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Abstract—Deep learning is becoming a basis of decision making systems
in many application domains, such as autonomous vehicles, health systems,
etc., where the risk of misclassification can lead to serious consequences.
It is necessary to know to which extent are Deep Neural Networks (DNNs)
robust against various types of adversarial conditions.

In this paper, we experimentally evaluate DNNs implemented in em-
bedded device by using laser fault injection, a physical attack technique
that is mostly used in security and reliability communities to test robustness
of various systems. We show practical results on four activation functions,
ReLu, softmax, sigmoid, and tanh. Our results point out the misclassification
possibilities for DNNs achieved by injecting faults into the hidden layers of
the network. We evaluate DNNs by using several different attack strategies
to show which are the most efficient in terms of misclassification success
rates. Outcomes of this work should be taken into account when deploying
devices running DNNs in environments where malicious attacker could
tamper with the environmental parameters that would bring the device into
unstable conditions, resulting into faults.

1 Introduction
Connected technologies have became ubiquitous in everyday life.
Small, single-purpose devices with sensing and responding capa-
bilities have emerged into what has become known as Internet
of things (IoT). Components of IoT are designed to be placed
everywhere, allowing easy physical access to potential threats.
At the same time, the developments in the area of artificial
intelligence (AI) have widened the capabilities of automation in
various domains, spreading into all aspects of modern digital
society. Out of AI, one of the most promising technologies is
deep learning, which tries to simulate the behavior of neurons in
a human brain. Deep learning enables to analyze speech, text, and
images to decide about complex tasks [1]. Deployment of deep
learning has reached security-critical areas, such as autonomous
driving, medical systems, etc., making misjudgement a risk that
has to be taken into account.

In this work, we focus on a class of physical attacks known
as fault attacks, which have become a reality owing to decreasing
price and expertise required to mount such attack [2]. Fault attacks
are active attacks on a given implementation which try to perturb
the internal software/hardware computations by external means.
The adversary uses methods like voltage glitches, electromagnetic

pulses, or laser injection to introduce perturbations for various
purposes, ranging from erroneous computation, denial of service
etc. Such attacks are commonly used for mounting secret key re-
covery attacks in cryptography or for violating/bypassing security
checks [3]. In this paper, we analyze deep learning under fault
attacks.

Deep learning is a family of neural networks composed of
an input layer, three or more hidden layers and an output layer.
Based on the internal structure, several candidates exist like multi-
layer perceptron (MLP), convolutional neural networks (CNNs),
recurrent neural networks (RNNs) etc. These are popularly known
as deep neural networks (DNN). While each of these architectures
has unique functions, we focus on activation functions which
remain common across architectures and are an important part of
the algorithm to obtain non-linear behaviors [4]. These commonly
used activation functions are: softmax, ReLu, sigmoid and tanh.
Studying these functions under fault attacks allows to derive
general conclusions on susceptibility of deep learning to fault
attacks.

We implemented the most common activation functions used
across DNNs on a low-cost microcontroller (often used in IoT).
Next, we performed practical laser fault injection using a near-
infrared diode pulse laser to inject faults during the processing of
activation function. The use of laser facilitates a strong attacker
model with extensive fault injection capabilities. With the models,
derived from practical fault injection, we analyze the susceptibility
of DNN against such attacks. The primary goal of the performed
attacks is to achieve miss-classification during the testing phase.
In the hindsight, the achieved miss-classification can jeopardize
the functioning of DNN-based paradigms like smart city.

