
Experimental Evaluation of Deep Neural Network
Resistance Against Fault Injection Attacks

Xiaolu Hou1?, Jakub Breier2, Dirmanto Jap2, Lei Ma3, Shivam Bhasin2 and Yang Liu2

1Acronis, Singapore
2Nanyang Technological University, Singapore

3 Kyushu University, Japan
ho0001lu@e.ntu.edu.sg,jbreier@jbreier.com,djap@ntu.edu.sg,malei@ait.

kyushu-u.ac.jp,sbhasin@ntu.edu.sg,yangliu@ntu.edu.sg

Abstract. Deep learning is becoming a basis of decision making systems in
many application domains, such as autonomous vehicles, health systems, etc.,
where the risk of misclassification can lead to serious consequences. It is neces-
sary to know to which extent are Deep Neural Networks (DNNs) robust against
various types of adversarial conditions.
In this paper, we experimentally evaluate DNNs implemented in embedded de-
vice by using laser fault injection, a physical attack technique that is mostly used
in security and reliability communities to test robustness of various systems. We
show practical results on four activation functions, ReLu, softmax, sigmoid, and
tanh. Our results point out the misclassification possibilities for DNNs achieved
by injecting faults into the hidden layers of the network. We evaluate DNNs by
using several different attack strategies to show which are the most efficient in
terms of misclassification success rates. Protection techniques against these at-
tacks are also presented. Outcomes of this work should be taken into account
when deploying devices running DNNs in environments where malicious attacker
could tamper with the environmental parameters that would bring the device into
unstable conditions, resulting into faults.

1 Introduction

Connected technologies have became ubiquitous in everyday life. Small, single-purpose
devices with sensing and responding capabilities have emerged into what has become
known as Internet of things (IoT). Components of IoT are designed to be placed ev-
erywhere, allowing easy physical access to potential threats. At the same time, the
developments in the area of artificial intelligence (AI) have widened the capabilities
of automation in various domains, spreading into all aspects of modern digital soci-
ety. Out of AI, one of the most promising technologies is deep learning, which tries to
simulate the behavior of neurons in a human brain. Deep learning enables to analyze

? This research was done while the author was with NTU, Singapore
This is an extended version of paper “J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y.
Liu. Practical Fault Attack on Deep Neural Networks. In 2018 ACM SIGSAC Conference on
Computer & Communications Security (CCS), pages 2204–2206. ACM, Oct 2018.”



2 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

speech, text, and images to decide about complex tasks [19]. Deployment of deep learn-
ing has reached security-critical areas, such as autonomous driving, medical systems,
etc., making misjudgement a risk that has to be taken into account.

In this work, we focus on a class of physical attacks known as fault attacks, which
have become a reality owing to decreasing price and expertise required to mount such
attack [25]. Fault attacks are active attacks on a given implementation which try to
perturb the internal software/hardware computations by external means. The adversary
uses methods like voltage glitches, electromagnetic pulses, or laser injection to intro-
duce perturbations for various purposes, ranging from erroneous computation, denial
of service etc. Such attacks are commonly used for mounting secret key recovery at-
tacks in cryptography or for violating/bypassing security checks [29]. In this paper, we
analyze deep learning under fault attacks.

Deep learning is a family of neural networks composed of an input layer, three or
more hidden layers and an output layer. Based on the internal structure, several candi-
dates exist like multi-layer perceptron (MLP), convolutional neural networks (CNNs),
recurrent neural networks (RNNs) etc. These are popularly known as deep neural net-
works (DNN). While each of these architectures has unique functions, we focus on
activation functions which remain common across architectures and are an important
part of the algorithm to obtain non-linear behaviors [23]. These commonly used activa-
tion functions are: softmax, ReLu, sigmoid and tanh. Studying these functions under
fault attacks allows to derive general conclusions on susceptibility of deep learning to
fault attacks.

We implemented the most common activation functions used across DNNs on a
low-cost microcontroller (often used in IoT). Next, we performed practical laser fault
injection using a near-infrared diode pulse laser to inject faults during the processing
of activation function. The use of laser facilitates a strong attacker model with exten-
sive fault injection capabilities. With the models, derived from practical fault injection,
we analyze the susceptibility of DNN against such attacks. The primary goal of the
performed attacks is to achieve miss-classification during the testing phase. In the hind-
sight, the achieved miss-classification can jeopardize the functioning of DNN-based
paradigms like smart city.

Extensive studies have been performed on adversarial attacks, that crafts the input
data with little perturbation to fool deep learning systems [24,26,46,16,15,14,48]. In
our study we explore practical (physical) fault injection on deep neural network, where
we focus on attacking the DNNs itself instead of creating input data to fool DNNs like
adversarial attack does. We evaluate different ways of selecting neurons to fault, from
random selection to optimized method using a genetic algorithm. Our results indicate
that in some cases, a relatively small number of faulted neurons (≈ 10%) can already
present a high risk of misclassification (≈ 62%). Moreover, we discuss potential protec-
tion techniques that can be applied to neural network implementations and devices that
process DNNs to prevent the successful application of a fault injection attack.

Organization. The rest of the paper is organized as follows. Section 2 provides the nec-
essary background on laser fault injection and activation functions of neural networks.
Section 3 presents the details of the experiment, with the explanations of the effect of
faults on activation functions. These findings are applied on full DNN in Section 4.



Evaluation of DNN Resistance to Fault Attacks 3

An attack strategy based on findings from genetic algorithm is presented in Section 5.
Section 6 overviews potential protection techniques against fault attacks, followed by
Section 7 which concludes this paper and provides a motivation for follow up work.

2 Background

In this section, we recall basic concepts of deep neural networks, activation functions
and fault injection attacks.

