MDS), v is a 1×(t−1)
matrix and w is a (t−1)×1 vector. By simple computation,
the following equivalence holds:

M =

[
1 0
0 M̂

]
︸ ︷︷ ︸

M ′

×
[

M0,0 v
ŵ I

]
︸ ︷︷ ︸

M ′′

, (7)

where
ŵ = M̂ −1×w

and I is the (t−1)× (t−1) identity matrix. Note that both
M ′ and M ′′

are two invertible matrices.17

As for the round constants discussed previously, it is possible
to use Eq. (7) in order to swap the S-box layer (formed by
a single S-box and t− 1 identity functions) and the matrix
multiplication with the matrix M ′. As a result, each linear part
in the RP partial rounds is defined only by a multiplication
with a matrix of the form M ′′

, which is a sparse matrix, since
(t−1)2−(t−1) = t2−3t+2 coefficients of M ′′

are equal to
zero (moreover, t−1 coefficients of M ′′

are equal to one). It
follows that this optimized representation can greatly reduce
the number of operations needed to evaluate the linear layer.

17First of all, det(M ′) = det(M̂ ) 6= 0 since M̂ is an MDS matrix, and so
it is invertible. Secondly, det(M ) = det(M ′) ·det(M ′′

). Since det(M ) 6= 0
and det(M ′) 6= 0, it follows that det(M ′′

) 6= 0.
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Computing Round Constants and Matrices. We pro-
vide an algorithmically optimized implementation of
x3-POSEIDONπ in the supplementary material (see Supple-
mentary Material A). This file also contains functions to
calculate the equivalent round constants and the equivalent
matrices for the partial rounds. These functions can be used to
generate these values for other instantiations of POSEIDONπ.

C Security Analysis: xα-POSEIDONπ

In the following, we assume that x 7→ xα is invertible (that is,
gcd(α, p−1) = 1).

Differences to the Analysis for HADESMiMC. Although
some of our results are similar to those provided for
HADESMiMC in [GLR+20], we emphasize that our anal-
ysis is more tailored towards our specific construction, which
is a family of unkeyed permutations used in the context of a
sponge function. This is why, for example, some MitM ap-
proaches do not work, as opposed to a (keyed) block cipher.

We make further distinctions also in the case of algebraic
attacks. For example, we assume settings with χ < t input and
output words, since this reflects the situation an attacker has
to deal with in a sponge setting. This distinction affects our
analysis regarding interpolation attacks, and most prominently
our analysis regarding Gröbner basis attacks.

Moreover, we consider the case of a combination of certain
algebraic attacks with invariant subspace trails, which is not
directly applicable in the keyed setting.

C.1 Statistical Attacks

Since the results w.r.t. impossible differentials [BBS99],
the multiple-of-8 property [GRR17], mixture differentials
[Gra18] and integral distinguishers [DKR97] are equivalent
to the ones proposed for HADESMiMC, we omit their analysis
here and we refer to [GLR+20] for all details.

C.1.1 Differential Cryptanalysis

Here we focus only on the S-boxes used in the paper, namely
x 7→ x3 and x 7→ x5.

S(x) = x3. Differential cryptanalysis [BS91, BS93] and its
variations are the most widely used techniques to analyze
symmetric-key primitives. The differential probability of any
function over the finite field Fp is defined as

Prob[α→ β] := |{x : f (x+α)− f (x) = β}|/p.

Since the cube function f (x) = x3 is an almost perfect non-
linear (APN) permutation [NK92, Nyb94], its differential
probability over a prime field is bounded above by 2/|Fp|.

As largely done in the literature, we claim that POSEIDONπ

is secure against differential cryptanalysis if each differential
has probability at most p−t . Since it is in general hard to
compute the probability of a differential, we assume that this
fact is satisfied if each characteristic has probability at most
p−2t . In order to compute the minimum number of rounds
to guarantee this, we work only with the rounds with full
S-box layers. In other words, we limit ourselves to work with
a “weaker” version of the permutation defined as

RR f ◦L◦RR f (·), (8)

where

• L is an invertible linear layer (which is the “weakest”
possible assumption), and

• R(·) = M ◦S-box ◦ARK(·), where S-box(·) is a full S-
box layer (remember that M is an MDS matrix).

We are going to show that this “weaker” permutation is se-
cure against differential cryptanalysis for RF = 2R f = 10. As
a result, it follows that also POSEIDONπ (instantiated with
RF rounds with full S-box layers) is secure against such an
attack. Indeed, if the linear layer L (which we only assume
to be invertible) is replaced by RP rounds of POSEIDONπ, its
security cannot decrease. The same strategy is exploited in
the following in order to prove security against all attacks in
this subsection.

In order to prove the result just given, we need a lower bound
for the number of active S-boxes. Observe that the minimum
number of active S-boxes in the permutation

Rs ◦L◦Rr(·)≡ SB◦ M ◦SB︸ ︷︷ ︸
s−1 times

◦ L′︸︷︷︸
≡L◦M(·)

◦SB◦ M ◦SB︸ ︷︷ ︸
r−1 times

(·)

(where s,r ≥ 1, R(·) is a round with a full S-box layer and
where L′ is an invertible linear layer) is at least18

number active S-boxes≥
(⌊

s/2
⌋
+
⌊
r/2
⌋)
·(t +1)︸ ︷︷ ︸

due to final/initial rounds

+

+
(
s mod 2

)
+
(
r mod 2

)
.

We emphasize that the (middle) linear layer L′(·)≡ L◦M(·)
plays no role in the computation of the previous number. Since
at least 2 · (t +1) S-boxes are active in the 4 middle rounds of
R2 ◦L◦R2(·), and since the maximum differential probability
of the cube S-box is DPmax = 2/p, each characteristic has a
probability of at most (2/p)2·(t+1), where{

p−2t · (p−2 ·22t+2)≤ p−2t if log2 p≥ t +1,
p−1.25·t · (p−0.75·t−2 ·22t+2)< p−1.25·t otherwise

18If s = 2 · s′ is even, the minimum number of active S-boxes over Rs(·) is
bs/2c · (t +1). Instead, if s = 2 · s′+1 is odd, the minimum number of active
S-boxes over Rs(·) is bs/2c · (t +1)+1.
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(where the second inequality holds since log2(p) · [0.75 · t +
2] ≥ 2t + 2) for each t ≥ 2 and log2(p) ≥ 3. By doubling
this number of rounds, we get that each charateristic has
a probability of at most p−2.5t . Finally, 1 more round
guarantees that no differential attack can be set up.

Security up to 2M ≤ pt . For completeness, we present the
number of rounds necessary to provide security up to 2M (that
is, the data and the computational cost of the attacker are
upper-bounded by 2M). Using the same analysis as before, it
turns out that

RF =

{
6 if M ≤ (t +1) · (log2 p−1)
10 otherwise

guarantees that no differential attack can be set up.