Extensive studies have been performed on adversarial attacks,
that crafts the input data with little perturbation to fool deep
learning systems [5], [6], [7], [8], [9], [10], [11]. In our study we
explore practical (physical) fault injection on deep neural network,
where we focus on attacking the DNNs itself instead of creating
input data to fool DNNs like adversarial attack does. We evaluate
different ways of selecting neurons to fault, from random selection
to optimized method using a genetic algorithm. Our results indi-
cate that in some cases, a relatively small number of faulted neu-
rons (≈ 10%) can already present a high risk of misclassification
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(≈ 62%). Moreover, we discuss potential protection techniques
that can be applied to neural network implementations and devices
that process DNNs to prevent the successful application of a fault
injection attack.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 provides the necessary background on laser fault injection
and activation functions of neural networks. Section 3 presents
the details of the experiment, with the explanations of the effect
of faults on activation functions. These findings are applied on
full DNN in Section 4. An attack strategy based on findings from
genetic algorithm is presented in Section 5. Section ?? overviews
potential protection techniques against fault attacks, followed by
Section 6 which concludes this paper and provides a motivation
for follow up work.

2 Background
In this section, we recall basic concepts of deep neural networks,
activation functions and fault injection attacks.

2.1 Deep Neural Networks

Artificial neural networks (ANNs) are computing units designed
on basis of biological neural networks. ANN is a network of
interconnected nodes or neurons where a signal is transmitted
from input neurons towards output neurons. Arranged in layers,
each neuron computes an output based on sum of (weighted)
inputs from other neurons, followed by a non-linear function.
The weights are determined during the training process. The non-
linear layer function, also known as the activation function, is what
gives an ANN its power to learn and classify difficult problems. A
simple ANN can be composed of an input layer, one hidden layer
and an output layer. To train the network, the backpropagation
algorithm is used, which is a generalization of the least mean
squares algorithm in the linear perceptron. Backpropagation is
used by the gradient descent optimization algorithm to adjust
the weight of neurons by calculating the gradient of the loss
function [12].

Deep neural networks (DNNs) are fairly new variants of
ANNs with three or more hidden layers. DNNs have become
realistic with the latest advances in computing power, thanks
to high performance graphical processing units (GPU). Several
variants of DNN exist, including multi-layer perceptron (MLP),
convolutional neural networks (CNNs), recurrent neural networks
(RNNs), etc. Owing to the deep architecture, they have shown
great success across domains – the most prominent being image
classification, with the biggest ones composed of as many as 152
layers (Resnet [13]).

As it was pointed out in [14], in case of large neural networks,
there are many nodes that do not contribute to the neural network
function. However, there are some nodes which are crucial for
correct functionality and if these are faulted, it can result in a
failure.

2.2 Activation Functions

The activation functions we consider are the following: softmax,
ReLu, sigmoid and Tanh[4].

Softmax is normally used as the activation function for output
layer. It takes a vector x as input, ith entry of the output gives the
probability of a given input belonging to class i:

softmax(x)i =
exp(xi)∑
j exp(x j)

, (1)

where exp is the exponentiation function with base e.
In modern neural networks, the default recommendation for

activation function is the rectified linear unit or ReLu defined as
follows:

ReLu(x) = max{0, x}. (2)

It is a piecewise linear function which preserves properties that
make the optimization of linear model easy.

Before the introduction of ReLu, commonly used activation
functions are logistic sigmoid activation function

sigmoid(x) =
1

1 + exp(−x)
, (3)

and hyperbolic tangent function

tanh(x) =
2

1 + exp(−2x)
− 1. (4)

The sigmoid function is normally used to introduce non-
linearity in the model. A reason for its popularity comes from
the simple equation between its derivative and itself

sigmoid′(x) = sigmoid(x)(1 − sigmoid(x)).

However, sigmoid functions becomes insensitive to inputs with
large absolute values. In such cases, the hyperbolic tangent activa-
tion function is used as an alternative.

2.3 Fault Injection Attacks

Fault injection attacks are a popular physical attack vector used
against cryptographic circuits [15]. By changing intermediate
values during the cryptographic algorithm execution, they can
efficiently provide information on secret values, helping to recover
the secret key in just a few encryptions [16], [17], [18]. Nor-
mally, the secret key recovery would require infeasible amount
of computing time. Similarly, these attacks can be used against
verification circuits, such as PIN verification on a smartcard,
where a comparison function can be skipped and grant access
to a malicious user [19].