2.1 Deep Neural Networks

Artificial neural networks (ANNs) are computing units designed on basis of biological
neural networks. ANN is a network of interconnected nodes or neurons where a sig-
nal is transmitted from input neurons towards output neurons. Arranged in layers, each
neuron computes an output based on sum of (weighted) inputs from other neurons, fol-
lowed by a non-linear function. The weights are determined during the training process.
The non-linear layer function, also known as the activation function, is what gives an
ANN its power to learn and classify difficult problems. A simple ANN can be com-
posed of an input layer, one hidden layer and an output layer. To train the network, the
backpropagation algorithm is used, which is a generalization of the least mean squares
algorithm in the linear perceptron. Backpropagation is used by the gradient descent op-
timization algorithm to adjust the weight of neurons by calculating the gradient of the
loss function [37].

Deep neural networks (DNNs) are fairly new variants of ANNs with three or more
hidden layers. DNNs have become realistic with the latest advances in computing power,
thanks to high performance graphical processing units (GPU). Several variants of DNN
exist, including multi-layer perceptron (MLP), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), etc. Owing to the deep architecture, they have shown
great success across domains – the most prominent being image classification, with the
biggest ones composed of as many as 152 layers (Resnet [49]).

As it was pointed out in [39], in case of large neural networks, there are many nodes
that do not contribute to the neural network function. However, there are some nodes
which are crucial for correct functionality and if these are faulted, it can result in a
failure.

2.2 Activation Functions

The activation functions we consider are the following: softmax, ReLu, sigmoid and
Tanh[23].

Softmax is normally used as the activation function for output layer. It takes a vector
x as input, ith entry of the output gives the probability of a given input belonging to class
i:

softmax(x)i =
exp(xi)∑
j exp(x j)

, (1)

where exp is the exponentiation function with base e.



4 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

In modern neural networks, the default recommendation for activation function is
the rectified linear unit or ReLu defined as follows:

ReLu(x) = max{0, x}. (2)

It is a piecewise linear function which preserves properties that make the optimization
of linear model easy.

Before the introduction of ReLu, commonly used activation functions are logistic
sigmoid activation function

sigmoid(x) =
1

1 + exp(−x)
, (3)

and hyperbolic tangent function

tanh(x) =
2

1 + exp(−2x)
− 1. (4)

The sigmoid function is normally used to introduce non-linearity in the model. A
reason for its popularity comes from the simple equation between its derivative and
itself

sigmoid′(x) = sigmoid(x)(1 − sigmoid(x)).

However, sigmoid functions becomes insensitive to inputs with large absolute values.
In such cases, the hyperbolic tangent activation function is used as an alternative.

2.3 Fault Injection Attacks

Fault injection attacks are a popular physical attack vector used against cryptographic
circuits [6]. By changing intermediate values during the cryptographic algorithm exe-
cution, they can efficiently provide information on secret values, helping to recover the
secret key in just a few encryptions [7,8,13]. Normally, the secret key recovery would re-
quire infeasible amount of computing time. Similarly, these attacks can be used against
verification circuits, such as PIN verification on a smartcard, where a comparison func-
tion can be skipped and grant access to a malicious user [22].

When it comes to fault injection techniques, there are several options one can use,
mostly depending on the adversary budget and expertise [4]. The most basic methods
include variations in voltage or clock signal, allowing disturbance of instruction se-
quences in microcontrollers [3]. Electromagnetic fault injection allows more precise
location targeting, enabling faults in memories [32,38]. Laser fault injection is the most
precise from commonly used techniques, being capable of flipping single bits [2].

Up to date, to the best of our knowledge, only [35] describes fault injection attack
on neural networks. In their paper, they only provide a white box attack on deep neural
network through software simulation, while observing the changes in the output after
introducing faults in the network’s values. However, they do not provide insight on
practicality of such attack. Whether such attacks could also be applied physically re-
mained an open problem. Therefore, in our paper, we experimentally show what types
of faults are achievable in practice and we further use this information to develop a
realistic attack on DNNs.



Evaluation of DNN Resistance to Fault Attacks 5

2.4 Difference from Adversarial Learning

A huge amount of research is undergoing towards adversarial learning [36]. It basi-
cally involves constructing special inputs which are capable of confusing the machine
learning models, often leading to output misclassification. In this work, we explore an
alternate avenue to arrive at the same but by different means. The proposed fault at-
tacks target the implementation of the DNN, particularly the critical activation function
to achieve misclassification without any perturbation of the input. Depending on the
application scenario and adversary model, one attack might be more suited than the
other.

3 Practical DNN attack feasibility analysis

In this part we first show the practical laser fault attack setup in Section 3.1. In Sec-
tion 3.2 we show the possible fault attacks on activation functions that we have discov-
ered with practical experiments. In Section 4, those attacks will be used for simulating
missclassification attacks on MNIST DNNs.

3.1 Attack Equipment Setup

The main component of the experimental laser fault injection station is the diode pulse
laser. It has a wavelength of 1064 nm and pulse power of 20 W. This power is further
reduced to 8 W by a 20× objective lens which reduces the spot size to 15×3.5 µm2.

As the device under test (DUT), we used ATmega328Pmicrocontroller, mounted on
Arduino UNO development board. The package of this chip was opened so that there is
a direct visibility on a back-side silicon die with a laser. The board was placed on an XYZ
positioning table with the step precision of 0.05 µm in each direction. A trigger signal
was sent from the device at the beginning of the computation so that the injection time
could be precisely determined. After the trigger signal was captured by the trigger and
control device, a specified delay was inserted before laser activation. Laser activation
timing was also checked by a digital oscilloscope for a greater precision. Our setup is
depicted in Figure 1.

The chip area is 3×3 mm2, while the area sensitive to laser is ≈ 50×70 µm2. With a
laser power of 4.5% we were able to disturb the algorithm execution, when tested with
reference codes.

3.2 DNN Activation Function Fault Analysis

To evaluate different activation functions, we implemented three simple 3-layer neural
networks with sigmoid, ReLu and tanh as the activation fuction for the second layer
respectively. The activation function for the last layer was set to be softmax. The neural
networks were implemented in C programming language, which were further compiled
to AVR assembly and uploaded to the DUT.

We surrounded the activation functions in the second layer with a trigger signal that
raised a voltage on a selected Arduino board pin to 5 V, helping us to determine the
proper laser timing.