S(x) = x5. As before, x5-POSEIDONπ instantiated by S-
box(x) = x5 is secure against statistical attacks if and only
if

Rstat
F ≥ 6.

The main difference here is due to differential and linear
attacks. In particular, since19 DPmax(S-box(x) = x5) = 4/p,
it follows that the minimum number of rounds necessary to
guarantee security against linear and differential attacks is
given by

RF =

{
6 if 2t +2 < N + dlog2(p)e−M
10 if 2t +2≥ N + dlog2(p)e−M

for a security level up to 2M ≤ pt (that is, the data and the
computational cost of the attacker are upper-bounded by 2M).

C.1.2 Linear Cryptanalysis

Similar to differential attacks, linear attacks [Mat93] pose
no threat to the POSEIDONπ family of permutations instanti-
ated with the same number of rounds previously defined for
classical differential cryptanalysis.

In more detail, this follows from the fact that the maximum
square correlation of the cube function is limited to 2/p
(see [AÅBL12] for details). As a result, it offers the best
possible resistance against linear cryptanalysis much like an
APN function provides optimal resistance against differential
cryptanalysis.

19Note that (x+∆I)
5− x5 = ∆O is an equation of degree 4, hence there

are at most 4 different solutions.

C.1.3 Truncated Differential

A variant of classical differential cryptanalysis is the truncated
differential one [Knu94], in which the attacker can specify
only part of the difference between pairs of texts.

We consider the “weaker” permutation described in Eq. (8)
again. Focusing only on active/passive bytes (and not on
the actual differences), there exist several differentials with
probability 1 for a maximum of 1 round of POSEIDONπ, e.g.,

[α,0, . . . ,0]T
R(·)
−−→M × [β,0, . . . ,0]T ,

where α,β denote non-zero differences. Due to the next S-
box layer, the linear relations given by M × (β,0, . . . ,0)T are
destroyed in the next round. As a result, no probability-one
truncated differential covers more than a single round.

Since no linear relation survives the S-box layer, it seems hard
to set up a truncated differential for more than 2 rounds. As a
result, it turns out that 4 rounds with full S-box layers make
POSEIDONπ secure against this attack.

C.1.4 Rebound Attacks

The rebound attacks [LMR+09, MRST09] have much im-
proved the best known attacks on many hash functions, espe-
cially for AES-based schemes. The goal of this attack is to
find two (input, output) pairs (p1,c1) and (p2,c2) such that
the two inputs satisfy a certain (truncated) input difference
and the corresponding outputs satisfy a certain (truncated)
output difference.

The rebound attack consists of two phases, called inbound
and outbound phase. According to these phases, the internal
permutation of the hash function is split into three sub-parts.
Let f be the permutation, then we get f = f f w ◦ fin ◦ fbw.
The part of the inbound phase is placed in the middle of
the permutation and the two parts of the outbound phase are
placed next to the inbound part. In the outbound phase, two
high-probability (truncated) differential trails are constructed,
which are then connected in the inbound phase. Since the
rebound attack is a differential attack, first the attacker needs
to construct a “good” (truncated) differential trail. Such a
trail should have a high probability in the outbound phases
and can have a rather low probability in the inbound phase.
In the first phase, the attacker uses the knowledge of the key
to find pairs of texts that satisfy the middle rounds of the
truncated differential trail. In the second one, they propagate
the solutions found in the first phase in the forward and in the
backward directions, and check if at least one of them satisfies
the entire differential trail.

The best rebound attack on AES proposed in [JNP13] cov-
ers 8 rounds. Here we claim that 6 rounds with full S-box
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layers are sufficient to protect POSEIDONπ from this attack.
To support it, note that (1st) 1 round of POSEIDONπ provides
full diffusion while 2 rounds of AES are necessary to provide
it and (2nd) the best truncated differential covers 1 round of
POSEIDONπ, but 3 rounds of AES.20 Since the best results on
AES in the literature cover at most 8 rounds, due to the simi-
larity between AES and POSEIDONπ and due to the previous
observations, we argue that it is not possible to mount a re-
bound attack on more than 5 rounds with full S-box layers of
POSEIDONπ. Hence, 6 rounds of POSEIDONπ with full S-box
layers are sufficient to guarantee security against this attack.

C.1.5 Invariant Subspace Attack

The invariant subspace attack [LAAZ11] makes use of affine
subspaces that are invariant under the round function.
Definition C.1 (Invariant Subspace Trail). Let Kweak be a set
of keys and k ∈Kweak, with k≡ (k0,k1, . . . ,kr) where k j is the
j-th round key. For each k ∈ Kweak, the subspace U generates
an invariant subspace trail of length r for the function Fk(·)≡
F(·)⊕ k if for each i = 1, . . . ,r there exists a non-empty set
Ai ⊆Uc for which the following property holds:

∀ai ∈ Ai : ∃ai+1 ∈ Ai+1 s.t. Fki(U⊕ai) =U⊕ai+1.

All keys in the set Kweak are weak keys.
Definition C.2 (Subspace Trails). Let (U1,U2, . . . ,Ur+1) de-
note a set of r+ 1 subspaces with dim(Ui) ≤ dim(Ui+1). If
for each i = 1, . . . ,r and for each ai, there exists (unique)
ai+1 ∈Uc

i+1 such that

F(Ui⊕ai)⊆Ui+1⊕ai+1,

then (U1,U2, . . . ,Ur+1) is a subspace trail of length r for the
function F . If all the previous relations hold with equality, the
trail is called a constant-dimensional subspace trail.

Here we consider separately the two cases, namely rounds
with full S-box layers and rounds with partial S-box layers.

• In the first case, as the round constant addition translates
this invariant subspace [BCLR17], random round con-
stants provide a good protection against these attacks.

• In the second case, it is always possible to construct a
subspace trail for (at least) t−1 rounds without activat-
ing any S-box and for any choice of the linear layer. Due
to the assumption made in Section 2.3, t−1 is also an
upper bound for the number of rounds for which such a
trail can be constructed.

In order words, due to the choice of the matrix that defines
the linear layer (described in detail in Section 2.3), it is not
possible to cover more than t−1 rounds with a subspace trail

20The best truncated differential distinguisher with prob. 1 covers 2 rounds
of AES.

(or equivalently, a truncated differential with prob. 1) with
active/inactive S-boxes. We refer to [GRS20] for more details
about the possibility to set up infinitely long subspace trails
for partial SPN schemes (equivalently, for the rounds with
partial S-box layers in HADES-like schemes).

C.2 Algebraic Attacks

First, we introduce a simple lemma which follows from the
iterative structure of the POSEIDONπ permutation.
Lemma C.1. The algebraic degree Dα(r) of r-round
POSEIDONπ with the S-box xα as a function of input vari-
ables is at most αr, and we expect it to reach this degree no
matter if partial or full rounds are used.

