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Abstract. In this note, we leverage the results of [CG19] to produce a concise and rigorous
proof for the complexity of the generalized MinRank Problem in the under-defined and well-
defined case. Our main theorem recovers and extends the main results of [FSS10, FSS13].

1. Introduction

The MinRank Problem asks to find an element of least rank in a given space of matrices.
In its classical formulation, one searches for a matrix of minimum rank in a vector space,
given via a system of generators.

Classical MinRank Problem. Let k be a field and let m,n, r, k be positive integers. Given as
input k matrices M1, . . . ,Mk with entries in k, find x1, . . . , xk ∈ k such that the corresponding
linear combination satisfies

rank

 k∑
i=1

xiMi

 ≤ r.

The entries of the matrix M =
∑k

i=1 xiMi are linear polynomials in the variables x1, . . . , xk.
The following is a natural generalization of the MinRank Problem.

Generalized MinRank Problem. Let k be a field and let m,n, r, k be positive integers. Given
as input a matrix M with entries in k[x1, . . . , xk], compute the set of points in kk at which the
evaluation of M has rank at most r.

Both of these problems arise naturally within cryptography and coding theory, as well as
in numerous other applications. Within multivariate cryptography, the MinRank Problem
plays a central role in the cryptanalysis of several systems, including HFE and its vari-
ants [KS99, BFP13, CSV17, VS17, DPPS18], the TTM Cryptosystem [GC00], and the ABC
Cryptosystem [MPS14, MPS17]. Within coding theory, the problem of decoding a linear
rank-metric code is an instance of the classical MinRank Problem.

Following [KS99], we distinguish the following three situations.

Definition 1.1. A MinRank Problem is under-defined if k > (n − r)(m − r), well-defined if k =
(n− r)(m− r), and over-determined if k < (n− r)(m− r).

There are at least two ways of approaching the MinRank Problem: the Kipnis-Shamir
modeling introduced in [KS99] and the minors modeling. We concentrate on the second one.

The minors modeling relies on the following observation: A vector (a1, . . . , ak) is a solution
of the (classic or generalized) MinRank Problem for a matrix M if and only if all minors of
size r + 1 of M vanish at this point. Thus we can find the solutions of the MinRank Problem
by solving the polynomial system consisting of all minors of size r + 1 of M. This is a system
of multivariate polynomial equations F = { f1, . . . , fs}, so one may attempt to solve it by
means of the usual Gröbner bases methods. The complexity of these methods is controlled
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by the solving degree of F , that is the highest degree of polynomials appearing during the
computation of a degree reverse lexicographic Gröbner basis.

In this paper, we take another look at the complexity of solving the MinRank Problem.
We focus on the under-defined and well-defined situations, which we treat with a unified
approach. Notice that no fully provable, general results on the complexity of the over-
determined case are currently available.

The results from [CG19], in combination with classical commutative algebra results, pro-
vide us with a simple provable estimate for the complexity of the homogeneous version of
the generalized MinRank Problem. More generally, Theorem 2.5 holds in the situation when
the minors of the matrix obtained by homogenizing the entries of M are the homogenization
of the minors of M. As a special case of our main result, we obtain a simple and concise
proof of the main results from [FSS10, FSS13], which avoids lengthy technical computations.

2. Main Results

We fix a field k and positive integers m,n, r, k. Without loss of generality, we assume that
n ≥ m and r ≤ n. We focus on the MinRank Problem in the under-defined and well-defined
case. We state our results in increasing order of generality.

Theorem 2.1. The solving degree of the minors modeling of a generic classical well-defined square
MinRank Problem (m = n and k = (n− r)2) is upper bounded by

solv.deg(F ) ≤ nr− r2 + 1.

Theorem 2.2. Let M be an m×n matrix whose entries are generic linear polynomials ink[x1, . . . , xk]
and assume k ≥ (m− r)(n− r). Let F be the polynomial system of the minors of size r + 1 of M. Then
the solving degree of F is upper bounded by

solv.deg(F ) ≤ k−mn + mr− r2 + 1.

Theorem 2.3. Let M be an m × n matrix whose entries are generic homogeneous polynomials of
degree d in k[x1, . . . , xk] and assume k ≥ (m − r)(n − r). Let F be the polynomial system of the
minors of size r + 1 of M. Then the solving degree of F is upper bounded by

solv.deg(F ) ≤ k−mn + mr + (1− d)rn− r2 + 1.

Remark 2.4. The word “generic” used in the statements is a technical term from algebraic
geometry, which means “there exists a nonempty open set” of polynomials for which the
results hold. This is exactly the same use of generic as in [FSS10, FSS13].

The previous theorems recover the main results of [FSS10, FSS13]. We obtain them as a
consequence of our more general Theorem 2.5, by letting di, j = 1 (Theorems 2.1 and 2.2) and
di, j = d (Theorem 2.3).

We consider an m × n matrix M, whose entry in position (i, j) is a polynomial of degree
di, j in k[x1, . . . , xk], for all i, j. Up to permuting rows and columns, we may assume that
d1,1 ≤ d2,1 ≤ · · · ≤ dm,1. Moreover, assume that the following two conditions hold:

(1) di, j > 0 for all i, j.
(2) di, j + dh,` = di,` + dh, j for all i, j, `, h.

Finally, we assume that the entries of M are generic polynomials. One may think of this
assumption as the coefficients of each polynomial being randomly chosen.

Theorem 2.5. Let M be an m × n matrix as above and assume k ≥ (m − r)(n − r). Let F be the
polynomial system of the minors of size r + 1 of M. Then the solving degree of F is upper bounded by

solv.deg(F ) ≤ k− (m− r)(n− r) + 1− r
m∑

i=1

di,i −

r∑
i=1

n∑
j=m+1

di, j.
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Proof. Notice that, because of the assumption on the degrees of the entries of M, the homog-
enizations of the (r + 1)-minors of M are the (r + 1)-minors of the matrix obtained from M
by homogenizing its entries. Therefore, we may assume without loss of generality that the
entries of M are generic homogeneous polynomials. The main result of [CG19, Section 3.3]
implies that

solv.deg(F ) ≤ reg I,
where I is the ideal generated by the polynomials of F and reg I denotes the Castelnuovo-
Mumford regularity of I. We can compute it as follows.

First, observe that since the polynomials of M are generic and the matrix M is ho-
mogeneous, the quotient ring S = k[x1, . . . , xk]/I is Cohen-Macaulay of Krull dimension
dim(S) = k − (m − r)(n − r) by Eagon-Northcott’s Theorem [EN62]. Moreover by [BH98, Ex-
amples 3.6.15], we have reg(S) = a(S) + dim(S), where a(S) denotes the a-invariant of S. By
[BH92, Corollary 1.5], this is given by

a(S) = −r
m∑

i=1

di,i −

r∑
i=1

n∑
j=m+1

di, j,

where di, j = ei + f j in the notation of [BH92]. Finally, putting everything together we obtain

reg(I) = reg(S) + 1 = a(S) + dim(S) + 1

= k− (m− r)(n− r) + 1− r
m∑

i=1

di,i −

r∑
i=1

n∑
j=m+1

di, j.
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