6 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

25x Objective
lens

NIR
diode pulse

laser

Microcontroller

X-Y Table

Trigger
&

Control
Device

PC

Oscilloscope

(a) (b)

Fig. 1: Experimental laser fault injection setup – (a) device under test, (b) setup compo-
nents.

As instruction skip/change are one of the most basic attacks on microcontrollers,
with high repeatability rates [13], we aimed at this fault model in our experiments. The
microcontroller clock is 16 MHz, one instruction takes 62.5 ns. Some of the activation
functions took over 2000 instructions to execute. To check what are the vulnerabilities
of the implementations, we have carefully varied the timing of the laser glitch from
the beginning until the end of the function execution so that every instruction would be
eventually targeted.

Please note that we used a single fault adversarial model, meaning that exactly one
fault was injected during one activation function execution. We consider an attack is
successful for a given input data if the output classification is different from the classi-
fication obtained by the original network. And we refer to such a successful attack as
misclassification.

After we observed a successful missclassification, we determined the vulnerable
instructions by visual inspection of the compiled assembly code and by checking the
timing of the laser in that particular fault injection instance. Area of the chip vulnerable
to these disturbances is depicted in Figure 2. The chip area is 3×3 mm2, while the area
sensitive to laser is ≈ 70×100 µm2. With a laser power of 4.5% we were able to disturb
the algorithm execution, when tested with reference codes. More details on the behavior
on this particular microcontroller under laser fault injection can be found in [13] while
the sample preparation and guidance on the laser experiments is provided in [9].

In this exploratory study, we implemented a random neural network, consisting of
3 layers, with 19, 12, and 10 neurons in input layer, hidden layer, and output layer,
respectively. Our fault attack was always targeting the computation of one of the activa-
tion functions in hidden layer. In the following, we will explain the experimental results
on different activation functions in detail.

ReLu. This function is implemented by a following code in C:



Evaluation of DNN Resistance to Fault Attacks 7

600 620 640 660 680

1,720

1,740

1,760

1,780

1,800

1,820

X (µm)

Y
(µ
m
)

Fig. 2: Area plot depicting successful instruction skip experiments.

if (Accum > 0) {
HiddenLayerOutput[i] = Accum;}

else {
HiddenLayerOutput[i] = 0;}

where i loops from 1 to 12 so that each loop gives one output of the hidden layer. Accum
is an intermediate variable that stores the input of activation function for each neuron.

The assembly code inspection showed that the result of successful attack was exe-
cuting the statement after else such that the output would always be 0. The correspond-
ing assembly code is as follows:

1 ldi r1, 0 ;load 0 to r1
2 cp r1, r15 ;compare MSB of Accum to r1
3 brge else ;jump to else if 0 >= Accum
4 movw r10, r15 ;HiddenLayerOutput[i] = Accum
5 movw r12, r17 ;HiddenLayerOutput[i] = Accum
6 jmp end ;jump after the else statement
7 else: clr r10 ;HiddenLayerOutput[i]= 0
8 clr r11 ;HiddenLayerOutput[i]= 0
9 clr r12 ;HiddenLayerOutput[i]= 0

10 clr r13 ;HiddenLayerOutput[i]= 0
11 end: ... ;continue the execution

where each float number is stored in 4 registers. For example, Accum is stored in regis-
ters r15,r16,r17,r18 and HiddenLayerOutput[i] is stored in r10,r11,r12,r13.
Line 4,5 executes the equation HiddenLayerOutput[i] = Accum.

The attack was skipping the “jmp end” instruction that would normally avoid the
part of code setting HiddenLayerOutput[i] to 0 in case Accum > 0. Therefore, such
change in control flow renders the neuron inactive no matter what is the input value.
Sigmoid. This function is implemented by a following code in C:

HiddenLayerOutput[i] = 1.0/(1.0 + exp(-Accum));



8 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

Target activation function Relation between y and y′

ReLu y′ = 0
sigmoid y′ = 1 − y

tanh y′ = −y

Table 1: Relation between correct output y and faulted output y′ when a single fault is
injected in target activation function

After the assembly code inspection, we observed that the successful attack was taking
advantage of skipping the negation in the exponent of exp() function, which compiles
into one of the two following codes, depending on the compiler version:

A) neg r16 ;compute negation r16
B) ldi r15, 0x80 ;load 0x80 into r15
eor r16, r15 ;xor r16 with r15

Laser experiments showed that both neg and eor could be skipped, and therefore, sig-
nificant change to the function output was achieved.
Hyperbolic tangent. This function is implemented by a following code in C:

HiddenLayerOutput[i] = 2.0/(1.0 + exp(-2*Accum)) - 1;

Similarly to sigmoid, the experiments showed that the successful attack was exploiting
the negation in the exponential function, leading to an impact similar to sigmoid.
Softmax. In case of softmax function, we were unable to obtain any successful mis-
classification. There were only two different outputs as a result of the fault injection:
either there was no output at all, or the output contained invalid values. This lack of
valid output prevented us to do further fault analysis to derive the actual fault model
that happened in the device. Therefore, a thorough analysis of softmax behavior under
faults would be an interesting topic for the future work. Another line of future work
would be to analyze bit flip attacks [2] on IEEE 754 floating point representation that
is used for storing the weights. The representation follows 32-bit pattern (b31...b0): 1
sign bit (b31), 8 exponent bits (b30...b23) and 23 mantissa (fractional) bits (b22...b0). The
represented number is given by (−1)b31 × 2(b30...b23)2−127 × (1.b22...b0)2. A bit flip attack
on the sign bit or on the exponent bits would make significant influence on the weight.
Another application of bit flip attack would be to fault interconnecting weights, result-
ing to incorrect input to the next layer. We leave both directions for future investigation
as they are out of scope for the current work.

If we let y and y′ denote the correct and faulted output of the target activation func-
tion, the relation between y and y′ is summarized in Table 1. For further illustration, the
graph of original and faulted activation functions is depicted in Figure 3.