C.2.1 Interpolation Attack

One of the most powerful attacks is the interpolation attack,
introduced by Jakobsen and Knudsen [JK97] in 1997. In the
case of a keyed function Ek : F→ F, the strategy of the attack
is to construct a polynomial representation of the function
without knowledge of the secret key. If an adversary can
construct such a polynomial, they can compute any output
without knowing the key, thus enabling forgeries (for MAC
settings) and other attacks. The interpolation polynomial P(x)
representing Ek(x) can be constructed using e.g. the Vander-
monde matrix (cost approximately in O(t2)) or Lagrange’s
theorem (cost approximately in O(t · log t)), where x is the
indeterminate corresponding to the input.

Such an attack can be opportunely modified for the case of
an unkeyed permutation E(·). In such a case, assume it is
possible to construct the interpolation polynomial without
using the full code book. In this case, such a polynomial can
be exploited to set up a forgery attack on the permutation
E, which, in general, is not possible for a (pseudo-)random
permutation.

In more detail, each output word of an SPN permutation can
be represented as a multivariate polynomial where the vari-
ables are the inputs to each S-box. Consider a permutation
input where χ input words are unknown to us, and the other
t−χ words are known.

A (rough) estimation of the number of monomials of the
interpolation polynomial (and so of the complexity of the
attack) is given by

(Dα(r)+1)χ.

As a result, by requiring the number of monomials to be close
to the number of possible input values pχ, the number of
rounds must be at least r ' logα(p).
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However, just reaching the full degree is not sufficient to pre-
vent the interpolation attack. First, the polynomial should be
dense to guarantee that most monomials occur in it. As shown
in detail in [GLR+20], one needs at least 1+ dlogα(p)e+
dlogα(t)e rounds in order to guarantee that the interpolation
polynomial Ek is dense.

Since S-box−1(x) = x1/α has a higher degree than S-box(x) =
xα (e.g., x1/3 = x(2p−1)/3), we do not expect the attack to per-
form better when considering the backward direction instead
of the forward one. In particular, we expect that 2 rounds
are sufficient to reach the maximum degree in the backward
direction. Moreover, we emphasize that we do not claim secu-
rity w.r.t. the MitM variant of the interpolation attack. Indeed,
since the permutation is used in a sponge construction, the
attacker can only see part of the output of the permutation,
which naturally prevents the MitM variant attack.

Secondly, we consider the algebraic degree not at round r but
at round r−1 to account for the partial S-box case where the
degree increase is delayed for t−1 words by 1 round. As a
result, the total number of rounds R must satisfy 21

R≥ 1+
⌈
logα(p)

⌉
+ logα(t)

to thwart the interpolation attack.

Security up to 2M ≤ pt . For completeness, we present the
number of rounds necessary to provide security up to 2M (that
is, the data and the computational cost of the attacker are
upper-bounded by 2M).

Using the argument given before, the number of rounds must
satisfy (

α
r−logα(t)−1 +1

)χ

≈ 2min{M,log2(p)χ},

that is, r ≥ 1 + logα(t) + min{M, log2(p)χ}/χ · logα(2).
The maximum number of attacked rounds is achieved for
χ = 1. As a result, we have RP + RF ≥

(
1 +

⌈
logα(2) ·

min{M, log2(p)}
⌉)
+ logα(t).

C.2.2 Gröbner Basis Attack

We consider the Gröbner basis attack in the same setting:
Some permutation inputs are unknown and the rest are known
to the attacker. Given some words of the permutation output,
they have to find the unknowns.

A Gröbner basis attack usually consists of three steps, namely,

(1) computing the Gröbner basis in degrevlex order,

(2) converting the result to the lexicographic order, and
21We emphasize that in this analysis we do not take into account the cost to

construct the interpolation polynomial, which is (in general) non-negligible.

(3) factorizing the univariate polynomial, and back-
substituting its roots.

As largely done in the literature, we assume that the security
of permutations against Gröbner basis attacks follows from
the infeasible complexity of computing the Gröbner basis
in degrevlex order. For generic systems, the complexity of
this step for a system of N polynomials fi in V variables
is O

((V +Dreg
Dreg

)ω
)

operations over the base field F [CLO97],
where Dreg is the degree of regularity and 2 ≤ ω < 3 is the
linear algebra constant (note that the memory requirement of
these algorithms is of the same order as the running time).
The degree of regularity depends on the degrees of the poly-
nomials d and the number of polynomials N . When V = N ,
we have the simple closed-form approximation

Dreg := 1+
N −1

∑
i=0

(di−1), (9)

where di is the degree of the i-th polynomial fi in the polyno-
mial system we are trying to solve (see [BFSY05] for details).
In the over-determined case, i.e., V < N , the degree of reg-
ularity can be estimated by developing the Hilbert series of
an ideal generated by generic polynomials 〈 f0, . . . , fN −1〉 of
degrees di (under the assumption that the polynomials be-
have like generic systems). Closed-form formulas for Dreg
are known for some special cases, but not in general.

Full-Permutation Equations. In the first case, we derive
equations for the entire r-round permutation. We consider
the case in which the number of unknown input variables
χ is equal to the number of known output variables. Then
we get χ equations of degree Dα(r) = αr in χ variables. We
now estimate the complexity of solving algorithms based on
different values of χ.

If χ = 1 (i.e., we have one equation in one variable), the result-
ing system of equations is already a Gröbner basis consisting
of a single equation of degree αr. This means that we can
omit the step of computing a Gröbner basis and we focus
on the final step, which consists of finding the roots of the
corresponding polynomial. This can be done by using e.g. a
fast Berlekamp factorization algorithm [Gen07], where the
complexity of factoring a degree-D polynomial over Fp for
a prime number p is an element in O (Dω) for 2 ≤ ω ≤ 3.
Hence, we want that

log2 (α
ω·r)≥ log2

(
α

2r)≥min{M, log2(p)},

which implies

r ≥
⌈

min{M, log2(p)}
2log2(α)

⌉
,

where r = RF +RP.
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If χ ≥ 2, we consider multiple equations in multiple vari-
ables. Computing a Gröbner basis for the resulting system of
equations can be estimated by(

V +Dreg

Dreg

)2

≈
(

χαr

χ

)2

≤
[
(χ ·αr)χ

χ!

]2

≤ α
2rχ,

since (χαr)!
[χ(αr−1)]! = (χαr) · · · · · [χ(αr − 1) + 1] ≤ (χαr)χ and

since x!≤ xx for each x≥ 1. Focusing on the complexity of
computing a Gröbner basis and on an M-bit security level, the
number of rounds to be attacked can be estimated as

α
2rχ ≤ 2min{M,log2(p)χ}.

Since this value is maximized for χ = 2 in this setting, we
conjecture that security is provided by choosing

r = RF +RP ≥min
{⌈

M
4log2(α)

⌉
,

⌈
log2(p)
2log2 α

⌉}
,

where 1
4log2(3)

≈ 0.16 and 1
4log2(5)

≈ 0.11 for the cases we
focus on in this paper.