When it comes to fault injection techniques, there are several
options one can use, mostly depending on the adversary budget
and expertise [20]. The most basic methods include variations
in voltage or clock signal, allowing disturbance of instruction
sequences in microcontrollers [21]. Electromagnetic fault injec-
tion allows more precise location targeting, enabling faults in
memories [22], [23]. Laser fault injection is the most precise
from commonly used techniques, being capable of flipping single
bits [24].

Up to date, to the best of our knowledge, only [25] describes
fault injection attack on neural networks. In their paper, they
only provide a white box attack on deep neural network through
software simulation, while observing the changes in the output
after introducing faults in the network’s values. However, they
do not provide insight on practicality of such attack. Whether
such attacks could also be applied physically remained an open
problem. Therefore, in our paper, we experimentally show what
types of faults are achievable in practice and we further use this
information to develop a realistic attack on DNNs.
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Fig. 1: Experimental laser fault injection setup – (a) device under
test, (b) setup components.

2.4 Difference from Adversarial Learning

A huge amount of research is undergoing towards adversarial
learning [26]. It basically involves constructing special inputs
which are capable of confusing the machine learning models,
often leading to output misclassification. In this work, we explore
an alternate avenue to arrive at the same but by different means.
The proposed fault attacks target the implementation of the DNN,
particularly the critical activation function to achieve misclassifi-
cation without any perturbation of the input. Depending on the
application scenario and adversary model, one attack might be
more suited than the other.

3 Practical DNN attack feasibility analysis
In this part we first show the practical laser fault attack setup in
Section 3.1. In Section 3.2 we show the possible fault attacks
on activation functions that we have discovered with practical
experiments. In Section 4, those attacks will be used for simulating
missclassification attacks on MNIST DNNs.

3.1 Attack Equipment Setup

The main component of the experimental laser fault injection
station is the diode pulse laser. It has a wavelength of 1064 nm
and pulse power of 20 W. This power is further reduced to 8 W by
a 20× objective lens which reduces the spot size to 15×3.5 µm2.

As the device under test (DUT), we used ATmega328P mi-
crocontroller, mounted on Arduino UNO development board. The
package of this chip was opened so that there is a direct visibility
on a back-side silicon die with a laser. The board was placed on
an XYZ positioning table with the step precision of 0.05 µm in
each direction. A trigger signal was sent from the device at the
beginning of the computation so that the injection time could be
precisely determined. After the trigger signal was captured by the
trigger and control device, a specified delay was inserted before
laser activation. Laser activation timing was also checked by a
digital oscilloscope for a greater precision. Our setup is depicted
in Figure 1.

3.2 DNN Activation Function Fault Analysis

To evaluate different activation functions, we implemented three
simple 3-layer neural networks with sigmoid, ReLu and tanh as the
activation fuction for the second layer respectively. The activation
function for the last layer was set to be softmax. The neural
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Fig. 2: Area plot depicting successful instruction skip experiments.

networks were implemented in C programming language, which
were further compiled to AVR assembly and uploaded to the DUT.

We surrounded the activation functions in the second layer
with a trigger signal that raised a voltage on a selected Arduino
board pin to 5 V, helping us to determine the proper laser timing.

As instruction skip/change are one of the most basic attacks
on microcontrollers, with high repeatability rates [18], we aimed
at this fault model in our experiments. The microcontroller clock
is 16 MHz, one instruction takes 62.5 ns. Some of the activation
functions took over 2000 instructions to execute. To check what
are the vulnerabilities of the implementations, we have carefully
varied the timing of the laser glitch from the beginning until the
end of the function execution so that every instruction would be
eventually targeted.

Please note that we used a single fault adversarial model,
meaning that exactly one fault was injected during one activation
function execution. We consider an attack is successful for a
given input data if the output classification is different from the
classification obtained by the original network. And we refer to
such a successful attack as misclassification.