4 Application to DNN

The results from previous section aiming at single functions can be directly used to
alter the behavior of a neural network. In this section we extend the attack to a full



Evaluation of DNN Resistance to Fault Attacks 9

−6 −4 −2 0 2 4 6

0

1

0.5

−6 −4 −2 0 2 4 6

0

1

−1

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

(a) (b) (c)

Fig. 3: (a) Sigmoid, (b) Hyperbolic tangent, and (c) ReLu functions. Blue lines indicate
original function, red lines indicate faulted ones.

network, while targeting several function computations at once with a multi-fault injec-
tion model. When it comes to deep neural networks, there are three possible places to
introduce a fault:

– Input layer – such fault would be identical to introducing a change at the input data.
Therefore, it is of little interest, since it would be normally easier for the attacker
to directly alter the input data rather than injecting precise faults with an expensive
equipment.

– Hidden layer(s) – since the structure of the hidden layer is normally unknown to the
attacker, she cannot easily predict the outcome of the fault injection. However, she can
still achieve the missclassification, although not necessarily to the class she decides.
Therefore, such attack might be interesting in case the attacker does not care about the
outcome class as long as it is different from the correct outcome.

– Output layer – normally, softmax is the function of choice for the output layer. Accord-
ing to our results, introducing a meaningful fault into softmax is harder compared to
other functions. However, as we discussed, in case the attacker can alter registers stor-
ing the floating point data, she can easily missclasify the outcome to a chosen class,
making it a very powerful attack model.

Deciding on what layer to attack, it makes sense to inject the fault as close to the output
layer as possible to make the impact highest. Therefore, for our case, the attacker injects
faults into the last hidden layer of the network, targeting multiple activation function
computations.

In the following we consider DNNs severed for classification purposes and the ac-
tivation function of the output layer is sofmax. We further assume the output layer is
dense and the goal of the attacker is to misclassify an input. In Section 4.1 we discuss
the possible strategies of an attacker. In Section 4.2 we present the evaluation results
using the strategies on a sample DNN.

4.1 Algorithms for attacking the last hidden layer

We model the last two layers of a DNN as follows: let x denote the output of the last
hidden layer and let W and B denote the matrix of weights and the vector of bias weights



10 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

for output layer. Let z denote the input of softmax function. Suppose there are m neurons
in the last hidden layer and n neurons in the output layer. Let Wk, k = 1, 2, . . . , n be the
columns of W. Then the output is given by

outputi =
exp(zi)∑n

j=1 exp(z j)
=

exp(xWi + Bi)∑n
j=1 xW j + B j

, i = 1, 2, . . . , n.

The final classification is given by ` such that maxi outputi = output`. For any sequence
of z j, j = 1, 2, . . . , n, we have

max
i

outputi = max
i

exp(zi)∑n
j=1 exp(z j)

=
maxi exp(zi)∑n

j=1 exp(z j)
=

exp
(
max

i
zi

)
∑n

j=1 exp(z j)
.

Hence the output classification is equal to ` such that maxi zi = z`.
The attacker injects faults in the computation of the activation functions for neurons

in the last hidden layer and gets a faulted x′. Correspondingly we have a faulted vector
z′. Thus, for a given input with correct classification `, the goal of misclassification is
equivalent to: achieve z′ such that there exists j with z′j > z′` or z′j−z′` > 0. Consequently,
an input can be misclassified if and only if

(x′W j + B j) − (x′W` + B`) > 0
(xW j + B j + (x′ − x)W jk) − (xW` + B` + (x − x)W`k) > 0

xW j + B j − xW` − B` + (x′ − x)(W jk −W`k) > 0
z j − z` + (x′ − x)(W jk −W`k) > 0

z j − z` +
∑
x′k,xk

(x′k − xk)(W jk −W`k) (5)

Algorithm 1 gives matrix A such that A[k][ j] = (x′k− xk)(W jk−W`k) and diagonal matrix
D whose diagonal is given by x′ − x.
Single fault strategy. When a single fault model is considered, x and x′ only differs in
one entry, say xk. Equation (5) becomes

z j − z` + (x′k − xk)(W jk −W`k) > 0 (6)

For given DNN and a target input, Algorithm 2 outputs k, the neuron to attack so that
a misclassification can be achieved. Line 2 calculates the matrix A with column i given
by Wi − W`. Depending on the activation function, x′ is related to x as described in
Table 1. After line 13, the (k, j)−entry of matrix A is given by (x′k− xk)(W jk−W`k). Line
15 checks if Equation (6) is satisfied for any j, k. If it can be satisfied for some k, j, the
target input can be misclassfied with a fault attack on neuron k.

For multiple fault model, a natural strategy is random faults, i.e. random number
of neurons in the last hidden layers are faulted. Here we provide another strategy which
utilizes the information of weights and bias of the last layer.
Multiple faults strategy. For a target input with correct class `, we aim to find a list of
neurons to attack so that the probability of class ` in the output will be reduced. Details
are given in Algorithm 3.



Evaluation of DNN Resistance to Fault Attacks 11

Algorithm 1: Calculation of matrix A
Input : W: matrix of weights for the last layer with columns W1,W2, . . . ,Wn; B vector

of bias weights for the last layer; `: the correct class of target input; x: output of
the last hidden layer for target input; activation function: ReLu, sigmoid or
Tanh.

Output: Matrices A,D.
1 for i = 1, 2, . . . , n do
2 A[i] = Wi −W`;

3 if activation function is ReLu then
4 for k = 1, 2, . . . ,m do
5 x′[i] = 0;

6 if activation function is sigmoid then
7 for k = 1, 2, . . . ,m do
8 x′[i] = 1 − x[i];

9 if activation function is Tanh then
10 for k = 1, 2, . . . ,m do
11 x′[i] = −x[i];

12 D = diagonal matrix with diagonal x′ − x;
13 A = DA;
14 return A,D;

4.2 Evaluation of a sample DNN

To test how our attack can influence a real-world DNN, we trained and evaluated dif-
ferent DNNs with the attack strategies described above. The attack vectors considered
are as described in Section 3.2. We have selected a popular MNIST dataset [33]. The
training of DNNs was accomplished using Keras (ver.2.1.6) [17] and Tensorflow li-
braries (ver.1.8.0) [1]. The structures of the DNNs are detailed in Table 2. For each
target function (ReLu, sigmoid and tanh), 10 DNNs with different number of neurons
(n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500) in hidden layer 4 were evaluated.
We used a partially fixed structure of DNN in order to study the effects of fault attacks
on different activation functions. The prediction accuracy we obtained is summarized in
Table 3. The accuracy shows that although the DNNs we choose are relatively simple,
their accuracy is comparable with the state of the art. Success rates are calculated for
800 random inputs.