By combining these two cases (χ = 1 and χ≥ 2), we finally
get

r = RF +RP ≥min
{⌈

M
2log2(α)

⌉
,

⌈
log2(p)
2log2 α

⌉}
.

Exploiting the Subspace S (i) to Improve the Attack. As
shown in [BCD+20], the previous attack can be improved
by exploiting the existence of the subspace S (r) defined as in
Eq. (1). In particular, given a text in a coset of S (r), the output
of this text after r rounds with partial S-box layers is just
the result of an affine map applied to the input. As explained
in detail in [BCD+20], this fact can be exploited in order to
replace some non-linear equations of the system that we are
trying to solve with linear equations. In particular, by starting
in the “middle” with texts in a coset of S (r), one faces the
following scenario

input
R
−R f
F (·)
←−−−−

R
− RP−r

2
P (·)
←−−−−−− text in coset of S (r) Rr

P(·)−−−−−−−−−−→
“linear” equations

text in coset of M ′(S (r))
R

RP−r
2

P (·)
−−−−−→

R
R f
F (·)
−−−→ output,

(10)

where M ′ is a t × t matrix that depends on the details of
the cipher and on the subspace S (r) (and where M ′(S (r)) =
{M ′× x | x ∈ S (r)}).

The number of rounds r described by linear equations is re-
lated to the dimension of the subspace S (r). This fact has an
impact on the chance to find a solution of the system of equa-
tions we are trying to solve (indeed, the number of variables

of such a system of equations is related to the dimension of
the subspace). In any case, due to the assumption made in
Section 2.3 on the matrix that defines the linear layer, this
strategy does not allow the attacker to cover more than t−1
rounds with partial S-box layers.

The scenario given in Eq. (10) can be described by

• (first part) t equations of degree α
R f +

RP−r
2 ,

• (middle part) d linear equations and t − d non-linear
equations of degree αr, and

• (final part) t equations of degree α
R f +

RP−r
2 .

Let us focus on the middle part (r rounds). Let S = 〈s1, . . . ,sd〉
be the subspace of dimension d defined before, and let S c =
〈w1, . . . ,wt−d〉, where S c denotes the complementary space
of S (obviously, Ft = 〈s1, . . . ,sd ,w1, . . . ,wt−d〉). Let x and y
be resp. the input and the corresponding output of such a
middle part, where y = F(x) for a specific function F(·) of
degree αr. Given x in a coset of S and by definition of S , the
output y is in a subspace of M ′(S (r)) for a particular matrix
M ′. Hence, the middle part can be described by a system of
d linear equations of the form

sT
i · y = sT

i ·
(
M ′× x

)
∀i ∈ {1, . . . ,d}

and t−d non-linear equations of the form

wT
i · y = wT

i ·F(x) ∀i ∈ {1, . . . , t−d},

where aT ·b denotes the scalar product between a,b ∈ Ft .

Working as before, this means that the attacker has to face a
system of t+(t−d)+χ equations in t+(t−d)+χ variables.
By adding constraints on the previous t−d non-linear equa-
tions (which corresponds to “fixing” the coset of the subspace
S ), this number of equations and variables can be reduced to
t +χ.

By using the previous computation and since Dreg = 1+(t +

χ) · (αR f +
RP−r

2 − 1) ≈ (t +χ) ·α
RF+RP−r

2 , the cost can be ap-
proximated by

(
(t +χ) ·α

RF+RP−r
2

t +χ

)ω

≤


(
(t +χ) ·α

RF+RP−r
2

)t+χ

(t +χ)!


2

≤

≤ α
(RF+RP−r)·(t+χ)

assuming ω ≈ 2. If we target a security level of M bits, the
number of rounds to be attacked is calculated as

α
(RF+RP−r)·(t+χ) ≤ 2min{M,log2(p)χ}

=⇒ RF +RP ≥ r+min
{

M logα(2)
t +χ

,
log2(p)χ logα(2)

t +χ

}
.
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Since the maximum number of rounds to be attacked is
achieved resp. for χ = 1 in the first term and for χ = t in
the second one, the security is provided by choosing

RF +RP ≥ t−1+min
{

logα(2) ·M
t +1

,
logα(2) · log2(p)

2

}
,

where remember that r ≤ t−1.

Working at Round Level: Equations for Each S-Box.
Here we consider equations of degree α for each S-box, which
relate its inputs and outputs. Given χ unknown permutation
inputs and χ known outputs, we get (t− 1)RF +RP +χ un-
known S-boxes, and for each we use 1 variable (for its input).
In total, we get (t−1)RF +RP equations for the S-box inputs
in all rounds, and χ equations for the outputs of the last round.
Denoting q = (t−1)RF +RP +χ, the degree of regularity is
estimated by Dreg ≈ 1+2q. The attack complexity can then
be estimated by(

V +Dreg

Dreg

)2

≈
(

α ·q
q

)2

=

(
(α ·q)!

q! · [(α−1) ·q]!

)2

≈

≈
(

αα

(α−1)α−1

)2q

·
(

2π · (α−1) ·q
α

)−1

,

where we used Stirling’s approximation for the factorials. We
introduce two constants:

C := 2 · log2

(
αα

(α−1)α−1

)
and C ′ := log2

(
2π · (α−1) ·q

α

)
.

Since in our cases q ≥ 8 (where q denotes the number of
variables used in the attack, which is the same as the number
of S-boxes in our construction), in the following we use C ′ =
3+ log2

(
π·(α−1)

α

)
. It follows that the attack complexity can

be estimated by
2C ·q−C ′ ≤ 2C ·q.

More concretely,

C (α = 3) = 5.5 and C (α = 5) = 7.2.

If we target a security level of M bits, the number of rounds
to be attacked is calculated as

2C ·((t−1)RF+RP+χ) ≤ 2min{M,log2(p)χ}

=⇒ C · ((t−1)RF +RP +χ)≤min{M, log2(p)χ}
=⇒ (t−1)RF +RP +χ≤ C−1 ·min{M, log2(p)χ}.

Since the maximum number of rounds to be attacked is
achieved for χ = 1, we conjecture security by choosing
(t−1)RF +RP greater than[

2 · log2

(
αα

(α−1)α−1

)]−1

·min{M, log2(p)}+ t−2,

where t− 1 rounds are added to prevent the version of the
attack just described that makes use of the subspace S i in
order to skip rounds without activating any S-box.

Conclusion. Combining the strategies together, we get the
following conditions:

RF +RP ≥ logα(2) ·min
{

M
3
,

log2(p)
2

}
,

RF +RP ≥ t−1+min
{

logα(2) ·M
t +1

,
logα(2) · log2(p)

2

}
,

(t−1)RF +RP ≥[
2 · log2

(
αα

(α−1)α−1

)]−1

·min{M, log2(p)}+ t−2,

(11)

where n≈ log2(p). Note that if the first inequality is satisfied,
then the third one is satisfied as well. Hence, it is sufficient
that the first two conditions are satisfied.