After we observed a successful missclassification, we deter-
mined the vulnerable instructions by visual inspection of the
compiled assembly code and by checking the timing of the laser in
that particular fault injection instance. Area of the chip vulnerable
to these disturbances is depicted in Figure 2. The chip area is 3×3
mm2, while the area sensitive to laser is ≈ 70×100 µm2. With
a laser power of 4.5% we were able to disturb the algorithm
execution, when tested with reference codes. More details on
the behavior on this particular microcontroller under laser fault
injection can be found in [18] while the sample preparation and
guidance on the laser experiments is provided in [27].

In this exploratory study, we implemented a random neural
network, consisting of 3 layers, with 19, 12, and 10 neurons
in input layer, hidden layer, and output layer, respectively. Our
fault attack was always targeting the computation of one of the
activation functions in hidden layer. In the following, we will
explain the experimental results on different activation functions
in detail.
ReLu. This function is implemented by a following code in C:

if (Accum > 0) {
HiddenLayerOutput[i] = Accum;}

else {
HiddenLayerOutput[i] = 0;}

where i loops from 1 to 12 so that each loop gives one output of
the hidden layer. Accum is an intermediate variable that stores the
input of activation function for each neuron.
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The assembly code inspection showed that the result of suc-
cessful attack was executing the statement after else such that the
output would always be 0. The corresponding assembly code is as
follows:

1 ldi r1, 0 ;load 0 to r1
2 cp r1, r15 ;compare MSB of Accum to r1
3 brge else ;jump to else if 0 >= Accum
4 movw r10, r15 ;HiddenLayerOutput[i] = Accum
5 movw r12, r17 ;HiddenLayerOutput[i] = Accum
6 jmp end ;jump after the else statement
7 else: clr r10 ;HiddenLayerOutput[i]= 0
8 clr r11 ;HiddenLayerOutput[i]= 0
9 clr r12 ;HiddenLayerOutput[i]= 0

10 clr r13 ;HiddenLayerOutput[i]= 0
11 end: ... ;continue the execution

where each float number is stored in 4 registers. For ex-
ample, Accum is stored in registers r15,r16,r17,r18 and
HiddenLayerOutput[i] is stored in r10,r11,r12,r13. Line
4,5 executes the equation HiddenLayerOutput[i] = Accum.

The attack was skipping the “jmp end” instruction that would
normally avoid the part of code setting HiddenLayerOutput[i]
to 0 in case Accum > 0. Therefore, such change in control flow
renders the neuron inactive no matter what is the input value.
Sigmoid. This function is implemented by a following code in C:

HiddenLayerOutput[i] = 1.0/(1.0 + exp(-Accum));

After the assembly code inspection, we observed that the success-
ful attack was taking advantage of skipping the negation in the
exponent of exp() function, which compiles into one of the two
following codes, depending on the compiler version:

A) neg r16 ;compute negation r16
B) ldi r15, 0x80 ;load 0x80 into r15

eor r16, r15 ;xor r16 with r15

Laser experiments showed that both neg and eor could be
skipped, and therefore, significant change to the function output
was achieved.
Hyperbolic tangent. This function is implemented by a following
code in C:

HiddenLayerOutput[i] = 2.0/(1.0 + exp(-2*Accum)) -
1;

Similarly to sigmoid, the experiments showed that the successful
attack was exploiting the negation in the exponential function,
leading to an impact similar to sigmoid.
Softmax. In case of softmax function, we were unable to obtain
any successful misclassification. There were only two different
outputs as a result of the fault injection: either there was no output
at all, or the output contained invalid values. This lack of valid
output prevented us to do further fault analysis to derive the actual
fault model that happened in the device. Therefore, a thorough
analysis of softmax behavior under faults would be an interesting
topic for the future work. Another line of future work would be
to analyze bit flip attacks [24]. The first application of such attack
would be to target IEEE 754 floating point representation that is
used for storing the weights. The representation follows 32-bit
pattern (b31...b0): 1 sign bit (b31), 8 exponent bits (b30...b23) and
23 mantissa (fractional) bits (b22...b0). The represented number is
given by (−1)b31 × 2(b30...b23)2−127 × (1.b22...b0)2. A bit flip attack
on the sign bit or on the exponent bits would make significant
influence on the weight. Another application of bit flip attack
would be to fault interconnecting weights, resulting to incorrect

Target activation function Relation between y and y′

ReLu y′ = 0
sigmoid y′ = 1 − y

tanh y′ = −y

TABLE 1: Relation between correct output y and faulted output y′

when a single fault is injected in target activation function

input to the next layer. We leave both directions for future
investigation as they are out of scope for the current work.