For multiple fault model, we evaluated the DNNs with number of faults equal to
10, 20, 30, 40, 50 percent of the number of neurons in hidden layer 4. The simulation
results for targeting activation function being ReLu, Sigmoid and tanh are presented in
Figures 4, 5 and 6 respectively.

Overall, it can be concluded that in case of sigmoid and tanh, if the attacker wants
to have a reasonable success rate (>50%), she should inject faults in at least 40% of
the neurons using multiple faults strategy in the chosen layer. But for ReLu, when the
number of neurons is big, the DNN becomes more resistant to fault attacks.



12 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

Algorithm 2: Single fault strategy
Input : A:obtained from Algorithm 1; z: input of softmax function.
Output: True/False indicating if an attack exists or not; k s.t. the input can be

misclassified with fault attack on neuron k.
1 for k = 1, 2, . . . ,m do
2 for j = 1, 2, . . . , n, j , ` do
3 if z j − z` + A[k][ j] > 0 then
4 output k;
5 return True;

6 return False;

Algorithm 3: Multiple faults strategy
Input : D: obtained from Algorithm 1; W`: the `th column of W; M: number of faults.
Output: indices: a list of neurons to attack.

1 indices= [];
2 B = DW`;
3 for k = 1, 2, . . . ,m do
4 if B[k][ j] < 0 then
5 add k to indices;
6 if length of indices== M then
7 return indices;

8 return indices;

The results also show that sigmoid and tanh functions follow the same trend, which
is caused by the same type of fault as explained in the previous section – skipping the
negation in the exponentiation function.

5 Genetic algorithm for attacking the whole DNN

A natural question to ask is what if we assume the attacker can target any neurons in
the whole DNN? And how many neurons does she need to attack to achieve a certain
percentage of misclassification?

To find answer these questions, we analyzed three different DNNs with structures
given in Table 4, where the target activation functions are ReLu, Sigmoid, tanh, re-
spectively. Similarly to Section 4.2, the DNNs were trained using Keras (ver 2.1.6.) on
MNIST dataset.

The aim of the experiment was to check the effect on the DNN when a certain per-
centage of neurons is attacked. For this purpose, we have adopted the genetic algorithm
to help in searching for the vulnerable collections of neurons in a given DNN.

Genetic Algorithm (GA) is a heuristic algorithm normally used for optimization
problems, based on the concept of natural selection. For optimization problems with
large search space, it is often a preferable choice compared to brute-force search, since



Evaluation of DNN Resistance to Fault Attacks 13

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

No. of neurons in hidden layer 4

Su
cc

es
sr

at
e

single fault strategy
10% multiple fault strategy

10% random fault
20% multiple fault strategy

20% random fault
30% multiple fault strategy

30% random fault
40% multiple fault strategy

40% random fault
50% multiple fault strategy

50% random fault

Fig. 4: Target activation function – ReLu.

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

No. of neurons in hidden layer 4

Su
cc

es
sr

at
e

single fault strategy
10% multiple fault strategy

10% random fault
20% multiple fault strategy

20% random fault
30% multiple fault strategy

30% random fault
40% multiple fault strategy

40% random fault
50% multiple fault strategy

50% random fault

Fig. 5: Target activation function – Sigmoid.

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

No. of neurons in hidden layer 4

Su
cc

es
sr

at
e

single fault strategy
10% multiple fault strategy

10% random fault
20% multiple fault strategy

20% random fault
30% multiple fault strategy

30% random fault
40% multiple fault strategy

40% random fault
50% multiple fault strategy

50% random fault

Fig. 6: Target activation function – tanh.



14 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

Layer No. of neurons Activation function

Input layer 784 -
Hidden layer 1 500 ReLu
Hidden layer 2 500 ReLu
Hidden layer 3 500 ReLu
Hidden layer 4 n target activation function
Output layer 10 Softmax

Table 2: Structure of the DNN used in evaluations.

Target ReLu
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.2 99.2 99.4 98.8 99.1 99.0 99.2 98.4 98.9 99.1
Test. Acc. 97.4 97.9 98.0 97.4 97.7 97.5 97.8 97.3 97.5 98.0

Target sigmoid
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.2 99.0 99.3 99.0 99.3 99.3 99.4 99.1 99.3 99.4
Test. Acc. 98.0 97.7 98.0 97.6 98.1 98.0 98.0 97.7 98.1 98.0

Target tanh
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.0 99.0 98.2 99.1 99.1 99.3 99.0 98.9 99.2 98.9
Test. Acc. 98.0 97.5 97.8 97.8 97.8 98.0 97.6 97.7 98.1 97.4

Table 3: Training/testing accuracy of DNNs used in evaluation.

it can help to reduce the search time for finding the solution. While it does not guar-
antee finding a perfect solution, it is an alternative approach that finds a good enough
solution, while saving the computational resources significantly. GA itself has been ap-
plied as well for fault attacks problems, for example, to search for optimal experiment
parameters for fault injection [42].

Typically, the standard GA method is to assign fitness values for each individuals
within the search space. A population of these individuals is initialized randomly ac-
cording to the specification for the population. For each generation (or iteration), the
algorithm selects better individuals and removes the worse ones, while combining dif-
ferent individuals using crossover algorithm to generate new ones. The evaluation is
performed according to the fitness function defined, and the aim is to find an individual
which could optimize the fitness value in the search space. Normally, to avoid converg-
ing to local optima, a mutation function is introduced by randomly changing parts of
the new individuals.