D Security Analysis: x−1-POSEIDONπ

Here we propose the security analysis of POSEIDONπ instan-
tiated with S-box(x) = x−1 in GF(p). We focus only on the
attacks that depend on the details of the S-box, like differen-
tial/linear attacks and the algebraic attacks.

D.1 Statistical Attacks

Differential Cryptanalysis. As before, x−1-POSEIDONπ

instantiated by S-box(x) = x5 is secure against statistical at-
tacks if and only if

Rstat
F ≥ 6.

The main difference here is due to differential and linear
attacks. In particular, since DPmax(S-box(x) = x−1) = 4/p,
it follows that the minimum number of rounds necessary to
guarantee security against linear and differential attacks is
given by

RF =

{
6 if 2t +2 < N + dlog2(p)e−M
10 if 2t +2≥ N + dlog2(p)e−M

for a security level up to 2M ≤ pt (that is, in the case in which
the data and the computational costs of the attacker are upper-
bounded by 2M).

Rebound Attacks. Due to the argumentation for the secu-
rity of xα-POSEIDONπ against the rebound attack, we argue
that 6 rounds provide security also for x−1-POSEIDONπ.

26



D.2 Algebraic Attacks

D.2.1 Interpolation Attack

As we have already seen, in an interpolation attack [JK97], the
goal is to determine the polynomial representation of a state
word. Since the inverse function has a high degree, one may
think that the interpolation attack can cover only few rounds
in this case. However, exploiting the original idea proposed
by Jakobsen and Knudsen in [JK97], it is possible to show
that

• for a full S-box layer, the S-box f (x) = x−1 has the same
behavior as a function of algebraic degree t (i.e., the
number of words)22 “from the point of view” of the
interpolation attack, and

• for a partial S-box layer (with a single S-box), the S-
box f (x) = x−1 has the same behavior as a function
of algebraic degree 2 “from the point of view” of the
interpolation attack.

Note that the two previous cases lead to two completely dif-
ferent results, while we emphasize that the two previous cases
(full or partial S-box layers) are equivalent for the cube S-box.
It follows that the choice of using partial or full S-box layers
in order to protect from algebraic attacks also depends on the
details of the S-box.

Full S-Box Layer. First, consider t = 1. In this case, the
function can be written as

f (x) =
x+A

B · x+C

for any number of rounds and for some constants A,B,C. This
means that 4 texts are sufficient to break the permutation.

Consider the case t = 2. Let f r
i (·) ≡

N f r
i (·)

D f r
i (·)

(for i = 0,1) be
the interpolation polynomial at round r of the i-th word. By
simple computation, the i-th word of the function at round
r+1 (assuming a full S-box layer) for i = 0,1 can be written

22More precisely, the degree of S-box(x) = x−1 ≡ xp−2 “from the point
of view of the interpolation attack” is min{t, p− 2}, where t is due to the
fraction representation and p−2 is due to the “normal” representation. Since
2t ≤ p+1 in order to guarantee that a t× t MDS matrix with coefficients in
Fp exists, it follows that min{t, p−2}= t.

as

f r+1
i (x≡ [x0,x1]) =

=
A

f r
0(x≡ [x0,x1])+ k0

+
B

f r
1(x≡ [x0,x1])+ k1

=

=
A ·D f r

0(x)
N f r

0(x)+ k0 ·D f r
0(x)

+
B ·D f r

1(x)
N f r

1(x)+ k1 ·D f r
1(x)

=

=
A ·
[
N f r

1(x)+ k1 ·D f r
1(x)

]
×D f r

0(x)[
N f r

0(x)+ k0 ·D f r
0(x)

]
×
[
N f r

1(x)+ k1 ·D f r
1(x)

]+
+

B ·
[
N f r

0(x)+ k0 ·D f r
0(x)

]
×D f r

1(x)[
N f r

0(x)+ k0 ·D f r
0(x)

]
×
[
N f r

1(x)+ k1 ·D f r
1(x)

] =
=

N f r+1
i (x≡ [x0,x1])

D f r+1
i (x≡ [x0,x1])

for some constants A,B. It follows that the degree of the
function increases at most by a factor of 2 (where the degree
after the first round is 1). As a result, the number of unknown
coefficients after r rounds is at most 2 · (2r−1 + 1)2, where
the degree of the numerator (and so the number of unknown
coefficients) is always less than or equal to the degree of the
denominator.

Since the number of unknown coefficients after r rounds for
t words is approximately 2 · (tr−1 +1)t , the permutation can
be considered secure if 2 · (tr−1 +1)t ' 2N , that is, tr−1 ' p,
which implies

r ≥ logt(2) · log2(p)+1.

As a result, the total number of rounds (with full S-box layers)
must be

RF ≥ 2+
log2(p)
log2(t)

.

Partial S-Box Layer. Referring to the expression of f r
i

given before, it is possible to note that all denominators at
round r (for any r) are in general equal, while all numerators
are in general different, that is,

∀i, j ∈ [0,1, . . . , t−1] : D f r
i = D f r

j .

This observation seems to have no effect on the complexity
of the previous attack. Indeed, since the S-boxes are applied
to each word and since the numerators are different, it turns
out that the denominators of S-box( f r) (which correspond to
the numerators of f r) are all different.

However, this is not the case when working with a partial
non-linear layer, e.g., with a non-linear layer composed of a
single S-box. Consider first the case t = 2 assuming the S-box
is applied only to the first word (we use the same notation as
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before):

f r+1
i (x≡ [x0,x1]) =

=
A

f r
0(x≡ [x0,x1])+ k0

+B ·
[

f r
1(x)+ k1

]
=

=
A ·D f r

0(x)
N f r

0(x)+ k0 ·D f r
0(x)

+
B ·
[
N f r

1(x)+ k1 ·D f r
1(x)

]
D f r

1(x)
=

=
A ·D f r

0(x)×D f r
1(x)[

N f r
0(x)+ k0 ·D f r

0(x)
]
×D f r

1(x)
+

+
B ·
[
N f r

1(x)+ k1 ·D f r
1(x)

]
D f r

1(x)
=

N f r+1
i (x≡ [x0,x1])

D f r+1
i (x≡ [x0,x1])

.

In this case, there is no difference w.r.t. the previous case.