If we let y and y′ denote the correct and faulted output of
the target activation function, the relation between y and y′ is
summarized in Table 1. For further illustration, the graph of
original and faulted activation functions is depicted in Figure 3.

4 Application to DNN
The results from previous section aiming at single functions can
be directly used to alter the behavior of a neural network. In this
section we extend the attack to a full network, while targeting
several function computations at once with a multi-fault injection
model. When it comes to deep neural networks, there are three
possible places to introduce a fault:
• Input layer – such fault would be identical to introducing a

change at the input data. Therefore, it is of little interest, since
it would be normally easier for the attacker to directly alter the
input data rather than injecting precise faults with an expensive
equipment.

• Hidden layer(s) – since the structure of the hidden layer is
normally unknown to the attacker, she cannot easily predict the
outcome of the fault injection. However, she can still achieve
the missclassification, although not necessarily to the class she
decides. Therefore, such attack might be interesting in case the
attacker does not care about the outcome class as long as it is
different from the correct outcome.

• Output layer – normally, softmax is the function of choice for
the output layer. According to our results, introducing a mean-
ingful fault into softmax is harder compared to other functions.
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Fig. 3: (a) Sigmoid, (b) Hyperbolic tangent, and (c) ReLu func-
tions. Blue lines indicate original function, red lines indicate
faulted ones.
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However, as we discussed, in case the attacker can alter registers
storing the floating point data, she can easily missclasify the
outcome to a chosen class, making it a very powerful attack
model.

Deciding on what layer to attack, it makes sense to inject the fault
as close to the output layer as possible to make the impact highest.
Therefore, for our case, the attacker injects faults into the last
hidden layer of the network, targeting multiple activation function
computations.

In the following we consider DNNs severed for classification
purposes and the activation function of the output layer is sofmax.
We further assume the output layer is dense and the goal of the
attacker is to misclassify an input. In Section 4.1 we discuss the
possible strategies of an attacker. In Section 4.2 we present the
evaluation results using the strategies on a sample DNN.

4.1 Algorithms for attacking the last hidden layer

We model the last two layers of a DNN as follows: let x denote the
output of the last hidden layer and let W and B denote the matrix
of weights and the vector of bias weights for output layer. Let z
denote the input of softmax function. Suppose there are m neurons
in the last hidden layer and n neurons in the output layer. Let Wk,
k = 1, 2, . . . , n be the columns of W. Then the output is given by

outputi =
exp(zi)∑n

j=1 exp(z j)
=

exp(xWi + Bi)∑n
j=1 xW j + B j

, i = 1, 2, . . . , n.

The final classification is given by ` such that maxi outputi =

output`. For any sequence of z j, j = 1, 2, . . . , n, we have

max
i

outputi = max
i

exp(zi)∑n
j=1 exp(z j)

=
maxi exp(zi)∑n

j=1 exp(z j)
=

exp
(
max

i
zi

)
∑n

j=1 exp(z j)
.