In our experiment, we use DEAP [21] for the GA implementation. DEAP is an
evolutionary algorithm library in Python. Since we are using Keras for our DNN im-
plementation, DEAP can be easily adopted and integrated for the experiments. Our GA



Evaluation of DNN Resistance to Fault Attacks 15

Algorithm 4: Genetic Algorithm (GA) for attacking the whole DNN
Input : DNN structure, noOfFaults: number of faults, noGen: number of generation
Output: indices: a list of neurons to attack.

1 P = Generate Population(noOfFaults);
2 Evaluate(P);
3 for i in range(noGen) do
4 Crossover(P);
5 Mutation(P);
6 Evaluate(P);
7 Selection(P);

8 return the best individual in P;

follows a standard structure as shown in Algorithm 4. Here we explain how each com-
ponent of GA was implemented:

– Individual: Each individual is generated as a binary vector whose length is the
number of neurons in the hidden layers of the neural network. For DNNs we eval-
uated (see Table 4), each individual has length 800. As we consider faults to be
inserted randomly in the hidden layers, we do not differentiate to which layer the
faulted neuron belongs, that is why the individual is of vector shape. A 0 in index i
would indicate the ith neuron is not attacked and a 1 in index j would indicate the
jth neuron will be attacked. Naturally, The number of 1s is equal to the number of
faults allowed.

– Fitness function: The fitness of an individual is the corresponding misclassi-
fication rate – more precisely, we calculate the percentage of misclassified image
by faulting the network according to the fault model represented by the individual.

– Population: In our experiments, we set size of population to be 200 and number
of generations to be 120. These numbers were selected for practical reasons, as
higher values would yield impractical computation times.

– Selection The selection of next generation follows tournament selection with
tournament size 3.

Regarding the crossover and mutation, we followed the selection guidelines stated
in [20]. In general, it is advised to select lower values for these parameters in case
of binary values.

– Crossover: For each pair of individuals in the population, the crossover rate is set
to be 0.78. This value is relatively high because of the size of the search space in our
problem – crossover handles the exploration part of the GA, which means searching
through the available space [50]. The offsprings are obtained by performing two-
point crossover.

– Mutation: Mutation is performed in order to avoid falling for local minima in the
search space. In this experiment, flip bits are used for mutation. The mutation rate
was chosen to be 0.05. We chose a relatively low mutation rate to avoid reducing
the algorithm to a random search, but significant enough to get a good convergence.



16 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

Layer No. of neurons Activation function

Input layer 784 -
Hidden layer 1 200 target activation function
Hidden layer 2 200 target activation function
Hidden layer 3 200 target activation function
Hidden layer 4 200 target activation function
Output layer 10 Softmax

Table 4: Structure of the DNN used in evaluation for attacking the whole network.

Activation function Training Accuracy Test Accuracy

ReLu 99.9 98.7
Sigmoid 99.3 97.6

tanh 99.9 98.1

Table 5: Training/test accuracy of DNNs used in evaluation for attacking the whole
network.

In each generation, new individuals have to be checked to ensure that they satisfy
the constraint in the original problem, namely, the number of 1s is equal to number
of faults allowed. We include this constraint in the evaluation step – we penalize the
outliers by assigning zero score, to exclude them from the next generation.

Figure 7 shows the success rate of misclassification when the neurons are selected
by using GA, compared to random selection. It shows that especially in case of Sigmoid
and ReLu, careful choice of which neurons to fault can increase the success rate signif-
icantly. To summarize, the result can be improved up to 62% in case of ReLu, 31% in
case of Sigmoid, and 20% in case of tanh.

6 Protection Techniques

In this section we will outline different techniques that can help protect neural network
implementations against fault injection attacks.

6.1 Overview

In general, the protection techniques against fault injection can work either on device
level, or implementation level.

Device level techniques focus on preventing the attacker to reach the chip, by var-
ious forms of packaging, light sensors, etc. [4]. The goal is to increase the equipment
and expertise requirement to access the chip in a way that the possible reward for the
attacker for doing so will be lower than the effort she has to put in. Device level tech-
niques can also have a different working principle – to detect potential tampering with



Evaluation of DNN Resistance to Fault Attacks 17

10% 20% 30% 40% 50% 80%
0

20

40

60

80

100

Percentage of faulted neurons

Su
cc

es
sr

at
e

ReLu GA
ReLu random
Sigmoid GA

Sigmoid random
tanh GA

tanh random

Fig. 7: Evaluation results using genetic algorithm (GA) to select neurons versus random
selection.

the chip. In this case, a hardware sensor that checks environmental conditions can be
deployed [27,51,43].

Implementation level techniques aim at detecting changes in the intermediate data.
Detection can be achieved by using various encoding techniques, ranging from simple
ones such as parity [30], to sophisticated codes that can be customized to protect against
specific fault models [12]. Another approach is performing the computation several
times and comparing the result. A different way to use redundancy is to perform it at
the instruction level, either by generating instruction sequences that replace the original
vulnerable instructions [40], or by re-arranging the data within the instructions to make
it hard to tamper with without detection [41]. However, there is no straightforward
way of using these two techniques for protecting DNNs. It is important to mention
that unlike device level techniques, the implementation level countermeasures normally
incur significant overheads, either in time, circuit area, or power consumption.

Protecting the learning phase. Additionally, there is a line of work that focuses on
protecting the learning phase of the deep learning method [47]. such protection tech-
nique might be useful in case the learning does not happen in a protected environment
and there is a significant risk of faults coming either from the environment or from
the attacker. In our work we consider the model is already learned and therefore, the
attacker is trying to tamper with the classification phase .