Consider now the case t ≥ 3. From the previous observation it
follows that D f r

i (x) = D f r
j (x) for each i, j≥ 1, which implies

that
D f r+1

i =
[
N f r

0(x)+ k0 ·D f r
0(x)

]
×D f r

1(x)

also for the case t ≥ 3. This fact has a considerable impact on
the number of monomials of the corresponding polynomial at
round r. Indeed, the number of unknown coefficients after r
rounds for t words is approximately 2 · (2r−1 +1)t , which is
much smaller than 2 · (tr−1 +1)t for large t. The permutation
can be considered secure if 2 ·(2r−1+1)t ' 2N , that is, 2r−1'
p, which implies r≥ log2(p)+1. As a result, the total number
of rounds (with full S-box layers) must be

R≡ RP +RF ≥ log2(p)+1.

Full & Partial S-Box Layers: Security up to 2M ≤ 2N .
The previous result can be improved. Since at least RF ≥ 6
rounds have a full S-box layer, it follows that the number of
unknown coefficients after R = RF +RP rounds for t words
is approximately

2 · (2RP · tRF−1 +1)t ≡ 2 · (2RP+(RF−1)·log2(t)+1)t .

The permutation can be considered secure if
2 · (2RP+(RF−1)·log2(t)+1)t ' 2N , that is,

RP + log2(t) ·RF ≥ 2+ log2(p)+ log2(t).

If one aims to provide a security of up to M bits and using the
argument given before, the number of rounds must satisfy

RP +RF · log2(t)≥ 2+ log2(t)+min{M, log2(p)}.

D.2.2 Gröbner Basis Attack

We use the same setting with χ unknown inputs and χ known
outputs.

Case: Input-Ouput. After RF +RP ≥ 1 rounds and using
the “fraction representation” just proposed for the interpola-
tion attack, the minimum degree of a variable in the output
polynomials is d = tRF−12RP , using the equivalence

f (x)≡ N f (x)
D f (x)

=C if and only if N f (x) =C ·D f (x).

Therefore we get χ equations of degree d in χ variables, so
the degree of regularity is Dreg = 1+χ(d−1). If we target a
security level of M bits, the number of rounds to be attacked
is calculated as

(tRF−12RP)2χ ≤ 2min{M,log2(p)χ} =⇒

RF log2(t)− log2(t)+RP ≤
min{M, log2(p)χ}

2χ
.

Since the maximum number of attacked rounds is achieved
for χ = 1, the security is provided by choosing

RF log2(t)+RP ≥ log2(t)+0.5 ·min{M, log2(p)}.

Similarly, in order to prevent the modified version of the attack
described in Supplementary Material C.2.2, the number of
rounds must satisfy

RF log2(t)+RP≥ t−1+log2(t)+min
{

M
t +1

,0.5 · log2(p)
}
.

Equations for Each S-Box. Here we consider equations of
degree 2 for each S-box, which relate its inputs and outputs.
Given χ unknown permutation inputs and χ known outputs,
we get (t− 1)RF +RP +χ unknown S-boxes, and for each
we use 1 variable for its input. In total we get (t−1)RF +RP
equations for the S-box inputs in all rounds, and χ equations
for the outputs of the last round. Denoting q = (t− 1)RF +
RP +χ, the degree of regularity is estimated by Dreg = 1+q.
The attack complexity is lower-bounded by(

V +Dreg

Dreg

)2

≈
(

2q
q

)2

≈ 24q

πq
≈ 23.9q,

where we use the same approximations as in Supplemen-
tary Material C.2. If we target a security level of M bits, the
number of rounds to be attacked is calculated as

23.9((t−1)RF+RP+χ) ≤ 2min{M,log2(p)χ}.

Since the maximum number of rounds to be attacked is
achieved for χ = 1, the security is provided by choosing

(t−1)RF +RP ≥
min{M, log2(p)}

3.9
+ t−2≈

≈ 0.25 ·min{M, log2(p)}+ t−2,

where we add t − 1 rounds in order to prevent the im-
proved version of the attack described in Supplementary Ma-
terial C.2.2.
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Conclusion. Combining the two strategies together, the se-
curity is achieved if the following conditions are satisfied:

RF log2(t)+RP ≥ log2(t)+0.5 ·min{M, log2(p)}+ t−1,

RF log2(t)+RP ≥ t−1+ log2(t)+min
{

M
t +1

,0.5 · log2(p)
}
,

(t−1)RF +RP ≥ 0.25 ·min{M, log2(p)}+ t−2.

As before, note that if the first inequality is satisfied, the third
one is satisfied as well.

E Compact Constraints for STARKs and
SNARKs

In this section, we show how to generate constraints for S-
boxes that depend only on a few variables. This is useful when
t is relatively small compared to RP.

Let us denote the outputs of the ARK transformation in round
r by A1

r ,A
2
r , . . . ,A

t
r. Let us also denote the inputs to the MDS

matrix in round r by B1
r ,B

2
r , . . . ,B

t
r. We obtain that in full

rounds
S(Ai

r) = Bi
r,

whereas in partial rounds

S(At
r) = Bt

r, Ai
r = Bi

r, i < t.

The S-box inputs will then be

Ai
r for i < t : r ∈ [1;RF/2]∪ [RF/2+1+RP;RF +RP]

At
r : r ∈ [RF/2+1;RF/2+RP].

(12)

It is obvious that the equations above plus the MDS and ARK
affine transformations

MBr +Kr = Ar+1 (13)

fully determine the permutation. Therefore, using 2Rt vari-
ables {Ai

r,B
i
r} we can describe the permutation using con-

straints of degree equal to the S-box degree d.

As we have mentioned, one can do better by substituting
Eq. (13) for all Bi

r, thus getting equations in only Rt variables
{Ai

r}. In the same way we can get rid of Ai
r that are not inputs

to S-boxes, thus leaving with equations in RF t +RP variables.
However, this procedure creates equations with too many
variables as S-box outputs in the first partial rounds now
depend on the S-box inputs of all future partial rounds. Our
goal is to construct compact equations in the same variables.
We are going to work with two consecutive segments of t
partial rounds each, let them be rounds from r to r+2t−1.
We proceed as follows:

1. Express At
j, j ∈ [r+ t;r+2t−1] as affine functions of

A1
r+t ,A

2
r+t , . . . ,A

t
r+t ,B

t
r+t ,B

t
r+t+1, . . . ,B

t
r+2t−1.

2. Using Gaussian elimination, express
(A1

r+t ,A
2
r+t , . . . ,A

t
r+t) as affine functions of

At
r+t ,A

t
r+t+1, . . . ,A

t
r+2t−1,B

t
r+t ,B

t
r+t+1, . . . ,B

t
r+2t−1.

3. Express Bt
j, j ∈ [r;r+ t−1] as affine functions of

A1
r+t ,A

2
r+t , . . . ,A

t
r+t ,A

t
r+1,A

t
r+2, . . . ,A

t
r+t .

4. Using Gaussian elimination, express
(A1

r+t ,A
2
r+t , . . . ,A

t
r+t) as affine functions of

At
r+1,A

t
r+2, . . . ,A

t
r+t ,B

t
r,B

t
r+1, . . . ,B

t
r+t−1.