Hence the output classification is equal to ` such that maxi zi = z`.
The attacker injects faults in the computation of the activation

functions for neurons in the last hidden layer and gets a faulted
x′. Correspondingly we have a faulted vector z′. Thus, for a given
input with correct classification `, the goal of misclassification is
equivalent to: achieve z′ such that there exists j with z′j > z′` or
z′j−z′` > 0. Consequently, an input can be misclassified if and only
if

(x′W j + B j) − (x′W` + B`) > 0

(xW j + B j + (x′ − x)W jk) − (xW` + B` + (x − x)W`k) > 0

xW j + B j − xW` − B` + (x′ − x)(W jk −W`k) > 0

z j − z` + (x′ − x)(W jk −W`k) > 0

z j − z` +
∑
x′k,xk

(x′k − xk)(W jk −W`k) (5)

Algorithm 1 gives matrix A such that A[k][ j] = (x′k−xk)(W jk−W`k)
and diagonal matrix D whose diagonal is given by x′ − x.
Single fault strategy. When a single fault model is considered, x
and x′ only differs in one entry, say xk. Equation (5) becomes

z j − z` + (x′k − xk)(W jk −W`k) > 0 (6)

For given DNN and a target input, Algorithm 2 outputs k, the
neuron to attack so that a misclassification can be achieved. Line 2
calculates the matrix A with column i given by Wi−W`. Depending
on the activation function, x′ is related to x as described in Table 1.
After line 13, the (k, j)−entry of matrix A is given by (x′k−xk)(W jk−

W`k). Line 15 checks if Equation (6) is satisfied for any j, k. If it

Algorithm 1: Calculation of matrix A
Input : W: matrix of weights for the last layer with columns

W1,W2, . . . ,Wn; B vector of bias weights for the last
layer; `: the correct class of target input; x: output of
the last hidden layer for target input; activation
function: ReLu, sigmoid or Tanh.

Output: Matrices A,D.
1 for i = 1, 2, . . . , n do
2 A[i] = Wi −W`;

3 if activation function is ReLu then
4 for k = 1, 2, . . . ,m do
5 x′[i] = 0;

6 if activation function is sigmoid then
7 for k = 1, 2, . . . ,m do
8 x′[i] = 1 − x[i];

9 if activation function is Tanh then
10 for k = 1, 2, . . . ,m do
11 x′[i] = −x[i];

12 D = diagonal matrix with diagonal x′ − x;
13 A = DA;
14 return A,D;

Algorithm 2: Single fault strategy
Input : A:obtained from Algorithm 1; z: input of softmax

function.
Output: True/False indicating if an attack exists or not; k s.t.

the input can be misclassified with fault attack on
neuron k.

1 for k = 1, 2, . . . ,m do
2 for j = 1, 2, . . . , n, j , ` do
3 if z j − z` + A[k][ j] > 0 then
4 output k;
5 return True;

6 return False;

can be satisfied for some k, j, the target input can be misclassfied
with a fault attack on neuron k.

For multiple fault model, a natural strategy is random faults,
i.e. random number of neurons in the last hidden layers are faulted.
Here we provide another strategy which utilizes the information
of weights and bias of the last layer.
Multiple faults strategy. For a target input with correct class `, we
aim to find a list of neurons to attack so that the probability of class
` in the output will be reduced. Details are given in Algorithm 3.

Algorithm 3: Multiple faults strategy
Input : D: obtained from Algorithm 1; W`: the `th column of

W; M: number of faults.
Output: indices: a list of neurons to attack.

1 indices= [];
2 B = DW`;
3 for k = 1, 2, . . . ,m do
4 if B[k][ j] < 0 then
5 add k to indices;
6 if length of indices== M then
7 return indices;

8 return indices;
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Layer No. of neurons Activation function
Input layer 784 -

Hidden layer 1 500 ReLu
Hidden layer 2 500 ReLu
Hidden layer 3 500 ReLu
Hidden layer 4 n target activation function
Output layer 10 Softmax

TABLE 2: Structure of the DNN used in evaluations.
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Fig. 4: Target activation function – ReLu.