6.2 Analysis

Analysis of overheads and coverage of each countermeasure that can be used against
instruction skips presented in earlier sections is stated in Table 6. Here, we provide more
details on each technique and its applicability to DNN.
Spatial/temporal redundancy. This is the most straightforward way to protect a cir-
cuit. Implementer can choose the number of redundant executions depending on what
attacker model is expected. In case of redundancy, there is always an integrity check
or a majority voting that decides whether the output is valid or not. When used as a



18 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

Fig. 8: Hardware sensor protecting the DNN circuit.

countermeasure in cryptography, circuit is either deployed 2-3× on the chip (spatial
redundancy), or the computation is repeated 2-3× one after another (temporal redun-
dancy) [5]. Execution times can be randomized so that it is hard to reproduce the same
fault in all the redundant executions.

Software encoding. As the software encoding countermeasures are realized by table
look-up operations, they are not directly applicable to neural networks which operate
on real values. However, it is possible to apply this countermeasure for fixed-point arith-
metic networks [28]. As it was shown, fixed-point arithmetic can provide good results
when used on bigger networks [45]. The timing overhead in this case is around 75%
– for example, let us consider a multiplication operation on AVR architecture: for the
unprotected implementation, there is operand loading into the registers (2 × 1 clk cy-
cle), followed by a multiplication (2 clk cycles), resulting into 4 clock cycles. For the
protected implementation, there is a register precharge (see e.g. Section 5.1 of [12]) of
both input registers and the output register (3 × 1 clk cycle), followed by the operand
loading (2 × 1 clk cycle) and table look-up (2 clk cycles), resulting into 7 clock cycles.
Regarding the area overhead, as stated in [12], in case the codeword size is ≤ 8 bits,
there is a fixed table size of 65 kB per binary operation (e.g. multiplication). That is
why the area (memory) overhead is huge for this case.

Hardware sensor. Application of a hardware sensor to protect DNN circuit is depicted
in Figure 8. The main advantage of hardware sensor is that there is no need to change
the underlying implementation of the neural network. The sensor resides on the front
side of the chip, protecting all the underlying circuits from fault injection. In case there
is a sudden parasitic voltage detected by such sensor, it raises an alarm. Afterwards,
security measures, such as discarding the output, can be applied. Recently, a way to
automate the deployment of such circuit was proposed [11].

To summarize, selection of countermeasures depends heavily on the type of appli-
cation that relies on DNN outputs. For security critical application, it would be recom-
mended to combine several techniques together to minimize the possible attack vectors
and make cost of the attack as high as possible.



Evaluation of DNN Resistance to Fault Attacks 19

Overhead
Countermeasure Time Area Coverage

Spatial redundancy (×N) – N × 100%

Covers up to N − 1 faults. To break the
countermeasure, faults need to be in-
jected at the same instruction in all the
redundant circuits – which normally re-
quires multiple fault injection devices.

Temporal redundancy (×N) N × 100% –

Covers up to N − 1 faults. To break the
countermeasure, faults need to be in-
jected at the same instruction in all the
redundant executions.

Software encoding [12] 75% ≈ 65, 000%

Protects against instruction skips that
target one instruction at a time. Al-
though it does not protect against con-
secutive instruction skips, during one
execution it can protect arbitrary num-
ber of non-consecutive skips with 100%
detection rate.

Hardware sensor [31] – 1.1%1

As the sensor is based on detecting volt-
age variations on the chip surface, the
detection rate depends on the fault in-
jection device parameters. The most re-
cent work shows high detection rates
for both laser and EM fault injection
techniques, 97% and 100% detected in-
jections, respectively.

Table 6: Overview of countermeasures effective against skipping instructions.

7 Conclusion and Future Work

In this paper, we have proposed the first physical fault injection attack technique on the
major activation functions of deep neural networks. We stated implications how such
attack can alter the behavior of targeted network, together with simulations. Our results
demonstrate practicality of the attack on ReLu, sigmoid, and tanh.

It will also be interesting to look at possible countermeasures. While there are al-
ready techniques available that correct non-malicious alterations of the processed values
in DNN (due to environmental conditions) [34], the fault tolerance techniques against
malicious entities have to be developed in the same way as in the area of applied cryp-
tography [10,44,18].

1 Sensor requires power during the operation, therefore there is a power overhead of ≈ 5.3% per
16-bit multiplier.



20 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: OSDI.
vol. 16, pp. 265–283 (2016)

2. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.: How to flip
a bit? In: On-Line Testing Symposium (IOLTS), 2010 IEEE 16th International. pp. 235–239.
IEEE (2010)

3. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the
effects of clock glitches on 8-bit mcus. In: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2011 Workshop on. pp. 105–114. IEEE (2011)

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice
guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

5. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Countermeasures against
fault attacks on software implemented aes: effectiveness and cost. In: Proceedings of the 5th
Workshop on Embedded Systems Security. p. 7. ACM (2010)

6. Barthe, G., Dupressoir, F., Fouque, P.A., Grégoire, B., Zapalowicz, J.C.: Synthesis of fault
attacks on cryptographic implementations. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1016–1027. CCS ’14, ACM, New
York, NY, USA (2014), http://doi.acm.org/10.1145/2660267.2660304

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Annual
international cryptology conference. pp. 513–525. Springer (1997)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic proto-
cols for faults. In: International conference on the theory and applications of cryptographic
techniques. pp. 37–51. Springer (1997)

9. Breier, J., Chen, C.N.: On determining optimal parameters for testing devices against laser
fault attacks. In: 2016 International Symposium on Integrated Circuits (ISIC). pp. 1–4. IEEE
(2016)

10. Breier, J., Hou, X.: Feeding two cats with one bowl: On designing a fault and side-channel
resistant software encoding scheme. In: Cryptographers’ Track at the RSA Conference. pp.
77–94. Springer (2017)

11. Breier, J., Hou, X., Bhasin, S. (eds.): Automated Methods in Cryptographic Fault Analysis.
Springer, 1st edn. (Mar 2019)

12. Breier, J., Hou, X., Liu, Y.: On evaluating fault resilient encoding schemes in software. IEEE
Transactions on Dependable and Secure Computing (2019)

13. Breier, J., Jap, D., Chen, C.N.: Laser profiling for the back-side fault attacks: with a practical
laser skip instruction attack on aes. In: Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security. pp. 99–103. ACM (2015)

14. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In: ICLR (2018)

15. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing ten de-
tection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security. pp. 3–14. ACM (2017)

16. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Security
and Privacy (SP), 2017 IEEE Symposium on. pp. 39–57. IEEE (2017)

17. Chollet, F., et al.: Keras (2015)
18. Ciet, M., Joye, M.: Practical fault countermeasures for chinese remaindering based rsa. In:

Workshop on Fault Diagnosis and Tolerance in Cryptography–FDTC. vol. 5, pp. 124–132
(2005)

http://doi.acm.org/10.1145/2660267.2660304


Evaluation of DNN Resistance to Fault Attacks 21

19. Deshpande, A.: The last 5 years in deep learning. https://adeshpande3.github.io/
The-Last-5-Years-in-Deep-Learning (2017), accessed: 2018-11-11

20. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algo-
rithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

21. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: Evolu-
tionary algorithms made easy. Journal of Machine Learning Research 13, 2171–2175 (jul
2012)

22. Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Smart Card Research and Advanced
Applications VI, pp. 159–176. Springer (2004)

23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http://www.
deeplearningbook.org

24. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
ICLR (2015)

25. Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive optical
fault injection attacks. In: International Workshop on Constructive Side-Channel Analysis
and Secure Design. pp. 207–222. Springer (2017)

26. He, W., Li, B., Song, D.: Decision boundary analysis of adversarial examples. In: ICLR
(2018)

27. He, W., Breier, J., Bhasin, S., Miura, N., Nagata, M.: Ring oscillator under laser: Potential
of pll-based countermeasure against laser fault injection. In: Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2016 Workshop on. pp. 102–113. IEEE (2016)

28. Hwang, K., Sung, W.: Fixed-point feedforward deep neural network design using weights+
1, 0, and- 1. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS). pp. 1–6. IEEE
(2014)

29. Joye, M., Tunstall, M.: Fault analysis in cryptography, vol. 40. Springer (2012)
30. Karri, R., Kuznetsov, G., Goessel, M.: Parity-based concurrent error detection of

substitution-permutation network block ciphers. In: International Workshop on Crypto-
graphic Hardware and Embedded Systems. pp. 113–124. Springer (2003)

31. Khairallah, M., Breier, J., Bhasin, S., Chattopadhyay, A.: Differential fault attack resistant
hardware design automation. In: Automated Methods in Cryptographic Fault Analysis, pp.
209–219. Springer (2019)

32. Kim, C.H., Quisquater, J.J.: Faults, injection methods, and fault attacks. IEEE Design & Test
of Computers 24(6), 544–545 (2007)

33. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/
(1998)

34. Lee, M., Hwang, K., Sung, W.: Fault tolerance analysis of digital feed-forward deep neural
networks. In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on. pp. 5031–5035. IEEE (2014)

35. Liu, Y., Wei, L., Luo, B., Xu, Q.: Fault injection attack on deep neural network. In: Proceed-
ings of the 36th International Conference on Computer-Aided Design. pp. 131–138. IEEE
Press (2017)

36. Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining. pp. 641–647. ACM (2005)

37. Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edn. (1997)
38. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromagnetic fault

injection: towards a fault model on a 32-bit microcontroller. In: Fault Diagnosis and Toler-
ance in Cryptography (FDTC), 2013 Workshop on. pp. 77–88. IEEE (2013)

39. Nia, A.M., Mohammadi, K.: A generalized abft technique using a fault tolerant neural net-
work. Journal of Circuits, Systems, and Computers 16(03), 337–356 (2007)

40. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault tolerant infective countermeasure
for aes. Journal of Hardware and Systems Security 1(1), 3–17 (2017)

https://adeshpande3.github.io/The-Last-5-Years-in-Deep-Learning
https://adeshpande3.github.io/The-Last-5-Years-in-Deep-Learning
http://www.deeplearningbook.org
http://www.deeplearningbook.org


22 X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin and Y. Liu

41. Patrick, C., Yuce, B., Ghalaty, N.F., Schaumont, P.: Lightweight fault attack resistance in
software using intra-instruction redundancy. In: International Conference on Selected Areas
in Cryptography. pp. 231–244. Springer (2016)

42. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor: Memetic
algorithms make a difference. In: Mangard, S., Poschmann, A.Y. (eds.) Constructive Side-
Channel Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 9064, pp. 159–173. Springer (2015), https://doi.org/10.1007/
978-3-319-21476-4_11

43. Ravi, P., Bhasin, S., Breier, J., Chattopadhyay, A.: Ppap and ippap: Pll-based protection
against physical attacks. In: 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). pp. 620–625. IEEE (2018)

44. Servant, V., Debande, N., Maghrebi, H., Bringer, J.: Study of a novel software constant
weight implementation. In: International Conference on Smart Card Research and Advanced
Applications. pp. 35–48. Springer (2014)

45. Sung, W., Shin, S., Hwang, K.: Resiliency of deep neural networks under quantization. arXiv
preprint arXiv:1511.06488 (2015)

46. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. In: ICLR (2014)

47. Taniguchi, Y., Kamiura, N., Hata, Y., Matsui, N.: Activation function manipulation for
fault tolerant feedforward neural networks. In: Proceedings Eighth Asian Test Symposium
(ATS’99). pp. 203–208. IEEE (1999)

48. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial
examples. In: ICLR (2018)

49. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep
neural networks. arXiv preprint arXiv:1611.05431 (2016)

50. Yu, X., Gen, M.: Introduction to evolutionary algorithms. Springer Science & Business Me-
dia (2010)

51. Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.M., Maurine, P., Guillaume-Sage, L.,
Clediere, J., Tria, A.: Efficiency of a glitch detector against electromagnetic fault injection.
In: Proceedings of the conference on Design, Automation & Test in Europe. p. 203. European
Design and Automation Association (2014)

https://doi.org/10.1007/978-3-319-21476-4_11
https://doi.org/10.1007/978-3-319-21476-4_11

	Experimental Evaluation of Deep Neural Network Resistance Against Fault Injection Attacks