5. Combine items 2 and 4 and get a system of t affine
equations that link

At
r+t ,A

t
r+t+1, . . . ,A

t
r+2t−1,B

t
r+t ,B

t
r+t+1, . . . ,B

t
r+2t−1,

At
r+1,A

t
r+2, . . . ,A

t
r+t ,B

t
r,B

t
r+1, . . . ,B

t
r+t−1.

6. Substitute Bt
j ← S(At

j) and get a system
of t degree-d polynomial constraints on
(At

r+t ,A
t
r+t+1, . . . ,A

t
r+2t−1,A

t
r+1, At

r+2, . . . ,A
t
r+t).

The resulting system P1 of polynomial constraints does not
depend on r except for the constant term, which is determined
by round constants. We do not have a formal proof that the
systems composed at steps 1 and 3 have rank t but experiments
show that it is the case for all matrices we tried.

We thus get the following system of constraints for the entire
permutation:

• For the first group of full rounds: t(RF/2 −
1) constraints of degree d that link
(A1

r ,A
2
r , . . . ,A

t
r,A

1
r+1,A

2
r+1, . . . ,A

t
r+1),r ∈ [1;RF/2− 1].

The constraints depend on r in the constant terms only.

• Bridging the last full and t first par-
tial rounds: t constraints of degree d
that link (A1

RF/2,A
2
RF/2, . . . ,A

t
RF/2,A

t
RF/2+1,

A2
RF/2+2, . . . ,A

t
RF/2+t). To get them, we express

At
RF/2+1,A

2
RF/2+2, . . . ,A

t
RF/2+t as affine functions of

(A1
RF/2,A

2
RF/2, . . . ,A

t
RF/2,B

t
RF/2,

B2
RF/2+1, . . . ,B

t
RF/2+t−1) and then substituting B as

degree-d functions.

• For all RP partial rounds: Divide them into groups of
t rounds and use the system P1 (derived above) to link
them consecutively, thus RP− t constraints in total.
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• Bridging the last t partial rounds and round (RP+RF/2+
1) (full one): t constraints of degree d.

• For the last group of full rounds: t(RF/2−1) constraints
of degree d.

This approach results in tRF +RP− t constraints of degree d.

F Initialization of the Grain LFSR Used for
Parameter Generation

We use the Grain LFSR for the generation of pseudo-random
numbers.

1. First, the state is initialized with 80 bits b0,b1, . . . ,b79 as
follows:

(a) b0,b1 describe the field,

(b) bi for 2≤ i≤ 5 describe the S-box,

(c) bi for 6≤ i≤ 17 are the binary representation of n,

(d) bi for 18≤ i≤ 29 are the binary representation of
t,

(e) bi for 30≤ i≤ 39 are the binary representation of
RF ,

(f) bi for 40≤ i≤ 49 are the binary representation of
RP,

(g) bi for 50≤ i≤ 79 are set to 1.

2. Update the bits using bi+80 = bi+62⊕ bi+51⊕ bi+38⊕
bi+23⊕bi+13⊕bi.

3. Discard the first 160 bits.

4. Evaluate bits in pairs: If the first bit is a 1, output the
second bit. If it is a 0, discard the second bit.

If a randomly sampled integer is larger than or equal to p,
we discard this value and take the next one. We generate
numbers starting from the most significant bit (i.e., the first
bit sampled represents the most significant bit of the first
constant). However, starting from the least significant bit or
the most significant one makes no difference regarding the
security.

Note that cryptographically strong randomness is not needed
for the round constants or the matrices, and other methods
can also be used.

G Concrete Instances with Security Margin

Concrete instances for x3-POSEIDONπ, x5-POSEIDONπ, and
x−1-POSEIDONπ, including the security margin, are given in
Table 7, Table 8, and Table 9, respectively.

Table 7: Concrete instances for x3-POSEIDONπ over Fp,
where S-box(x) = x3.

Security Text Size S-box Size # S-boxes RF RP Cost
M N = n× t (n or dlog2 pe) (t) Eq. (14)

128 1536 768 2 8 83 99
128 1536 384 4 8 84 116
128 1536 256 6 8 84 132
128 1536 192 8 8 84 148
128 1536 96 16 8 64 192

256 1536 768 2 8 170 186
256 1536 384 4 8 171 203
256 1536 256 6 8 171 219
256 1536 192 8 8 128 192
256 1536 96 16 8 64 192

Table 8: Concrete instances for x5-POSEIDONπ over Fp,
where S-box(x) = x5.

Security Text Size S-box Size # S-boxes RF RP Cost
M N = n× t (n or dlog2 pe) (t) Eq. (14)

128 1536 768 2 8 56 72
128 1536 384 4 8 56 88
128 1536 256 6 8 57 105
128 1536 192 8 8 57 121
128 1536 96 16 8 42 170

256 1536 768 2 8 116 132
256 1536 384 4 8 116 148
256 1536 256 6 8 117 165
256 1536 192 8 8 86 150
256 1536 96 16 8 42 170

H Selecting Number of Rounds in General
Case

The design goal is to offer a family of hash functions which
minimize the R1CS costs. It turns out that for the fixed S-
box function the minimum costs are delivered by a primitive
with the smallest number of S-boxes, though the field size
also plays a role. For each combination (security level M,
prime/binary field type, S-box size, S-box function) we mini-
mize the number of S-boxes taking into account Eq. (3) and
Eq. (5).

Minimizing the Number of S-Boxes. In our design strat-
egy, we always exploit the wide trail strategy in order to
provide security against statistical attacks. In other words, for
this class of attacks, we work only with rounds with full S-box
layers. Our instances are secure against statistical attacks if

Rstat
F ≥

{
6 if M ≤ (log2 p−C ) · (t +1)
10 otherwise

where C = 2 for S(x) = 1/x and C = (α−1)/2 for S(x) = xα.
In order to minimize the number of S-boxes for given n and
t, the goal is to find the best ratio between RF and RP that
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Table 9: Concrete instances for x−1-POSEIDONπ over Fp,
where S-box(x) = x−1.

Security Text Size S-box Size # S-boxes RF RP Cost
M N = n× t (n or dlog2 pe) (t) Eq. (14)

128 1536 768 2 8 65 81
128 1536 384 4 8 60 92
128 1536 256 6 8 57 105
128 1536 192 8 8 54 118
128 1536 96 16 8 32 160

256 1536 768 2 8 134 150
256 1536 384 4 8 128 160
256 1536 256 6 8 126 174
256 1536 192 8 8 89 153
256 1536 96 16 8 32 160

minimizes

number of S-boxes = t ·RF +RP, (14)

where t ≥ 2 and where the number of non-linear operations
is proportional to the number of S-boxes.

Overall, the S-box type and the number of rounds should be
chosen as follows.