4.2 Evaluation of a sample DNN

To test how our attack can influence a real-world DNN, we
trained and evaluated different DNNs with the attack strategies
described above. The attack vectors considered are as described in
Section 3.2. We have selected a popular MNIST dataset [28]. The
training of DNNs was accomplished using Keras (ver.2.1.6) [29]
and Tensorflow libraries (ver.1.8.0) [30]. The structures of the
DNNs are detailed in Table 2. For each target function (ReLu,
sigmoid and tanh), 10 DNNs with different number of neu-
rons (n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500) in hidden
layer 4 were evaluated. We used a partially fixed structure of DNN
in order to study the effects of fault attacks on different activation
functions. The prediction accuracy we obtained is summarized in
Table 3. The accuracy shows that although the DNNs we choose
are relatively simple, their accuracy is comparable with the state
of the art. Success rates are calculated for 800 random inputs.

For multiple fault model, we evaluated the DNNs with number
of faults equal to 10, 20, 30, 40, 50 percent of the number of
neurons in hidden layer 4. The simulation results for targeting
activation function being ReLu, Sigmoid and tanh are presented in
Figures 4, 5 and 6 respectively.

Overall, it can be concluded that in case of sigmoid and tanh,
if the attacker wants to have a reasonable success rate (>50%), she
should inject faults in at least 40% of the neurons using multiple
faults strategy in the chosen layer. But for ReLu, when the number
of neurons is big, the DNN becomes more resistant to fault attacks.

The results also show that sigmoid and tanh functions follow
the same trend, which is caused by the same type of fault as
explained in the previous section – skipping the negation in the
exponentiation function.

5 Genetic algorithm for attacking the whole DNN
A natural question to ask is what if we assume the attacker
can target any neurons in the whole DNN? And how many
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neurons does she need to attack to achieve a certain percentage
of misclassification?

To find answer these questions, we analyzed three different
DNNs with structures given in Table 4, where the target activation
functions are ReLu, Sigmoid, tanh, respectively. Similarly to
Section 4.2, the DNNs were trained using Keras (ver 2.1.6.) on
MNIST dataset.

The aim of the experiment was to check the effect on the DNN
when a certain percentage of neurons is attacked. For this purpose,
we have adopted the genetic algorithm to help in searching for the
vulnerable collections of neurons in a given DNN.

Genetic Algorithm (GA) is a heuristic algorithm normally
used for optimization problems, based on the concept of natural
selection. For optimization problems with large search space, it

Algorithm 4: Genetic Algorithm (GA) for attacking the
whole DNN

Input : DNN structure, noOfFaults: number of faults,
noGen: number of generation

Output: indices: a list of neurons to attack.
1 P = Generate Population(noOfFaults);
2 Evaluate(P);
3 for i in range(noGen) do
4 Crossover(P);
5 Mutation(P);
6 Evaluate(P);
7 Selection(P);

8 return the best individual in P;
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Target ReLu
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.2 99.2 99.4 98.8 99.1 99.0 99.2 98.4 98.9 99.1
Test. Acc. 97.4 97.9 98.0 97.4 97.7 97.5 97.8 97.3 97.5 98.0

Target sigmoid
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.2 99.0 99.3 99.0 99.3 99.3 99.4 99.1 99.3 99.4
Test. Acc. 98.0 97.7 98.0 97.6 98.1 98.0 98.0 97.7 98.1 98.0

Target tanh
n 50 100 150 200 250 300 350 400 450 500

Train. Acc. 99.0 99.0 98.2 99.1 99.1 99.3 99.0 98.9 99.2 98.9
Test. Acc. 98.0 97.5 97.8 97.8 97.8 98.0 97.6 97.7 98.1 97.4

TABLE 3: Training/testing accuracy of DNNs used in evaluation.

is often a preferable choice compared to brute-force search, since
it can help to reduce the search time for finding the solution.
While it does not guarantee finding a perfect solution, it is an
alternative approach that finds a good enough solution, while
saving the computational resources significantly. GA itself has
been applied as well for fault attacks problems, for example, to
search for optimal experiment parameters for fault injection [31].

Typically, the standard GA method is to assign fitness values
for each individuals within the search space. A population of these
individuals is initialized randomly according to the specification
for the population. For each generation (or iteration), the algorithm
selects better individuals and removes the worse ones, while com-
bining different individuals using crossover algorithm to generate
new ones. The evaluation is performed according to the fitness
function defined, and the aim is to find an individual which could
optimize the fitness value in the search space. Normally, to avoid
converging to local optima, a mutation function is introduced by
randomly changing parts of the new individuals.

In our experiment, we use DEAP [32] for the GA implementa-
tion. DEAP is an evolutionary algorithm library in Python. Since
we are using Keras for our DNN implementation, DEAP can be
easily adopted and integrated for the experiments. Our GA follows
a standard structure as shown in Algorithm 4. Here we explain how
each component of GA was implemented:

• Individual: Each individual is generated as a binary vector
whose length is the number of neurons in the hidden layers
of the neural network. For DNNs we evaluated (see Table 4),
each individual has length 800. As we consider faults to be
inserted randomly in the hidden layers, we do not differentiate
to which layer the faulted neuron belongs, that is why the
individual is of vector shape. A 0 in index i would indicate
the ith neuron is not attacked and a 1 in index j would indicate
the jth neuron will be attacked. Naturally, The number of 1s
is equal to the number of faults allowed.

• Fitness function: The fitness of an individual is the
corresponding misclassification rate – more precisely, we
calculate the percentage of misclassified image by faulting
the network according to the fault model represented by the
individual.

• Population: In our experiments, we set size of population to
be 200 and number of generations to be 120. These numbers
were selected for practical reasons, as higher values would
yield impractical computation times.

• Selection The selection of next generation follows tourna-
ment selection with tournament size 3.

Regarding the crossover and mutation, we followed the selection

Layer No. of neurons Activation function
Input layer 784 -

Hidden layer 1 200 target activation function
Hidden layer 2 200 target activation function
Hidden layer 3 200 target activation function
Hidden layer 4 200 target activation function
Output layer 10 Softmax

TABLE 4: Structure of the DNN used in evaluation for attacking
the whole network.

Activation function Training Accuracy Test Accuracy
ReLu 99.9 98.7

Sigmoid 99.3 97.6
tanh 99.9 98.1

TABLE 5: Training/test accuracy of DNNs used in evaluation for
attacking the whole network.

guidelines stated in [33]. In general, it is advised to select lower
values for these parameters in case of binary values.

• Crossover: For each pair of individuals in the population,
the crossover rate is set to be 0.78. This value is relatively
high because of the size of the search space in our problem
– crossover handles the exploration part of the GA, which
means searching through the available space [34]. The off-
springs are obtained by performing two-point crossover.

• Mutation: Mutation is performed in order to avoid falling
for local minima in the search space. In this experiment, flip
bits are used for mutation. The mutation rate was chosen to
be 0.05. We chose a relatively low mutation rate to avoid
reducing the algorithm to a random search, but significant
enough to get a good convergence.

In each generation, new individuals have to be checked to ensure
that they satisfy the constraint in the original problem, namely, the
number of 1s is equal to number of faults allowed. We include
this constraint in the evaluation step – we penalize the outliers by
assigning zero score, to exclude them from the next generation.

Figure 7 shows the success rate of misclassification when the
neurons are selected by using GA, compared to random selection.
It shows that especially in case of Sigmoid and ReLu, careful
choice of which neurons to fault can increase the success rate
significantly. To summarize, the result can be improved up to 62%
in case of ReLu, 31% in case of Sigmoid, and 20% in case of tanh.
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Fig. 7: Evaluation results using genetic algorithm (GA) to select
neurons versus random selection.

6 Conclusion and FutureWork

In this paper, we have proposed the first physical fault injection
attack technique on the major activation functions of deep neural
networks. We stated implications how such attack can alter the
behavior of targeted network, together with simulations. Our
results demonstrate practicality of the attack on ReLu, sigmoid,
and tanh.

It will also be interesting to look at possible countermeasures.
While there are already techniques available that correct non-
malicious alterations of the processed values in DNN (due to
environmental conditions) [35], the fault tolerance techniques
against malicious entities have to be developed in the same way
as in the area of applied cryptography [36], [37], [38].
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