• If you plan to use a prime field Fp and gcd(α, p−1) = 1
for α = 3 or α = 5, then

(1) use the S-box S(x) = xα,

(2) select the minimum RF that provides security
against statistical attacks (i.e., at least RF = 6), and

(3) select RP that minimizes tRF +RP such that Eq. (3)
and Eq. (5) are not satisfied.

• For all other cases, we suggest to

(1) use the S-box S(x) = x−1,

(2) select the minimum RF that provides security
against statistical attacks (i.e., at least RF = 6), and

(3) select RP that minimizes tRF +RP such that Eq. (3)
and Eq. (5) are not satisfied.

Before going on, we mention that other S-boxes can be used
as well (e.g., x 7→ x7). We have set up a script that calculates
the number of rounds accordingly, using the security mar-
gin further described at the end of Section 5. Our resulting
instances are given in Table 7 and Table 8.

Results via Script. A complete analysis on how to set up
the script – in order to guarantee security and to find the best
ratio between RP and RF – for this case has been proposed
in [GLR+20]. For this reason, we refer to [GLR+20], and here
we only report the minimum number of rounds necessary to
provide security.

For completeness, we mention that the simplest way to set up
the script is to test (e.g., by brute force) all possible values
RP and RF that provide security (equivalently, for which the
previous inequalities are satisfied), and find the ones that
minimize the cost.

I Merkle Tree Instances of POSEIDON

As a hash function used in a Merkle tree of a fixed arity always
gets a message input of bounded length, it makes sense to
have a compact padding of input elements. Concretely, we
suggest the following:

• POSEIDON instances with width t are used for Merkle
trees with arity t − c where c is the capacity (at word
level, namely c elements in F). As the hash output is
equal in size to the capacity, we should have c|(t−c). In
the prime field setting with 128-bit security and a 256-bit
field we will have c = 1 and arity t−1.

• A tree node may have 0 to t − c child elements. The
missing child element is denoted by /0 and we denote
F̂= F∪{ /0}.

• A node hash function Ĥ maps F̂t−c to Fc. Therefore, a
missing subtree of depth 1 (a single node) is represented
as /0, a missing subtree of depth 2 has the hash Ĥ2

/0
=

Ĥ( /0, /0, . . . , /0), and a missing subtree of depth d has the
hash

Ĥd
/0 = Ĥ(Ĥd−1

/0
, Ĥd−1

/0
, . . . , Ĥd−1

/0
).

• The node hash function Ĥ, based on the permutation Π

of width t, is defined as follows:

Ĥ(Xc+1,Xc+2, . . . ,Xt) = Πc+1...2c(X̃1, X̃2, X̃3, . . . , X̃t),

where Πc+1...2c are the first c non-capacity elements of
the output of Π and

X̃1 = · · ·= X̃c−1 = 0, X̃c = ∑
i

2i[Xi 6= /0];

X̃i>c =

{
Xi, Xi 6= /0;
0, Xi = /0

where [] is the Iverson bracket (1 if the input is true, 0
otherwise).

Sponge Padding. For a variable-length sponge instance of
POSEIDON, we pad all message strings from F∗ with a single
element 1 ∈ F and then, if necessary, with as many zero el-
ements as needed to make the message length a multiple of
t− c.
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J About STARKAD

Besides POSEIDON, in the previous version of the paper
[GKR+19, Version: 20200205:104144], we also proposed
STARKAD, which is basically the counterpart of POSEIDON
for the case of binary fields. As already mentioned in the
introduction, for this new version of the paper, we decided to
focus on POSEIDON only. The reason is that all applications
we considered are more efficient when working with a prime
field rather than a binary field.

Here we recall a few details of STARKAD. Before going on,
we highlight that “weaker” versions of STARKAD have re-
cently been broken in [KR20, BCD+20]. In the following, we
mention how to fix the design in order to prevent the attack
presented in such papers.

The Permutation STARKADπ

The hash function23 STARKAD-Hash for the binary case is
constructed by instantiating a sponge construction [BDPA08]
with the STARKAD permutation denoted by STARKADπ. This
permutation is equal to the permutation POSEIDONπ defined
in Section 2.3, with the following differences:

• It is defined over a binary field Ft
2n instead of a prime

field Ft
p.

• In order to define the S-box as S(x) = xα, the positive
integer α≥ 3 must be chosen as the smallest integer s.t.
gcd(α,2n−1) = 1 (e.g., α = 3 if and only if n is odd).

In order to prevent the attacks presented in [KR20, BCD+20],
it is sufficient to choose the MDS matrix that defines the
MixLayer as described in Section 2.3. Namely, we assume
that there exists no infinitely long subspace trail (either invari-
ant or iterative and either with active or inactive S-boxes) for
the rounds with partial S-box layer. In order to satisfy this
assumption, it is sufficient to test the MDS matrix using the
tools provided in [GRS20].

Cryptanalysis and Old Number of Rounds of
STARKADπ

The security analysis of STARKADπ is similar to the one
proposed for POSEIDONπ. In particular, the number of rounds
necessary to guarantee the security of STARKAD over Ft

2n

cannot be smaller than the number of rounds of POSEIDON
over Ft

p, where p > 2n is the prime closest to 2n.

At the same time, some important differences arise:

23About the name: Starkad was a legendary hero in Norse mythology, who
used to hash his enemies with 22 swords in 23 arms.

• We expect that the higher-order differential attack is
more competitive (or at least, not less competitive) in the
case of a binary field than in the case of a prime field.
This means that, in principle, more rounds are necessary
in order to provide the security of STARKADπ compared
to POSEIDONπ.

• The MDS matrices proposed for the previous version of
STARKADπ were weak matrices, in the sense that their
squares were multiples of the identity. This weakness has
been shown and exploited in [KR20,BCD+20]. The new
assumption on the MDS matrix prevents this weakness.

Regarding the first point, we decided not to present a complete
analysis of the security of STARKADπ w.r.t. higher-order dif-
ferential attacks. We point out that several works have recently
been published in the literature (see [EGL+20, CGL+20] for
more details) whose goal is to better understand the growth
of the degree in the case of schemes over binary fields with
large S-boxes. An open problem is to better understand how
the combination of rounds with full and rounds with partial
S-box layers influences the growth of the algebraic degree.

In the following table, we recall the round numbers pro-
posed in the previous version of the paper [GKR+19, Ver-
sion: 20200205:104144]. We stress that we do not claim that
STARKADπ instantiated with these round numbers is secure.
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Table 10: Old range of different parameter sets for STARKADπ instantiated by S-box(x) = x3 (with security margin). We do not
claim that STARKADπ instantiated with these round numbers is secure.

Security Text Size S-box Size # S-boxes RF RP Field
M N = n× t (n) (t)

128 1512 63 24 8 45 F2n

128 1551 33 47 8 25 F2n

128 1581 31 51 8 24 F2n

256 1512 63 24 8 45 F2n

256 1551 33 47 8 25 F2n

256 1581 31 51 8 24 F2n
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